/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * DOC: Frame Buffer Compression (FBC) * * FBC tries to save memory bandwidth (and so power consumption) by * compressing the amount of memory used by the display. It is total * transparent to user space and completely handled in the kernel. * * The benefits of FBC are mostly visible with solid backgrounds and * variation-less patterns. It comes from keeping the memory footprint small * and having fewer memory pages opened and accessed for refreshing the display. * * i915 is responsible to reserve stolen memory for FBC and configure its * offset on proper registers. The hardware takes care of all * compress/decompress. However there are many known cases where we have to * forcibly disable it to allow proper screen updates. */ #include "intel_drv.h" #include "i915_drv.h" static inline bool fbc_supported(struct drm_i915_private *dev_priv) { return dev_priv->fbc.activate != NULL; } static inline bool fbc_on_pipe_a_only(struct drm_i915_private *dev_priv) { return IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8; } static inline bool fbc_on_plane_a_only(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen < 4; } /* * In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the * frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's * origin so the x and y offsets can actually fit the registers. As a * consequence, the fence doesn't really start exactly at the display plane * address we program because it starts at the real start of the buffer, so we * have to take this into consideration here. */ static unsigned int get_crtc_fence_y_offset(struct intel_crtc *crtc) { return crtc->base.y - crtc->adjusted_y; } /* * For SKL+, the plane source size used by the hardware is based on the value we * write to the PLANE_SIZE register. For BDW-, the hardware looks at the value * we wrote to PIPESRC. */ static void intel_fbc_get_plane_source_size(struct intel_crtc *crtc, int *width, int *height) { struct intel_plane_state *plane_state = to_intel_plane_state(crtc->base.primary->state); int w, h; if (intel_rotation_90_or_270(plane_state->base.rotation)) { w = drm_rect_height(&plane_state->src) >> 16; h = drm_rect_width(&plane_state->src) >> 16; } else { w = drm_rect_width(&plane_state->src) >> 16; h = drm_rect_height(&plane_state->src) >> 16; } if (width) *width = w; if (height) *height = h; } static int intel_fbc_calculate_cfb_size(struct intel_crtc *crtc, struct drm_framebuffer *fb) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; int lines; intel_fbc_get_plane_source_size(crtc, NULL, &lines); if (INTEL_INFO(dev_priv)->gen >= 7) lines = min(lines, 2048); /* Hardware needs the full buffer stride, not just the active area. */ return lines * fb->pitches[0]; } static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 fbc_ctl; dev_priv->fbc.active = false; /* Disable compression */ fbc_ctl = I915_READ(FBC_CONTROL); if ((fbc_ctl & FBC_CTL_EN) == 0) return; fbc_ctl &= ~FBC_CTL_EN; I915_WRITE(FBC_CONTROL, fbc_ctl); /* Wait for compressing bit to clear */ if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) { DRM_DEBUG_KMS("FBC idle timed out\n"); return; } DRM_DEBUG_KMS("deactivated FBC\n"); } static void i8xx_fbc_activate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct drm_framebuffer *fb = crtc->base.primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); int cfb_pitch; int i; u32 fbc_ctl; dev_priv->fbc.active = true; /* Note: fbc.threshold == 1 for i8xx */ cfb_pitch = dev_priv->fbc.uncompressed_size / FBC_LL_SIZE; if (fb->pitches[0] < cfb_pitch) cfb_pitch = fb->pitches[0]; /* FBC_CTL wants 32B or 64B units */ if (IS_GEN2(dev_priv)) cfb_pitch = (cfb_pitch / 32) - 1; else cfb_pitch = (cfb_pitch / 64) - 1; /* Clear old tags */ for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) I915_WRITE(FBC_TAG(i), 0); if (IS_GEN4(dev_priv)) { u32 fbc_ctl2; /* Set it up... */ fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE; fbc_ctl2 |= FBC_CTL_PLANE(crtc->plane); I915_WRITE(FBC_CONTROL2, fbc_ctl2); I915_WRITE(FBC_FENCE_OFF, get_crtc_fence_y_offset(crtc)); } /* enable it... */ fbc_ctl = I915_READ(FBC_CONTROL); fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT; fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC; if (IS_I945GM(dev_priv)) fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; fbc_ctl |= obj->fence_reg; I915_WRITE(FBC_CONTROL, fbc_ctl); DRM_DEBUG_KMS("activated FBC, pitch %d, yoff %d, plane %c\n", cfb_pitch, crtc->base.y, plane_name(crtc->plane)); } static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv) { return I915_READ(FBC_CONTROL) & FBC_CTL_EN; } static void g4x_fbc_activate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct drm_framebuffer *fb = crtc->base.primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); u32 dpfc_ctl; dev_priv->fbc.active = true; dpfc_ctl = DPFC_CTL_PLANE(crtc->plane) | DPFC_SR_EN; if (drm_format_plane_cpp(fb->pixel_format, 0) == 2) dpfc_ctl |= DPFC_CTL_LIMIT_2X; else dpfc_ctl |= DPFC_CTL_LIMIT_1X; dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg; I915_WRITE(DPFC_FENCE_YOFF, get_crtc_fence_y_offset(crtc)); /* enable it... */ I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); DRM_DEBUG_KMS("activated fbc on plane %c\n", plane_name(crtc->plane)); } static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 dpfc_ctl; dev_priv->fbc.active = false; /* Disable compression */ dpfc_ctl = I915_READ(DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("deactivated FBC\n"); } } static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv) { return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; } /* This function forces a CFB recompression through the nuke operation. */ static void intel_fbc_recompress(struct drm_i915_private *dev_priv) { I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE); POSTING_READ(MSG_FBC_REND_STATE); } static void ilk_fbc_activate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct drm_framebuffer *fb = crtc->base.primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); u32 dpfc_ctl; int threshold = dev_priv->fbc.threshold; unsigned int y_offset; dev_priv->fbc.active = true; dpfc_ctl = DPFC_CTL_PLANE(crtc->plane); if (drm_format_plane_cpp(fb->pixel_format, 0) == 2) threshold++; switch (threshold) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } dpfc_ctl |= DPFC_CTL_FENCE_EN; if (IS_GEN5(dev_priv)) dpfc_ctl |= obj->fence_reg; y_offset = get_crtc_fence_y_offset(crtc); I915_WRITE(ILK_DPFC_FENCE_YOFF, y_offset); I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID); /* enable it... */ I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); if (IS_GEN6(dev_priv)) { I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | obj->fence_reg); I915_WRITE(DPFC_CPU_FENCE_OFFSET, y_offset); } intel_fbc_recompress(dev_priv); DRM_DEBUG_KMS("activated fbc on plane %c\n", plane_name(crtc->plane)); } static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 dpfc_ctl; dev_priv->fbc.active = false; /* Disable compression */ dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("deactivated FBC\n"); } } static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv) { return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; } static void gen7_fbc_activate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct drm_framebuffer *fb = crtc->base.primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); u32 dpfc_ctl; int threshold = dev_priv->fbc.threshold; dev_priv->fbc.active = true; dpfc_ctl = 0; if (IS_IVYBRIDGE(dev_priv)) dpfc_ctl |= IVB_DPFC_CTL_PLANE(crtc->plane); if (drm_format_plane_cpp(fb->pixel_format, 0) == 2) threshold++; switch (threshold) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN; if (dev_priv->fbc.false_color) dpfc_ctl |= FBC_CTL_FALSE_COLOR; if (IS_IVYBRIDGE(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:ivb */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ I915_WRITE(CHICKEN_PIPESL_1(crtc->pipe), I915_READ(CHICKEN_PIPESL_1(crtc->pipe)) | HSW_FBCQ_DIS); } I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | obj->fence_reg); I915_WRITE(DPFC_CPU_FENCE_OFFSET, get_crtc_fence_y_offset(crtc)); intel_fbc_recompress(dev_priv); DRM_DEBUG_KMS("activated fbc on plane %c\n", plane_name(crtc->plane)); } /** * intel_fbc_is_active - Is FBC active? * @dev_priv: i915 device instance * * This function is used to verify the current state of FBC. * FIXME: This should be tracked in the plane config eventually * instead of queried at runtime for most callers. */ bool intel_fbc_is_active(struct drm_i915_private *dev_priv) { return dev_priv->fbc.active; } static void intel_fbc_activate(const struct drm_framebuffer *fb) { struct drm_i915_private *dev_priv = fb->dev->dev_private; struct intel_crtc *crtc = dev_priv->fbc.crtc; dev_priv->fbc.activate(crtc); dev_priv->fbc.fb_id = fb->base.id; dev_priv->fbc.y = crtc->base.y; } static void intel_fbc_work_fn(struct work_struct *__work) { struct drm_i915_private *dev_priv = container_of(__work, struct drm_i915_private, fbc.work.work); struct intel_fbc_work *work = &dev_priv->fbc.work; struct intel_crtc *crtc = dev_priv->fbc.crtc; int delay_ms = 50; retry: /* Delay the actual enabling to let pageflipping cease and the * display to settle before starting the compression. Note that * this delay also serves a second purpose: it allows for a * vblank to pass after disabling the FBC before we attempt * to modify the control registers. * * A more complicated solution would involve tracking vblanks * following the termination of the page-flipping sequence * and indeed performing the enable as a co-routine and not * waiting synchronously upon the vblank. * * WaFbcWaitForVBlankBeforeEnable:ilk,snb */ wait_remaining_ms_from_jiffies(work->enable_jiffies, delay_ms); mutex_lock(&dev_priv->fbc.lock); /* Were we cancelled? */ if (!work->scheduled) goto out; /* Were we delayed again while this function was sleeping? */ if (time_after(work->enable_jiffies + msecs_to_jiffies(delay_ms), jiffies)) { mutex_unlock(&dev_priv->fbc.lock); goto retry; } if (crtc->base.primary->fb == work->fb) intel_fbc_activate(work->fb); work->scheduled = false; out: mutex_unlock(&dev_priv->fbc.lock); } static void intel_fbc_cancel_work(struct drm_i915_private *dev_priv) { WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock)); dev_priv->fbc.work.scheduled = false; } static void intel_fbc_schedule_activation(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct intel_fbc_work *work = &dev_priv->fbc.work; WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock)); /* It is useless to call intel_fbc_cancel_work() in this function since * we're not releasing fbc.lock, so it won't have an opportunity to grab * it to discover that it was cancelled. So we just update the expected * jiffy count. */ work->fb = crtc->base.primary->fb; work->scheduled = true; work->enable_jiffies = jiffies; schedule_work(&work->work); } static void __intel_fbc_deactivate(struct drm_i915_private *dev_priv) { WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock)); intel_fbc_cancel_work(dev_priv); if (dev_priv->fbc.active) dev_priv->fbc.deactivate(dev_priv); } /* * intel_fbc_deactivate - deactivate FBC if it's associated with crtc * @crtc: the CRTC * * This function deactivates FBC if it's associated with the provided CRTC. */ void intel_fbc_deactivate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (!fbc_supported(dev_priv)) return; mutex_lock(&dev_priv->fbc.lock); if (dev_priv->fbc.crtc == crtc) __intel_fbc_deactivate(dev_priv); mutex_unlock(&dev_priv->fbc.lock); } static void set_no_fbc_reason(struct drm_i915_private *dev_priv, const char *reason) { if (dev_priv->fbc.no_fbc_reason == reason) return; dev_priv->fbc.no_fbc_reason = reason; DRM_DEBUG_KMS("Disabling FBC: %s\n", reason); } static bool crtc_can_fbc(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (fbc_on_pipe_a_only(dev_priv) && crtc->pipe != PIPE_A) return false; if (fbc_on_plane_a_only(dev_priv) && crtc->plane != PLANE_A) return false; return true; } static bool crtc_is_valid(struct intel_crtc *crtc) { if (!intel_crtc_active(&crtc->base)) return false; if (!to_intel_plane_state(crtc->base.primary->state)->visible) return false; return true; } static bool multiple_pipes_ok(struct drm_i915_private *dev_priv) { enum pipe pipe; int n_pipes = 0; struct drm_crtc *crtc; if (INTEL_INFO(dev_priv)->gen > 4) return true; for_each_pipe(dev_priv, pipe) { crtc = dev_priv->pipe_to_crtc_mapping[pipe]; if (intel_crtc_active(crtc) && to_intel_plane_state(crtc->primary->state)->visible) n_pipes++; } return (n_pipes < 2); } static int find_compression_threshold(struct drm_i915_private *dev_priv, struct drm_mm_node *node, int size, int fb_cpp) { int compression_threshold = 1; int ret; u64 end; /* The FBC hardware for BDW/SKL doesn't have access to the stolen * reserved range size, so it always assumes the maximum (8mb) is used. * If we enable FBC using a CFB on that memory range we'll get FIFO * underruns, even if that range is not reserved by the BIOS. */ if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) end = dev_priv->gtt.stolen_size - 8 * 1024 * 1024; else end = dev_priv->gtt.stolen_usable_size; /* HACK: This code depends on what we will do in *_enable_fbc. If that * code changes, this code needs to change as well. * * The enable_fbc code will attempt to use one of our 2 compression * thresholds, therefore, in that case, we only have 1 resort. */ /* Try to over-allocate to reduce reallocations and fragmentation. */ ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1, 4096, 0, end); if (ret == 0) return compression_threshold; again: /* HW's ability to limit the CFB is 1:4 */ if (compression_threshold > 4 || (fb_cpp == 2 && compression_threshold == 2)) return 0; ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1, 4096, 0, end); if (ret && INTEL_INFO(dev_priv)->gen <= 4) { return 0; } else if (ret) { compression_threshold <<= 1; goto again; } else { return compression_threshold; } } static int intel_fbc_alloc_cfb(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct drm_framebuffer *fb = crtc->base.primary->state->fb; struct drm_mm_node *uninitialized_var(compressed_llb); int size, fb_cpp, ret; WARN_ON(drm_mm_node_allocated(&dev_priv->fbc.compressed_fb)); size = intel_fbc_calculate_cfb_size(crtc, fb); fb_cpp = drm_format_plane_cpp(fb->pixel_format, 0); ret = find_compression_threshold(dev_priv, &dev_priv->fbc.compressed_fb, size, fb_cpp); if (!ret) goto err_llb; else if (ret > 1) { DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n"); } dev_priv->fbc.threshold = ret; if (INTEL_INFO(dev_priv)->gen >= 5) I915_WRITE(ILK_DPFC_CB_BASE, dev_priv->fbc.compressed_fb.start); else if (IS_GM45(dev_priv)) { I915_WRITE(DPFC_CB_BASE, dev_priv->fbc.compressed_fb.start); } else { compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL); if (!compressed_llb) goto err_fb; ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb, 4096, 4096); if (ret) goto err_fb; dev_priv->fbc.compressed_llb = compressed_llb; I915_WRITE(FBC_CFB_BASE, dev_priv->mm.stolen_base + dev_priv->fbc.compressed_fb.start); I915_WRITE(FBC_LL_BASE, dev_priv->mm.stolen_base + compressed_llb->start); } dev_priv->fbc.uncompressed_size = size; DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n", dev_priv->fbc.compressed_fb.size, dev_priv->fbc.threshold); return 0; err_fb: kfree(compressed_llb); i915_gem_stolen_remove_node(dev_priv, &dev_priv->fbc.compressed_fb); err_llb: pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size); return -ENOSPC; } static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv) { if (dev_priv->fbc.uncompressed_size == 0) return; i915_gem_stolen_remove_node(dev_priv, &dev_priv->fbc.compressed_fb); if (dev_priv->fbc.compressed_llb) { i915_gem_stolen_remove_node(dev_priv, dev_priv->fbc.compressed_llb); kfree(dev_priv->fbc.compressed_llb); } dev_priv->fbc.uncompressed_size = 0; } void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv) { if (!fbc_supported(dev_priv)) return; mutex_lock(&dev_priv->fbc.lock); __intel_fbc_cleanup_cfb(dev_priv); mutex_unlock(&dev_priv->fbc.lock); } static bool stride_is_valid(struct drm_i915_private *dev_priv, unsigned int stride) { /* These should have been caught earlier. */ WARN_ON(stride < 512); WARN_ON((stride & (64 - 1)) != 0); /* Below are the additional FBC restrictions. */ if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv)) return stride == 4096 || stride == 8192; if (IS_GEN4(dev_priv) && !IS_G4X(dev_priv) && stride < 2048) return false; if (stride > 16384) return false; return true; } static bool pixel_format_is_valid(struct drm_framebuffer *fb) { struct drm_device *dev = fb->dev; struct drm_i915_private *dev_priv = dev->dev_private; switch (fb->pixel_format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: return true; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_RGB565: /* 16bpp not supported on gen2 */ if (IS_GEN2(dev)) return false; /* WaFbcOnly1to1Ratio:ctg */ if (IS_G4X(dev_priv)) return false; return true; default: return false; } } /* * For some reason, the hardware tracking starts looking at whatever we * programmed as the display plane base address register. It does not look at * the X and Y offset registers. That's why we look at the crtc->adjusted{x,y} * variables instead of just looking at the pipe/plane size. */ static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; unsigned int effective_w, effective_h, max_w, max_h; if (INTEL_INFO(dev_priv)->gen >= 8 || IS_HASWELL(dev_priv)) { max_w = 4096; max_h = 4096; } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) { max_w = 4096; max_h = 2048; } else { max_w = 2048; max_h = 1536; } intel_fbc_get_plane_source_size(crtc, &effective_w, &effective_h); effective_w += crtc->adjusted_x; effective_h += crtc->adjusted_y; return effective_w <= max_w && effective_h <= max_h; } /** * __intel_fbc_update - activate/deactivate FBC as needed, unlocked * @crtc: the CRTC that triggered the update * * This function completely reevaluates the status of FBC, then activates, * deactivates or maintains it on the same state. */ static void __intel_fbc_update(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct drm_framebuffer *fb; struct drm_i915_gem_object *obj; const struct drm_display_mode *adjusted_mode; WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock)); if (!multiple_pipes_ok(dev_priv)) { set_no_fbc_reason(dev_priv, "more than one pipe active"); goto out_disable; } if (!dev_priv->fbc.enabled || dev_priv->fbc.crtc != crtc) return; if (!crtc_is_valid(crtc)) { set_no_fbc_reason(dev_priv, "no output"); goto out_disable; } fb = crtc->base.primary->fb; obj = intel_fb_obj(fb); adjusted_mode = &crtc->config->base.adjusted_mode; if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) || (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) { set_no_fbc_reason(dev_priv, "incompatible mode"); goto out_disable; } if (!intel_fbc_hw_tracking_covers_screen(crtc)) { set_no_fbc_reason(dev_priv, "mode too large for compression"); goto out_disable; } /* The use of a CPU fence is mandatory in order to detect writes * by the CPU to the scanout and trigger updates to the FBC. */ if (obj->tiling_mode != I915_TILING_X || obj->fence_reg == I915_FENCE_REG_NONE) { set_no_fbc_reason(dev_priv, "framebuffer not tiled or fenced"); goto out_disable; } if (INTEL_INFO(dev_priv)->gen <= 4 && !IS_G4X(dev_priv) && crtc->base.primary->state->rotation != BIT(DRM_ROTATE_0)) { set_no_fbc_reason(dev_priv, "rotation unsupported"); goto out_disable; } if (!stride_is_valid(dev_priv, fb->pitches[0])) { set_no_fbc_reason(dev_priv, "framebuffer stride not supported"); goto out_disable; } if (!pixel_format_is_valid(fb)) { set_no_fbc_reason(dev_priv, "pixel format is invalid"); goto out_disable; } /* WaFbcExceedCdClockThreshold:hsw,bdw */ if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) && ilk_pipe_pixel_rate(crtc->config) >= dev_priv->cdclk_freq * 95 / 100) { set_no_fbc_reason(dev_priv, "pixel rate is too big"); goto out_disable; } /* It is possible for the required CFB size change without a * crtc->disable + crtc->enable since it is possible to change the * stride without triggering a full modeset. Since we try to * over-allocate the CFB, there's a chance we may keep FBC enabled even * if this happens, but if we exceed the current CFB size we'll have to * disable FBC. Notice that it would be possible to disable FBC, wait * for a frame, free the stolen node, then try to reenable FBC in case * we didn't get any invalidate/deactivate calls, but this would require * a lot of tracking just for a specific case. If we conclude it's an * important case, we can implement it later. */ if (intel_fbc_calculate_cfb_size(crtc, fb) > dev_priv->fbc.compressed_fb.size * dev_priv->fbc.threshold) { set_no_fbc_reason(dev_priv, "CFB requirements changed"); goto out_disable; } /* If the scanout has not changed, don't modify the FBC settings. * Note that we make the fundamental assumption that the fb->obj * cannot be unpinned (and have its GTT offset and fence revoked) * without first being decoupled from the scanout and FBC disabled. */ if (dev_priv->fbc.crtc == crtc && dev_priv->fbc.fb_id == fb->base.id && dev_priv->fbc.y == crtc->base.y && dev_priv->fbc.active) return; if (intel_fbc_is_active(dev_priv)) { /* We update FBC along two paths, after changing fb/crtc * configuration (modeswitching) and after page-flipping * finishes. For the latter, we know that not only did * we disable the FBC at the start of the page-flip * sequence, but also more than one vblank has passed. * * For the former case of modeswitching, it is possible * to switch between two FBC valid configurations * instantaneously so we do need to disable the FBC * before we can modify its control registers. We also * have to wait for the next vblank for that to take * effect. However, since we delay enabling FBC we can * assume that a vblank has passed since disabling and * that we can safely alter the registers in the deferred * callback. * * In the scenario that we go from a valid to invalid * and then back to valid FBC configuration we have * no strict enforcement that a vblank occurred since * disabling the FBC. However, along all current pipe * disabling paths we do need to wait for a vblank at * some point. And we wait before enabling FBC anyway. */ DRM_DEBUG_KMS("deactivating FBC for update\n"); __intel_fbc_deactivate(dev_priv); } intel_fbc_schedule_activation(crtc); dev_priv->fbc.no_fbc_reason = "FBC enabled (not necessarily active)"; return; out_disable: /* Multiple disables should be harmless */ if (intel_fbc_is_active(dev_priv)) { DRM_DEBUG_KMS("unsupported config, deactivating FBC\n"); __intel_fbc_deactivate(dev_priv); } } /* * intel_fbc_update - activate/deactivate FBC as needed * @crtc: the CRTC that triggered the update * * This function reevaluates the overall state and activates or deactivates FBC. */ void intel_fbc_update(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (!fbc_supported(dev_priv)) return; mutex_lock(&dev_priv->fbc.lock); __intel_fbc_update(crtc); mutex_unlock(&dev_priv->fbc.lock); } void intel_fbc_invalidate(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { unsigned int fbc_bits; if (!fbc_supported(dev_priv)) return; if (origin == ORIGIN_GTT) return; mutex_lock(&dev_priv->fbc.lock); if (dev_priv->fbc.enabled) fbc_bits = INTEL_FRONTBUFFER_PRIMARY(dev_priv->fbc.crtc->pipe); else fbc_bits = dev_priv->fbc.possible_framebuffer_bits; dev_priv->fbc.busy_bits |= (fbc_bits & frontbuffer_bits); if (dev_priv->fbc.busy_bits) __intel_fbc_deactivate(dev_priv); mutex_unlock(&dev_priv->fbc.lock); } void intel_fbc_flush(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { if (!fbc_supported(dev_priv)) return; if (origin == ORIGIN_GTT) return; mutex_lock(&dev_priv->fbc.lock); dev_priv->fbc.busy_bits &= ~frontbuffer_bits; if (!dev_priv->fbc.busy_bits && dev_priv->fbc.enabled) { __intel_fbc_deactivate(dev_priv); __intel_fbc_update(dev_priv->fbc.crtc); } mutex_unlock(&dev_priv->fbc.lock); } /** * intel_fbc_enable: tries to enable FBC on the CRTC * @crtc: the CRTC * * This function checks if it's possible to enable FBC on the following CRTC, * then enables it. Notice that it doesn't activate FBC. */ void intel_fbc_enable(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (!fbc_supported(dev_priv)) return; mutex_lock(&dev_priv->fbc.lock); if (dev_priv->fbc.enabled) { WARN_ON(dev_priv->fbc.crtc == crtc); goto out; } WARN_ON(dev_priv->fbc.active); WARN_ON(dev_priv->fbc.crtc != NULL); if (intel_vgpu_active(dev_priv->dev)) { set_no_fbc_reason(dev_priv, "VGPU is active"); goto out; } if (i915.enable_fbc < 0) { set_no_fbc_reason(dev_priv, "disabled per chip default"); goto out; } if (!i915.enable_fbc) { set_no_fbc_reason(dev_priv, "disabled per module param"); goto out; } if (!crtc_can_fbc(crtc)) { set_no_fbc_reason(dev_priv, "no enabled pipes can have FBC"); goto out; } if (intel_fbc_alloc_cfb(crtc)) { set_no_fbc_reason(dev_priv, "not enough stolen memory"); goto out; } DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe)); dev_priv->fbc.no_fbc_reason = "FBC enabled but not active yet\n"; dev_priv->fbc.enabled = true; dev_priv->fbc.crtc = crtc; out: mutex_unlock(&dev_priv->fbc.lock); } /** * __intel_fbc_disable - disable FBC * @dev_priv: i915 device instance * * This is the low level function that actually disables FBC. Callers should * grab the FBC lock. */ static void __intel_fbc_disable(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc = dev_priv->fbc.crtc; WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock)); WARN_ON(!dev_priv->fbc.enabled); WARN_ON(dev_priv->fbc.active); assert_pipe_disabled(dev_priv, crtc->pipe); DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe)); __intel_fbc_cleanup_cfb(dev_priv); dev_priv->fbc.enabled = false; dev_priv->fbc.crtc = NULL; } /** * intel_fbc_disable_crtc - disable FBC if it's associated with crtc * @crtc: the CRTC * * This function disables FBC if it's associated with the provided CRTC. */ void intel_fbc_disable_crtc(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (!fbc_supported(dev_priv)) return; mutex_lock(&dev_priv->fbc.lock); if (dev_priv->fbc.crtc == crtc) { WARN_ON(!dev_priv->fbc.enabled); WARN_ON(dev_priv->fbc.active); __intel_fbc_disable(dev_priv); } mutex_unlock(&dev_priv->fbc.lock); } /** * intel_fbc_disable - globally disable FBC * @dev_priv: i915 device instance * * This function disables FBC regardless of which CRTC is associated with it. */ void intel_fbc_disable(struct drm_i915_private *dev_priv) { if (!fbc_supported(dev_priv)) return; mutex_lock(&dev_priv->fbc.lock); if (dev_priv->fbc.enabled) __intel_fbc_disable(dev_priv); mutex_unlock(&dev_priv->fbc.lock); } /** * intel_fbc_init - Initialize FBC * @dev_priv: the i915 device * * This function might be called during PM init process. */ void intel_fbc_init(struct drm_i915_private *dev_priv) { enum pipe pipe; INIT_WORK(&dev_priv->fbc.work.work, intel_fbc_work_fn); mutex_init(&dev_priv->fbc.lock); dev_priv->fbc.enabled = false; dev_priv->fbc.active = false; dev_priv->fbc.work.scheduled = false; if (!HAS_FBC(dev_priv)) { dev_priv->fbc.no_fbc_reason = "unsupported by this chipset"; return; } for_each_pipe(dev_priv, pipe) { dev_priv->fbc.possible_framebuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(pipe); if (fbc_on_pipe_a_only(dev_priv)) break; } if (INTEL_INFO(dev_priv)->gen >= 7) { dev_priv->fbc.is_active = ilk_fbc_is_active; dev_priv->fbc.activate = gen7_fbc_activate; dev_priv->fbc.deactivate = ilk_fbc_deactivate; } else if (INTEL_INFO(dev_priv)->gen >= 5) { dev_priv->fbc.is_active = ilk_fbc_is_active; dev_priv->fbc.activate = ilk_fbc_activate; dev_priv->fbc.deactivate = ilk_fbc_deactivate; } else if (IS_GM45(dev_priv)) { dev_priv->fbc.is_active = g4x_fbc_is_active; dev_priv->fbc.activate = g4x_fbc_activate; dev_priv->fbc.deactivate = g4x_fbc_deactivate; } else { dev_priv->fbc.is_active = i8xx_fbc_is_active; dev_priv->fbc.activate = i8xx_fbc_activate; dev_priv->fbc.deactivate = i8xx_fbc_deactivate; /* This value was pulled out of someone's hat */ I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT); } /* We still don't have any sort of hardware state readout for FBC, so * deactivate it in case the BIOS activated it to make sure software * matches the hardware state. */ if (dev_priv->fbc.is_active(dev_priv)) dev_priv->fbc.deactivate(dev_priv); }