/* * Montage M88TS2022 silicon tuner driver * * Copyright (C) 2013 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Some calculations are taken from existing TS2020 driver. */ #include "m88ts2022_priv.h" /* write multiple registers */ static int m88ts2022_wr_regs(struct m88ts2022_priv *priv, u8 reg, const u8 *val, int len) { int ret; u8 buf[1 + len]; struct i2c_msg msg[1] = { { .addr = priv->cfg->i2c_addr, .flags = 0, .len = sizeof(buf), .buf = buf, } }; buf[0] = reg; memcpy(&buf[1], val, len); ret = i2c_transfer(priv->i2c, msg, 1); if (ret == 1) { ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* read multiple registers */ static int m88ts2022_rd_regs(struct m88ts2022_priv *priv, u8 reg, u8 *val, int len) { int ret; u8 buf[len]; struct i2c_msg msg[2] = { { .addr = priv->cfg->i2c_addr, .flags = 0, .len = 1, .buf = ®, }, { .addr = priv->cfg->i2c_addr, .flags = I2C_M_RD, .len = sizeof(buf), .buf = buf, } }; ret = i2c_transfer(priv->i2c, msg, 2); if (ret == 2) { memcpy(val, buf, len); ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* write single register */ static int m88ts2022_wr_reg(struct m88ts2022_priv *priv, u8 reg, u8 val) { return m88ts2022_wr_regs(priv, reg, &val, 1); } /* read single register */ static int m88ts2022_rd_reg(struct m88ts2022_priv *priv, u8 reg, u8 *val) { return m88ts2022_rd_regs(priv, reg, val, 1); } /* write single register with mask */ static int m88ts2022_wr_reg_mask(struct m88ts2022_priv *priv, u8 reg, u8 val, u8 mask) { int ret; u8 u8tmp; /* no need for read if whole reg is written */ if (mask != 0xff) { ret = m88ts2022_rd_regs(priv, reg, &u8tmp, 1); if (ret) return ret; val &= mask; u8tmp &= ~mask; val |= u8tmp; } return m88ts2022_wr_regs(priv, reg, &val, 1); } static int m88ts2022_cmd(struct dvb_frontend *fe, int op, int sleep, u8 reg, u8 mask, u8 val, u8 *reg_val) { struct m88ts2022_priv *priv = fe->tuner_priv; int ret, i; u8 u8tmp; struct m88ts2022_reg_val reg_vals[] = { {0x51, 0x1f - op}, {0x51, 0x1f}, {0x50, 0x00 + op}, {0x50, 0x00}, }; for (i = 0; i < 2; i++) { dev_dbg(&priv->i2c->dev, "%s: i=%d op=%02x reg=%02x mask=%02x val=%02x\n", __func__, i, op, reg, mask, val); for (i = 0; i < ARRAY_SIZE(reg_vals); i++) { ret = m88ts2022_wr_reg(priv, reg_vals[i].reg, reg_vals[i].val); if (ret) goto err; } usleep_range(sleep * 1000, sleep * 10000); ret = m88ts2022_rd_reg(priv, reg, &u8tmp); if (ret) goto err; if ((u8tmp & mask) != val) break; } if (reg_val) *reg_val = u8tmp; err: return ret; } static int m88ts2022_set_params(struct dvb_frontend *fe) { struct m88ts2022_priv *priv = fe->tuner_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret = 0, div; u8 buf[3], u8tmp, cap_code, lpf_mxdiv, div_max, div_min; u16 N_reg, N, K; u32 lpf_gm, lpf_coeff, gdiv28, frequency_khz, frequency_offset; u32 freq_3db; dev_dbg(&priv->i2c->dev, "%s: frequency=%d symbol_rate=%d rolloff=%d\n", __func__, c->frequency, c->symbol_rate, c->rolloff); if (c->symbol_rate < 5000000) frequency_offset = 3000000; /* 3 MHz */ else frequency_offset = 0; frequency_khz = c->frequency + (frequency_offset / 1000); if (frequency_khz < 1103000) { div = 2; u8tmp = 0x1b; } else { div = 1; u8tmp = 0x0b; } buf[0] = u8tmp; buf[1] = 0x40; ret = m88ts2022_wr_regs(priv, 0x10, buf, 2); if (ret) goto err; K = DIV_ROUND_CLOSEST((priv->cfg->clock / 2), 1000000); N = 1ul * frequency_khz * K * div * 2 / (priv->cfg->clock / 1000); N += N % 2; if (N < 4095) N_reg = N - 1024; else if (N < 6143) N_reg = N + 1024; else N_reg = N + 3072; buf[0] = (N_reg >> 8) & 0x3f; buf[1] = (N_reg >> 0) & 0xff; buf[2] = K - 8; ret = m88ts2022_wr_regs(priv, 0x01, buf, 3); if (ret) goto err; priv->frequency_khz = 1ul * N * (priv->cfg->clock / 1000) / K / div / 2; dev_dbg(&priv->i2c->dev, "%s: frequency=%d offset=%d K=%d N=%d div=%d\n", __func__, priv->frequency_khz, priv->frequency_khz - c->frequency, K, N, div); ret = m88ts2022_cmd(fe, 0x10, 5, 0x15, 0x40, 0x00, NULL); if (ret) goto err; ret = m88ts2022_rd_reg(priv, 0x14, &u8tmp); if (ret) goto err; u8tmp &= 0x7f; if (u8tmp < 64) { ret = m88ts2022_wr_reg_mask(priv, 0x10, 0x80, 0x80); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x11, 0x6f); if (ret) goto err; ret = m88ts2022_cmd(fe, 0x10, 5, 0x15, 0x40, 0x00, NULL); if (ret) goto err; } ret = m88ts2022_rd_reg(priv, 0x14, &u8tmp); if (ret) goto err; u8tmp &= 0x1f; if (u8tmp > 19) { ret = m88ts2022_wr_reg_mask(priv, 0x10, 0x00, 0x02); if (ret) goto err; } ret = m88ts2022_cmd(fe, 0x08, 5, 0x3c, 0xff, 0x00, NULL); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x25, 0x00); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x27, 0x70); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x41, 0x09); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x08, 0x0b); if (ret) goto err; gdiv28 = DIV_ROUND_CLOSEST(priv->cfg->clock / 1000000 * 1694, 1000); ret = m88ts2022_wr_reg(priv, 0x04, gdiv28); if (ret) goto err; ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp); if (ret) goto err; cap_code = u8tmp & 0x3f; ret = m88ts2022_wr_reg(priv, 0x41, 0x0d); if (ret) goto err; ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp); if (ret) goto err; u8tmp &= 0x3f; cap_code = (cap_code + u8tmp) / 2; gdiv28 = gdiv28 * 207 / (cap_code * 2 + 151); div_max = gdiv28 * 135 / 100; div_min = gdiv28 * 78 / 100; if (div_max > 63) div_max = 63; freq_3db = 1ul * c->symbol_rate * 135 / 200 + 2000000; freq_3db += frequency_offset; if (freq_3db < 7000000) freq_3db = 7000000; if (freq_3db > 40000000) freq_3db = 40000000; lpf_coeff = 3200; lpf_gm = DIV_ROUND_CLOSEST(freq_3db * gdiv28, lpf_coeff * (priv->cfg->clock / 1000)); if (lpf_gm > 23) lpf_gm = 23; if (lpf_gm < 1) lpf_gm = 1; lpf_mxdiv = DIV_ROUND_CLOSEST(lpf_gm * lpf_coeff * (priv->cfg->clock / 1000), freq_3db); if (lpf_mxdiv < div_min) { lpf_gm++; lpf_mxdiv = DIV_ROUND_CLOSEST(lpf_gm * lpf_coeff * (priv->cfg->clock / 1000), freq_3db); } if (lpf_mxdiv > div_max) lpf_mxdiv = div_max; ret = m88ts2022_wr_reg(priv, 0x04, lpf_mxdiv); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x06, lpf_gm); if (ret) goto err; ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp); if (ret) goto err; cap_code = u8tmp & 0x3f; ret = m88ts2022_wr_reg(priv, 0x41, 0x09); if (ret) goto err; ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp); if (ret) goto err; u8tmp &= 0x3f; cap_code = (cap_code + u8tmp) / 2; u8tmp = cap_code | 0x80; ret = m88ts2022_wr_reg(priv, 0x25, u8tmp); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x27, 0x30); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x08, 0x09); if (ret) goto err; ret = m88ts2022_cmd(fe, 0x01, 20, 0x21, 0xff, 0x00, NULL); if (ret) goto err; err: if (ret) dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int m88ts2022_init(struct dvb_frontend *fe) { struct m88ts2022_priv *priv = fe->tuner_priv; int ret, i; u8 u8tmp; static const struct m88ts2022_reg_val reg_vals[] = { {0x7d, 0x9d}, {0x7c, 0x9a}, {0x7a, 0x76}, {0x3b, 0x01}, {0x63, 0x88}, {0x61, 0x85}, {0x22, 0x30}, {0x30, 0x40}, {0x20, 0x23}, {0x24, 0x02}, {0x12, 0xa0}, }; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); ret = m88ts2022_wr_reg(priv, 0x00, 0x01); if (ret) goto err; ret = m88ts2022_wr_reg(priv, 0x00, 0x03); if (ret) goto err; switch (priv->cfg->clock_out) { case M88TS2022_CLOCK_OUT_DISABLED: u8tmp = 0x60; break; case M88TS2022_CLOCK_OUT_ENABLED: u8tmp = 0x70; ret = m88ts2022_wr_reg(priv, 0x05, priv->cfg->clock_out_div); if (ret) goto err; break; case M88TS2022_CLOCK_OUT_ENABLED_XTALOUT: u8tmp = 0x6c; break; default: goto err; } ret = m88ts2022_wr_reg(priv, 0x42, u8tmp); if (ret) goto err; if (priv->cfg->loop_through) u8tmp = 0xec; else u8tmp = 0x6c; ret = m88ts2022_wr_reg(priv, 0x62, u8tmp); if (ret) goto err; for (i = 0; i < ARRAY_SIZE(reg_vals); i++) { ret = m88ts2022_wr_reg(priv, reg_vals[i].reg, reg_vals[i].val); if (ret) goto err; } err: if (ret) dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int m88ts2022_sleep(struct dvb_frontend *fe) { struct m88ts2022_priv *priv = fe->tuner_priv; int ret; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); ret = m88ts2022_wr_reg(priv, 0x00, 0x00); if (ret) goto err; err: if (ret) dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int m88ts2022_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct m88ts2022_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); *frequency = priv->frequency_khz; return 0; } static int m88ts2022_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { struct m88ts2022_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); *frequency = 0; /* Zero-IF */ return 0; } static int m88ts2022_get_rf_strength(struct dvb_frontend *fe, u16 *strength) { struct m88ts2022_priv *priv = fe->tuner_priv; u8 u8tmp, gain1, gain2, gain3; u16 gain, u16tmp; int ret; ret = m88ts2022_rd_reg(priv, 0x3d, &u8tmp); if (ret) goto err; gain1 = (u8tmp >> 0) & 0x1f; if (gain1 > 15) gain1 = 15; ret = m88ts2022_rd_reg(priv, 0x21, &u8tmp); if (ret) goto err; gain2 = (u8tmp >> 0) & 0x1f; if (gain2 < 2) gain2 = 2; if (gain2 > 16) gain2 = 16; ret = m88ts2022_rd_reg(priv, 0x66, &u8tmp); if (ret) goto err; gain3 = (u8tmp >> 3) & 0x07; if (gain3 > 6) gain3 = 6; gain = gain1 * 265 + gain2 * 338 + gain3 * 285; /* scale value to 0x0000-0xffff */ u16tmp = (0xffff - gain); if (u16tmp < 59000) u16tmp = 59000; else if (u16tmp > 61500) u16tmp = 61500; *strength = (u16tmp - 59000) * 0xffff / (61500 - 59000); err: if (ret) dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int m88ts2022_release(struct dvb_frontend *fe) { struct m88ts2022_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); kfree(fe->tuner_priv); return 0; } static const struct dvb_tuner_ops m88ts2022_tuner_ops = { .info = { .name = "Montage M88TS2022", .frequency_min = 950000, .frequency_max = 2150000, }, .release = m88ts2022_release, .init = m88ts2022_init, .sleep = m88ts2022_sleep, .set_params = m88ts2022_set_params, .get_frequency = m88ts2022_get_frequency, .get_if_frequency = m88ts2022_get_if_frequency, .get_rf_strength = m88ts2022_get_rf_strength, }; struct dvb_frontend *m88ts2022_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct m88ts2022_config *cfg) { struct m88ts2022_priv *priv; int ret; u8 chip_id, u8tmp; priv = kzalloc(sizeof(struct m88ts2022_priv), GFP_KERNEL); if (!priv) { ret = -ENOMEM; dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME); goto err; } priv->cfg = cfg; priv->i2c = i2c; priv->fe = fe; /* check if the tuner is there */ ret = m88ts2022_rd_reg(priv, 0x00, &u8tmp); if (ret) goto err; if ((u8tmp & 0x03) == 0x00) { ret = m88ts2022_wr_reg(priv, 0x00, 0x01); if (ret < 0) goto err; usleep_range(2000, 50000); } ret = m88ts2022_wr_reg(priv, 0x00, 0x03); if (ret) goto err; usleep_range(2000, 50000); ret = m88ts2022_rd_reg(priv, 0x00, &chip_id); if (ret) goto err; dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id); switch (chip_id) { case 0xc3: case 0x83: break; default: goto err; } switch (priv->cfg->clock_out) { case M88TS2022_CLOCK_OUT_DISABLED: u8tmp = 0x60; break; case M88TS2022_CLOCK_OUT_ENABLED: u8tmp = 0x70; ret = m88ts2022_wr_reg(priv, 0x05, priv->cfg->clock_out_div); if (ret) goto err; break; case M88TS2022_CLOCK_OUT_ENABLED_XTALOUT: u8tmp = 0x6c; break; default: goto err; } ret = m88ts2022_wr_reg(priv, 0x42, u8tmp); if (ret) goto err; if (priv->cfg->loop_through) u8tmp = 0xec; else u8tmp = 0x6c; ret = m88ts2022_wr_reg(priv, 0x62, u8tmp); if (ret) goto err; /* sleep */ ret = m88ts2022_wr_reg(priv, 0x00, 0x00); if (ret) goto err; dev_info(&priv->i2c->dev, "%s: Montage M88TS2022 successfully identified\n", KBUILD_MODNAME); fe->tuner_priv = priv; memcpy(&fe->ops.tuner_ops, &m88ts2022_tuner_ops, sizeof(struct dvb_tuner_ops)); err: if (ret) { dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret); kfree(priv); return NULL; } return fe; } EXPORT_SYMBOL(m88ts2022_attach); MODULE_DESCRIPTION("Montage M88TS2022 silicon tuner driver"); MODULE_AUTHOR("Antti Palosaari "); MODULE_LICENSE("GPL");