/* bnx2x.h: Broadcom Everest network driver. * * Copyright (c) 2007-2013 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein * Written by: Eliezer Tamir * Based on code from Michael Chan's bnx2 driver */ #ifndef BNX2X_H #define BNX2X_H #include #include #include #include #include /* compilation time flags */ /* define this to make the driver freeze on error to allow getting debug info * (you will need to reboot afterwards) */ /* #define BNX2X_STOP_ON_ERROR */ #define DRV_MODULE_VERSION "1.78.17-0" #define DRV_MODULE_RELDATE "2013/04/11" #define BNX2X_BC_VER 0x040200 #if defined(CONFIG_DCB) #define BCM_DCBNL #endif #include "bnx2x_hsi.h" #include "../cnic_if.h" #define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt) #include #include "bnx2x_reg.h" #include "bnx2x_fw_defs.h" #include "bnx2x_mfw_req.h" #include "bnx2x_link.h" #include "bnx2x_sp.h" #include "bnx2x_dcb.h" #include "bnx2x_stats.h" #include "bnx2x_vfpf.h" enum bnx2x_int_mode { BNX2X_INT_MODE_MSIX, BNX2X_INT_MODE_INTX, BNX2X_INT_MODE_MSI }; /* error/debug prints */ #define DRV_MODULE_NAME "bnx2x" /* for messages that are currently off */ #define BNX2X_MSG_OFF 0x0 #define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */ #define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */ #define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */ #define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */ #define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */ #define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */ #define BNX2X_MSG_IOV 0x0800000 #define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/ #define BNX2X_MSG_ETHTOOL 0x4000000 #define BNX2X_MSG_DCB 0x8000000 /* regular debug print */ #define DP_INNER(fmt, ...) \ pr_notice("[%s:%d(%s)]" fmt, \ __func__, __LINE__, \ bp->dev ? (bp->dev->name) : "?", \ ##__VA_ARGS__); #define DP(__mask, fmt, ...) \ do { \ if (unlikely(bp->msg_enable & (__mask))) \ DP_INNER(fmt, ##__VA_ARGS__); \ } while (0) #define DP_AND(__mask, fmt, ...) \ do { \ if (unlikely((bp->msg_enable & (__mask)) == __mask)) \ DP_INNER(fmt, ##__VA_ARGS__); \ } while (0) #define DP_CONT(__mask, fmt, ...) \ do { \ if (unlikely(bp->msg_enable & (__mask))) \ pr_cont(fmt, ##__VA_ARGS__); \ } while (0) /* errors debug print */ #define BNX2X_DBG_ERR(fmt, ...) \ do { \ if (unlikely(netif_msg_probe(bp))) \ pr_err("[%s:%d(%s)]" fmt, \ __func__, __LINE__, \ bp->dev ? (bp->dev->name) : "?", \ ##__VA_ARGS__); \ } while (0) /* for errors (never masked) */ #define BNX2X_ERR(fmt, ...) \ do { \ pr_err("[%s:%d(%s)]" fmt, \ __func__, __LINE__, \ bp->dev ? (bp->dev->name) : "?", \ ##__VA_ARGS__); \ } while (0) #define BNX2X_ERROR(fmt, ...) \ pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__) /* before we have a dev->name use dev_info() */ #define BNX2X_DEV_INFO(fmt, ...) \ do { \ if (unlikely(netif_msg_probe(bp))) \ dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \ } while (0) /* Error handling */ void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int); #ifdef BNX2X_STOP_ON_ERROR #define bnx2x_panic() \ do { \ bp->panic = 1; \ BNX2X_ERR("driver assert\n"); \ bnx2x_panic_dump(bp, true); \ } while (0) #else #define bnx2x_panic() \ do { \ bp->panic = 1; \ BNX2X_ERR("driver assert\n"); \ bnx2x_panic_dump(bp, false); \ } while (0) #endif #define bnx2x_mc_addr(ha) ((ha)->addr) #define bnx2x_uc_addr(ha) ((ha)->addr) #define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff)) #define U64_HI(x) ((u32)(((u64)(x)) >> 32)) #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) #define REG_ADDR(bp, offset) ((bp->regview) + (offset)) #define REG_RD(bp, offset) readl(REG_ADDR(bp, offset)) #define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset)) #define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset)) #define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset)) #define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset)) #define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset)) #define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset) #define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val) #define REG_RD_DMAE(bp, offset, valp, len32) \ do { \ bnx2x_read_dmae(bp, offset, len32);\ memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \ } while (0) #define REG_WR_DMAE(bp, offset, valp, len32) \ do { \ memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \ bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ offset, len32); \ } while (0) #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \ REG_WR_DMAE(bp, offset, valp, len32) #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \ do { \ memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \ bnx2x_write_big_buf_wb(bp, addr, len32); \ } while (0) #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ offsetof(struct shmem_region, field)) #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) #define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val) #define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \ offsetof(struct shmem2_region, field)) #define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field)) #define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val) #define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \ offsetof(struct mf_cfg, field)) #define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \ offsetof(struct mf2_cfg, field)) #define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field)) #define MF_CFG_WR(bp, field, val) REG_WR(bp,\ MF_CFG_ADDR(bp, field), (val)) #define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field)) #define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \ (SHMEM2_RD((bp), size) > \ offsetof(struct shmem2_region, field))) #define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg) #define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val) /* SP SB indices */ /* General SP events - stats query, cfc delete, etc */ #define HC_SP_INDEX_ETH_DEF_CONS 3 /* EQ completions */ #define HC_SP_INDEX_EQ_CONS 7 /* FCoE L2 connection completions */ #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 /* iSCSI L2 */ #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 /* Special clients parameters */ /* SB indices */ /* FCoE L2 */ #define BNX2X_FCOE_L2_RX_INDEX \ (&bp->def_status_blk->sp_sb.\ index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]) #define BNX2X_FCOE_L2_TX_INDEX \ (&bp->def_status_blk->sp_sb.\ index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS]) /** * CIDs and CLIDs: * CLIDs below is a CLID for func 0, then the CLID for other * functions will be calculated by the formula: * * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X * */ enum { BNX2X_ISCSI_ETH_CL_ID_IDX, BNX2X_FCOE_ETH_CL_ID_IDX, BNX2X_MAX_CNIC_ETH_CL_ID_IDX, }; /* use a value high enough to be above all the PFs, which has least significant * nibble as 8, so when cnic needs to come up with a CID for UIO to use to * calculate doorbell address according to old doorbell configuration scheme * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number * We must avoid coming up with cid 8 for iscsi since according to this method * the designated UIO cid will come out 0 and it has a special handling for that * case which doesn't suit us. Therefore will will cieling to closes cid which * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18. */ #define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \ (bp)->max_cos) /* amount of cids traversed by UIO's DPM addition to doorbell */ #define UIO_DPM 8 /* roundup to DPM offset */ #define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \ UIO_DPM)) /* offset to nearest value which has lsb nibble matching DPM */ #define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \ (UIO_DPM * 2)) /* add offset to rounded-up cid to get a value which could be used with UIO */ #define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp)) /* but wait - avoid UIO special case for cid 0 */ #define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \ (UIO_DPM_ALIGN(bp) == UIO_DPM)) /* Properly DPM aligned CID dajusted to cid 0 secal case */ #define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \ (UIO_DPM_CID0_OFFSET(bp))) /* how many cids were wasted - need this value for cid allocation */ #define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \ BNX2X_1st_NON_L2_ETH_CID(bp)) /* iSCSI L2 */ #define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp)) /* FCoE L2 */ #define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1) #define CNIC_SUPPORT(bp) ((bp)->cnic_support) #define CNIC_ENABLED(bp) ((bp)->cnic_enabled) #define CNIC_LOADED(bp) ((bp)->cnic_loaded) #define FCOE_INIT(bp) ((bp)->fcoe_init) #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR #define SM_RX_ID 0 #define SM_TX_ID 1 /* defines for multiple tx priority indices */ #define FIRST_TX_ONLY_COS_INDEX 1 #define FIRST_TX_COS_INDEX 0 /* rules for calculating the cids of tx-only connections */ #define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp)) #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \ (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) /* fp index inside class of service range */ #define FP_COS_TO_TXQ(fp, cos, bp) \ ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) /* Indexes for transmission queues array: * txdata for RSS i CoS j is at location i + (j * num of RSS) * txdata for FCoE (if exist) is at location max cos * num of RSS * txdata for FWD (if exist) is one location after FCoE * txdata for OOO (if exist) is one location after FWD */ enum { FCOE_TXQ_IDX_OFFSET, FWD_TXQ_IDX_OFFSET, OOO_TXQ_IDX_OFFSET, }; #define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos) #define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET) /* fast path */ /* * This driver uses new build_skb() API : * RX ring buffer contains pointer to kmalloc() data only, * skb are built only after Hardware filled the frame. */ struct sw_rx_bd { u8 *data; DEFINE_DMA_UNMAP_ADDR(mapping); }; struct sw_tx_bd { struct sk_buff *skb; u16 first_bd; u8 flags; /* Set on the first BD descriptor when there is a split BD */ #define BNX2X_TSO_SPLIT_BD (1<<0) }; struct sw_rx_page { struct page *page; DEFINE_DMA_UNMAP_ADDR(mapping); }; union db_prod { struct doorbell_set_prod data; u32 raw; }; /* dropless fc FW/HW related params */ #define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512) #define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \ ETH_MAX_AGGREGATION_QUEUES_E1 :\ ETH_MAX_AGGREGATION_QUEUES_E1H_E2) #define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp)) #define FW_PREFETCH_CNT 16 #define DROPLESS_FC_HEADROOM 100 /* MC hsi */ #define BCM_PAGE_SHIFT 12 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) #define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) #define PAGES_PER_SGE_SHIFT 0 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) #define SGE_PAGE_SIZE PAGE_SIZE #define SGE_PAGE_SHIFT PAGE_SHIFT #define SGE_PAGE_ALIGN(addr) PAGE_ALIGN((typeof(PAGE_SIZE))(addr)) #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) #define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \ SGE_PAGES), 0xffff) /* SGE ring related macros */ #define NUM_RX_SGE_PAGES 2 #define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) #define NEXT_PAGE_SGE_DESC_CNT 2 #define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT) /* RX_SGE_CNT is promised to be a power of 2 */ #define RX_SGE_MASK (RX_SGE_CNT - 1) #define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES) #define MAX_RX_SGE (NUM_RX_SGE - 1) #define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \ (MAX_RX_SGE_CNT - 1)) ? \ (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \ (x) + 1) #define RX_SGE(x) ((x) & MAX_RX_SGE) /* * Number of required SGEs is the sum of two: * 1. Number of possible opened aggregations (next packet for * these aggregations will probably consume SGE immediately) * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only * after placement on BD for new TPA aggregation) * * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page */ #define NUM_SGE_REQ (MAX_AGG_QS(bp) + \ (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2) #define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \ MAX_RX_SGE_CNT) #define SGE_TH_LO(bp) (NUM_SGE_REQ + \ NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT) #define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM) /* Manipulate a bit vector defined as an array of u64 */ /* Number of bits in one sge_mask array element */ #define BIT_VEC64_ELEM_SZ 64 #define BIT_VEC64_ELEM_SHIFT 6 #define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1) #define __BIT_VEC64_SET_BIT(el, bit) \ do { \ el = ((el) | ((u64)0x1 << (bit))); \ } while (0) #define __BIT_VEC64_CLEAR_BIT(el, bit) \ do { \ el = ((el) & (~((u64)0x1 << (bit)))); \ } while (0) #define BIT_VEC64_SET_BIT(vec64, idx) \ __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ (idx) & BIT_VEC64_ELEM_MASK) #define BIT_VEC64_CLEAR_BIT(vec64, idx) \ __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ (idx) & BIT_VEC64_ELEM_MASK) #define BIT_VEC64_TEST_BIT(vec64, idx) \ (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \ ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1) /* Creates a bitmask of all ones in less significant bits. idx - index of the most significant bit in the created mask */ #define BIT_VEC64_ONES_MASK(idx) \ (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1) #define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0)) /*******************************************************/ /* Number of u64 elements in SGE mask array */ #define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ) #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) #define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) union host_hc_status_block { /* pointer to fp status block e1x */ struct host_hc_status_block_e1x *e1x_sb; /* pointer to fp status block e2 */ struct host_hc_status_block_e2 *e2_sb; }; struct bnx2x_agg_info { /* * First aggregation buffer is a data buffer, the following - are pages. * We will preallocate the data buffer for each aggregation when * we open the interface and will replace the BD at the consumer * with this one when we receive the TPA_START CQE in order to * keep the Rx BD ring consistent. */ struct sw_rx_bd first_buf; u8 tpa_state; #define BNX2X_TPA_START 1 #define BNX2X_TPA_STOP 2 #define BNX2X_TPA_ERROR 3 u8 placement_offset; u16 parsing_flags; u16 vlan_tag; u16 len_on_bd; u32 rxhash; enum pkt_hash_types rxhash_type; u16 gro_size; u16 full_page; }; #define Q_STATS_OFFSET32(stat_name) \ (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4) struct bnx2x_fp_txdata { struct sw_tx_bd *tx_buf_ring; union eth_tx_bd_types *tx_desc_ring; dma_addr_t tx_desc_mapping; u32 cid; union db_prod tx_db; u16 tx_pkt_prod; u16 tx_pkt_cons; u16 tx_bd_prod; u16 tx_bd_cons; unsigned long tx_pkt; __le16 *tx_cons_sb; int txq_index; struct bnx2x_fastpath *parent_fp; int tx_ring_size; }; enum bnx2x_tpa_mode_t { TPA_MODE_LRO, TPA_MODE_GRO }; struct bnx2x_fastpath { struct bnx2x *bp; /* parent */ struct napi_struct napi; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int state; #define BNX2X_FP_STATE_IDLE 0 #define BNX2X_FP_STATE_NAPI (1 << 0) /* NAPI owns this FP */ #define BNX2X_FP_STATE_POLL (1 << 1) /* poll owns this FP */ #define BNX2X_FP_STATE_DISABLED (1 << 2) #define BNX2X_FP_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this FP */ #define BNX2X_FP_STATE_POLL_YIELD (1 << 4) /* poll yielded this FP */ #define BNX2X_FP_OWNED (BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL) #define BNX2X_FP_YIELD (BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD) #define BNX2X_FP_LOCKED (BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED) #define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD) /* protect state */ spinlock_t lock; #endif /* CONFIG_NET_RX_BUSY_POLL */ union host_hc_status_block status_blk; /* chip independent shortcuts into sb structure */ __le16 *sb_index_values; __le16 *sb_running_index; /* chip independent shortcut into rx_prods_offset memory */ u32 ustorm_rx_prods_offset; u32 rx_buf_size; u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */ dma_addr_t status_blk_mapping; enum bnx2x_tpa_mode_t mode; u8 max_cos; /* actual number of active tx coses */ struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS]; struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */ struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */ struct eth_rx_bd *rx_desc_ring; dma_addr_t rx_desc_mapping; union eth_rx_cqe *rx_comp_ring; dma_addr_t rx_comp_mapping; /* SGE ring */ struct eth_rx_sge *rx_sge_ring; dma_addr_t rx_sge_mapping; u64 sge_mask[RX_SGE_MASK_LEN]; u32 cid; __le16 fp_hc_idx; u8 index; /* number in fp array */ u8 rx_queue; /* index for skb_record */ u8 cl_id; /* eth client id */ u8 cl_qzone_id; u8 fw_sb_id; /* status block number in FW */ u8 igu_sb_id; /* status block number in HW */ u16 rx_bd_prod; u16 rx_bd_cons; u16 rx_comp_prod; u16 rx_comp_cons; u16 rx_sge_prod; /* The last maximal completed SGE */ u16 last_max_sge; __le16 *rx_cons_sb; unsigned long rx_pkt, rx_calls; /* TPA related */ struct bnx2x_agg_info *tpa_info; u8 disable_tpa; #ifdef BNX2X_STOP_ON_ERROR u64 tpa_queue_used; #endif /* The size is calculated using the following: sizeof name field from netdev structure + 4 ('-Xx-' string) + 4 (for the digits and to make it DWORD aligned) */ #define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8) char name[FP_NAME_SIZE]; }; #define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var) #define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index]) #define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index])) #define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats)) #ifdef CONFIG_NET_RX_BUSY_POLL static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp) { spin_lock_init(&fp->lock); fp->state = BNX2X_FP_STATE_IDLE; } /* called from the device poll routine to get ownership of a FP */ static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp) { bool rc = true; spin_lock_bh(&fp->lock); if (fp->state & BNX2X_FP_LOCKED) { WARN_ON(fp->state & BNX2X_FP_STATE_NAPI); fp->state |= BNX2X_FP_STATE_NAPI_YIELD; rc = false; } else { /* we don't care if someone yielded */ fp->state = BNX2X_FP_STATE_NAPI; } spin_unlock_bh(&fp->lock); return rc; } /* returns true is someone tried to get the FP while napi had it */ static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp) { bool rc = false; spin_lock_bh(&fp->lock); WARN_ON(fp->state & (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD)); if (fp->state & BNX2X_FP_STATE_POLL_YIELD) rc = true; /* state ==> idle, unless currently disabled */ fp->state &= BNX2X_FP_STATE_DISABLED; spin_unlock_bh(&fp->lock); return rc; } /* called from bnx2x_low_latency_poll() */ static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp) { bool rc = true; spin_lock_bh(&fp->lock); if ((fp->state & BNX2X_FP_LOCKED)) { fp->state |= BNX2X_FP_STATE_POLL_YIELD; rc = false; } else { /* preserve yield marks */ fp->state |= BNX2X_FP_STATE_POLL; } spin_unlock_bh(&fp->lock); return rc; } /* returns true if someone tried to get the FP while it was locked */ static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp) { bool rc = false; spin_lock_bh(&fp->lock); WARN_ON(fp->state & BNX2X_FP_STATE_NAPI); if (fp->state & BNX2X_FP_STATE_POLL_YIELD) rc = true; /* state ==> idle, unless currently disabled */ fp->state &= BNX2X_FP_STATE_DISABLED; spin_unlock_bh(&fp->lock); return rc; } /* true if a socket is polling, even if it did not get the lock */ static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp) { WARN_ON(!(fp->state & BNX2X_FP_OWNED)); return fp->state & BNX2X_FP_USER_PEND; } /* false if fp is currently owned */ static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp) { int rc = true; spin_lock_bh(&fp->lock); if (fp->state & BNX2X_FP_OWNED) rc = false; fp->state |= BNX2X_FP_STATE_DISABLED; spin_unlock_bh(&fp->lock); return rc; } #else static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp) { } static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp) { return true; } static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp) { return false; } static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp) { return false; } static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp) { return false; } static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp) { return false; } static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp) { return true; } #endif /* CONFIG_NET_RX_BUSY_POLL */ /* Use 2500 as a mini-jumbo MTU for FCoE */ #define BNX2X_FCOE_MINI_JUMBO_MTU 2500 #define FCOE_IDX_OFFSET 0 #define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \ FCOE_IDX_OFFSET) #define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)]) #define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var) #define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)]) #define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var) #define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \ txdata_ptr[FIRST_TX_COS_INDEX] \ ->var) #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp)) #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp)) #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp)) /* MC hsi */ #define MAX_FETCH_BD 13 /* HW max BDs per packet */ #define RX_COPY_THRESH 92 #define NUM_TX_RINGS 16 #define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) #define NEXT_PAGE_TX_DESC_CNT 1 #define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT) #define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS) #define MAX_TX_BD (NUM_TX_BD - 1) #define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2) #define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \ (MAX_TX_DESC_CNT - 1)) ? \ (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \ (x) + 1) #define TX_BD(x) ((x) & MAX_TX_BD) #define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT) /* number of NEXT_PAGE descriptors may be required during placement */ #define NEXT_CNT_PER_TX_PKT(bds) \ (((bds) + MAX_TX_DESC_CNT - 1) / \ MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT) /* max BDs per tx packet w/o next_pages: * START_BD - describes packed * START_BD(splitted) - includes unpaged data segment for GSO * PARSING_BD - for TSO and CSUM data * PARSING_BD2 - for encapsulation data * Frag BDs - describes pages for frags */ #define BDS_PER_TX_PKT 4 #define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT) /* max BDs per tx packet including next pages */ #define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \ NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT)) /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */ #define NUM_RX_RINGS 8 #define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) #define NEXT_PAGE_RX_DESC_CNT 2 #define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT) #define RX_DESC_MASK (RX_DESC_CNT - 1) #define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS) #define MAX_RX_BD (NUM_RX_BD - 1) #define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2) /* dropless fc calculations for BDs * * Number of BDs should as number of buffers in BRB: * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT * "next" elements on each page */ #define NUM_BD_REQ BRB_SIZE(bp) #define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \ MAX_RX_DESC_CNT) #define BD_TH_LO(bp) (NUM_BD_REQ + \ NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \ FW_DROP_LEVEL(bp)) #define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM) #define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128) #define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \ ETH_MIN_RX_CQES_WITH_TPA_E1 : \ ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA #define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL)) #define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\ MIN_RX_AVAIL)) #define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \ (MAX_RX_DESC_CNT - 1)) ? \ (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \ (x) + 1) #define RX_BD(x) ((x) & MAX_RX_BD) /* * As long as CQE is X times bigger than BD entry we have to allocate X times * more pages for CQ ring in order to keep it balanced with BD ring */ #define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) #define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL) #define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) #define NEXT_PAGE_RCQ_DESC_CNT 1 #define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT) #define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS) #define MAX_RCQ_BD (NUM_RCQ_BD - 1) #define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2) #define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \ (MAX_RCQ_DESC_CNT - 1)) ? \ (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \ (x) + 1) #define RCQ_BD(x) ((x) & MAX_RCQ_BD) /* dropless fc calculations for RCQs * * Number of RCQs should be as number of buffers in BRB: * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT * "next" elements on each page */ #define NUM_RCQ_REQ BRB_SIZE(bp) #define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \ MAX_RCQ_DESC_CNT) #define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \ NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \ FW_DROP_LEVEL(bp)) #define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM) /* This is needed for determining of last_max */ #define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b)) #define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b)) #define BNX2X_SWCID_SHIFT 17 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) /* used on a CID received from the HW */ #define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK) #define CQE_CMD(x) (le32_to_cpu(x) >> \ COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) #define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \ le32_to_cpu((bd)->addr_lo)) #define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes)) #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ #define BNX2X_DB_SHIFT 3 /* 8 bytes*/ #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) #error "Min DB doorbell stride is 8" #endif #define DOORBELL(bp, cid, val) \ do { \ writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \ } while (0) /* TX CSUM helpers */ #define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \ skb->csum_offset) #define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \ skb->csum_offset)) #define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff) #define XMIT_PLAIN 0 #define XMIT_CSUM_V4 (1 << 0) #define XMIT_CSUM_V6 (1 << 1) #define XMIT_CSUM_TCP (1 << 2) #define XMIT_GSO_V4 (1 << 3) #define XMIT_GSO_V6 (1 << 4) #define XMIT_CSUM_ENC_V4 (1 << 5) #define XMIT_CSUM_ENC_V6 (1 << 6) #define XMIT_GSO_ENC_V4 (1 << 7) #define XMIT_GSO_ENC_V6 (1 << 8) #define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6) #define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6) #define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC) #define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC) /* stuff added to make the code fit 80Col */ #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) #define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \ (((le16_to_cpu(flags) & \ PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \ PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \ == PRS_FLAG_OVERETH_IPV4) #define BNX2X_RX_SUM_FIX(cqe) \ BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags) #define FP_USB_FUNC_OFF \ offsetof(struct cstorm_status_block_u, func) #define FP_CSB_FUNC_OFF \ offsetof(struct cstorm_status_block_c, func) #define HC_INDEX_ETH_RX_CQ_CONS 1 #define HC_INDEX_OOO_TX_CQ_CONS 4 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 #define BNX2X_RX_SB_INDEX \ (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]) #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0 #define BNX2X_TX_SB_INDEX_COS0 \ (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]) /* end of fast path */ /* common */ struct bnx2x_common { u32 chip_id; /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ #define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0) #define CHIP_NUM(bp) (bp->common.chip_id >> 16) #define CHIP_NUM_57710 0x164e #define CHIP_NUM_57711 0x164f #define CHIP_NUM_57711E 0x1650 #define CHIP_NUM_57712 0x1662 #define CHIP_NUM_57712_MF 0x1663 #define CHIP_NUM_57712_VF 0x166f #define CHIP_NUM_57713 0x1651 #define CHIP_NUM_57713E 0x1652 #define CHIP_NUM_57800 0x168a #define CHIP_NUM_57800_MF 0x16a5 #define CHIP_NUM_57800_VF 0x16a9 #define CHIP_NUM_57810 0x168e #define CHIP_NUM_57810_MF 0x16ae #define CHIP_NUM_57810_VF 0x16af #define CHIP_NUM_57811 0x163d #define CHIP_NUM_57811_MF 0x163e #define CHIP_NUM_57811_VF 0x163f #define CHIP_NUM_57840_OBSOLETE 0x168d #define CHIP_NUM_57840_MF_OBSOLETE 0x16ab #define CHIP_NUM_57840_4_10 0x16a1 #define CHIP_NUM_57840_2_20 0x16a2 #define CHIP_NUM_57840_MF 0x16a4 #define CHIP_NUM_57840_VF 0x16ad #define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710) #define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711) #define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E) #define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712) #define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF) #define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF) #define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800) #define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF) #define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF) #define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810) #define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF) #define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF) #define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811) #define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF) #define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF) #define CHIP_IS_57840(bp) \ ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \ (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \ (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE)) #define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \ (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE)) #define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF) #define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \ CHIP_IS_57711E(bp)) #define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \ CHIP_IS_57811_MF(bp) || \ CHIP_IS_57811_VF(bp)) #define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \ CHIP_IS_57712_MF(bp) || \ CHIP_IS_57712_VF(bp)) #define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \ CHIP_IS_57800_MF(bp) || \ CHIP_IS_57800_VF(bp) || \ CHIP_IS_57810(bp) || \ CHIP_IS_57810_MF(bp) || \ CHIP_IS_57810_VF(bp) || \ CHIP_IS_57811xx(bp) || \ CHIP_IS_57840(bp) || \ CHIP_IS_57840_MF(bp) || \ CHIP_IS_57840_VF(bp)) #define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp))) #define USES_WARPCORE(bp) (CHIP_IS_E3(bp)) #define IS_E1H_OFFSET (!CHIP_IS_E1(bp)) #define CHIP_REV_SHIFT 12 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) #define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK) #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) /* assume maximum 5 revisions */ #define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000) /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */ #define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \ !(CHIP_REV_VAL(bp) & 0x00001000)) /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */ #define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \ (CHIP_REV_VAL(bp) & 0x00001000)) #define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \ ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1)) #define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0) #define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f) #define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\ (CHIP_REV_SHIFT + 1)) \ << CHIP_REV_SHIFT) #define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \ CHIP_REV_SIM(bp) :\ CHIP_REV_VAL(bp)) #define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \ (CHIP_REV(bp) == CHIP_REV_Bx)) #define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \ (CHIP_REV(bp) == CHIP_REV_Ax)) /* This define is used in two main places: * 1. In the early stages of nic_load, to know if to configure Parser / Searcher * to nic-only mode or to offload mode. Offload mode is configured if either the * chip is E1x (where MIC_MODE register is not applicable), or if cnic already * registered for this port (which means that the user wants storage services). * 2. During cnic-related load, to know if offload mode is already configured in * the HW or needs to be configured. * Since the transition from nic-mode to offload-mode in HW causes traffic * corruption, nic-mode is configured only in ports on which storage services * where never requested. */ #define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp)) int flash_size; #define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */ #define BNX2X_NVRAM_TIMEOUT_COUNT 30000 #define BNX2X_NVRAM_PAGE_SIZE 256 u32 shmem_base; u32 shmem2_base; u32 mf_cfg_base; u32 mf2_cfg_base; u32 hw_config; u32 bc_ver; u8 int_block; #define INT_BLOCK_HC 0 #define INT_BLOCK_IGU 1 #define INT_BLOCK_MODE_NORMAL 0 #define INT_BLOCK_MODE_BW_COMP 2 #define CHIP_INT_MODE_IS_NBC(bp) \ (!CHIP_IS_E1x(bp) && \ !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP)) #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp)) u8 chip_port_mode; #define CHIP_4_PORT_MODE 0x0 #define CHIP_2_PORT_MODE 0x1 #define CHIP_PORT_MODE_NONE 0x2 #define CHIP_MODE(bp) (bp->common.chip_port_mode) #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE) u32 boot_mode; }; /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ #define BNX2X_IGU_STAS_MSG_VF_CNT 64 #define BNX2X_IGU_STAS_MSG_PF_CNT 4 #define MAX_IGU_ATTN_ACK_TO 100 /* end of common */ /* port */ struct bnx2x_port { u32 pmf; u32 link_config[LINK_CONFIG_SIZE]; u32 supported[LINK_CONFIG_SIZE]; /* link settings - missing defines */ #define SUPPORTED_2500baseX_Full (1 << 15) u32 advertising[LINK_CONFIG_SIZE]; /* link settings - missing defines */ #define ADVERTISED_2500baseX_Full (1 << 15) u32 phy_addr; /* used to synchronize phy accesses */ struct mutex phy_mutex; u32 port_stx; struct nig_stats old_nig_stats; }; /* end of port */ #define STATS_OFFSET32(stat_name) \ (offsetof(struct bnx2x_eth_stats, stat_name) / 4) /* slow path */ /* slow path work-queue */ extern struct workqueue_struct *bnx2x_wq; #define BNX2X_MAX_NUM_OF_VFS 64 #define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */ #define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND) /* We need to reserve doorbell addresses for all VF and queue combinations */ #define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF) /* The doorbell is configured to have the same number of CIDs for PFs and for * VFs. For this reason the PF CID zone is as large as the VF zone. */ #define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS #define BNX2X_MAX_NUM_VF_QUEUES 64 #define BNX2X_VF_ID_INVALID 0xFF /* the number of VF CIDS multiplied by the amount of bytes reserved for each * cid must not exceed the size of the VF doorbell */ #define BNX2X_VF_BAR_SIZE 512 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT)) #error "VF doorbell bar size is 512" #endif /* * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is * control by the number of fast-path status blocks supported by the * device (HW/FW). Each fast-path status block (FP-SB) aka non-default * status block represents an independent interrupts context that can * serve a regular L2 networking queue. However special L2 queues such * as the FCoE queue do not require a FP-SB and other components like * the CNIC may consume FP-SB reducing the number of possible L2 queues * * If the maximum number of FP-SB available is X then: * a. If CNIC is supported it consumes 1 FP-SB thus the max number of * regular L2 queues is Y=X-1 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) * c. If the FCoE L2 queue is supported the actual number of L2 queues * is Y+1 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for * slow-path interrupts) or Y+2 if CNIC is supported (one additional * FP interrupt context for the CNIC). * e. The number of HW context (CID count) is always X or X+1 if FCoE * L2 queue is supported. The cid for the FCoE L2 queue is always X. */ /* fast-path interrupt contexts E1x */ #define FP_SB_MAX_E1x 16 /* fast-path interrupt contexts E2 */ #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 union cdu_context { struct eth_context eth; char pad[1024]; }; /* CDU host DB constants */ #define CDU_ILT_PAGE_SZ_HW 2 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) #define CNIC_ISCSI_CID_MAX 256 #define CNIC_FCOE_CID_MAX 2048 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) #define QM_ILT_PAGE_SZ_HW 0 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ #define QM_CID_ROUND 1024 /* TM (timers) host DB constants */ #define TM_ILT_PAGE_SZ_HW 0 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ #define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \ BNX2X_VF_CIDS + \ CNIC_ISCSI_CID_MAX) #define TM_ILT_SZ (8 * TM_CONN_NUM) #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) /* SRC (Searcher) host DB constants */ #define SRC_ILT_PAGE_SZ_HW 0 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ #define SRC_HASH_BITS 10 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) #define SRC_T2_SZ SRC_ILT_SZ #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) #define MAX_DMAE_C 8 /* DMA memory not used in fastpath */ struct bnx2x_slowpath { union { struct mac_configuration_cmd e1x; struct eth_classify_rules_ramrod_data e2; } mac_rdata; union { struct tstorm_eth_mac_filter_config e1x; struct eth_filter_rules_ramrod_data e2; } rx_mode_rdata; union { struct mac_configuration_cmd e1; struct eth_multicast_rules_ramrod_data e2; } mcast_rdata; struct eth_rss_update_ramrod_data rss_rdata; /* Queue State related ramrods are always sent under rtnl_lock */ union { struct client_init_ramrod_data init_data; struct client_update_ramrod_data update_data; struct tpa_update_ramrod_data tpa_data; } q_rdata; union { struct function_start_data func_start; /* pfc configuration for DCBX ramrod */ struct flow_control_configuration pfc_config; } func_rdata; /* afex ramrod can not be a part of func_rdata union because these * events might arrive in parallel to other events from func_rdata. * Therefore, if they would have been defined in the same union, * data can get corrupted. */ union { struct afex_vif_list_ramrod_data viflist_data; struct function_update_data func_update; } func_afex_rdata; /* used by dmae command executer */ struct dmae_command dmae[MAX_DMAE_C]; u32 stats_comp; union mac_stats mac_stats; struct nig_stats nig_stats; struct host_port_stats port_stats; struct host_func_stats func_stats; u32 wb_comp; u32 wb_data[4]; union drv_info_to_mcp drv_info_to_mcp; }; #define bnx2x_sp(bp, var) (&bp->slowpath->var) #define bnx2x_sp_mapping(bp, var) \ (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var)) /* attn group wiring */ #define MAX_DYNAMIC_ATTN_GRPS 8 struct attn_route { u32 sig[5]; }; struct iro { u32 base; u16 m1; u16 m2; u16 m3; u16 size; }; struct hw_context { union cdu_context *vcxt; dma_addr_t cxt_mapping; size_t size; }; /* forward */ struct bnx2x_ilt; struct bnx2x_vfdb; enum bnx2x_recovery_state { BNX2X_RECOVERY_DONE, BNX2X_RECOVERY_INIT, BNX2X_RECOVERY_WAIT, BNX2X_RECOVERY_FAILED, BNX2X_RECOVERY_NIC_LOADING }; /* * Event queue (EQ or event ring) MC hsi * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2 */ #define NUM_EQ_PAGES 1 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) #define EQ_DESC_MASK (NUM_EQ_DESC - 1) #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ #define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \ (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1) /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ #define EQ_DESC(x) ((x) & EQ_DESC_MASK) #define BNX2X_EQ_INDEX \ (&bp->def_status_blk->sp_sb.\ index_values[HC_SP_INDEX_EQ_CONS]) /* This is a data that will be used to create a link report message. * We will keep the data used for the last link report in order * to prevent reporting the same link parameters twice. */ struct bnx2x_link_report_data { u16 line_speed; /* Effective line speed */ unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */ }; enum { BNX2X_LINK_REPORT_FD, /* Full DUPLEX */ BNX2X_LINK_REPORT_LINK_DOWN, BNX2X_LINK_REPORT_RX_FC_ON, BNX2X_LINK_REPORT_TX_FC_ON, }; enum { BNX2X_PORT_QUERY_IDX, BNX2X_PF_QUERY_IDX, BNX2X_FCOE_QUERY_IDX, BNX2X_FIRST_QUEUE_QUERY_IDX, }; struct bnx2x_fw_stats_req { struct stats_query_header hdr; struct stats_query_entry query[FP_SB_MAX_E1x+ BNX2X_FIRST_QUEUE_QUERY_IDX]; }; struct bnx2x_fw_stats_data { struct stats_counter storm_counters; struct per_port_stats port; struct per_pf_stats pf; struct fcoe_statistics_params fcoe; struct per_queue_stats queue_stats[1]; }; /* Public slow path states */ enum { BNX2X_SP_RTNL_SETUP_TC, BNX2X_SP_RTNL_TX_TIMEOUT, BNX2X_SP_RTNL_FAN_FAILURE, BNX2X_SP_RTNL_AFEX_F_UPDATE, BNX2X_SP_RTNL_ENABLE_SRIOV, BNX2X_SP_RTNL_VFPF_MCAST, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, BNX2X_SP_RTNL_RX_MODE, BNX2X_SP_RTNL_HYPERVISOR_VLAN, BNX2X_SP_RTNL_TX_STOP, }; struct bnx2x_prev_path_list { struct list_head list; u8 bus; u8 slot; u8 path; u8 aer; u8 undi; }; struct bnx2x_sp_objs { /* MACs object */ struct bnx2x_vlan_mac_obj mac_obj; /* Queue State object */ struct bnx2x_queue_sp_obj q_obj; }; struct bnx2x_fp_stats { struct tstorm_per_queue_stats old_tclient; struct ustorm_per_queue_stats old_uclient; struct xstorm_per_queue_stats old_xclient; struct bnx2x_eth_q_stats eth_q_stats; struct bnx2x_eth_q_stats_old eth_q_stats_old; }; struct bnx2x { /* Fields used in the tx and intr/napi performance paths * are grouped together in the beginning of the structure */ struct bnx2x_fastpath *fp; struct bnx2x_sp_objs *sp_objs; struct bnx2x_fp_stats *fp_stats; struct bnx2x_fp_txdata *bnx2x_txq; void __iomem *regview; void __iomem *doorbells; u16 db_size; u8 pf_num; /* absolute PF number */ u8 pfid; /* per-path PF number */ int base_fw_ndsb; /**/ #define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1)) #define BP_PORT(bp) (bp->pfid & 1) #define BP_FUNC(bp) (bp->pfid) #define BP_ABS_FUNC(bp) (bp->pf_num) #define BP_VN(bp) ((bp)->pfid >> 1) #define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4) #define BP_L_ID(bp) (BP_VN(bp) << 2) #define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\ (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1)) #define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp)) #ifdef CONFIG_BNX2X_SRIOV /* protects vf2pf mailbox from simultaneous access */ struct mutex vf2pf_mutex; /* vf pf channel mailbox contains request and response buffers */ struct bnx2x_vf_mbx_msg *vf2pf_mbox; dma_addr_t vf2pf_mbox_mapping; /* we set aside a copy of the acquire response */ struct pfvf_acquire_resp_tlv acquire_resp; /* bulletin board for messages from pf to vf */ union pf_vf_bulletin *pf2vf_bulletin; dma_addr_t pf2vf_bulletin_mapping; struct pf_vf_bulletin_content old_bulletin; u16 requested_nr_virtfn; #endif /* CONFIG_BNX2X_SRIOV */ struct net_device *dev; struct pci_dev *pdev; const struct iro *iro_arr; #define IRO (bp->iro_arr) enum bnx2x_recovery_state recovery_state; int is_leader; struct msix_entry *msix_table; int tx_ring_size; /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ #define ETH_OVREHEAD (ETH_HLEN + 8 + 8) #define ETH_MIN_PACKET_SIZE 60 #define ETH_MAX_PACKET_SIZE 1500 #define ETH_MAX_JUMBO_PACKET_SIZE 9600 /* TCP with Timestamp Option (32) + IPv6 (40) */ #define ETH_MAX_TPA_HEADER_SIZE 72 /* Max supported alignment is 256 (8 shift) */ #define BNX2X_RX_ALIGN_SHIFT min(8, L1_CACHE_SHIFT) /* FW uses 2 Cache lines Alignment for start packet and size * * We assume skb_build() uses sizeof(struct skb_shared_info) bytes * at the end of skb->data, to avoid wasting a full cache line. * This reduces memory use (skb->truesize). */ #define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT) #define BNX2X_FW_RX_ALIGN_END \ max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) struct host_sp_status_block *def_status_blk; #define DEF_SB_IGU_ID 16 #define DEF_SB_ID HC_SP_SB_ID __le16 def_idx; __le16 def_att_idx; u32 attn_state; struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; /* slow path ring */ struct eth_spe *spq; dma_addr_t spq_mapping; u16 spq_prod_idx; struct eth_spe *spq_prod_bd; struct eth_spe *spq_last_bd; __le16 *dsb_sp_prod; atomic_t cq_spq_left; /* ETH_XXX ramrods credit */ /* used to synchronize spq accesses */ spinlock_t spq_lock; /* event queue */ union event_ring_elem *eq_ring; dma_addr_t eq_mapping; u16 eq_prod; u16 eq_cons; __le16 *eq_cons_sb; atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */ /* Counter for marking that there is a STAT_QUERY ramrod pending */ u16 stats_pending; /* Counter for completed statistics ramrods */ u16 stats_comp; /* End of fields used in the performance code paths */ int panic; int msg_enable; u32 flags; #define PCIX_FLAG (1 << 0) #define PCI_32BIT_FLAG (1 << 1) #define ONE_PORT_FLAG (1 << 2) #define NO_WOL_FLAG (1 << 3) #define USING_MSIX_FLAG (1 << 5) #define USING_MSI_FLAG (1 << 6) #define DISABLE_MSI_FLAG (1 << 7) #define TPA_ENABLE_FLAG (1 << 8) #define NO_MCP_FLAG (1 << 9) #define GRO_ENABLE_FLAG (1 << 10) #define MF_FUNC_DIS (1 << 11) #define OWN_CNIC_IRQ (1 << 12) #define NO_ISCSI_OOO_FLAG (1 << 13) #define NO_ISCSI_FLAG (1 << 14) #define NO_FCOE_FLAG (1 << 15) #define BC_SUPPORTS_PFC_STATS (1 << 17) #define TX_SWITCHING (1 << 18) #define BC_SUPPORTS_FCOE_FEATURES (1 << 19) #define USING_SINGLE_MSIX_FLAG (1 << 20) #define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21) #define IS_VF_FLAG (1 << 22) #define INTERRUPTS_ENABLED_FLAG (1 << 23) #define BC_SUPPORTS_RMMOD_CMD (1 << 24) #define HAS_PHYS_PORT_ID (1 << 25) #define AER_ENABLED (1 << 26) #define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG) #ifdef CONFIG_BNX2X_SRIOV #define IS_VF(bp) ((bp)->flags & IS_VF_FLAG) #define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG)) #else #define IS_VF(bp) false #define IS_PF(bp) true #endif #define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG) #define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG) #define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG) u8 cnic_support; bool cnic_enabled; bool cnic_loaded; struct cnic_eth_dev *(*cnic_probe)(struct net_device *); /* Flag that indicates that we can start looking for FCoE L2 queue * completions in the default status block. */ bool fcoe_init; int mrrs; struct delayed_work sp_task; atomic_t interrupt_occurred; struct delayed_work sp_rtnl_task; struct delayed_work period_task; struct timer_list timer; int current_interval; u16 fw_seq; u16 fw_drv_pulse_wr_seq; u32 func_stx; struct link_params link_params; struct link_vars link_vars; u32 link_cnt; struct bnx2x_link_report_data last_reported_link; struct mdio_if_info mdio; struct bnx2x_common common; struct bnx2x_port port; struct cmng_init cmng; u32 mf_config[E1HVN_MAX]; u32 mf_ext_config; u32 path_has_ovlan; /* E3 */ u16 mf_ov; u8 mf_mode; #define IS_MF(bp) (bp->mf_mode != 0) #define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI) #define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD) #define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX) u8 wol; int rx_ring_size; u16 tx_quick_cons_trip_int; u16 tx_quick_cons_trip; u16 tx_ticks_int; u16 tx_ticks; u16 rx_quick_cons_trip_int; u16 rx_quick_cons_trip; u16 rx_ticks_int; u16 rx_ticks; /* Maximal coalescing timeout in us */ #define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR) u32 lin_cnt; u16 state; #define BNX2X_STATE_CLOSED 0 #define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000 #define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000 #define BNX2X_STATE_OPEN 0x3000 #define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000 #define BNX2X_STATE_DIAG 0xe000 #define BNX2X_STATE_ERROR 0xf000 #define BNX2X_MAX_PRIORITY 8 #define BNX2X_MAX_ENTRIES_PER_PRI 16 #define BNX2X_MAX_COS 3 #define BNX2X_MAX_TX_COS 2 int num_queues; uint num_ethernet_queues; uint num_cnic_queues; int num_napi_queues; int disable_tpa; u32 rx_mode; #define BNX2X_RX_MODE_NONE 0 #define BNX2X_RX_MODE_NORMAL 1 #define BNX2X_RX_MODE_ALLMULTI 2 #define BNX2X_RX_MODE_PROMISC 3 #define BNX2X_MAX_MULTICAST 64 u8 igu_dsb_id; u8 igu_base_sb; u8 igu_sb_cnt; u8 min_msix_vec_cnt; u32 igu_base_addr; dma_addr_t def_status_blk_mapping; struct bnx2x_slowpath *slowpath; dma_addr_t slowpath_mapping; /* Total number of FW statistics requests */ u8 fw_stats_num; /* * This is a memory buffer that will contain both statistics * ramrod request and data. */ void *fw_stats; dma_addr_t fw_stats_mapping; /* * FW statistics request shortcut (points at the * beginning of fw_stats buffer). */ struct bnx2x_fw_stats_req *fw_stats_req; dma_addr_t fw_stats_req_mapping; int fw_stats_req_sz; /* * FW statistics data shortcut (points at the beginning of * fw_stats buffer + fw_stats_req_sz). */ struct bnx2x_fw_stats_data *fw_stats_data; dma_addr_t fw_stats_data_mapping; int fw_stats_data_sz; /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB * context size we need 8 ILT entries. */ #define ILT_MAX_L2_LINES 32 struct hw_context context[ILT_MAX_L2_LINES]; struct bnx2x_ilt *ilt; #define BP_ILT(bp) ((bp)->ilt) #define ILT_MAX_LINES 256 /* * Maximum supported number of RSS queues: number of IGU SBs minus one that goes * to CNIC. */ #define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp)) /* * Maximum CID count that might be required by the bnx2x: * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */ #define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \ + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) #define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \ + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) #define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\ ILT_PAGE_CIDS)) int qm_cid_count; bool dropless_fc; void *t2; dma_addr_t t2_mapping; struct cnic_ops __rcu *cnic_ops; void *cnic_data; u32 cnic_tag; struct cnic_eth_dev cnic_eth_dev; union host_hc_status_block cnic_sb; dma_addr_t cnic_sb_mapping; struct eth_spe *cnic_kwq; struct eth_spe *cnic_kwq_prod; struct eth_spe *cnic_kwq_cons; struct eth_spe *cnic_kwq_last; u16 cnic_kwq_pending; u16 cnic_spq_pending; u8 fip_mac[ETH_ALEN]; struct mutex cnic_mutex; struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj; /* Start index of the "special" (CNIC related) L2 clients */ u8 cnic_base_cl_id; int dmae_ready; /* used to synchronize dmae accesses */ spinlock_t dmae_lock; /* used to protect the FW mail box */ struct mutex fw_mb_mutex; /* used to synchronize stats collecting */ int stats_state; /* used for synchronization of concurrent threads statistics handling */ spinlock_t stats_lock; /* used by dmae command loader */ struct dmae_command stats_dmae; int executer_idx; u16 stats_counter; struct bnx2x_eth_stats eth_stats; struct host_func_stats func_stats; struct bnx2x_eth_stats_old eth_stats_old; struct bnx2x_net_stats_old net_stats_old; struct bnx2x_fw_port_stats_old fw_stats_old; bool stats_init; struct z_stream_s *strm; void *gunzip_buf; dma_addr_t gunzip_mapping; int gunzip_outlen; #define FW_BUF_SIZE 0x8000 #define GUNZIP_BUF(bp) (bp->gunzip_buf) #define GUNZIP_PHYS(bp) (bp->gunzip_mapping) #define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen) struct raw_op *init_ops; /* Init blocks offsets inside init_ops */ u16 *init_ops_offsets; /* Data blob - has 32 bit granularity */ u32 *init_data; u32 init_mode_flags; #define INIT_MODE_FLAGS(bp) (bp->init_mode_flags) /* Zipped PRAM blobs - raw data */ const u8 *tsem_int_table_data; const u8 *tsem_pram_data; const u8 *usem_int_table_data; const u8 *usem_pram_data; const u8 *xsem_int_table_data; const u8 *xsem_pram_data; const u8 *csem_int_table_data; const u8 *csem_pram_data; #define INIT_OPS(bp) (bp->init_ops) #define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets) #define INIT_DATA(bp) (bp->init_data) #define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data) #define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data) #define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data) #define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data) #define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data) #define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data) #define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data) #define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data) #define PHY_FW_VER_LEN 20 char fw_ver[32]; const struct firmware *firmware; struct bnx2x_vfdb *vfdb; #define IS_SRIOV(bp) ((bp)->vfdb) /* DCB support on/off */ u16 dcb_state; #define BNX2X_DCB_STATE_OFF 0 #define BNX2X_DCB_STATE_ON 1 /* DCBX engine mode */ int dcbx_enabled; #define BNX2X_DCBX_ENABLED_OFF 0 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 #define BNX2X_DCBX_ENABLED_INVALID (-1) bool dcbx_mode_uset; struct bnx2x_config_dcbx_params dcbx_config_params; struct bnx2x_dcbx_port_params dcbx_port_params; int dcb_version; /* CAM credit pools */ /* used only in sriov */ struct bnx2x_credit_pool_obj vlans_pool; struct bnx2x_credit_pool_obj macs_pool; /* RX_MODE object */ struct bnx2x_rx_mode_obj rx_mode_obj; /* MCAST object */ struct bnx2x_mcast_obj mcast_obj; /* RSS configuration object */ struct bnx2x_rss_config_obj rss_conf_obj; /* Function State controlling object */ struct bnx2x_func_sp_obj func_obj; unsigned long sp_state; /* operation indication for the sp_rtnl task */ unsigned long sp_rtnl_state; /* DCBX Negotiation results */ struct dcbx_features dcbx_local_feat; u32 dcbx_error; #ifdef BCM_DCBNL struct dcbx_features dcbx_remote_feat; u32 dcbx_remote_flags; #endif /* AFEX: store default vlan used */ int afex_def_vlan_tag; enum mf_cfg_afex_vlan_mode afex_vlan_mode; u32 pending_max; /* multiple tx classes of service */ u8 max_cos; /* priority to cos mapping */ u8 prio_to_cos[8]; int fp_array_size; u32 dump_preset_idx; bool stats_started; struct semaphore stats_sema; u8 phys_port_id[ETH_ALEN]; }; /* Tx queues may be less or equal to Rx queues */ extern int num_queues; #define BNX2X_NUM_QUEUES(bp) (bp->num_queues) #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues) #define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \ (bp)->num_cnic_queues) #define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp) #define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1) #define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp) /* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */ #define RSS_IPV4_CAP_MASK \ TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY #define RSS_IPV4_TCP_CAP_MASK \ TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY #define RSS_IPV6_CAP_MASK \ TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY #define RSS_IPV6_TCP_CAP_MASK \ TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY /* func init flags */ #define FUNC_FLG_RSS 0x0001 #define FUNC_FLG_STATS 0x0002 /* removed FUNC_FLG_UNMATCHED 0x0004 */ #define FUNC_FLG_TPA 0x0008 #define FUNC_FLG_SPQ 0x0010 #define FUNC_FLG_LEADING 0x0020 /* PF only */ #define FUNC_FLG_LEADING_STATS 0x0040 struct bnx2x_func_init_params { /* dma */ dma_addr_t fw_stat_map; /* valid iff FUNC_FLG_STATS */ dma_addr_t spq_map; /* valid iff FUNC_FLG_SPQ */ u16 func_flgs; u16 func_id; /* abs fid */ u16 pf_id; u16 spq_prod; /* valid iff FUNC_FLG_SPQ */ }; #define for_each_cnic_queue(bp, var) \ for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ (var)++) \ if (skip_queue(bp, var)) \ continue; \ else #define for_each_eth_queue(bp, var) \ for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) #define for_each_nondefault_eth_queue(bp, var) \ for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) #define for_each_queue(bp, var) \ for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ if (skip_queue(bp, var)) \ continue; \ else /* Skip forwarding FP */ #define for_each_valid_rx_queue(bp, var) \ for ((var) = 0; \ (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ BNX2X_NUM_ETH_QUEUES(bp)); \ (var)++) \ if (skip_rx_queue(bp, var)) \ continue; \ else #define for_each_rx_queue_cnic(bp, var) \ for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ (var)++) \ if (skip_rx_queue(bp, var)) \ continue; \ else #define for_each_rx_queue(bp, var) \ for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ if (skip_rx_queue(bp, var)) \ continue; \ else /* Skip OOO FP */ #define for_each_valid_tx_queue(bp, var) \ for ((var) = 0; \ (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ BNX2X_NUM_ETH_QUEUES(bp)); \ (var)++) \ if (skip_tx_queue(bp, var)) \ continue; \ else #define for_each_tx_queue_cnic(bp, var) \ for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ (var)++) \ if (skip_tx_queue(bp, var)) \ continue; \ else #define for_each_tx_queue(bp, var) \ for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ if (skip_tx_queue(bp, var)) \ continue; \ else #define for_each_nondefault_queue(bp, var) \ for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ if (skip_queue(bp, var)) \ continue; \ else #define for_each_cos_in_tx_queue(fp, var) \ for ((var) = 0; (var) < (fp)->max_cos; (var)++) /* skip rx queue * if FCOE l2 support is disabled and this is the fcoe L2 queue */ #define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) /* skip tx queue * if FCOE l2 support is disabled and this is the fcoe L2 queue */ #define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) #define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) /** * bnx2x_set_mac_one - configure a single MAC address * * @bp: driver handle * @mac: MAC to configure * @obj: MAC object handle * @set: if 'true' add a new MAC, otherwise - delete * @mac_type: the type of the MAC to configure (e.g. ETH, UC list) * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT) * * Configures one MAC according to provided parameters or continues the * execution of previously scheduled commands if RAMROD_CONT is set in * ramrod_flags. * * Returns zero if operation has successfully completed, a positive value if the * operation has been successfully scheduled and a negative - if a requested * operations has failed. */ int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, struct bnx2x_vlan_mac_obj *obj, bool set, int mac_type, unsigned long *ramrod_flags); /** * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object * * @bp: driver handle * @mac_obj: MAC object handle * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC) * @wait_for_comp: if 'true' block until completion * * Deletes all MACs of the specific type (e.g. ETH, UC list). * * Returns zero if operation has successfully completed, a positive value if the * operation has been successfully scheduled and a negative - if a requested * operations has failed. */ int bnx2x_del_all_macs(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *mac_obj, int mac_type, bool wait_for_comp); /* Init Function API */ void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p); void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, u8 vf_valid, int fw_sb_id, int igu_sb_id); int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port); int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode); int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); void bnx2x_read_mf_cfg(struct bnx2x *bp); int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val); /* dmae */ void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32); void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, u32 len32); void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx); u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type); u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode); u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, bool with_comp, u8 comp_type); void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, u8 src_type, u8 dst_type); int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, u32 *comp); /* FLR related routines */ u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp); void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count); int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt); u8 bnx2x_is_pcie_pending(struct pci_dev *dev); int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, char *msg, u32 poll_cnt); void bnx2x_calc_fc_adv(struct bnx2x *bp); int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, u32 data_hi, u32 data_lo, int cmd_type); void bnx2x_update_coalesce(struct bnx2x *bp); int bnx2x_get_cur_phy_idx(struct bnx2x *bp); bool bnx2x_port_after_undi(struct bnx2x *bp); static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, int wait) { u32 val; do { val = REG_RD(bp, reg); if (val == expected) break; ms -= wait; msleep(wait); } while (ms > 0); return val; } void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf); #define BNX2X_ILT_ZALLOC(x, y, size) \ x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL) #define BNX2X_ILT_FREE(x, y, size) \ do { \ if (x) { \ dma_free_coherent(&bp->pdev->dev, size, x, y); \ x = NULL; \ y = 0; \ } \ } while (0) #define ILOG2(x) (ilog2((x))) #define ILT_NUM_PAGE_ENTRIES (3072) /* In 57710/11 we use whole table since we have 8 func * In 57712 we have only 4 func, but use same size per func, then only half of * the table in use */ #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8) #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) /* * the phys address is shifted right 12 bits and has an added * 1=valid bit added to the 53rd bit * then since this is a wide register(TM) * we split it into two 32 bit writes */ #define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) #define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) /* load/unload mode */ #define LOAD_NORMAL 0 #define LOAD_OPEN 1 #define LOAD_DIAG 2 #define LOAD_LOOPBACK_EXT 3 #define UNLOAD_NORMAL 0 #define UNLOAD_CLOSE 1 #define UNLOAD_RECOVERY 2 /* DMAE command defines */ #define DMAE_TIMEOUT -1 #define DMAE_PCI_ERROR -2 /* E2 and onward */ #define DMAE_NOT_RDY -3 #define DMAE_PCI_ERR_FLAG 0x80000000 #define DMAE_SRC_PCI 0 #define DMAE_SRC_GRC 1 #define DMAE_DST_NONE 0 #define DMAE_DST_PCI 1 #define DMAE_DST_GRC 2 #define DMAE_COMP_PCI 0 #define DMAE_COMP_GRC 1 /* E2 and onward - PCI error handling in the completion */ #define DMAE_COMP_REGULAR 0 #define DMAE_COM_SET_ERR 1 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \ DMAE_COMMAND_SRC_SHIFT) #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \ DMAE_COMMAND_SRC_SHIFT) #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \ DMAE_COMMAND_DST_SHIFT) #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \ DMAE_COMMAND_DST_SHIFT) #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \ DMAE_COMMAND_C_DST_SHIFT) #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \ DMAE_COMMAND_C_DST_SHIFT) #define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_PORT_0 0 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT #define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET #define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET #define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT #define DMAE_SRC_PF 0 #define DMAE_SRC_VF 1 #define DMAE_DST_PF 0 #define DMAE_DST_VF 1 #define DMAE_C_SRC 0 #define DMAE_C_DST 1 #define DMAE_LEN32_RD_MAX 0x80 #define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000) #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit * indicates error */ #define MAX_DMAE_C_PER_PORT 8 #define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ BP_VN(bp)) #define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ E1HVN_MAX) /* PCIE link and speed */ #define PCICFG_LINK_WIDTH 0x1f00000 #define PCICFG_LINK_WIDTH_SHIFT 20 #define PCICFG_LINK_SPEED 0xf0000 #define PCICFG_LINK_SPEED_SHIFT 16 #define BNX2X_NUM_TESTS_SF 7 #define BNX2X_NUM_TESTS_MF 3 #define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \ IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF) #define BNX2X_PHY_LOOPBACK 0 #define BNX2X_MAC_LOOPBACK 1 #define BNX2X_EXT_LOOPBACK 2 #define BNX2X_PHY_LOOPBACK_FAILED 1 #define BNX2X_MAC_LOOPBACK_FAILED 2 #define BNX2X_EXT_LOOPBACK_FAILED 3 #define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \ BNX2X_PHY_LOOPBACK_FAILED) #define STROM_ASSERT_ARRAY_SIZE 50 /* must be used on a CID before placing it on a HW ring */ #define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \ (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \ (x)) #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) #define BNX2X_BTR 4 #define MAX_SPQ_PENDING 8 /* CMNG constants, as derived from system spec calculations */ /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ #define DEF_MIN_RATE 100 /* resolution of the rate shaping timer - 400 usec */ #define RS_PERIODIC_TIMEOUT_USEC 400 /* number of bytes in single QM arbitration cycle - * coefficient for calculating the fairness timer */ #define QM_ARB_BYTES 160000 /* resolution of Min algorithm 1:100 */ #define MIN_RES 100 /* how many bytes above threshold for the minimal credit of Min algorithm*/ #define MIN_ABOVE_THRESH 32768 /* Fairness algorithm integration time coefficient - * for calculating the actual Tfair */ #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) /* Memory of fairness algorithm . 2 cycles */ #define FAIR_MEM 2 #define ATTN_NIG_FOR_FUNC (1L << 8) #define ATTN_SW_TIMER_4_FUNC (1L << 9) #define GPIO_2_FUNC (1L << 10) #define GPIO_3_FUNC (1L << 11) #define GPIO_4_FUNC (1L << 12) #define ATTN_GENERAL_ATTN_1 (1L << 13) #define ATTN_GENERAL_ATTN_2 (1L << 14) #define ATTN_GENERAL_ATTN_3 (1L << 15) #define ATTN_GENERAL_ATTN_4 (1L << 13) #define ATTN_GENERAL_ATTN_5 (1L << 14) #define ATTN_GENERAL_ATTN_6 (1L << 15) #define ATTN_HARD_WIRED_MASK 0xff00 #define ATTENTION_ID 4 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \ IS_MF_FCOE_AFEX(bp)) /* stuff added to make the code fit 80Col */ #define BNX2X_PMF_LINK_ASSERT \ GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp)) #define BNX2X_MC_ASSERT_BITS \ (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) #define BNX2X_MCP_ASSERT \ GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) #define HW_INTERRUT_ASSERT_SET_0 \ (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) #define HW_INTERRUT_ASSERT_SET_1 \ (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) #define HW_INTERRUT_ASSERT_SET_2 \ (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) #define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) #define MULTI_MASK 0x7f #define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func) #define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func) #define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func) #define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func) #define DEF_USB_IGU_INDEX_OFF \ offsetof(struct cstorm_def_status_block_u, igu_index) #define DEF_CSB_IGU_INDEX_OFF \ offsetof(struct cstorm_def_status_block_c, igu_index) #define DEF_XSB_IGU_INDEX_OFF \ offsetof(struct xstorm_def_status_block, igu_index) #define DEF_TSB_IGU_INDEX_OFF \ offsetof(struct tstorm_def_status_block, igu_index) #define DEF_USB_SEGMENT_OFF \ offsetof(struct cstorm_def_status_block_u, segment) #define DEF_CSB_SEGMENT_OFF \ offsetof(struct cstorm_def_status_block_c, segment) #define DEF_XSB_SEGMENT_OFF \ offsetof(struct xstorm_def_status_block, segment) #define DEF_TSB_SEGMENT_OFF \ offsetof(struct tstorm_def_status_block, segment) #define BNX2X_SP_DSB_INDEX \ (&bp->def_status_blk->sp_sb.\ index_values[HC_SP_INDEX_ETH_DEF_CONS]) #define CAM_IS_INVALID(x) \ (GET_FLAG(x.flags, \ MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \ (T_ETH_MAC_COMMAND_INVALIDATE)) /* Number of u32 elements in MC hash array */ #define MC_HASH_SIZE 8 #define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \ TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4) #ifndef PXP2_REG_PXP2_INT_STS #define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0 #endif #ifndef ETH_MAX_RX_CLIENTS_E2 #define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H #endif #define BNX2X_VPD_LEN 128 #define VENDOR_ID_LEN 4 #define VF_ACQUIRE_THRESH 3 #define VF_ACQUIRE_MAC_FILTERS 1 #define VF_ACQUIRE_MC_FILTERS 10 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \ (!((me_reg) & ME_REG_VF_ERR))) int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err); /* Congestion management fairness mode */ #define CMNG_FNS_NONE 0 #define CMNG_FNS_MINMAX 1 #define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/ #define HC_SEG_ACCESS_ATTN 4 #define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/ static const u32 dmae_reg_go_c[] = { DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 }; void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev); void bnx2x_notify_link_changed(struct bnx2x *bp); #define BNX2X_MF_SD_PROTOCOL(bp) \ ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK) #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \ (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI) #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \ (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE) #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) #define BNX2X_MF_EXT_PROTOCOL_FCOE(bp) ((bp)->mf_ext_config & \ MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) #define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp)) #define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \ (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \ BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) #define SET_FLAG(value, mask, flag) \ do {\ (value) &= ~(mask);\ (value) |= ((flag) << (mask##_SHIFT));\ } while (0) #define GET_FLAG(value, mask) \ (((value) & (mask)) >> (mask##_SHIFT)) #define GET_FIELD(value, fname) \ (((value) & (fname##_MASK)) >> (fname##_SHIFT)) enum { SWITCH_UPDATE, AFEX_UPDATE, }; #define NUM_MACS 8 void bnx2x_set_local_cmng(struct bnx2x *bp); #define MCPR_SCRATCH_BASE(bp) \ (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX)) #endif /* bnx2x.h */