/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "hw.h" #include "ar9003_phy.h" #include "ar9003_mci.h" static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah) { if (!AR_SREV_9462_20(ah)) return; REG_RMW_FIELD(ah, AR_MCI_COMMAND2, AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1); udelay(1); REG_RMW_FIELD(ah, AR_MCI_COMMAND2, AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0); } static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address, u32 bit_position, int time_out) { struct ath_common *common = ath9k_hw_common(ah); while (time_out) { if (REG_READ(ah, address) & bit_position) { REG_WRITE(ah, address, bit_position); if (address == AR_MCI_INTERRUPT_RX_MSG_RAW) { if (bit_position & AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE) ar9003_mci_reset_req_wakeup(ah); if (bit_position & (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING | AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_RX_MSG); } break; } udelay(10); time_out -= 10; if (time_out < 0) break; } if (time_out <= 0) { ath_dbg(common, MCI, "MCI Wait for Reg 0x%08x = 0x%08x timeout\n", address, bit_position); ath_dbg(common, MCI, "MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x\n", REG_READ(ah, AR_MCI_INTERRUPT_RAW), REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW)); time_out = 0; } return time_out; } void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done) { u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00}; ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16, wait_done, false); udelay(5); } void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done) { u32 payload = 0x00000000; ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1, wait_done, false); } static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done) { ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP, NULL, 0, wait_done, false); udelay(5); } void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done) { ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP, NULL, 0, wait_done, false); } static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done) { u32 payload = 0x70000000; ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1, wait_done, false); } static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done) { ar9003_mci_send_message(ah, MCI_SYS_SLEEPING, MCI_FLAG_DISABLE_TIMESTAMP, NULL, 0, wait_done, false); } static void ar9003_mci_send_coex_version_query(struct ath_hw *ah, bool wait_done) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; if (!mci->bt_version_known && (mci->bt_state != MCI_BT_SLEEP)) { ath_dbg(common, MCI, "MCI Send Coex version query\n"); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_QUERY); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); } } static void ar9003_mci_send_coex_version_response(struct ath_hw *ah, bool wait_done) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; ath_dbg(common, MCI, "MCI Send Coex version response\n"); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_RESPONSE); *(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) = mci->wlan_ver_major; *(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) = mci->wlan_ver_minor; ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); } static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah, bool wait_done) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 *payload = &mci->wlan_channels[0]; if ((mci->wlan_channels_update == true) && (mci->bt_state != MCI_BT_SLEEP)) { MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_WLAN_CHANNELS); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff); } } static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah, bool wait_done, u8 query_type) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; bool query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO | MCI_GPM_COEX_QUERY_BT_TOPOLOGY)); if (mci->bt_state != MCI_BT_SLEEP) { ath_dbg(common, MCI, "MCI Send Coex BT Status Query 0x%02X\n", query_type); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_STATUS_QUERY); *(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type; /* * If bt_status_query message is not sent successfully, * then need_flush_btinfo should be set again. */ if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true)) { if (query_btinfo) { mci->need_flush_btinfo = true; ath_dbg(common, MCI, "MCI send bt_status_query fail, set flush flag again\n"); } } if (query_btinfo) mci->query_bt = false; } } void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt, bool wait_done) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; ath_dbg(common, MCI, "MCI Send Coex %s BT GPM\n", (halt) ? "halt" : "unhalt"); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_HALT_BT_GPM); if (halt) { mci->query_bt = true; /* Send next unhalt no matter halt sent or not */ mci->unhalt_bt_gpm = true; mci->need_flush_btinfo = true; *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) = MCI_GPM_COEX_BT_GPM_HALT; } else *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) = MCI_GPM_COEX_BT_GPM_UNHALT; ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); } static void ar9003_mci_prep_interface(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 saved_mci_int_en; u32 mci_timeout = 150; mci->bt_state = MCI_BT_SLEEP; saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN); REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW)); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, REG_READ(ah, AR_MCI_INTERRUPT_RAW)); /* Remote Reset */ ath_dbg(common, MCI, "MCI Reset sequence start\n"); ath_dbg(common, MCI, "MCI send REMOTE_RESET\n"); ar9003_mci_remote_reset(ah, true); /* * This delay is required for the reset delay worst case value 255 in * MCI_COMMAND2 register */ if (AR_SREV_9462_10(ah)) udelay(252); ath_dbg(common, MCI, "MCI Send REQ_WAKE to remoter(BT)\n"); ar9003_mci_send_req_wake(ah, true); if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500)) { ath_dbg(common, MCI, "MCI SYS_WAKING from remote(BT)\n"); mci->bt_state = MCI_BT_AWAKE; if (AR_SREV_9462_10(ah)) udelay(10); /* * we don't need to send more remote_reset at this moment. * If BT receive first remote_reset, then BT HW will * be cleaned up and will be able to receive req_wake * and BT HW will respond sys_waking. * In this case, WLAN will receive BT's HW sys_waking. * Otherwise, if BT SW missed initial remote_reset, * that remote_reset will still clean up BT MCI RX, * and the req_wake will wake BT up, * and BT SW will respond this req_wake with a remote_reset and * sys_waking. In this case, WLAN will receive BT's SW * sys_waking. In either case, BT's RX is cleaned up. So we * don't need to reply BT's remote_reset now, if any. * Similarly, if in any case, WLAN can receive BT's sys_waking, * that means WLAN's RX is also fine. */ /* Send SYS_WAKING to BT */ ath_dbg(common, MCI, "MCI send SW SYS_WAKING to remote BT\n"); ar9003_mci_send_sys_waking(ah, true); udelay(10); /* * Set BT priority interrupt value to be 0xff to * avoid having too many BT PRIORITY interrupts. */ REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF); /* * A contention reset will be received after send out * sys_waking. Also BT priority interrupt bits will be set. * Clear those bits before the next step. */ REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_CONT_RST); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_BT_PRI); if (AR_SREV_9462_10(ah) || mci->is_2g) { /* Send LNA_TRANS */ ath_dbg(common, MCI, "MCI send LNA_TRANS to BT\n"); ar9003_mci_send_lna_transfer(ah, true); udelay(5); } if (AR_SREV_9462_10(ah) || (mci->is_2g && !mci->update_2g5g)) { if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_LNA_INFO, mci_timeout)) ath_dbg(common, MCI, "MCI WLAN has control over the LNA & BT obeys it\n"); else ath_dbg(common, MCI, "MCI BT didn't respond to LNA_TRANS\n"); } if (AR_SREV_9462_10(ah)) { /* Send another remote_reset to deassert BT clk_req. */ ath_dbg(common, MCI, "MCI another remote_reset to deassert clk_req\n"); ar9003_mci_remote_reset(ah, true); udelay(252); } } /* Clear the extra redundant SYS_WAKING from BT */ if ((mci->bt_state == MCI_BT_AWAKE) && (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) && (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) { REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE); } REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en); } void ar9003_mci_disable_interrupt(struct ath_hw *ah) { REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); } void ar9003_mci_enable_interrupt(struct ath_hw *ah) { REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, AR_MCI_INTERRUPT_RX_MSG_DEFAULT); } bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints) { u32 intr; intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW); return ((intr & ints) == ints); } void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr, u32 *rx_msg_intr) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; *raw_intr = mci->raw_intr; *rx_msg_intr = mci->rx_msg_intr; /* Clean int bits after the values are read. */ mci->raw_intr = 0; mci->rx_msg_intr = 0; } EXPORT_SYMBOL(ar9003_mci_get_interrupt); void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (!mci->update_2g5g && (mci->is_2g != is_2g)) mci->update_2g5g = true; mci->is_2g = is_2g; } static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 *payload; u32 recv_type, offset; if (msg_index == MCI_GPM_INVALID) return false; offset = msg_index << 4; payload = (u32 *)(mci->gpm_buf + offset); recv_type = MCI_GPM_TYPE(payload); if (recv_type == MCI_GPM_RSVD_PATTERN) { ath_dbg(common, MCI, "MCI Skip RSVD GPM\n"); return false; } return true; } static void ar9003_mci_observation_set_up(struct ath_hw *ah) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) { ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA); ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK); ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA); ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK); } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) { ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX); ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX); ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX); ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX); ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) { ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX); ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX); ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA); ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK); } else return; REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); if (AR_SREV_9462_20_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_DS_JTAG_DISABLE, 1); REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_WLAN_UART_INTF_EN, 0); REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL, ATH_MCI_CONFIG_MCI_OBS_GPIO); } REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1); REG_WRITE(ah, AR_OBS, 0x4b); REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03); REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01); REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02); REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03); REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS, AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07); } static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done, u8 opcode, u32 bt_flags) { struct ath_common *common = ath9k_hw_common(ah); u32 pld[4] = {0, 0, 0, 0}; MCI_GPM_SET_TYPE_OPCODE(pld, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_BT_UPDATE_FLAGS); *(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP) = opcode; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF; ath_dbg(common, MCI, "MCI BT_MCI_FLAGS: Send Coex BT Update Flags %s 0x%08x\n", opcode == MCI_GPM_COEX_BT_FLAGS_READ ? "READ" : opcode == MCI_GPM_COEX_BT_FLAGS_SET ? "SET" : "CLEAR", bt_flags); return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, wait_done, true); } void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g, bool is_full_sleep) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 regval, thresh; ath_dbg(common, MCI, "MCI full_sleep = %d, is_2g = %d\n", is_full_sleep, is_2g); /* * GPM buffer and scheduling message buffer are not allocated */ if (!mci->gpm_addr && !mci->sched_addr) { ath_dbg(common, MCI, "MCI GPM and schedule buffers are not allocated\n"); return; } if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) { ath_dbg(common, MCI, "MCI it's deadbeef, quit mci_reset\n"); return; } /* Program MCI DMA related registers */ REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr); REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len); REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr); /* * To avoid MCI state machine be affected by incoming remote MCI msgs, * MCI mode will be enabled later, right before reset the MCI TX and RX. */ regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) | SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) | SM(1, AR_BTCOEX_CTRL_PA_SHARED) | SM(1, AR_BTCOEX_CTRL_LNA_SHARED) | SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) | SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK) | SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) | SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) | SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); if (is_2g && (AR_SREV_9462_20(ah)) && !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) { regval |= SM(1, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); ath_dbg(common, MCI, "MCI sched one step look ahead\n"); if (!(mci->config & ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) { thresh = MS(mci->config, ATH_MCI_CONFIG_AGGR_THRESH); thresh &= 7; regval |= SM(1, AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN); regval |= SM(thresh, AR_BTCOEX_CTRL_AGGR_THRESH); REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_HW_BASED, 1); REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_MEM_BASED, 1); } else ath_dbg(common, MCI, "MCI sched aggr thresh: off\n"); } else ath_dbg(common, MCI, "MCI SCHED one step look ahead off\n"); if (AR_SREV_9462_10(ah)) regval |= SM(1, AR_BTCOEX_CTRL_SPDT_ENABLE_10); REG_WRITE(ah, AR_BTCOEX_CTRL, regval); if (AR_SREV_9462_20(ah)) { REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3, AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20); } REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 1); REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0); thresh = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV); REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, thresh); REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN); /* Resetting the Rx and Tx paths of MCI */ regval = REG_READ(ah, AR_MCI_COMMAND2); regval |= SM(1, AR_MCI_COMMAND2_RESET_TX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); udelay(1); regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); if (is_full_sleep) { ar9003_mci_mute_bt(ah); udelay(100); } regval |= SM(1, AR_MCI_COMMAND2_RESET_RX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); udelay(1); regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); ar9003_mci_state(ah, MCI_STATE_INIT_GPM_OFFSET, NULL); REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, (SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) | SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM))); REG_CLR_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); if (AR_SREV_9462_20_OR_LATER(ah)) ar9003_mci_observation_set_up(ah); mci->ready = true; ar9003_mci_prep_interface(ah); if (en_int) ar9003_mci_enable_interrupt(ah); } void ar9003_mci_mute_bt(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); /* disable all MCI messages */ REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000); REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS0, 0xffffffff); REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS1, 0xffffffff); REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS2, 0xffffffff); REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS3, 0xffffffff); REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); /* wait pending HW messages to flush out */ udelay(10); /* * Send LNA_TAKE and SYS_SLEEPING when * 1. reset not after resuming from full sleep * 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment */ ath_dbg(common, MCI, "MCI Send LNA take\n"); ar9003_mci_send_lna_take(ah, true); udelay(5); ath_dbg(common, MCI, "MCI Send sys sleeping\n"); ar9003_mci_send_sys_sleeping(ah, true); } void ar9003_mci_sync_bt_state(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 cur_bt_state; cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP, NULL); if (mci->bt_state != cur_bt_state) { ath_dbg(common, MCI, "MCI BT state mismatches. old: %d, new: %d\n", mci->bt_state, cur_bt_state); mci->bt_state = cur_bt_state; } if (mci->bt_state != MCI_BT_SLEEP) { ar9003_mci_send_coex_version_query(ah, true); ar9003_mci_send_coex_wlan_channels(ah, true); if (mci->unhalt_bt_gpm == true) { ath_dbg(common, MCI, "MCI unhalt BT GPM\n"); ar9003_mci_send_coex_halt_bt_gpm(ah, false, true); } } } static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 new_flags, to_set, to_clear; if (AR_SREV_9462_20(ah) && mci->update_2g5g && (mci->bt_state != MCI_BT_SLEEP)) { if (mci->is_2g) { new_flags = MCI_2G_FLAGS; to_clear = MCI_2G_FLAGS_CLEAR_MASK; to_set = MCI_2G_FLAGS_SET_MASK; } else { new_flags = MCI_5G_FLAGS; to_clear = MCI_5G_FLAGS_CLEAR_MASK; to_set = MCI_5G_FLAGS_SET_MASK; } ath_dbg(common, MCI, "MCI BT_MCI_FLAGS: %s 0x%08x clr=0x%08x, set=0x%08x\n", mci->is_2g ? "2G" : "5G", new_flags, to_clear, to_set); if (to_clear) ar9003_mci_send_coex_bt_flags(ah, wait_done, MCI_GPM_COEX_BT_FLAGS_CLEAR, to_clear); if (to_set) ar9003_mci_send_coex_bt_flags(ah, wait_done, MCI_GPM_COEX_BT_FLAGS_SET, to_set); } if (AR_SREV_9462_10(ah) && (mci->bt_state != MCI_BT_SLEEP)) mci->update_2g5g = false; } static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header, u32 *payload, bool queue) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u8 type, opcode; if (queue) { if (payload) ath_dbg(common, MCI, "MCI ERROR: Send fail: %02x: %02x %02x %02x\n", header, *(((u8 *)payload) + 4), *(((u8 *)payload) + 5), *(((u8 *)payload) + 6)); else ath_dbg(common, MCI, "MCI ERROR: Send fail: %02x\n", header); } /* check if the message is to be queued */ if (header != MCI_GPM) return; type = MCI_GPM_TYPE(payload); opcode = MCI_GPM_OPCODE(payload); if (type != MCI_GPM_COEX_AGENT) return; switch (opcode) { case MCI_GPM_COEX_BT_UPDATE_FLAGS: if (AR_SREV_9462_10(ah)) break; if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) == MCI_GPM_COEX_BT_FLAGS_READ) break; mci->update_2g5g = queue; if (queue) ath_dbg(common, MCI, "MCI BT_MCI_FLAGS: 2G5G status %s\n", mci->is_2g ? "2G" : "5G"); else ath_dbg(common, MCI, "MCI BT_MCI_FLAGS: 2G5G status %s\n", mci->is_2g ? "2G" : "5G"); break; case MCI_GPM_COEX_WLAN_CHANNELS: mci->wlan_channels_update = queue; if (queue) ath_dbg(common, MCI, "MCI WLAN channel map \n"); else ath_dbg(common, MCI, "MCI WLAN channel map \n"); break; case MCI_GPM_COEX_HALT_BT_GPM: if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) == MCI_GPM_COEX_BT_GPM_UNHALT) { mci->unhalt_bt_gpm = queue; if (queue) ath_dbg(common, MCI, "MCI UNHALT BT GPM \n"); else { mci->halted_bt_gpm = false; ath_dbg(common, MCI, "MCI UNHALT BT GPM \n"); } } if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) == MCI_GPM_COEX_BT_GPM_HALT) { mci->halted_bt_gpm = !queue; if (queue) ath_dbg(common, MCI, "MCI HALT BT GPM \n"); else ath_dbg(common, MCI, "MCI UNHALT BT GPM \n"); } break; default: break; } } void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool wait_done) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (mci->update_2g5g) { if (mci->is_2g) { ar9003_mci_send_2g5g_status(ah, true); ath_dbg(common, MCI, "MCI Send LNA trans\n"); ar9003_mci_send_lna_transfer(ah, true); udelay(5); REG_CLR_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); if (AR_SREV_9462_20(ah)) { REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); if (!(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) { REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); } } } else { ath_dbg(common, MCI, "MCI Send LNA take\n"); ar9003_mci_send_lna_take(ah, true); udelay(5); REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); if (AR_SREV_9462_20(ah)) { REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); REG_CLR_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); } ar9003_mci_send_2g5g_status(ah, true); } } } bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag, u32 *payload, u8 len, bool wait_done, bool check_bt) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; bool msg_sent = false; u32 regval; u32 saved_mci_int_en; int i; saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN); regval = REG_READ(ah, AR_BTCOEX_CTRL); if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) { ath_dbg(common, MCI, "MCI Not sending 0x%x. MCI is not enabled. full_sleep = %d\n", header, (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0); ar9003_mci_queue_unsent_gpm(ah, header, payload, true); return false; } else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) { ath_dbg(common, MCI, "MCI Don't send message 0x%x. BT is in sleep state\n", header); ar9003_mci_queue_unsent_gpm(ah, header, payload, true); return false; } if (wait_done) REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0); /* Need to clear SW_MSG_DONE raw bit before wait */ REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, (AR_MCI_INTERRUPT_SW_MSG_DONE | AR_MCI_INTERRUPT_MSG_FAIL_MASK)); if (payload) { for (i = 0; (i * 4) < len; i++) REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4), *(payload + i)); } REG_WRITE(ah, AR_MCI_COMMAND0, (SM((flag & MCI_FLAG_DISABLE_TIMESTAMP), AR_MCI_COMMAND0_DISABLE_TIMESTAMP) | SM(len, AR_MCI_COMMAND0_LEN) | SM(header, AR_MCI_COMMAND0_HEADER))); if (wait_done && !(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_SW_MSG_DONE, 500))) ar9003_mci_queue_unsent_gpm(ah, header, payload, true); else { ar9003_mci_queue_unsent_gpm(ah, header, payload, false); msg_sent = true; } if (wait_done) REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en); return msg_sent; } EXPORT_SYMBOL(ar9003_mci_send_message); void ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf, u16 len, u32 sched_addr) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; void *sched_buf = (void *)((char *) gpm_buf + (sched_addr - gpm_addr)); mci->gpm_addr = gpm_addr; mci->gpm_buf = gpm_buf; mci->gpm_len = len; mci->sched_addr = sched_addr; mci->sched_buf = sched_buf; ar9003_mci_reset(ah, true, true, true); } EXPORT_SYMBOL(ar9003_mci_setup); void ar9003_mci_cleanup(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); /* Turn off MCI and Jupiter mode. */ REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00); ath_dbg(common, MCI, "MCI ar9003_mci_cleanup\n"); ar9003_mci_disable_interrupt(ah); } EXPORT_SYMBOL(ar9003_mci_cleanup); static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type, u8 gpm_opcode, u32 *p_gpm) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u8 *p_data = (u8 *) p_gpm; if (gpm_type != MCI_GPM_COEX_AGENT) return; switch (gpm_opcode) { case MCI_GPM_COEX_VERSION_QUERY: ath_dbg(common, MCI, "MCI Recv GPM COEX Version Query\n"); ar9003_mci_send_coex_version_response(ah, true); break; case MCI_GPM_COEX_VERSION_RESPONSE: ath_dbg(common, MCI, "MCI Recv GPM COEX Version Response\n"); mci->bt_ver_major = *(p_data + MCI_GPM_COEX_B_MAJOR_VERSION); mci->bt_ver_minor = *(p_data + MCI_GPM_COEX_B_MINOR_VERSION); mci->bt_version_known = true; ath_dbg(common, MCI, "MCI BT Coex version: %d.%d\n", mci->bt_ver_major, mci->bt_ver_minor); break; case MCI_GPM_COEX_STATUS_QUERY: ath_dbg(common, MCI, "MCI Recv GPM COEX Status Query = 0x%02X\n", *(p_data + MCI_GPM_COEX_B_WLAN_BITMAP)); mci->wlan_channels_update = true; ar9003_mci_send_coex_wlan_channels(ah, true); break; case MCI_GPM_COEX_BT_PROFILE_INFO: mci->query_bt = true; ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Profile_Info\n"); break; case MCI_GPM_COEX_BT_STATUS_UPDATE: mci->query_bt = true; ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Status_Update SEQ=%d (drop&query)\n", *(p_gpm + 3)); break; default: break; } } u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type, u8 gpm_opcode, int time_out) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 *p_gpm = NULL, mismatch = 0, more_data; u32 offset; u8 recv_type = 0, recv_opcode = 0; bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE); more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE; while (time_out > 0) { if (p_gpm) { MCI_GPM_RECYCLE(p_gpm); p_gpm = NULL; } if (more_data != MCI_GPM_MORE) time_out = ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_GPM, time_out); if (!time_out) break; offset = ar9003_mci_state(ah, MCI_STATE_NEXT_GPM_OFFSET, &more_data); if (offset == MCI_GPM_INVALID) continue; p_gpm = (u32 *) (mci->gpm_buf + offset); recv_type = MCI_GPM_TYPE(p_gpm); recv_opcode = MCI_GPM_OPCODE(p_gpm); if (MCI_GPM_IS_CAL_TYPE(recv_type)) { if (recv_type == gpm_type) { if ((gpm_type == MCI_GPM_BT_CAL_DONE) && !b_is_bt_cal_done) { gpm_type = MCI_GPM_BT_CAL_GRANT; ath_dbg(common, MCI, "MCI Recv BT_CAL_DONE wait BT_CAL_GRANT\n"); continue; } break; } } else if ((recv_type == gpm_type) && (recv_opcode == gpm_opcode)) break; /* not expected message */ /* * check if it's cal_grant * * When we're waiting for cal_grant in reset routine, * it's possible that BT sends out cal_request at the * same time. Since BT's calibration doesn't happen * that often, we'll let BT completes calibration then * we continue to wait for cal_grant from BT. * Orginal: Wait BT_CAL_GRANT. * New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait * BT_CAL_DONE -> Wait BT_CAL_GRANT. */ if ((gpm_type == MCI_GPM_BT_CAL_GRANT) && (recv_type == MCI_GPM_BT_CAL_REQ)) { u32 payload[4] = {0, 0, 0, 0}; gpm_type = MCI_GPM_BT_CAL_DONE; ath_dbg(common, MCI, "MCI Rcv BT_CAL_REQ, send WLAN_CAL_GRANT\n"); MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, false, false); ath_dbg(common, MCI, "MCI now wait for BT_CAL_DONE\n"); continue; } else { ath_dbg(common, MCI, "MCI GPM subtype not match 0x%x\n", *(p_gpm + 1)); mismatch++; ar9003_mci_process_gpm_extra(ah, recv_type, recv_opcode, p_gpm); } } if (p_gpm) { MCI_GPM_RECYCLE(p_gpm); p_gpm = NULL; } if (time_out <= 0) { time_out = 0; ath_dbg(common, MCI, "MCI GPM received timeout, mismatch = %d\n", mismatch); } else ath_dbg(common, MCI, "MCI Receive GPM type=0x%x, code=0x%x\n", gpm_type, gpm_opcode); while (more_data == MCI_GPM_MORE) { ath_dbg(common, MCI, "MCI discard remaining GPM\n"); offset = ar9003_mci_state(ah, MCI_STATE_NEXT_GPM_OFFSET, &more_data); if (offset == MCI_GPM_INVALID) break; p_gpm = (u32 *) (mci->gpm_buf + offset); recv_type = MCI_GPM_TYPE(p_gpm); recv_opcode = MCI_GPM_OPCODE(p_gpm); if (!MCI_GPM_IS_CAL_TYPE(recv_type)) ar9003_mci_process_gpm_extra(ah, recv_type, recv_opcode, p_gpm); MCI_GPM_RECYCLE(p_gpm); } return time_out; } u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 value = 0, more_gpm = 0, gpm_ptr; u8 query_type; switch (state_type) { case MCI_STATE_ENABLE: if (mci->ready) { value = REG_READ(ah, AR_BTCOEX_CTRL); if ((value == 0xdeadbeef) || (value == 0xffffffff)) value = 0; } value &= AR_BTCOEX_CTRL_MCI_MODE_EN; break; case MCI_STATE_INIT_GPM_OFFSET: value = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR); ath_dbg(common, MCI, "MCI GPM initial WRITE_PTR=%d\n", value); mci->gpm_idx = value; break; case MCI_STATE_NEXT_GPM_OFFSET: case MCI_STATE_LAST_GPM_OFFSET: /* * This could be useful to avoid new GPM message interrupt which * may lead to spurious interrupt after power sleep, or multiple * entry of ath_mci_intr(). * Adding empty GPM check by returning HAL_MCI_GPM_INVALID can * alleviate this effect, but clearing GPM RX interrupt bit is * safe, because whether this is called from hw or driver code * there must be an interrupt bit set/triggered initially */ REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_GPM); gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR); value = gpm_ptr; if (value == 0) value = mci->gpm_len - 1; else if (value >= mci->gpm_len) { if (value != 0xFFFF) { value = 0; ath_dbg(common, MCI, "MCI GPM offset out of range\n"); } } else value--; if (value == 0xFFFF) { value = MCI_GPM_INVALID; more_gpm = MCI_GPM_NOMORE; ath_dbg(common, MCI, "MCI GPM ptr invalid @ptr=%d, offset=%d, more=GPM_NOMORE\n", gpm_ptr, value); } else if (state_type == MCI_STATE_NEXT_GPM_OFFSET) { if (gpm_ptr == mci->gpm_idx) { value = MCI_GPM_INVALID; more_gpm = MCI_GPM_NOMORE; ath_dbg(common, MCI, "MCI GPM message not available @ptr=%d, @offset=%d, more=GPM_NOMORE\n", gpm_ptr, value); } else { for (;;) { u32 temp_index; /* skip reserved GPM if any */ if (value != mci->gpm_idx) more_gpm = MCI_GPM_MORE; else more_gpm = MCI_GPM_NOMORE; temp_index = mci->gpm_idx; mci->gpm_idx++; if (mci->gpm_idx >= mci->gpm_len) mci->gpm_idx = 0; ath_dbg(common, MCI, "MCI GPM message got ptr=%d, @offset=%d, more=%d\n", gpm_ptr, temp_index, (more_gpm == MCI_GPM_MORE)); if (ar9003_mci_is_gpm_valid(ah, temp_index)) { value = temp_index; break; } if (more_gpm == MCI_GPM_NOMORE) { value = MCI_GPM_INVALID; break; } } } if (p_data) *p_data = more_gpm; } if (value != MCI_GPM_INVALID) value <<= 4; break; case MCI_STATE_LAST_SCHD_MSG_OFFSET: value = MS(REG_READ(ah, AR_MCI_RX_STATUS), AR_MCI_RX_LAST_SCHD_MSG_INDEX); /* Make it in bytes */ value <<= 4; break; case MCI_STATE_REMOTE_SLEEP: value = MS(REG_READ(ah, AR_MCI_RX_STATUS), AR_MCI_RX_REMOTE_SLEEP) ? MCI_BT_SLEEP : MCI_BT_AWAKE; break; case MCI_STATE_CONT_RSSI_POWER: value = MS(mci->cont_status, AR_MCI_CONT_RSSI_POWER); break; case MCI_STATE_CONT_PRIORITY: value = MS(mci->cont_status, AR_MCI_CONT_RRIORITY); break; case MCI_STATE_CONT_TXRX: value = MS(mci->cont_status, AR_MCI_CONT_TXRX); break; case MCI_STATE_BT: value = mci->bt_state; break; case MCI_STATE_SET_BT_SLEEP: mci->bt_state = MCI_BT_SLEEP; break; case MCI_STATE_SET_BT_AWAKE: mci->bt_state = MCI_BT_AWAKE; ar9003_mci_send_coex_version_query(ah, true); ar9003_mci_send_coex_wlan_channels(ah, true); if (mci->unhalt_bt_gpm) { ath_dbg(common, MCI, "MCI unhalt BT GPM\n"); ar9003_mci_send_coex_halt_bt_gpm(ah, false, true); } ar9003_mci_2g5g_switch(ah, true); break; case MCI_STATE_SET_BT_CAL_START: mci->bt_state = MCI_BT_CAL_START; break; case MCI_STATE_SET_BT_CAL: mci->bt_state = MCI_BT_CAL; break; case MCI_STATE_RESET_REQ_WAKE: ar9003_mci_reset_req_wakeup(ah); mci->update_2g5g = true; if ((AR_SREV_9462_20_OR_LATER(ah)) && (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK)) { /* Check if we still have control of the GPIOs */ if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) & ATH_MCI_CONFIG_MCI_OBS_GPIO) != ATH_MCI_CONFIG_MCI_OBS_GPIO) { ath_dbg(common, MCI, "MCI reconfigure observation\n"); ar9003_mci_observation_set_up(ah); } } break; case MCI_STATE_SEND_WLAN_COEX_VERSION: ar9003_mci_send_coex_version_response(ah, true); break; case MCI_STATE_SET_BT_COEX_VERSION: if (!p_data) ath_dbg(common, MCI, "MCI Set BT Coex version with NULL data!!\n"); else { mci->bt_ver_major = (*p_data >> 8) & 0xff; mci->bt_ver_minor = (*p_data) & 0xff; mci->bt_version_known = true; ath_dbg(common, MCI, "MCI BT version set: %d.%d\n", mci->bt_ver_major, mci->bt_ver_minor); } break; case MCI_STATE_SEND_WLAN_CHANNELS: if (p_data) { if (((mci->wlan_channels[1] & 0xffff0000) == (*(p_data + 1) & 0xffff0000)) && (mci->wlan_channels[2] == *(p_data + 2)) && (mci->wlan_channels[3] == *(p_data + 3))) break; mci->wlan_channels[0] = *p_data++; mci->wlan_channels[1] = *p_data++; mci->wlan_channels[2] = *p_data++; mci->wlan_channels[3] = *p_data++; } mci->wlan_channels_update = true; ar9003_mci_send_coex_wlan_channels(ah, true); break; case MCI_STATE_SEND_VERSION_QUERY: ar9003_mci_send_coex_version_query(ah, true); break; case MCI_STATE_SEND_STATUS_QUERY: query_type = (AR_SREV_9462_10(ah)) ? MCI_GPM_COEX_QUERY_BT_ALL_INFO : MCI_GPM_COEX_QUERY_BT_TOPOLOGY; ar9003_mci_send_coex_bt_status_query(ah, true, query_type); break; case MCI_STATE_NEED_FLUSH_BT_INFO: /* * btcoex_hw.mci.unhalt_bt_gpm means whether it's * needed to send UNHALT message. It's set whenever * there's a request to send HALT message. * mci_halted_bt_gpm means whether HALT message is sent * out successfully. * * Checking (mci_unhalt_bt_gpm == false) instead of * checking (ah->mci_halted_bt_gpm == false) will make * sure currently is in UNHALT-ed mode and BT can * respond to status query. */ value = (!mci->unhalt_bt_gpm && mci->need_flush_btinfo) ? 1 : 0; if (p_data) mci->need_flush_btinfo = (*p_data != 0) ? true : false; break; case MCI_STATE_RECOVER_RX: ath_dbg(common, MCI, "MCI hw RECOVER_RX\n"); ar9003_mci_prep_interface(ah); mci->query_bt = true; mci->need_flush_btinfo = true; ar9003_mci_send_coex_wlan_channels(ah, true); ar9003_mci_2g5g_switch(ah, true); break; case MCI_STATE_NEED_FTP_STOMP: value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP); break; case MCI_STATE_NEED_TUNING: value = !(mci->config & ATH_MCI_CONFIG_DISABLE_TUNING); break; default: break; } return value; } EXPORT_SYMBOL(ar9003_mci_state);