/* * fs/f2fs/checkpoint.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include static struct kmem_cache *ino_entry_slab; static struct kmem_cache *inode_entry_slab; /* * We guarantee no failure on the returned page. */ struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) { struct address_space *mapping = META_MAPPING(sbi); struct page *page = NULL; repeat: page = grab_cache_page(mapping, index); if (!page) { cond_resched(); goto repeat; } f2fs_wait_on_page_writeback(page, META); SetPageUptodate(page); return page; } /* * We guarantee no failure on the returned page. */ struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) { struct address_space *mapping = META_MAPPING(sbi); struct page *page; struct f2fs_io_info fio = { .type = META, .rw = READ_SYNC | REQ_META | REQ_PRIO, .blk_addr = index, }; repeat: page = grab_cache_page(mapping, index); if (!page) { cond_resched(); goto repeat; } if (PageUptodate(page)) goto out; if (f2fs_submit_page_bio(sbi, page, &fio)) goto repeat; lock_page(page); if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } out: return page; } static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { switch (type) { case META_NAT: break; case META_SIT: if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) return false; break; case META_SSA: if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || blkaddr < SM_I(sbi)->ssa_blkaddr)) return false; break; case META_CP: if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || blkaddr < __start_cp_addr(sbi))) return false; break; case META_POR: if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || blkaddr < MAIN_BLKADDR(sbi))) return false; break; default: BUG(); } return true; } /* * Readahead CP/NAT/SIT/SSA pages */ int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) { block_t prev_blk_addr = 0; struct page *page; block_t blkno = start; struct f2fs_io_info fio = { .type = META, .rw = READ_SYNC | REQ_META | REQ_PRIO }; for (; nrpages-- > 0; blkno++) { if (!is_valid_blkaddr(sbi, blkno, type)) goto out; switch (type) { case META_NAT: if (unlikely(blkno >= NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) blkno = 0; /* get nat block addr */ fio.blk_addr = current_nat_addr(sbi, blkno * NAT_ENTRY_PER_BLOCK); break; case META_SIT: /* get sit block addr */ fio.blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK); if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) goto out; prev_blk_addr = fio.blk_addr; break; case META_SSA: case META_CP: case META_POR: fio.blk_addr = blkno; break; default: BUG(); } page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); if (!page) continue; if (PageUptodate(page)) { f2fs_put_page(page, 1); continue; } f2fs_submit_page_mbio(sbi, page, &fio); f2fs_put_page(page, 0); } out: f2fs_submit_merged_bio(sbi, META, READ); return blkno - start; } void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) { struct page *page; bool readahead = false; page = find_get_page(META_MAPPING(sbi), index); if (!page || (page && !PageUptodate(page))) readahead = true; f2fs_put_page(page, 0); if (readahead) ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); } static int f2fs_write_meta_page(struct page *page, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); trace_f2fs_writepage(page, META); if (unlikely(sbi->por_doing)) goto redirty_out; if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) goto redirty_out; if (unlikely(f2fs_cp_error(sbi))) goto redirty_out; f2fs_wait_on_page_writeback(page, META); write_meta_page(sbi, page); dec_page_count(sbi, F2FS_DIRTY_META); unlock_page(page); if (wbc->for_reclaim) f2fs_submit_merged_bio(sbi, META, WRITE); return 0; redirty_out: redirty_page_for_writepage(wbc, page); return AOP_WRITEPAGE_ACTIVATE; } static int f2fs_write_meta_pages(struct address_space *mapping, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); long diff, written; trace_f2fs_writepages(mapping->host, wbc, META); /* collect a number of dirty meta pages and write together */ if (wbc->for_kupdate || get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) goto skip_write; /* if mounting is failed, skip writing node pages */ mutex_lock(&sbi->cp_mutex); diff = nr_pages_to_write(sbi, META, wbc); written = sync_meta_pages(sbi, META, wbc->nr_to_write); mutex_unlock(&sbi->cp_mutex); wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); return 0; skip_write: wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); return 0; } long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, long nr_to_write) { struct address_space *mapping = META_MAPPING(sbi); pgoff_t index = 0, end = LONG_MAX; struct pagevec pvec; long nwritten = 0; struct writeback_control wbc = { .for_reclaim = 0, }; pagevec_init(&pvec, 0); while (index <= end) { int i, nr_pages; nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); if (unlikely(nr_pages == 0)) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; lock_page(page); if (unlikely(page->mapping != mapping)) { continue_unlock: unlock_page(page); continue; } if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (!clear_page_dirty_for_io(page)) goto continue_unlock; if (f2fs_write_meta_page(page, &wbc)) { unlock_page(page); break; } nwritten++; if (unlikely(nwritten >= nr_to_write)) break; } pagevec_release(&pvec); cond_resched(); } if (nwritten) f2fs_submit_merged_bio(sbi, type, WRITE); return nwritten; } static int f2fs_set_meta_page_dirty(struct page *page) { trace_f2fs_set_page_dirty(page, META); SetPageUptodate(page); if (!PageDirty(page)) { __set_page_dirty_nobuffers(page); inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); return 1; } return 0; } const struct address_space_operations f2fs_meta_aops = { .writepage = f2fs_write_meta_page, .writepages = f2fs_write_meta_pages, .set_page_dirty = f2fs_set_meta_page_dirty, }; static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) { struct inode_management *im = &sbi->im[type]; struct ino_entry *e; retry: if (radix_tree_preload(GFP_NOFS)) { cond_resched(); goto retry; } spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); if (!e) { e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); if (!e) { spin_unlock(&im->ino_lock); radix_tree_preload_end(); goto retry; } if (radix_tree_insert(&im->ino_root, ino, e)) { spin_unlock(&im->ino_lock); kmem_cache_free(ino_entry_slab, e); radix_tree_preload_end(); goto retry; } memset(e, 0, sizeof(struct ino_entry)); e->ino = ino; list_add_tail(&e->list, &im->ino_list); if (type != ORPHAN_INO) im->ino_num++; } spin_unlock(&im->ino_lock); radix_tree_preload_end(); } static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) { struct inode_management *im = &sbi->im[type]; struct ino_entry *e; spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); if (e) { list_del(&e->list); radix_tree_delete(&im->ino_root, ino); im->ino_num--; spin_unlock(&im->ino_lock); kmem_cache_free(ino_entry_slab, e); return; } spin_unlock(&im->ino_lock); } void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) { /* add new dirty ino entry into list */ __add_ino_entry(sbi, ino, type); } void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) { /* remove dirty ino entry from list */ __remove_ino_entry(sbi, ino, type); } /* mode should be APPEND_INO or UPDATE_INO */ bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) { struct inode_management *im = &sbi->im[mode]; struct ino_entry *e; spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); spin_unlock(&im->ino_lock); return e ? true : false; } void release_dirty_inode(struct f2fs_sb_info *sbi) { struct ino_entry *e, *tmp; int i; for (i = APPEND_INO; i <= UPDATE_INO; i++) { struct inode_management *im = &sbi->im[i]; spin_lock(&im->ino_lock); list_for_each_entry_safe(e, tmp, &im->ino_list, list) { list_del(&e->list); radix_tree_delete(&im->ino_root, e->ino); kmem_cache_free(ino_entry_slab, e); im->ino_num--; } spin_unlock(&im->ino_lock); } } int acquire_orphan_inode(struct f2fs_sb_info *sbi) { struct inode_management *im = &sbi->im[ORPHAN_INO]; int err = 0; spin_lock(&im->ino_lock); if (unlikely(im->ino_num >= sbi->max_orphans)) err = -ENOSPC; else im->ino_num++; spin_unlock(&im->ino_lock); return err; } void release_orphan_inode(struct f2fs_sb_info *sbi) { struct inode_management *im = &sbi->im[ORPHAN_INO]; spin_lock(&im->ino_lock); f2fs_bug_on(sbi, im->ino_num == 0); im->ino_num--; spin_unlock(&im->ino_lock); } void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { /* add new orphan ino entry into list */ __add_ino_entry(sbi, ino, ORPHAN_INO); } void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { /* remove orphan entry from orphan list */ __remove_ino_entry(sbi, ino, ORPHAN_INO); } static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { struct inode *inode = f2fs_iget(sbi->sb, ino); f2fs_bug_on(sbi, IS_ERR(inode)); clear_nlink(inode); /* truncate all the data during iput */ iput(inode); } void recover_orphan_inodes(struct f2fs_sb_info *sbi) { block_t start_blk, orphan_blkaddr, i, j; if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) return; sbi->por_doing = true; start_blk = __start_cp_addr(sbi) + 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); orphan_blkaddr = __start_sum_addr(sbi) - 1; ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); for (i = 0; i < orphan_blkaddr; i++) { struct page *page = get_meta_page(sbi, start_blk + i); struct f2fs_orphan_block *orphan_blk; orphan_blk = (struct f2fs_orphan_block *)page_address(page); for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { nid_t ino = le32_to_cpu(orphan_blk->ino[j]); recover_orphan_inode(sbi, ino); } f2fs_put_page(page, 1); } /* clear Orphan Flag */ clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); sbi->por_doing = false; return; } static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) { struct list_head *head; struct f2fs_orphan_block *orphan_blk = NULL; unsigned int nentries = 0; unsigned short index; unsigned short orphan_blocks; struct page *page = NULL; struct ino_entry *orphan = NULL; struct inode_management *im = &sbi->im[ORPHAN_INO]; orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); for (index = 0; index < orphan_blocks; index++) grab_meta_page(sbi, start_blk + index); index = 1; spin_lock(&im->ino_lock); head = &im->ino_list; /* loop for each orphan inode entry and write them in Jornal block */ list_for_each_entry(orphan, head, list) { if (!page) { page = find_get_page(META_MAPPING(sbi), start_blk++); f2fs_bug_on(sbi, !page); orphan_blk = (struct f2fs_orphan_block *)page_address(page); memset(orphan_blk, 0, sizeof(*orphan_blk)); f2fs_put_page(page, 0); } orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); if (nentries == F2FS_ORPHANS_PER_BLOCK) { /* * an orphan block is full of 1020 entries, * then we need to flush current orphan blocks * and bring another one in memory */ orphan_blk->blk_addr = cpu_to_le16(index); orphan_blk->blk_count = cpu_to_le16(orphan_blocks); orphan_blk->entry_count = cpu_to_le32(nentries); set_page_dirty(page); f2fs_put_page(page, 1); index++; nentries = 0; page = NULL; } } if (page) { orphan_blk->blk_addr = cpu_to_le16(index); orphan_blk->blk_count = cpu_to_le16(orphan_blocks); orphan_blk->entry_count = cpu_to_le32(nentries); set_page_dirty(page); f2fs_put_page(page, 1); } spin_unlock(&im->ino_lock); } static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version) { struct page *cp_page_1, *cp_page_2 = NULL; unsigned long blk_size = sbi->blocksize; struct f2fs_checkpoint *cp_block; unsigned long long cur_version = 0, pre_version = 0; size_t crc_offset; __u32 crc = 0; /* Read the 1st cp block in this CP pack */ cp_page_1 = get_meta_page(sbi, cp_addr); /* get the version number */ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); crc_offset = le32_to_cpu(cp_block->checksum_offset); if (crc_offset >= blk_size) goto invalid_cp1; crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); if (!f2fs_crc_valid(crc, cp_block, crc_offset)) goto invalid_cp1; pre_version = cur_cp_version(cp_block); /* Read the 2nd cp block in this CP pack */ cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; cp_page_2 = get_meta_page(sbi, cp_addr); cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); crc_offset = le32_to_cpu(cp_block->checksum_offset); if (crc_offset >= blk_size) goto invalid_cp2; crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); if (!f2fs_crc_valid(crc, cp_block, crc_offset)) goto invalid_cp2; cur_version = cur_cp_version(cp_block); if (cur_version == pre_version) { *version = cur_version; f2fs_put_page(cp_page_2, 1); return cp_page_1; } invalid_cp2: f2fs_put_page(cp_page_2, 1); invalid_cp1: f2fs_put_page(cp_page_1, 1); return NULL; } int get_valid_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp_block; struct f2fs_super_block *fsb = sbi->raw_super; struct page *cp1, *cp2, *cur_page; unsigned long blk_size = sbi->blocksize; unsigned long long cp1_version = 0, cp2_version = 0; unsigned long long cp_start_blk_no; unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); block_t cp_blk_no; int i; sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); if (!sbi->ckpt) return -ENOMEM; /* * Finding out valid cp block involves read both * sets( cp pack1 and cp pack 2) */ cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); /* The second checkpoint pack should start at the next segment */ cp_start_blk_no += ((unsigned long long)1) << le32_to_cpu(fsb->log_blocks_per_seg); cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); if (cp1 && cp2) { if (ver_after(cp2_version, cp1_version)) cur_page = cp2; else cur_page = cp1; } else if (cp1) { cur_page = cp1; } else if (cp2) { cur_page = cp2; } else { goto fail_no_cp; } cp_block = (struct f2fs_checkpoint *)page_address(cur_page); memcpy(sbi->ckpt, cp_block, blk_size); if (cp_blks <= 1) goto done; cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); if (cur_page == cp2) cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); for (i = 1; i < cp_blks; i++) { void *sit_bitmap_ptr; unsigned char *ckpt = (unsigned char *)sbi->ckpt; cur_page = get_meta_page(sbi, cp_blk_no + i); sit_bitmap_ptr = page_address(cur_page); memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); f2fs_put_page(cur_page, 1); } done: f2fs_put_page(cp1, 1); f2fs_put_page(cp2, 1); return 0; fail_no_cp: kfree(sbi->ckpt); return -EINVAL; } static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) return -EEXIST; set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); F2FS_I(inode)->dirty_dir = new; list_add_tail(&new->list, &sbi->dir_inode_list); stat_inc_dirty_dir(sbi); return 0; } void update_dirty_page(struct inode *inode, struct page *page) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dir_inode_entry *new; int ret = 0; if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) return; if (!S_ISDIR(inode->i_mode)) { inode_inc_dirty_pages(inode); goto out; } new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); new->inode = inode; INIT_LIST_HEAD(&new->list); spin_lock(&sbi->dir_inode_lock); ret = __add_dirty_inode(inode, new); inode_inc_dirty_pages(inode); spin_unlock(&sbi->dir_inode_lock); if (ret) kmem_cache_free(inode_entry_slab, new); out: SetPagePrivate(page); } void add_dirty_dir_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dir_inode_entry *new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); int ret = 0; new->inode = inode; INIT_LIST_HEAD(&new->list); spin_lock(&sbi->dir_inode_lock); ret = __add_dirty_inode(inode, new); spin_unlock(&sbi->dir_inode_lock); if (ret) kmem_cache_free(inode_entry_slab, new); } void remove_dirty_dir_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dir_inode_entry *entry; if (!S_ISDIR(inode->i_mode)) return; spin_lock(&sbi->dir_inode_lock); if (get_dirty_pages(inode) || !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { spin_unlock(&sbi->dir_inode_lock); return; } entry = F2FS_I(inode)->dirty_dir; list_del(&entry->list); F2FS_I(inode)->dirty_dir = NULL; clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); stat_dec_dirty_dir(sbi); spin_unlock(&sbi->dir_inode_lock); kmem_cache_free(inode_entry_slab, entry); /* Only from the recovery routine */ if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); iput(inode); } } void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) { struct list_head *head; struct dir_inode_entry *entry; struct inode *inode; retry: if (unlikely(f2fs_cp_error(sbi))) return; spin_lock(&sbi->dir_inode_lock); head = &sbi->dir_inode_list; if (list_empty(head)) { spin_unlock(&sbi->dir_inode_lock); return; } entry = list_entry(head->next, struct dir_inode_entry, list); inode = igrab(entry->inode); spin_unlock(&sbi->dir_inode_lock); if (inode) { filemap_fdatawrite(inode->i_mapping); iput(inode); } else { /* * We should submit bio, since it exists several * wribacking dentry pages in the freeing inode. */ f2fs_submit_merged_bio(sbi, DATA, WRITE); } goto retry; } /* * Freeze all the FS-operations for checkpoint. */ static int block_operations(struct f2fs_sb_info *sbi) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; struct blk_plug plug; int err = 0; blk_start_plug(&plug); retry_flush_dents: f2fs_lock_all(sbi); /* write all the dirty dentry pages */ if (get_pages(sbi, F2FS_DIRTY_DENTS)) { f2fs_unlock_all(sbi); sync_dirty_dir_inodes(sbi); if (unlikely(f2fs_cp_error(sbi))) { err = -EIO; goto out; } goto retry_flush_dents; } /* * POR: we should ensure that there are no dirty node pages * until finishing nat/sit flush. */ retry_flush_nodes: down_write(&sbi->node_write); if (get_pages(sbi, F2FS_DIRTY_NODES)) { up_write(&sbi->node_write); sync_node_pages(sbi, 0, &wbc); if (unlikely(f2fs_cp_error(sbi))) { f2fs_unlock_all(sbi); err = -EIO; goto out; } goto retry_flush_nodes; } out: blk_finish_plug(&plug); return err; } static void unblock_operations(struct f2fs_sb_info *sbi) { up_write(&sbi->node_write); f2fs_unlock_all(sbi); } static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) { DEFINE_WAIT(wait); for (;;) { prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); if (!get_pages(sbi, F2FS_WRITEBACK)) break; io_schedule(); } finish_wait(&sbi->cp_wait, &wait); } static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; nid_t last_nid = nm_i->next_scan_nid; block_t start_blk; struct page *cp_page; unsigned int data_sum_blocks, orphan_blocks; __u32 crc32 = 0; void *kaddr; int i; int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); /* * This avoids to conduct wrong roll-forward operations and uses * metapages, so should be called prior to sync_meta_pages below. */ discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); /* Flush all the NAT/SIT pages */ while (get_pages(sbi, F2FS_DIRTY_META)) { sync_meta_pages(sbi, META, LONG_MAX); if (unlikely(f2fs_cp_error(sbi))) return; } next_free_nid(sbi, &last_nid); /* * modify checkpoint * version number is already updated */ ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { ckpt->cur_node_segno[i] = cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); } for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { ckpt->cur_data_segno[i] = cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); } ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); ckpt->next_free_nid = cpu_to_le32(last_nid); /* 2 cp + n data seg summary + orphan inode blocks */ data_sum_blocks = npages_for_summary_flush(sbi, false); if (data_sum_blocks < NR_CURSEG_DATA_TYPE) set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); else clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + orphan_blocks); if (cpc->reason == CP_UMOUNT) { set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ cp_payload_blks + data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); } else { clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + cp_payload_blks + data_sum_blocks + orphan_blocks); } if (orphan_num) set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); else clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); if (sbi->need_fsck) set_ckpt_flags(ckpt, CP_FSCK_FLAG); /* update SIT/NAT bitmap */ get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); *((__le32 *)((unsigned char *)ckpt + le32_to_cpu(ckpt->checksum_offset))) = cpu_to_le32(crc32); start_blk = __start_cp_addr(sbi); /* write out checkpoint buffer at block 0 */ cp_page = grab_meta_page(sbi, start_blk++); kaddr = page_address(cp_page); memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); set_page_dirty(cp_page); f2fs_put_page(cp_page, 1); for (i = 1; i < 1 + cp_payload_blks; i++) { cp_page = grab_meta_page(sbi, start_blk++); kaddr = page_address(cp_page); memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, (1 << sbi->log_blocksize)); set_page_dirty(cp_page); f2fs_put_page(cp_page, 1); } if (orphan_num) { write_orphan_inodes(sbi, start_blk); start_blk += orphan_blocks; } write_data_summaries(sbi, start_blk); start_blk += data_sum_blocks; if (cpc->reason == CP_UMOUNT) { write_node_summaries(sbi, start_blk); start_blk += NR_CURSEG_NODE_TYPE; } /* writeout checkpoint block */ cp_page = grab_meta_page(sbi, start_blk); kaddr = page_address(cp_page); memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); set_page_dirty(cp_page); f2fs_put_page(cp_page, 1); /* wait for previous submitted node/meta pages writeback */ wait_on_all_pages_writeback(sbi); if (unlikely(f2fs_cp_error(sbi))) return; filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); /* update user_block_counts */ sbi->last_valid_block_count = sbi->total_valid_block_count; sbi->alloc_valid_block_count = 0; /* Here, we only have one bio having CP pack */ sync_meta_pages(sbi, META_FLUSH, LONG_MAX); /* wait for previous submitted meta pages writeback */ wait_on_all_pages_writeback(sbi); release_dirty_inode(sbi); if (unlikely(f2fs_cp_error(sbi))) return; clear_prefree_segments(sbi); F2FS_RESET_SB_DIRT(sbi); } /* * We guarantee that this checkpoint procedure will not fail. */ void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned long long ckpt_ver; trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); mutex_lock(&sbi->cp_mutex); if (!sbi->s_dirty && cpc->reason != CP_DISCARD) goto out; if (unlikely(f2fs_cp_error(sbi))) goto out; if (block_operations(sbi)) goto out; trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); f2fs_submit_merged_bio(sbi, DATA, WRITE); f2fs_submit_merged_bio(sbi, NODE, WRITE); f2fs_submit_merged_bio(sbi, META, WRITE); /* * update checkpoint pack index * Increase the version number so that * SIT entries and seg summaries are written at correct place */ ckpt_ver = cur_cp_version(ckpt); ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); /* write cached NAT/SIT entries to NAT/SIT area */ flush_nat_entries(sbi); flush_sit_entries(sbi, cpc); /* unlock all the fs_lock[] in do_checkpoint() */ do_checkpoint(sbi, cpc); unblock_operations(sbi); stat_inc_cp_count(sbi->stat_info); out: mutex_unlock(&sbi->cp_mutex); trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); } void init_ino_entry_info(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < MAX_INO_ENTRY; i++) { struct inode_management *im = &sbi->im[i]; INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); spin_lock_init(&im->ino_lock); INIT_LIST_HEAD(&im->ino_list); im->ino_num = 0; } /* * considering 512 blocks in a segment 8 blocks are needed for cp * and log segment summaries. Remaining blocks are used to keep * orphan entries with the limitation one reserved segment * for cp pack we can have max 1020*504 orphan entries */ sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK; } int __init create_checkpoint_caches(void) { ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", sizeof(struct ino_entry)); if (!ino_entry_slab) return -ENOMEM; inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", sizeof(struct dir_inode_entry)); if (!inode_entry_slab) { kmem_cache_destroy(ino_entry_slab); return -ENOMEM; } return 0; } void destroy_checkpoint_caches(void) { kmem_cache_destroy(ino_entry_slab); kmem_cache_destroy(inode_entry_slab); }