#ifndef _ASM_EFI_H #define _ASM_EFI_H #include #include #include #include #include #include #ifdef CONFIG_EFI extern void efi_init(void); #else #define efi_init() #endif int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md); int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md); #define arch_efi_call_virt_setup() \ ({ \ kernel_neon_begin(); \ efi_virtmap_load(); \ }) #define arch_efi_call_virt(p, f, args...) \ ({ \ efi_##f##_t *__f; \ __f = p->f; \ __f(args); \ }) #define arch_efi_call_virt_teardown() \ ({ \ efi_virtmap_unload(); \ kernel_neon_end(); \ }) #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT) /* arch specific definitions used by the stub code */ /* * AArch64 requires the DTB to be 8-byte aligned in the first 512MiB from * start of kernel and may not cross a 2MiB boundary. We set alignment to * 2MiB so we know it won't cross a 2MiB boundary. */ #define EFI_FDT_ALIGN SZ_2M /* used by allocate_new_fdt_and_exit_boot() */ /* on arm64, the FDT may be located anywhere in system RAM */ static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base) { return ULONG_MAX; } /* * On arm64, we have to ensure that the initrd ends up in the linear region, * which is a 1 GB aligned region of size '1UL << (VA_BITS - 1)' that is * guaranteed to cover the kernel Image. * * Since the EFI stub is part of the kernel Image, we can relax the * usual requirements in Documentation/arm64/booting.txt, which still * apply to other bootloaders, and are required for some kernel * configurations. */ static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base, unsigned long image_addr) { return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS - 1)); } #define efi_call_early(f, ...) sys_table_arg->boottime->f(__VA_ARGS__) #define __efi_call_early(f, ...) f(__VA_ARGS__) #define efi_call_runtime(f, ...) sys_table_arg->runtime->f(__VA_ARGS__) #define efi_is_64bit() (true) #define efi_call_proto(protocol, f, instance, ...) \ ((protocol##_t *)instance)->f(instance, ##__VA_ARGS__) #define alloc_screen_info(x...) &screen_info #define free_screen_info(x...) static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt) { } #define EFI_ALLOC_ALIGN SZ_64K /* * On ARM systems, virtually remapped UEFI runtime services are set up in two * distinct stages: * - The stub retrieves the final version of the memory map from UEFI, populates * the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime * service to communicate the new mapping to the firmware (Note that the new * mapping is not live at this time) * - During an early initcall(), the EFI system table is permanently remapped * and the virtual remapping of the UEFI Runtime Services regions is loaded * into a private set of page tables. If this all succeeds, the Runtime * Services are enabled and the EFI_RUNTIME_SERVICES bit set. */ static inline void efi_set_pgd(struct mm_struct *mm) { __switch_mm(mm); if (system_uses_ttbr0_pan()) { if (mm != current->active_mm) { /* * Update the current thread's saved ttbr0 since it is * restored as part of a return from exception. Set * the hardware TTBR0_EL1 using cpu_switch_mm() * directly to enable potential errata workarounds. */ update_saved_ttbr0(current, mm); cpu_switch_mm(mm->pgd, mm); } else { /* * Defer the switch to the current thread's TTBR0_EL1 * until uaccess_enable(). Restore the current * thread's saved ttbr0 corresponding to its active_mm * (if different from init_mm). */ cpu_set_reserved_ttbr0(); if (current->active_mm != &init_mm) update_saved_ttbr0(current, current->active_mm); } } } void efi_virtmap_load(void); void efi_virtmap_unload(void); #endif /* _ASM_EFI_H */