/* * Support for dynamic reconfiguration for PCI, Memory, and CPU * Hotplug and Dynamic Logical Partitioning on RPA platforms. * * Copyright (C) 2009 Nathan Fontenot * Copyright (C) 2009 IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "offline_states.h" #include #include #include #include struct cc_workarea { u32 drc_index; u32 zero; u32 name_offset; u32 prop_length; u32 prop_offset; }; void dlpar_free_cc_property(struct property *prop) { kfree(prop->name); kfree(prop->value); kfree(prop); } static struct property *dlpar_parse_cc_property(struct cc_workarea *ccwa) { struct property *prop; char *name; char *value; prop = kzalloc(sizeof(*prop), GFP_KERNEL); if (!prop) return NULL; name = (char *)ccwa + ccwa->name_offset; prop->name = kstrdup(name, GFP_KERNEL); prop->length = ccwa->prop_length; value = (char *)ccwa + ccwa->prop_offset; prop->value = kmemdup(value, prop->length, GFP_KERNEL); if (!prop->value) { dlpar_free_cc_property(prop); return NULL; } return prop; } static struct device_node *dlpar_parse_cc_node(struct cc_workarea *ccwa) { struct device_node *dn; char *name; dn = kzalloc(sizeof(*dn), GFP_KERNEL); if (!dn) return NULL; /* The configure connector reported name does not contain a * preceding '/', so we allocate a buffer large enough to * prepend this to the full_name. */ name = (char *)ccwa + ccwa->name_offset; dn->full_name = kasprintf(GFP_KERNEL, "/%s", name); if (!dn->full_name) { kfree(dn); return NULL; } of_node_set_flag(dn, OF_DYNAMIC); kref_init(&dn->kref); return dn; } static void dlpar_free_one_cc_node(struct device_node *dn) { struct property *prop; while (dn->properties) { prop = dn->properties; dn->properties = prop->next; dlpar_free_cc_property(prop); } kfree(dn->full_name); kfree(dn); } void dlpar_free_cc_nodes(struct device_node *dn) { if (dn->child) dlpar_free_cc_nodes(dn->child); if (dn->sibling) dlpar_free_cc_nodes(dn->sibling); dlpar_free_one_cc_node(dn); } #define COMPLETE 0 #define NEXT_SIBLING 1 #define NEXT_CHILD 2 #define NEXT_PROPERTY 3 #define PREV_PARENT 4 #define MORE_MEMORY 5 #define CALL_AGAIN -2 #define ERR_CFG_USE -9003 struct device_node *dlpar_configure_connector(u32 drc_index) { struct device_node *dn; struct device_node *first_dn = NULL; struct device_node *last_dn = NULL; struct property *property; struct property *last_property = NULL; struct cc_workarea *ccwa; char *data_buf; int cc_token; int rc = -1; cc_token = rtas_token("ibm,configure-connector"); if (cc_token == RTAS_UNKNOWN_SERVICE) return NULL; data_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); if (!data_buf) return NULL; ccwa = (struct cc_workarea *)&data_buf[0]; ccwa->drc_index = drc_index; ccwa->zero = 0; do { /* Since we release the rtas_data_buf lock between configure * connector calls we want to re-populate the rtas_data_buffer * with the contents of the previous call. */ spin_lock(&rtas_data_buf_lock); memcpy(rtas_data_buf, data_buf, RTAS_DATA_BUF_SIZE); rc = rtas_call(cc_token, 2, 1, NULL, rtas_data_buf, NULL); memcpy(data_buf, rtas_data_buf, RTAS_DATA_BUF_SIZE); spin_unlock(&rtas_data_buf_lock); switch (rc) { case COMPLETE: break; case NEXT_SIBLING: dn = dlpar_parse_cc_node(ccwa); if (!dn) goto cc_error; dn->parent = last_dn->parent; last_dn->sibling = dn; last_dn = dn; break; case NEXT_CHILD: dn = dlpar_parse_cc_node(ccwa); if (!dn) goto cc_error; if (!first_dn) first_dn = dn; else { dn->parent = last_dn; if (last_dn) last_dn->child = dn; } last_dn = dn; break; case NEXT_PROPERTY: property = dlpar_parse_cc_property(ccwa); if (!property) goto cc_error; if (!last_dn->properties) last_dn->properties = property; else last_property->next = property; last_property = property; break; case PREV_PARENT: last_dn = last_dn->parent; break; case CALL_AGAIN: break; case MORE_MEMORY: case ERR_CFG_USE: default: printk(KERN_ERR "Unexpected Error (%d) " "returned from configure-connector\n", rc); goto cc_error; } } while (rc); cc_error: kfree(data_buf); if (rc) { if (first_dn) dlpar_free_cc_nodes(first_dn); return NULL; } return first_dn; } static struct device_node *derive_parent(const char *path) { struct device_node *parent; char *last_slash; last_slash = strrchr(path, '/'); if (last_slash == path) { parent = of_find_node_by_path("/"); } else { char *parent_path; int parent_path_len = last_slash - path + 1; parent_path = kmalloc(parent_path_len, GFP_KERNEL); if (!parent_path) return NULL; strlcpy(parent_path, path, parent_path_len); parent = of_find_node_by_path(parent_path); kfree(parent_path); } return parent; } int dlpar_attach_node(struct device_node *dn) { int rc; dn->parent = derive_parent(dn->full_name); if (!dn->parent) return -ENOMEM; rc = of_attach_node(dn); if (rc) { printk(KERN_ERR "Failed to add device node %s\n", dn->full_name); return rc; } of_node_put(dn->parent); return 0; } int dlpar_detach_node(struct device_node *dn) { int rc; rc = of_detach_node(dn); if (rc) return rc; of_node_put(dn); /* Must decrement the refcount */ return 0; } #define DR_ENTITY_SENSE 9003 #define DR_ENTITY_PRESENT 1 #define DR_ENTITY_UNUSABLE 2 #define ALLOCATION_STATE 9003 #define ALLOC_UNUSABLE 0 #define ALLOC_USABLE 1 #define ISOLATION_STATE 9001 #define ISOLATE 0 #define UNISOLATE 1 int dlpar_acquire_drc(u32 drc_index) { int dr_status, rc; rc = rtas_call(rtas_token("get-sensor-state"), 2, 2, &dr_status, DR_ENTITY_SENSE, drc_index); if (rc || dr_status != DR_ENTITY_UNUSABLE) return -1; rc = rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_USABLE); if (rc) return rc; rc = rtas_set_indicator(ISOLATION_STATE, drc_index, UNISOLATE); if (rc) { rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_UNUSABLE); return rc; } return 0; } int dlpar_release_drc(u32 drc_index) { int dr_status, rc; rc = rtas_call(rtas_token("get-sensor-state"), 2, 2, &dr_status, DR_ENTITY_SENSE, drc_index); if (rc || dr_status != DR_ENTITY_PRESENT) return -1; rc = rtas_set_indicator(ISOLATION_STATE, drc_index, ISOLATE); if (rc) return rc; rc = rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_UNUSABLE); if (rc) { rtas_set_indicator(ISOLATION_STATE, drc_index, UNISOLATE); return rc; } return 0; } #ifdef CONFIG_ARCH_CPU_PROBE_RELEASE static int dlpar_online_cpu(struct device_node *dn) { int rc = 0; unsigned int cpu; int len, nthreads, i; const u32 *intserv; intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s", &len); if (!intserv) return -EINVAL; nthreads = len / sizeof(u32); cpu_maps_update_begin(); for (i = 0; i < nthreads; i++) { for_each_present_cpu(cpu) { if (get_hard_smp_processor_id(cpu) != intserv[i]) continue; BUG_ON(get_cpu_current_state(cpu) != CPU_STATE_OFFLINE); cpu_maps_update_done(); rc = cpu_up(cpu); if (rc) goto out; cpu_maps_update_begin(); break; } if (cpu == num_possible_cpus()) printk(KERN_WARNING "Could not find cpu to online " "with physical id 0x%x\n", intserv[i]); } cpu_maps_update_done(); out: return rc; } static ssize_t dlpar_cpu_probe(const char *buf, size_t count) { struct device_node *dn; unsigned long drc_index; char *cpu_name; int rc; cpu_hotplug_driver_lock(); rc = strict_strtoul(buf, 0, &drc_index); if (rc) { rc = -EINVAL; goto out; } dn = dlpar_configure_connector(drc_index); if (!dn) { rc = -EINVAL; goto out; } /* configure-connector reports cpus as living in the base * directory of the device tree. CPUs actually live in the * cpus directory so we need to fixup the full_name. */ cpu_name = kasprintf(GFP_KERNEL, "/cpus%s", dn->full_name); if (!cpu_name) { dlpar_free_cc_nodes(dn); rc = -ENOMEM; goto out; } kfree(dn->full_name); dn->full_name = cpu_name; rc = dlpar_acquire_drc(drc_index); if (rc) { dlpar_free_cc_nodes(dn); rc = -EINVAL; goto out; } rc = dlpar_attach_node(dn); if (rc) { dlpar_release_drc(drc_index); dlpar_free_cc_nodes(dn); goto out; } rc = dlpar_online_cpu(dn); out: cpu_hotplug_driver_unlock(); return rc ? rc : count; } static int dlpar_offline_cpu(struct device_node *dn) { int rc = 0; unsigned int cpu; int len, nthreads, i; const u32 *intserv; intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s", &len); if (!intserv) return -EINVAL; nthreads = len / sizeof(u32); cpu_maps_update_begin(); for (i = 0; i < nthreads; i++) { for_each_present_cpu(cpu) { if (get_hard_smp_processor_id(cpu) != intserv[i]) continue; if (get_cpu_current_state(cpu) == CPU_STATE_OFFLINE) break; if (get_cpu_current_state(cpu) == CPU_STATE_ONLINE) { set_preferred_offline_state(cpu, CPU_STATE_OFFLINE); cpu_maps_update_done(); rc = cpu_down(cpu); if (rc) goto out; cpu_maps_update_begin(); break; } /* * The cpu is in CPU_STATE_INACTIVE. * Upgrade it's state to CPU_STATE_OFFLINE. */ set_preferred_offline_state(cpu, CPU_STATE_OFFLINE); BUG_ON(plpar_hcall_norets(H_PROD, intserv[i]) != H_SUCCESS); __cpu_die(cpu); break; } if (cpu == num_possible_cpus()) printk(KERN_WARNING "Could not find cpu to offline " "with physical id 0x%x\n", intserv[i]); } cpu_maps_update_done(); out: return rc; } static ssize_t dlpar_cpu_release(const char *buf, size_t count) { struct device_node *dn; const u32 *drc_index; int rc; dn = of_find_node_by_path(buf); if (!dn) return -EINVAL; drc_index = of_get_property(dn, "ibm,my-drc-index", NULL); if (!drc_index) { of_node_put(dn); return -EINVAL; } cpu_hotplug_driver_lock(); rc = dlpar_offline_cpu(dn); if (rc) { of_node_put(dn); rc = -EINVAL; goto out; } rc = dlpar_release_drc(*drc_index); if (rc) { of_node_put(dn); goto out; } rc = dlpar_detach_node(dn); if (rc) { dlpar_acquire_drc(*drc_index); goto out; } of_node_put(dn); out: cpu_hotplug_driver_unlock(); return rc ? rc : count; } static int __init pseries_dlpar_init(void) { ppc_md.cpu_probe = dlpar_cpu_probe; ppc_md.cpu_release = dlpar_cpu_release; return 0; } machine_device_initcall(pseries, pseries_dlpar_init); #endif /* CONFIG_ARCH_CPU_PROBE_RELEASE */