/* * Copyright (c) 2004-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "cfg80211.h" #include "debug.h" #define RATETAB_ENT(_rate, _rateid, _flags) { \ .bitrate = (_rate), \ .flags = (_flags), \ .hw_value = (_rateid), \ } #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .hw_value = (_channel), \ .center_freq = 5000 + (5 * (_channel)), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static struct ieee80211_rate ath6kl_rates[] = { RATETAB_ENT(10, 0x1, 0), RATETAB_ENT(20, 0x2, 0), RATETAB_ENT(55, 0x4, 0), RATETAB_ENT(110, 0x8, 0), RATETAB_ENT(60, 0x10, 0), RATETAB_ENT(90, 0x20, 0), RATETAB_ENT(120, 0x40, 0), RATETAB_ENT(180, 0x80, 0), RATETAB_ENT(240, 0x100, 0), RATETAB_ENT(360, 0x200, 0), RATETAB_ENT(480, 0x400, 0), RATETAB_ENT(540, 0x800, 0), }; #define ath6kl_a_rates (ath6kl_rates + 4) #define ath6kl_a_rates_size 8 #define ath6kl_g_rates (ath6kl_rates + 0) #define ath6kl_g_rates_size 12 static struct ieee80211_channel ath6kl_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static struct ieee80211_channel ath6kl_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0), }; static struct ieee80211_supported_band ath6kl_band_2ghz = { .n_channels = ARRAY_SIZE(ath6kl_2ghz_channels), .channels = ath6kl_2ghz_channels, .n_bitrates = ath6kl_g_rates_size, .bitrates = ath6kl_g_rates, }; static struct ieee80211_supported_band ath6kl_band_5ghz = { .n_channels = ARRAY_SIZE(ath6kl_5ghz_a_channels), .channels = ath6kl_5ghz_a_channels, .n_bitrates = ath6kl_a_rates_size, .bitrates = ath6kl_a_rates, }; static int ath6kl_set_wpa_version(struct ath6kl *ar, enum nl80211_wpa_versions wpa_version) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: %u\n", __func__, wpa_version); if (!wpa_version) { ar->auth_mode = NONE_AUTH; } else if (wpa_version & NL80211_WPA_VERSION_2) { ar->auth_mode = WPA2_AUTH; } else if (wpa_version & NL80211_WPA_VERSION_1) { ar->auth_mode = WPA_AUTH; } else { ath6kl_err("%s: %u not supported\n", __func__, wpa_version); return -ENOTSUPP; } return 0; } static int ath6kl_set_auth_type(struct ath6kl *ar, enum nl80211_auth_type auth_type) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, auth_type); switch (auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: ar->dot11_auth_mode = OPEN_AUTH; break; case NL80211_AUTHTYPE_SHARED_KEY: ar->dot11_auth_mode = SHARED_AUTH; break; case NL80211_AUTHTYPE_NETWORK_EAP: ar->dot11_auth_mode = LEAP_AUTH; break; case NL80211_AUTHTYPE_AUTOMATIC: ar->dot11_auth_mode = OPEN_AUTH; ar->auto_auth_stage = AUTH_OPEN_IN_PROGRESS; break; default: ath6kl_err("%s: 0x%x not spported\n", __func__, auth_type); return -ENOTSUPP; } return 0; } static int ath6kl_set_cipher(struct ath6kl *ar, u32 cipher, bool ucast) { u8 *ar_cipher = ucast ? &ar->prwise_crypto : &ar->grp_crypto; u8 *ar_cipher_len = ucast ? &ar->prwise_crypto_len : &ar->grp_crpto_len; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: cipher 0x%x, ucast %u\n", __func__, cipher, ucast); switch (cipher) { case 0: /* our own hack to use value 0 as no crypto used */ *ar_cipher = NONE_CRYPT; *ar_cipher_len = 0; break; case WLAN_CIPHER_SUITE_WEP40: *ar_cipher = WEP_CRYPT; *ar_cipher_len = 5; break; case WLAN_CIPHER_SUITE_WEP104: *ar_cipher = WEP_CRYPT; *ar_cipher_len = 13; break; case WLAN_CIPHER_SUITE_TKIP: *ar_cipher = TKIP_CRYPT; *ar_cipher_len = 0; break; case WLAN_CIPHER_SUITE_CCMP: *ar_cipher = AES_CRYPT; *ar_cipher_len = 0; break; default: ath6kl_err("cipher 0x%x not supported\n", cipher); return -ENOTSUPP; } return 0; } static void ath6kl_set_key_mgmt(struct ath6kl *ar, u32 key_mgmt) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, key_mgmt); if (key_mgmt == WLAN_AKM_SUITE_PSK) { if (ar->auth_mode == WPA_AUTH) ar->auth_mode = WPA_PSK_AUTH; else if (ar->auth_mode == WPA2_AUTH) ar->auth_mode = WPA2_PSK_AUTH; } else if (key_mgmt != WLAN_AKM_SUITE_8021X) { ar->auth_mode = NONE_AUTH; } } static bool ath6kl_cfg80211_ready(struct ath6kl *ar) { if (!test_bit(WMI_READY, &ar->flag)) { ath6kl_err("wmi is not ready\n"); return false; } if (!test_bit(WLAN_ENABLED, &ar->flag)) { ath6kl_err("wlan disabled\n"); return false; } return true; } static int ath6kl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct ath6kl *ar = ath6kl_priv(dev); int status; ar->sme_state = SME_CONNECTING; if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) { ath6kl_err("destroy in progress\n"); return -EBUSY; } if (test_bit(SKIP_SCAN, &ar->flag) && ((sme->channel && sme->channel->center_freq == 0) || (sme->bssid && is_zero_ether_addr(sme->bssid)))) { ath6kl_err("SkipScan: channel or bssid invalid\n"); return -EINVAL; } if (down_interruptible(&ar->sem)) { ath6kl_err("busy, couldn't get access\n"); return -ERESTARTSYS; } if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) { ath6kl_err("busy, destroy in progress\n"); up(&ar->sem); return -EBUSY; } if (ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)]) { /* * sleep until the command queue drains */ wait_event_interruptible_timeout(ar->event_wq, ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)] == 0, WMI_TIMEOUT); if (signal_pending(current)) { ath6kl_err("cmd queue drain timeout\n"); up(&ar->sem); return -EINTR; } } if (test_bit(CONNECTED, &ar->flag) && ar->ssid_len == sme->ssid_len && !memcmp(ar->ssid, sme->ssid, ar->ssid_len)) { ar->reconnect_flag = true; status = ath6kl_wmi_reconnect_cmd(ar->wmi, ar->req_bssid, ar->ch_hint); up(&ar->sem); if (status) { ath6kl_err("wmi_reconnect_cmd failed\n"); return -EIO; } return 0; } else if (ar->ssid_len == sme->ssid_len && !memcmp(ar->ssid, sme->ssid, ar->ssid_len)) { ath6kl_disconnect(ar); } memset(ar->ssid, 0, sizeof(ar->ssid)); ar->ssid_len = sme->ssid_len; memcpy(ar->ssid, sme->ssid, sme->ssid_len); if (sme->channel) ar->ch_hint = sme->channel->center_freq; memset(ar->req_bssid, 0, sizeof(ar->req_bssid)); if (sme->bssid && !is_broadcast_ether_addr(sme->bssid)) memcpy(ar->req_bssid, sme->bssid, sizeof(ar->req_bssid)); ath6kl_set_wpa_version(ar, sme->crypto.wpa_versions); status = ath6kl_set_auth_type(ar, sme->auth_type); if (status) { up(&ar->sem); return status; } if (sme->crypto.n_ciphers_pairwise) ath6kl_set_cipher(ar, sme->crypto.ciphers_pairwise[0], true); else ath6kl_set_cipher(ar, 0, true); ath6kl_set_cipher(ar, sme->crypto.cipher_group, false); if (sme->crypto.n_akm_suites) ath6kl_set_key_mgmt(ar, sme->crypto.akm_suites[0]); if ((sme->key_len) && (ar->auth_mode == NONE_AUTH) && (ar->prwise_crypto == WEP_CRYPT)) { struct ath6kl_key *key = NULL; if (sme->key_idx < WMI_MIN_KEY_INDEX || sme->key_idx > WMI_MAX_KEY_INDEX) { ath6kl_err("key index %d out of bounds\n", sme->key_idx); up(&ar->sem); return -ENOENT; } key = &ar->keys[sme->key_idx]; key->key_len = sme->key_len; memcpy(key->key, sme->key, key->key_len); key->cipher = ar->prwise_crypto; ar->def_txkey_index = sme->key_idx; ath6kl_wmi_addkey_cmd(ar->wmi, sme->key_idx, ar->prwise_crypto, GROUP_USAGE | TX_USAGE, key->key_len, NULL, key->key, KEY_OP_INIT_VAL, NULL, NO_SYNC_WMIFLAG); } if (!ar->usr_bss_filter) { if (ath6kl_wmi_bssfilter_cmd(ar->wmi, ALL_BSS_FILTER, 0) != 0) { ath6kl_err("couldn't set bss filtering\n"); up(&ar->sem); return -EIO; } } ar->nw_type = ar->next_mode; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: connect called with authmode %d dot11 auth %d" " PW crypto %d PW crypto len %d GRP crypto %d" " GRP crypto len %d channel hint %u\n", __func__, ar->auth_mode, ar->dot11_auth_mode, ar->prwise_crypto, ar->prwise_crypto_len, ar->grp_crypto, ar->grp_crpto_len, ar->ch_hint); ar->reconnect_flag = 0; status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type, ar->dot11_auth_mode, ar->auth_mode, ar->prwise_crypto, ar->prwise_crypto_len, ar->grp_crypto, ar->grp_crpto_len, ar->ssid_len, ar->ssid, ar->req_bssid, ar->ch_hint, ar->connect_ctrl_flags); up(&ar->sem); if (status == -EINVAL) { memset(ar->ssid, 0, sizeof(ar->ssid)); ar->ssid_len = 0; ath6kl_err("invalid request\n"); return -ENOENT; } else if (status) { ath6kl_err("ath6kl_wmi_connect_cmd failed\n"); return -EIO; } if ((!(ar->connect_ctrl_flags & CONNECT_DO_WPA_OFFLOAD)) && ((ar->auth_mode == WPA_PSK_AUTH) || (ar->auth_mode == WPA2_PSK_AUTH))) { mod_timer(&ar->disconnect_timer, jiffies + msecs_to_jiffies(DISCON_TIMER_INTVAL)); } ar->connect_ctrl_flags &= ~CONNECT_DO_WPA_OFFLOAD; set_bit(CONNECT_PEND, &ar->flag); return 0; } void ath6kl_cfg80211_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid, u16 listen_intvl, u16 beacon_intvl, enum network_type nw_type, u8 beacon_ie_len, u8 assoc_req_len, u8 assoc_resp_len, u8 *assoc_info) { u16 size = 0; u16 capability = 0; struct cfg80211_bss *bss = NULL; struct ieee80211_mgmt *mgmt = NULL; struct ieee80211_channel *ibss_ch = NULL; s32 signal = 50 * 100; u8 ie_buf_len = 0; unsigned char ie_buf[256]; unsigned char *ptr_ie_buf = ie_buf; unsigned char *ieeemgmtbuf = NULL; u8 source_mac[ETH_ALEN]; /* capinfo + listen interval */ u8 assoc_req_ie_offset = sizeof(u16) + sizeof(u16); /* capinfo + status code + associd */ u8 assoc_resp_ie_offset = sizeof(u16) + sizeof(u16) + sizeof(u16); u8 *assoc_req_ie = assoc_info + beacon_ie_len + assoc_req_ie_offset; u8 *assoc_resp_ie = assoc_info + beacon_ie_len + assoc_req_len + assoc_resp_ie_offset; assoc_req_len -= assoc_req_ie_offset; assoc_resp_len -= assoc_resp_ie_offset; ar->auto_auth_stage = AUTH_IDLE; if (nw_type & ADHOC_NETWORK) { if (ar->wdev->iftype != NL80211_IFTYPE_ADHOC) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: ath6k not in ibss mode\n", __func__); return; } } if (nw_type & INFRA_NETWORK) { if (ar->wdev->iftype != NL80211_IFTYPE_STATION) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: ath6k not in station mode\n", __func__); return; } } /* * Earlier we were updating the cfg about bss by making a beacon frame * only if the entry for bss is not there. This can have some issue if * ROAM event is generated and a heavy traffic is ongoing. The ROAM * event is handled through a work queue and by the time it really gets * handled, BSS would have been aged out. So it is better to update the * cfg about BSS irrespective of its entry being present right now or * not. */ if (nw_type & ADHOC_NETWORK) { /* construct 802.11 mgmt beacon */ if (ptr_ie_buf) { *ptr_ie_buf++ = WLAN_EID_SSID; *ptr_ie_buf++ = ar->ssid_len; memcpy(ptr_ie_buf, ar->ssid, ar->ssid_len); ptr_ie_buf += ar->ssid_len; *ptr_ie_buf++ = WLAN_EID_IBSS_PARAMS; *ptr_ie_buf++ = 2; /* length */ *ptr_ie_buf++ = 0; /* ATIM window */ *ptr_ie_buf++ = 0; /* ATIM window */ /* TODO: update ibss params and include supported rates, * DS param set, extened support rates, wmm. */ ie_buf_len = ptr_ie_buf - ie_buf; } capability |= WLAN_CAPABILITY_IBSS; if (ar->prwise_crypto == WEP_CRYPT) capability |= WLAN_CAPABILITY_PRIVACY; memcpy(source_mac, ar->net_dev->dev_addr, ETH_ALEN); ptr_ie_buf = ie_buf; } else { capability = *(u16 *) (&assoc_info[beacon_ie_len]); memcpy(source_mac, bssid, ETH_ALEN); ptr_ie_buf = assoc_req_ie; ie_buf_len = assoc_req_len; } size = offsetof(struct ieee80211_mgmt, u) + sizeof(mgmt->u.beacon) + ie_buf_len; ieeemgmtbuf = kzalloc(size, GFP_ATOMIC); if (!ieeemgmtbuf) { ath6kl_err("ieee mgmt buf alloc error\n"); return; } mgmt = (struct ieee80211_mgmt *)ieeemgmtbuf; mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); memset(mgmt->da, 0xff, ETH_ALEN); /* broadcast addr */ memcpy(mgmt->sa, source_mac, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); mgmt->u.beacon.beacon_int = cpu_to_le16(beacon_intvl); mgmt->u.beacon.capab_info = cpu_to_le16(capability); memcpy(mgmt->u.beacon.variable, ptr_ie_buf, ie_buf_len); ibss_ch = ieee80211_get_channel(ar->wdev->wiphy, (int)channel); ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: inform bss with bssid %pM channel %d beacon_intvl %d capability 0x%x\n", __func__, mgmt->bssid, ibss_ch->hw_value, beacon_intvl, capability); bss = cfg80211_inform_bss_frame(ar->wdev->wiphy, ibss_ch, mgmt, size, signal, GFP_KERNEL); kfree(ieeemgmtbuf); cfg80211_put_bss(bss); if (nw_type & ADHOC_NETWORK) { cfg80211_ibss_joined(ar->net_dev, bssid, GFP_KERNEL); return; } if (ar->sme_state == SME_CONNECTING) { /* inform connect result to cfg80211 */ ar->sme_state = SME_CONNECTED; cfg80211_connect_result(ar->net_dev, bssid, assoc_req_ie, assoc_req_len, assoc_resp_ie, assoc_resp_len, WLAN_STATUS_SUCCESS, GFP_KERNEL); } else if (ar->sme_state == SME_CONNECTED) { /* inform roam event to cfg80211 */ cfg80211_roamed(ar->net_dev, ibss_ch, bssid, assoc_req_ie, assoc_req_len, assoc_resp_ie, assoc_resp_len, GFP_KERNEL); } } static int ath6kl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(dev); ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: reason=%u\n", __func__, reason_code); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) { ath6kl_err("busy, destroy in progress\n"); return -EBUSY; } if (down_interruptible(&ar->sem)) { ath6kl_err("busy, couldn't get access\n"); return -ERESTARTSYS; } ar->reconnect_flag = 0; ath6kl_disconnect(ar); memset(ar->ssid, 0, sizeof(ar->ssid)); ar->ssid_len = 0; if (!test_bit(SKIP_SCAN, &ar->flag)) memset(ar->req_bssid, 0, sizeof(ar->req_bssid)); up(&ar->sem); return 0; } void ath6kl_cfg80211_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid, u8 assoc_resp_len, u8 *assoc_info, u16 proto_reason) { struct ath6kl_key *key = NULL; u16 status; if (ar->scan_req) { cfg80211_scan_done(ar->scan_req, true); ar->scan_req = NULL; } if (ar->nw_type & ADHOC_NETWORK) { if (ar->wdev->iftype != NL80211_IFTYPE_ADHOC) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: ath6k not in ibss mode\n", __func__); return; } memset(bssid, 0, ETH_ALEN); cfg80211_ibss_joined(ar->net_dev, bssid, GFP_KERNEL); return; } if (ar->nw_type & INFRA_NETWORK) { if (ar->wdev->iftype != NL80211_IFTYPE_STATION) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: ath6k not in station mode\n", __func__); return; } } if (!test_bit(CONNECT_PEND, &ar->flag)) { if (reason != DISCONNECT_CMD) ath6kl_wmi_disconnect_cmd(ar->wmi); return; } if (reason == NO_NETWORK_AVAIL) { /* connect cmd failed */ ath6kl_wmi_disconnect_cmd(ar->wmi); return; } if (reason != DISCONNECT_CMD) return; if (!ar->auto_auth_stage) { clear_bit(CONNECT_PEND, &ar->flag); if (ar->sme_state == SME_CONNECTING) { cfg80211_connect_result(ar->net_dev, bssid, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); } else if (ar->sme_state == SME_CONNECTED) { cfg80211_disconnected(ar->net_dev, reason, NULL, 0, GFP_KERNEL); } ar->sme_state = SME_DISCONNECTED; return; } if (ar->dot11_auth_mode != OPEN_AUTH) return; /* * If the current auth algorithm is open, try shared and * make autoAuthStage idle. We do not make it leap for now * being. */ key = &ar->keys[ar->def_txkey_index]; if (down_interruptible(&ar->sem)) { ath6kl_err("busy, couldn't get access\n"); return; } ar->dot11_auth_mode = SHARED_AUTH; ar->auto_auth_stage = AUTH_IDLE; ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index, ar->prwise_crypto, GROUP_USAGE | TX_USAGE, key->key_len, NULL, key->key, KEY_OP_INIT_VAL, NULL, NO_SYNC_WMIFLAG); status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type, ar->dot11_auth_mode, ar->auth_mode, ar->prwise_crypto, ar->prwise_crypto_len, ar->grp_crypto, ar->grp_crpto_len, ar->ssid_len, ar->ssid, ar->req_bssid, ar->ch_hint, ar->connect_ctrl_flags); up(&ar->sem); } static inline bool is_ch_11a(u16 ch) { return (!((ch >= 2412) && (ch <= 2484))); } /* struct ath6kl_node_table::nt_nodelock is locked when calling this */ void ath6kl_cfg80211_scan_node(struct wiphy *wiphy, struct bss *ni) { struct ieee80211_mgmt *mgmt; struct ieee80211_channel *channel; struct ieee80211_supported_band *band; struct ath6kl_common_ie *cie; s32 signal; int freq; cie = &ni->ni_cie; if (is_ch_11a(cie->ie_chan)) band = wiphy->bands[IEEE80211_BAND_5GHZ]; /* 11a */ else if ((cie->ie_erp) || (cie->ie_xrates)) band = wiphy->bands[IEEE80211_BAND_2GHZ]; /* 11g */ else band = wiphy->bands[IEEE80211_BAND_2GHZ]; /* 11b */ freq = cie->ie_chan; channel = ieee80211_get_channel(wiphy, freq); signal = ni->ni_snr * 100; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: bssid %pM ch %d freq %d size %d\n", __func__, ni->ni_macaddr, channel->hw_value, freq, ni->ni_framelen); /* * Both Beacon and Probe Response frames have same payload structure, * so it is fine to share the parser for both. */ if (ni->ni_framelen < 8 + 2 + 2) return; mgmt = (struct ieee80211_mgmt *) (ni->ni_buf - offsetof(struct ieee80211_mgmt, u)); cfg80211_inform_bss(wiphy, channel, ni->ni_macaddr, le64_to_cpu(mgmt->u.beacon.timestamp), le16_to_cpu(mgmt->u.beacon.capab_info), le16_to_cpu(mgmt->u.beacon.beacon_int), mgmt->u.beacon.variable, ni->ni_buf + ni->ni_framelen - mgmt->u.beacon.variable, signal, GFP_ATOMIC); } static int ath6kl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev); int ret = 0; if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (!ar->usr_bss_filter) { if (ath6kl_wmi_bssfilter_cmd(ar->wmi, (test_bit(CONNECTED, &ar->flag) ? ALL_BUT_BSS_FILTER : ALL_BSS_FILTER), 0) != 0) { ath6kl_err("couldn't set bss filtering\n"); return -EIO; } } if (request->n_ssids && request->ssids[0].ssid_len) { u8 i; if (request->n_ssids > (MAX_PROBED_SSID_INDEX - 1)) request->n_ssids = MAX_PROBED_SSID_INDEX - 1; for (i = 0; i < request->n_ssids; i++) ath6kl_wmi_probedssid_cmd(ar->wmi, i + 1, SPECIFIC_SSID_FLAG, request->ssids[i].ssid_len, request->ssids[i].ssid); } if (ath6kl_wmi_startscan_cmd(ar->wmi, WMI_LONG_SCAN, 0, false, 0, 0, 0, NULL) != 0) { ath6kl_err("wmi_startscan_cmd failed\n"); ret = -EIO; } ar->scan_req = request; return ret; } void ath6kl_cfg80211_scan_complete_event(struct ath6kl *ar, int status) { int i; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: status %d\n", __func__, status); if (!ar->scan_req) return; if ((status == -ECANCELED) || (status == -EBUSY)) { cfg80211_scan_done(ar->scan_req, true); goto out; } /* Translate data to cfg80211 mgmt format */ wlan_iterate_nodes(&ar->scan_table, ar->wdev->wiphy); cfg80211_scan_done(ar->scan_req, false); if (ar->scan_req->n_ssids && ar->scan_req->ssids[0].ssid_len) { for (i = 0; i < ar->scan_req->n_ssids; i++) { ath6kl_wmi_probedssid_cmd(ar->wmi, i + 1, DISABLE_SSID_FLAG, 0, NULL); } } out: ar->scan_req = NULL; } static int ath6kl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev); struct ath6kl_key *key = NULL; u8 key_usage; u8 key_type; int status = 0; if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: key index %d out of bounds\n", __func__, key_index); return -ENOENT; } key = &ar->keys[key_index]; memset(key, 0, sizeof(struct ath6kl_key)); if (pairwise) key_usage = PAIRWISE_USAGE; else key_usage = GROUP_USAGE; if (params) { if (params->key_len > WLAN_MAX_KEY_LEN || params->seq_len > sizeof(key->seq)) return -EINVAL; key->key_len = params->key_len; memcpy(key->key, params->key, key->key_len); key->seq_len = params->seq_len; memcpy(key->seq, params->seq, key->seq_len); key->cipher = params->cipher; } switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: key_type = WEP_CRYPT; break; case WLAN_CIPHER_SUITE_TKIP: key_type = TKIP_CRYPT; break; case WLAN_CIPHER_SUITE_CCMP: key_type = AES_CRYPT; break; default: return -ENOTSUPP; } if (((ar->auth_mode == WPA_PSK_AUTH) || (ar->auth_mode == WPA2_PSK_AUTH)) && (key_usage & GROUP_USAGE)) del_timer(&ar->disconnect_timer); ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d, key_len %d, key_type 0x%x, key_usage 0x%x, seq_len %d\n", __func__, key_index, key->key_len, key_type, key_usage, key->seq_len); ar->def_txkey_index = key_index; status = ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index, key_type, key_usage, key->key_len, key->seq, key->key, KEY_OP_INIT_VAL, (u8 *) mac_addr, SYNC_BOTH_WMIFLAG); if (status) return -EIO; return 0; } static int ath6kl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool pairwise, const u8 *mac_addr) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev); ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: key index %d out of bounds\n", __func__, key_index); return -ENOENT; } if (!ar->keys[key_index].key_len) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d is empty\n", __func__, key_index); return 0; } ar->keys[key_index].key_len = 0; return ath6kl_wmi_deletekey_cmd(ar->wmi, key_index); } static int ath6kl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params *)) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev); struct ath6kl_key *key = NULL; struct key_params params; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: key index %d out of bounds\n", __func__, key_index); return -ENOENT; } key = &ar->keys[key_index]; memset(¶ms, 0, sizeof(params)); params.cipher = key->cipher; params.key_len = key->key_len; params.seq_len = key->seq_len; params.seq = key->seq; params.key = key->key; callback(cookie, ¶ms); return key->key_len ? 0 : -ENOENT; } static int ath6kl_cfg80211_set_default_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool unicast, bool multicast) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev); struct ath6kl_key *key = NULL; int status = 0; u8 key_usage; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: key index %d out of bounds\n", __func__, key_index); return -ENOENT; } if (!ar->keys[key_index].key_len) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: invalid key index %d\n", __func__, key_index); return -EINVAL; } ar->def_txkey_index = key_index; key = &ar->keys[ar->def_txkey_index]; key_usage = GROUP_USAGE; if (ar->prwise_crypto == WEP_CRYPT) key_usage |= TX_USAGE; status = ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index, ar->prwise_crypto, key_usage, key->key_len, key->seq, key->key, KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG); if (status) return -EIO; return 0; } void ath6kl_cfg80211_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: keyid %d, ismcast %d\n", __func__, keyid, ismcast); cfg80211_michael_mic_failure(ar->net_dev, ar->bssid, (ismcast ? NL80211_KEYTYPE_GROUP : NL80211_KEYTYPE_PAIRWISE), keyid, NULL, GFP_KERNEL); } static int ath6kl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy); int ret; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: changed 0x%x\n", __func__, changed); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (changed & WIPHY_PARAM_RTS_THRESHOLD) { ret = ath6kl_wmi_set_rts_cmd(ar->wmi, wiphy->rts_threshold); if (ret != 0) { ath6kl_err("ath6kl_wmi_set_rts_cmd failed\n"); return -EIO; } } return 0; } /* * The type nl80211_tx_power_setting replaces the following * data type from 2.6.36 onwards */ static int ath6kl_cfg80211_set_txpower(struct wiphy *wiphy, enum nl80211_tx_power_setting type, int dbm) { struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy); u8 ath6kl_dbm; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x, dbm %d\n", __func__, type, dbm); if (!ath6kl_cfg80211_ready(ar)) return -EIO; switch (type) { case NL80211_TX_POWER_AUTOMATIC: return 0; case NL80211_TX_POWER_LIMITED: ar->tx_pwr = ath6kl_dbm = dbm; break; default: ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x not supported\n", __func__, type); return -EOPNOTSUPP; } ath6kl_wmi_set_tx_pwr_cmd(ar->wmi, ath6kl_dbm); return 0; } static int ath6kl_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm) { struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (test_bit(CONNECTED, &ar->flag)) { ar->tx_pwr = 0; if (ath6kl_wmi_get_tx_pwr_cmd(ar->wmi) != 0) { ath6kl_err("ath6kl_wmi_get_tx_pwr_cmd failed\n"); return -EIO; } wait_event_interruptible_timeout(ar->event_wq, ar->tx_pwr != 0, 5 * HZ); if (signal_pending(current)) { ath6kl_err("target did not respond\n"); return -EINTR; } } *dbm = ar->tx_pwr; return 0; } static int ath6kl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool pmgmt, int timeout) { struct ath6kl *ar = ath6kl_priv(dev); struct wmi_power_mode_cmd mode; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: pmgmt %d, timeout %d\n", __func__, pmgmt, timeout); if (!ath6kl_cfg80211_ready(ar)) return -EIO; if (pmgmt) { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: max perf\n", __func__); mode.pwr_mode = REC_POWER; } else { ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: rec power\n", __func__); mode.pwr_mode = MAX_PERF_POWER; } if (ath6kl_wmi_powermode_cmd(ar->wmi, mode.pwr_mode) != 0) { ath6kl_err("wmi_powermode_cmd failed\n"); return -EIO; } return 0; } static int ath6kl_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct ath6kl *ar = ath6kl_priv(ndev); struct wireless_dev *wdev = ar->wdev; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type %u\n", __func__, type); if (!ath6kl_cfg80211_ready(ar)) return -EIO; switch (type) { case NL80211_IFTYPE_STATION: ar->next_mode = INFRA_NETWORK; break; case NL80211_IFTYPE_ADHOC: ar->next_mode = ADHOC_NETWORK; break; default: ath6kl_err("invalid interface type %u\n", type); return -EOPNOTSUPP; } wdev->iftype = type; return 0; } static int ath6kl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *ibss_param) { struct ath6kl *ar = ath6kl_priv(dev); int status; if (!ath6kl_cfg80211_ready(ar)) return -EIO; ar->ssid_len = ibss_param->ssid_len; memcpy(ar->ssid, ibss_param->ssid, ar->ssid_len); if (ibss_param->channel) ar->ch_hint = ibss_param->channel->center_freq; if (ibss_param->channel_fixed) { /* * TODO: channel_fixed: The channel should be fixed, do not * search for IBSSs to join on other channels. Target * firmware does not support this feature, needs to be * updated. */ return -EOPNOTSUPP; } memset(ar->req_bssid, 0, sizeof(ar->req_bssid)); if (ibss_param->bssid && !is_broadcast_ether_addr(ibss_param->bssid)) memcpy(ar->req_bssid, ibss_param->bssid, sizeof(ar->req_bssid)); ath6kl_set_wpa_version(ar, 0); status = ath6kl_set_auth_type(ar, NL80211_AUTHTYPE_OPEN_SYSTEM); if (status) return status; if (ibss_param->privacy) { ath6kl_set_cipher(ar, WLAN_CIPHER_SUITE_WEP40, true); ath6kl_set_cipher(ar, WLAN_CIPHER_SUITE_WEP40, false); } else { ath6kl_set_cipher(ar, 0, true); ath6kl_set_cipher(ar, 0, false); } ar->nw_type = ar->next_mode; ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: connect called with authmode %d dot11 auth %d" " PW crypto %d PW crypto len %d GRP crypto %d" " GRP crypto len %d channel hint %u\n", __func__, ar->auth_mode, ar->dot11_auth_mode, ar->prwise_crypto, ar->prwise_crypto_len, ar->grp_crypto, ar->grp_crpto_len, ar->ch_hint); status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type, ar->dot11_auth_mode, ar->auth_mode, ar->prwise_crypto, ar->prwise_crypto_len, ar->grp_crypto, ar->grp_crpto_len, ar->ssid_len, ar->ssid, ar->req_bssid, ar->ch_hint, ar->connect_ctrl_flags); set_bit(CONNECT_PEND, &ar->flag); return 0; } static int ath6kl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(dev); if (!ath6kl_cfg80211_ready(ar)) return -EIO; ath6kl_disconnect(ar); memset(ar->ssid, 0, sizeof(ar->ssid)); ar->ssid_len = 0; return 0; } static const u32 cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, }; static bool is_rate_legacy(s32 rate) { static const s32 legacy[] = { 1000, 2000, 5500, 11000, 6000, 9000, 12000, 18000, 24000, 36000, 48000, 54000 }; u8 i; for (i = 0; i < ARRAY_SIZE(legacy); i++) if (rate == legacy[i]) return true; return false; } static bool is_rate_ht20(s32 rate, u8 *mcs, bool *sgi) { static const s32 ht20[] = { 6500, 13000, 19500, 26000, 39000, 52000, 58500, 65000, 72200 }; u8 i; for (i = 0; i < ARRAY_SIZE(ht20); i++) { if (rate == ht20[i]) { if (i == ARRAY_SIZE(ht20) - 1) /* last rate uses sgi */ *sgi = true; else *sgi = false; *mcs = i; return true; } } return false; } static bool is_rate_ht40(s32 rate, u8 *mcs, bool *sgi) { static const s32 ht40[] = { 13500, 27000, 40500, 54000, 81000, 108000, 121500, 135000, 150000 }; u8 i; for (i = 0; i < ARRAY_SIZE(ht40); i++) { if (rate == ht40[i]) { if (i == ARRAY_SIZE(ht40) - 1) /* last rate uses sgi */ *sgi = true; else *sgi = false; *mcs = i; return true; } } return false; } static int ath6kl_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo) { struct ath6kl *ar = ath6kl_priv(dev); long left; bool sgi; s32 rate; int ret; u8 mcs; if (memcmp(mac, ar->bssid, ETH_ALEN) != 0) return -ENOENT; if (down_interruptible(&ar->sem)) return -EBUSY; set_bit(STATS_UPDATE_PEND, &ar->flag); ret = ath6kl_wmi_get_stats_cmd(ar->wmi); if (ret != 0) { up(&ar->sem); return -EIO; } left = wait_event_interruptible_timeout(ar->event_wq, !test_bit(STATS_UPDATE_PEND, &ar->flag), WMI_TIMEOUT); up(&ar->sem); if (left == 0) return -ETIMEDOUT; else if (left < 0) return left; if (ar->target_stats.rx_byte) { sinfo->rx_bytes = ar->target_stats.rx_byte; sinfo->filled |= STATION_INFO_RX_BYTES; sinfo->rx_packets = ar->target_stats.rx_pkt; sinfo->filled |= STATION_INFO_RX_PACKETS; } if (ar->target_stats.tx_byte) { sinfo->tx_bytes = ar->target_stats.tx_byte; sinfo->filled |= STATION_INFO_TX_BYTES; sinfo->tx_packets = ar->target_stats.tx_pkt; sinfo->filled |= STATION_INFO_TX_PACKETS; } sinfo->signal = ar->target_stats.cs_rssi; sinfo->filled |= STATION_INFO_SIGNAL; rate = ar->target_stats.tx_ucast_rate; if (is_rate_legacy(rate)) { sinfo->txrate.legacy = rate / 100; } else if (is_rate_ht20(rate, &mcs, &sgi)) { if (sgi) { sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; sinfo->txrate.mcs = mcs - 1; } else { sinfo->txrate.mcs = mcs; } sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS; } else if (is_rate_ht40(rate, &mcs, &sgi)) { if (sgi) { sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; sinfo->txrate.mcs = mcs - 1; } else { sinfo->txrate.mcs = mcs; } sinfo->txrate.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH; sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS; } else { ath6kl_warn("invalid rate: %d\n", rate); return 0; } sinfo->filled |= STATION_INFO_TX_BITRATE; return 0; } static int ath6kl_set_pmksa(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { struct ath6kl *ar = ath6kl_priv(netdev); return ath6kl_wmi_setpmkid_cmd(ar->wmi, pmksa->bssid, pmksa->pmkid, true); } static int ath6kl_del_pmksa(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { struct ath6kl *ar = ath6kl_priv(netdev); return ath6kl_wmi_setpmkid_cmd(ar->wmi, pmksa->bssid, pmksa->pmkid, false); } static int ath6kl_flush_pmksa(struct wiphy *wiphy, struct net_device *netdev) { struct ath6kl *ar = ath6kl_priv(netdev); if (test_bit(CONNECTED, &ar->flag)) return ath6kl_wmi_setpmkid_cmd(ar->wmi, ar->bssid, NULL, false); return 0; } static struct cfg80211_ops ath6kl_cfg80211_ops = { .change_virtual_intf = ath6kl_cfg80211_change_iface, .scan = ath6kl_cfg80211_scan, .connect = ath6kl_cfg80211_connect, .disconnect = ath6kl_cfg80211_disconnect, .add_key = ath6kl_cfg80211_add_key, .get_key = ath6kl_cfg80211_get_key, .del_key = ath6kl_cfg80211_del_key, .set_default_key = ath6kl_cfg80211_set_default_key, .set_wiphy_params = ath6kl_cfg80211_set_wiphy_params, .set_tx_power = ath6kl_cfg80211_set_txpower, .get_tx_power = ath6kl_cfg80211_get_txpower, .set_power_mgmt = ath6kl_cfg80211_set_power_mgmt, .join_ibss = ath6kl_cfg80211_join_ibss, .leave_ibss = ath6kl_cfg80211_leave_ibss, .get_station = ath6kl_get_station, .set_pmksa = ath6kl_set_pmksa, .del_pmksa = ath6kl_del_pmksa, .flush_pmksa = ath6kl_flush_pmksa, }; struct wireless_dev *ath6kl_cfg80211_init(struct device *dev) { int ret = 0; struct wireless_dev *wdev; wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); if (!wdev) { ath6kl_err("couldn't allocate wireless device\n"); return NULL; } /* create a new wiphy for use with cfg80211 */ wdev->wiphy = wiphy_new(&ath6kl_cfg80211_ops, sizeof(struct ath6kl)); if (!wdev->wiphy) { ath6kl_err("couldn't allocate wiphy device\n"); kfree(wdev); return NULL; } /* set device pointer for wiphy */ set_wiphy_dev(wdev->wiphy, dev); wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); /* max num of ssids that can be probed during scanning */ wdev->wiphy->max_scan_ssids = MAX_PROBED_SSID_INDEX; wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &ath6kl_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &ath6kl_band_5ghz; wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); ret = wiphy_register(wdev->wiphy); if (ret < 0) { ath6kl_err("couldn't register wiphy device\n"); wiphy_free(wdev->wiphy); kfree(wdev); return NULL; } return wdev; } void ath6kl_cfg80211_deinit(struct ath6kl *ar) { struct wireless_dev *wdev = ar->wdev; if (ar->scan_req) { cfg80211_scan_done(ar->scan_req, true); ar->scan_req = NULL; } if (!wdev) return; wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); }