/* * File: arch/blackfin/kernel/traps.c * Based on: * Author: Hamish Macdonald * * Created: * Description: uses S/W interrupt 15 for the system calls * * Modified: * Copyright 2004-2006 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KGDB # include # define CHK_DEBUGGER_TRAP() \ do { \ kgdb_handle_exception(trapnr, sig, info.si_code, fp); \ } while (0) # define CHK_DEBUGGER_TRAP_MAYBE() \ do { \ if (kgdb_connected) \ CHK_DEBUGGER_TRAP(); \ } while (0) #else # define CHK_DEBUGGER_TRAP() do { } while (0) # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0) #endif #ifdef CONFIG_DEBUG_VERBOSE #define verbose_printk(fmt, arg...) \ printk(fmt, ##arg) #else #define verbose_printk(fmt, arg...) \ ({ if (0) printk(fmt, ##arg); 0; }) #endif /* Initiate the event table handler */ void __init trap_init(void) { CSYNC(); bfin_write_EVT3(trap); CSYNC(); } static void decode_address(char *buf, unsigned long address) { #ifdef CONFIG_DEBUG_VERBOSE struct vm_list_struct *vml; struct task_struct *p; struct mm_struct *mm; unsigned long flags, offset; unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); struct rb_node *n; #ifdef CONFIG_KALLSYMS unsigned long symsize; const char *symname; char *modname; char *delim = ":"; char namebuf[128]; /* look up the address and see if we are in kernel space */ symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf); if (symname) { /* yeah! kernel space! */ if (!modname) modname = delim = ""; sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }", (void *)address, delim, modname, delim, symname, (unsigned long)offset); return; } #endif /* Problem in fixed code section? */ if (address >= FIXED_CODE_START && address < FIXED_CODE_END) { sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address); return; } /* Problem somewhere before the kernel start address */ if (address < CONFIG_BOOT_LOAD) { sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address); return; } /* looks like we're off in user-land, so let's walk all the * mappings of all our processes and see if we can't be a whee * bit more specific */ write_lock_irqsave(&tasklist_lock, flags); for_each_process(p) { mm = (in_atomic ? p->mm : get_task_mm(p)); if (!mm) continue; for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { struct vm_area_struct *vma; vma = rb_entry(n, struct vm_area_struct, vm_rb); if (address >= vma->vm_start && address < vma->vm_end) { char _tmpbuf[256]; char *name = p->comm; struct file *file = vma->vm_file; if (file) { char *d_name = d_path(&file->f_path, _tmpbuf, sizeof(_tmpbuf)); if (!IS_ERR(d_name)) name = d_name; } /* FLAT does not have its text aligned to the start of * the map while FDPIC ELF does ... */ /* before we can check flat/fdpic, we need to * make sure current is valid */ if ((unsigned long)current >= FIXED_CODE_START && !((unsigned long)current & 0x3)) { if (current->mm && (address > current->mm->start_code) && (address < current->mm->end_code)) offset = address - current->mm->start_code; else offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); sprintf(buf, "<0x%p> [ %s + 0x%lx ]", (void *)address, name, offset); } else sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]", (void *)address, name, vma->vm_start, vma->vm_end); if (!in_atomic) mmput(mm); if (!strlen(buf)) sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name); goto done; } } if (!in_atomic) mmput(mm); } /* we were unable to find this address anywhere */ sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address); done: write_unlock_irqrestore(&tasklist_lock, flags); #else sprintf(buf, " "); #endif } asmlinkage void double_fault_c(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON int j; trace_buffer_save(j); #endif console_verbose(); oops_in_progress = 1; #ifdef CONFIG_DEBUG_VERBOSE printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n"); #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) { unsigned int cpu = smp_processor_id(); char buf[150]; decode_address(buf, cpu_pda[cpu].retx); printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n", (unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf); decode_address(buf, cpu_pda[cpu].dcplb_fault_addr); printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf); decode_address(buf, cpu_pda[cpu].icplb_fault_addr); printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf); decode_address(buf, fp->retx); printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf); } else #endif { dump_bfin_process(fp); dump_bfin_mem(fp); show_regs(fp); dump_bfin_trace_buffer(); } #endif panic("Double Fault - unrecoverable event"); } asmlinkage void trap_c(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON int j; #endif #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO unsigned int cpu = smp_processor_id(); #endif int sig = 0; siginfo_t info; unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE; trace_buffer_save(j); /* Important - be very careful dereferncing pointers - will lead to * double faults if the stack has become corrupt */ /* If the fault was caused by a kernel thread, or interrupt handler * we will kernel panic, so the system reboots. * If KGDB is enabled, don't set this for kernel breakpoints */ /* TODO: check to see if we are in some sort of deferred HWERR * that we should be able to recover from, not kernel panic */ if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP) #ifdef CONFIG_KGDB && (trapnr != VEC_EXCPT02) #endif ){ console_verbose(); oops_in_progress = 1; } else if (current) { if (current->mm == NULL) { console_verbose(); oops_in_progress = 1; } } /* trap_c() will be called for exceptions. During exceptions * processing, the pc value should be set with retx value. * With this change we can cleanup some code in signal.c- TODO */ fp->orig_pc = fp->retx; /* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n", trapnr, fp->ipend, fp->pc, fp->retx); */ /* send the appropriate signal to the user program */ switch (trapnr) { /* This table works in conjuction with the one in ./mach-common/entry.S * Some exceptions are handled there (in assembly, in exception space) * Some are handled here, (in C, in interrupt space) * Some, like CPLB, are handled in both, where the normal path is * handled in assembly/exception space, and the error path is handled * here */ /* 0x00 - Linux Syscall, getting here is an error */ /* 0x01 - userspace gdb breakpoint, handled here */ case VEC_EXCPT01: info.si_code = TRAP_ILLTRAP; sig = SIGTRAP; CHK_DEBUGGER_TRAP_MAYBE(); /* Check if this is a breakpoint in kernel space */ if (fp->ipend & 0xffc0) return; else break; /* 0x03 - User Defined, userspace stack overflow */ case VEC_EXCPT03: info.si_code = SEGV_STACKFLOW; sig = SIGSEGV; verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x02 - KGDB initial connection and break signal trap */ case VEC_EXCPT02: #ifdef CONFIG_KGDB info.si_code = TRAP_ILLTRAP; sig = SIGTRAP; CHK_DEBUGGER_TRAP(); return; #endif /* 0x04 - User Defined */ /* 0x05 - User Defined */ /* 0x06 - User Defined */ /* 0x07 - User Defined */ /* 0x08 - User Defined */ /* 0x09 - User Defined */ /* 0x0A - User Defined */ /* 0x0B - User Defined */ /* 0x0C - User Defined */ /* 0x0D - User Defined */ /* 0x0E - User Defined */ /* 0x0F - User Defined */ /* If we got here, it is most likely that someone was trying to use a * custom exception handler, and it is not actually installed properly */ case VEC_EXCPT04 ... VEC_EXCPT15: info.si_code = ILL_ILLPARAOP; sig = SIGILL; verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x10 HW Single step, handled here */ case VEC_STEP: info.si_code = TRAP_STEP; sig = SIGTRAP; CHK_DEBUGGER_TRAP_MAYBE(); /* Check if this is a single step in kernel space */ if (fp->ipend & 0xffc0) return; else break; /* 0x11 - Trace Buffer Full, handled here */ case VEC_OVFLOW: info.si_code = TRAP_TRACEFLOW; sig = SIGTRAP; verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x12 - Reserved, Caught by default */ /* 0x13 - Reserved, Caught by default */ /* 0x14 - Reserved, Caught by default */ /* 0x15 - Reserved, Caught by default */ /* 0x16 - Reserved, Caught by default */ /* 0x17 - Reserved, Caught by default */ /* 0x18 - Reserved, Caught by default */ /* 0x19 - Reserved, Caught by default */ /* 0x1A - Reserved, Caught by default */ /* 0x1B - Reserved, Caught by default */ /* 0x1C - Reserved, Caught by default */ /* 0x1D - Reserved, Caught by default */ /* 0x1E - Reserved, Caught by default */ /* 0x1F - Reserved, Caught by default */ /* 0x20 - Reserved, Caught by default */ /* 0x21 - Undefined Instruction, handled here */ case VEC_UNDEF_I: info.si_code = ILL_ILLOPC; sig = SIGILL; verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x22 - Illegal Instruction Combination, handled here */ case VEC_ILGAL_I: info.si_code = ILL_ILLPARAOP; sig = SIGILL; verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x23 - Data CPLB protection violation, handled here */ case VEC_CPLB_VL: info.si_code = ILL_CPLB_VI; sig = SIGBUS; verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x24 - Data access misaligned, handled here */ case VEC_MISALI_D: info.si_code = BUS_ADRALN; sig = SIGBUS; verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x25 - Unrecoverable Event, handled here */ case VEC_UNCOV: info.si_code = ILL_ILLEXCPT; sig = SIGILL; verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr, error case is handled here */ case VEC_CPLB_M: info.si_code = BUS_ADRALN; sig = SIGBUS; verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE)); break; /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */ case VEC_CPLB_MHIT: info.si_code = ILL_CPLB_MULHIT; sig = SIGSEGV; #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START) verbose_printk(KERN_NOTICE "NULL pointer access\n"); else #endif verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x28 - Emulation Watchpoint, handled here */ case VEC_WATCH: info.si_code = TRAP_WATCHPT; sig = SIGTRAP; pr_debug(EXC_0x28(KERN_DEBUG)); CHK_DEBUGGER_TRAP_MAYBE(); /* Check if this is a watchpoint in kernel space */ if (fp->ipend & 0xffc0) return; else break; #ifdef CONFIG_BF535 /* 0x29 - Instruction fetch access error (535 only) */ case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */ info.si_code = BUS_OPFETCH; sig = SIGBUS; verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n"); CHK_DEBUGGER_TRAP_MAYBE(); break; #else /* 0x29 - Reserved, Caught by default */ #endif /* 0x2A - Instruction fetch misaligned, handled here */ case VEC_MISALI_I: info.si_code = BUS_ADRALN; sig = SIGBUS; verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x2B - Instruction CPLB protection violation, handled here */ case VEC_CPLB_I_VL: info.si_code = ILL_CPLB_VI; sig = SIGBUS; verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */ case VEC_CPLB_I_M: info.si_code = ILL_CPLB_MISS; sig = SIGBUS; verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE)); break; /* 0x2D - Instruction CPLB Multiple Hits, handled here */ case VEC_CPLB_I_MHIT: info.si_code = ILL_CPLB_MULHIT; sig = SIGSEGV; #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START) verbose_printk(KERN_NOTICE "Jump to NULL address\n"); else #endif verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x2E - Illegal use of Supervisor Resource, handled here */ case VEC_ILL_RES: info.si_code = ILL_PRVOPC; sig = SIGILL; verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE)); CHK_DEBUGGER_TRAP_MAYBE(); break; /* 0x2F - Reserved, Caught by default */ /* 0x30 - Reserved, Caught by default */ /* 0x31 - Reserved, Caught by default */ /* 0x32 - Reserved, Caught by default */ /* 0x33 - Reserved, Caught by default */ /* 0x34 - Reserved, Caught by default */ /* 0x35 - Reserved, Caught by default */ /* 0x36 - Reserved, Caught by default */ /* 0x37 - Reserved, Caught by default */ /* 0x38 - Reserved, Caught by default */ /* 0x39 - Reserved, Caught by default */ /* 0x3A - Reserved, Caught by default */ /* 0x3B - Reserved, Caught by default */ /* 0x3C - Reserved, Caught by default */ /* 0x3D - Reserved, Caught by default */ /* 0x3E - Reserved, Caught by default */ /* 0x3F - Reserved, Caught by default */ case VEC_HWERR: info.si_code = BUS_ADRALN; sig = SIGBUS; switch (fp->seqstat & SEQSTAT_HWERRCAUSE) { /* System MMR Error */ case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR): info.si_code = BUS_ADRALN; sig = SIGBUS; verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE)); break; /* External Memory Addressing Error */ case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR): info.si_code = BUS_ADRERR; sig = SIGBUS; verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE)); break; /* Performance Monitor Overflow */ case (SEQSTAT_HWERRCAUSE_PERF_FLOW): verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE)); break; /* RAISE 5 instruction */ case (SEQSTAT_HWERRCAUSE_RAISE_5): printk(KERN_NOTICE HWC_x18(KERN_NOTICE)); break; default: /* Reserved */ printk(KERN_NOTICE HWC_default(KERN_NOTICE)); break; } CHK_DEBUGGER_TRAP_MAYBE(); break; /* * We should be handling all known exception types above, * if we get here we hit a reserved one, so panic */ default: oops_in_progress = 1; info.si_code = ILL_ILLPARAOP; sig = SIGILL; verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n", (fp->seqstat & SEQSTAT_EXCAUSE)); CHK_DEBUGGER_TRAP_MAYBE(); break; } BUG_ON(sig == 0); if (sig != SIGTRAP) { dump_bfin_process(fp); dump_bfin_mem(fp); show_regs(fp); /* Print out the trace buffer if it makes sense */ #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M) verbose_printk(KERN_NOTICE "No trace since you do not have " "CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n" KERN_NOTICE "\n"); else #endif dump_bfin_trace_buffer(); if (oops_in_progress) { /* Dump the current kernel stack */ verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n"); show_stack(current, NULL); print_modules(); #ifndef CONFIG_ACCESS_CHECK verbose_printk(KERN_EMERG "Please turn on " "CONFIG_ACCESS_CHECK\n"); #endif panic("Kernel exception"); } else { #ifdef CONFIG_DEBUG_VERBOSE unsigned long *stack; /* Dump the user space stack */ stack = (unsigned long *)rdusp(); verbose_printk(KERN_NOTICE "Userspace Stack\n"); show_stack(NULL, stack); #endif } } #ifdef CONFIG_IPIPE if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp)) #endif { info.si_signo = sig; info.si_errno = 0; info.si_addr = (void __user *)fp->pc; force_sig_info(sig, &info, current); } if (ANOMALY_05000461 && trapnr == VEC_HWERR && !access_ok(VERIFY_READ, fp->pc, 8)) fp->pc = SAFE_USER_INSTRUCTION; trace_buffer_restore(j); return; } /* Typical exception handling routines */ #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1) /* * Similar to get_user, do some address checking, then dereference * Return true on sucess, false on bad address */ static bool get_instruction(unsigned short *val, unsigned short *address) { unsigned long addr; addr = (unsigned long)address; /* Check for odd addresses */ if (addr & 0x1) return false; /* Check that things do not wrap around */ if (addr > (addr + 2)) return false; /* * Since we are in exception context, we need to do a little address checking * We need to make sure we are only accessing valid memory, and * we don't read something in the async space that can hang forever */ if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) || #if L2_LENGTH != 0 (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) || #endif (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) || #if L1_DATA_A_LENGTH != 0 (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) || #endif #if L1_DATA_B_LENGTH != 0 (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) || #endif (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) || (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) && addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) || (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) && addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) || (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) && addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) || (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) && addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) { *val = *address; return true; } #if L1_CODE_LENGTH != 0 if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) { isram_memcpy(val, address, 2); return true; } #endif return false; } /* * decode the instruction if we are printing out the trace, as it * makes things easier to follow, without running it through objdump * These are the normal instructions which cause change of flow, which * would be at the source of the trace buffer */ #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON) static void decode_instruction(unsigned short *address) { unsigned short opcode; if (get_instruction(&opcode, address)) { if (opcode == 0x0010) verbose_printk("RTS"); else if (opcode == 0x0011) verbose_printk("RTI"); else if (opcode == 0x0012) verbose_printk("RTX"); else if (opcode == 0x0013) verbose_printk("RTN"); else if (opcode == 0x0014) verbose_printk("RTE"); else if (opcode == 0x0025) verbose_printk("EMUEXCPT"); else if (opcode == 0x0040 && opcode <= 0x0047) verbose_printk("STI R%i", opcode & 7); else if (opcode >= 0x0050 && opcode <= 0x0057) verbose_printk("JUMP (P%i)", opcode & 7); else if (opcode >= 0x0060 && opcode <= 0x0067) verbose_printk("CALL (P%i)", opcode & 7); else if (opcode >= 0x0070 && opcode <= 0x0077) verbose_printk("CALL (PC+P%i)", opcode & 7); else if (opcode >= 0x0080 && opcode <= 0x0087) verbose_printk("JUMP (PC+P%i)", opcode & 7); else if (opcode >= 0x0090 && opcode <= 0x009F) verbose_printk("RAISE 0x%x", opcode & 0xF); else if (opcode >= 0x00A0 && opcode <= 0x00AF) verbose_printk("EXCPT 0x%x", opcode & 0xF); else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF)) verbose_printk("IF !CC JUMP"); else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff)) verbose_printk("IF CC JUMP"); else if (opcode >= 0x2000 && opcode <= 0x2fff) verbose_printk("JUMP.S"); else if (opcode >= 0xe080 && opcode <= 0xe0ff) verbose_printk("LSETUP"); else if (opcode >= 0xe200 && opcode <= 0xe2ff) verbose_printk("JUMP.L"); else if (opcode >= 0xe300 && opcode <= 0xe3ff) verbose_printk("CALL pcrel"); else verbose_printk("0x%04x", opcode); } } #endif void dump_bfin_trace_buffer(void) { #ifdef CONFIG_DEBUG_VERBOSE #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON int tflags, i = 0; char buf[150]; unsigned short *addr; #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND int j, index; #endif trace_buffer_save(tflags); printk(KERN_NOTICE "Hardware Trace:\n"); #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n"); #endif if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) { for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) { decode_address(buf, (unsigned long)bfin_read_TBUF()); printk(KERN_NOTICE "%4i Target : %s\n", i, buf); addr = (unsigned short *)bfin_read_TBUF(); decode_address(buf, (unsigned long)addr); printk(KERN_NOTICE " Source : %s ", buf); decode_instruction(addr); printk("\n"); } } #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND if (trace_buff_offset) index = trace_buff_offset / 4; else index = EXPAND_LEN; j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128; while (j) { decode_address(buf, software_trace_buff[index]); printk(KERN_NOTICE "%4i Target : %s\n", i, buf); index -= 1; if (index < 0 ) index = EXPAND_LEN; decode_address(buf, software_trace_buff[index]); printk(KERN_NOTICE " Source : %s ", buf); decode_instruction((unsigned short *)software_trace_buff[index]); printk("\n"); index -= 1; if (index < 0) index = EXPAND_LEN; j--; i++; } #endif trace_buffer_restore(tflags); #endif #endif } EXPORT_SYMBOL(dump_bfin_trace_buffer); /* * Checks to see if the address pointed to is either a * 16-bit CALL instruction, or a 32-bit CALL instruction */ static bool is_bfin_call(unsigned short *addr) { unsigned short opcode = 0, *ins_addr; ins_addr = (unsigned short *)addr; if (!get_instruction(&opcode, ins_addr)) return false; if ((opcode >= 0x0060 && opcode <= 0x0067) || (opcode >= 0x0070 && opcode <= 0x0077)) return true; ins_addr--; if (!get_instruction(&opcode, ins_addr)) return false; if (opcode >= 0xE300 && opcode <= 0xE3FF) return true; return false; } void show_stack(struct task_struct *task, unsigned long *stack) { #ifdef CONFIG_PRINTK unsigned int *addr, *endstack, *fp = 0, *frame; unsigned short *ins_addr; char buf[150]; unsigned int i, j, ret_addr, frame_no = 0; /* * If we have been passed a specific stack, use that one otherwise * if we have been passed a task structure, use that, otherwise * use the stack of where the variable "stack" exists */ if (stack == NULL) { if (task) { /* We know this is a kernel stack, so this is the start/end */ stack = (unsigned long *)task->thread.ksp; endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE); } else { /* print out the existing stack info */ stack = (unsigned long *)&stack; endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack); } } else endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack); printk(KERN_NOTICE "Stack info:\n"); decode_address(buf, (unsigned int)stack); printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf); if (!access_ok(VERIFY_READ, stack, (unsigned int)endstack - (unsigned int)stack)) { printk(KERN_NOTICE "Invalid stack pointer\n"); return; } /* First thing is to look for a frame pointer */ for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) { if (*addr & 0x1) continue; ins_addr = (unsigned short *)*addr; ins_addr--; if (is_bfin_call(ins_addr)) fp = addr - 1; if (fp) { /* Let's check to see if it is a frame pointer */ while (fp >= (addr - 1) && fp < endstack && fp && ((unsigned int) fp & 0x3) == 0) fp = (unsigned int *)*fp; if (fp == 0 || fp == endstack) { fp = addr - 1; break; } fp = 0; } } if (fp) { frame = fp; printk(KERN_NOTICE " FP: (0x%p)\n", fp); } else frame = 0; /* * Now that we think we know where things are, we * walk the stack again, this time printing things out * incase there is no frame pointer, we still look for * valid return addresses */ /* First time print out data, next time, print out symbols */ for (j = 0; j <= 1; j++) { if (j) printk(KERN_NOTICE "Return addresses in stack:\n"); else printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack); fp = frame; frame_no = 0; for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0; addr <= endstack; addr++, i++) { ret_addr = 0; if (!j && i % 8 == 0) printk("\n" KERN_NOTICE "%p:",addr); /* if it is an odd address, or zero, just skip it */ if (*addr & 0x1 || !*addr) goto print; ins_addr = (unsigned short *)*addr; /* Go back one instruction, and see if it is a CALL */ ins_addr--; ret_addr = is_bfin_call(ins_addr); print: if (!j && stack == (unsigned long *)addr) printk("[%08x]", *addr); else if (ret_addr) if (j) { decode_address(buf, (unsigned int)*addr); if (frame == addr) { printk(KERN_NOTICE " frame %2i : %s\n", frame_no, buf); continue; } printk(KERN_NOTICE " address : %s\n", buf); } else printk("<%08x>", *addr); else if (fp == addr) { if (j) frame = addr+1; else printk("(%08x)", *addr); fp = (unsigned int *)*addr; frame_no++; } else if (!j) printk(" %08x ", *addr); } if (!j) printk("\n"); } #endif } void dump_stack(void) { unsigned long stack; #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON int tflags; #endif trace_buffer_save(tflags); dump_bfin_trace_buffer(); show_stack(current, &stack); trace_buffer_restore(tflags); } EXPORT_SYMBOL(dump_stack); void dump_bfin_process(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_VERBOSE /* We should be able to look at fp->ipend, but we don't push it on the * stack all the time, so do this until we fix that */ unsigned int context = bfin_read_IPEND(); if (oops_in_progress) verbose_printk(KERN_EMERG "Kernel OOPS in progress\n"); if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) verbose_printk(KERN_NOTICE "HW Error context\n"); else if (context & 0x0020) verbose_printk(KERN_NOTICE "Deferred Exception context\n"); else if (context & 0x3FC0) verbose_printk(KERN_NOTICE "Interrupt context\n"); else if (context & 0x4000) verbose_printk(KERN_NOTICE "Deferred Interrupt context\n"); else if (context & 0x8000) verbose_printk(KERN_NOTICE "Kernel process context\n"); /* Because we are crashing, and pointers could be bad, we check things * pretty closely before we use them */ if ((unsigned long)current >= FIXED_CODE_START && !((unsigned long)current & 0x3) && current->pid) { verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n"); if (current->comm >= (char *)FIXED_CODE_START) verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n", current->comm, current->pid); else verbose_printk(KERN_NOTICE "COMM= invalid\n"); printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu); if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START) verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n" KERN_NOTICE " BSS = 0x%p-0x%p USER-STACK = 0x%p\n" KERN_NOTICE "\n", (void *)current->mm->start_code, (void *)current->mm->end_code, (void *)current->mm->start_data, (void *)current->mm->end_data, (void *)current->mm->end_data, (void *)current->mm->brk, (void *)current->mm->start_stack); else verbose_printk(KERN_NOTICE "invalid mm\n"); } else verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "No Valid process in current context\n"); #endif } void dump_bfin_mem(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_VERBOSE unsigned short *addr, *erraddr, val = 0, err = 0; char sti = 0, buf[6]; erraddr = (void *)fp->pc; verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr); for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10; addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10; addr++) { if (!((unsigned long)addr & 0xF)) verbose_printk("\n" KERN_NOTICE "0x%p: ", addr); if (!get_instruction(&val, addr)) { val = 0; sprintf(buf, "????"); } else sprintf(buf, "%04x", val); if (addr == erraddr) { verbose_printk("[%s]", buf); err = val; } else verbose_printk(" %s ", buf); /* Do any previous instructions turn on interrupts? */ if (addr <= erraddr && /* in the past */ ((val >= 0x0040 && val <= 0x0047) || /* STI instruction */ val == 0x017b)) /* [SP++] = RETI */ sti = 1; } verbose_printk("\n"); /* Hardware error interrupts can be deferred */ if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR && oops_in_progress)){ verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n"); #ifndef CONFIG_DEBUG_HWERR verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n" KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a" " better idea where it came from\n"); #else /* If we are handling only one peripheral interrupt * and current mm and pid are valid, and the last error * was in that user space process's text area * print it out - because that is where the problem exists */ if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) && (current->pid && current->mm)) { /* And the last RETI points to the current userspace context */ if ((fp + 1)->pc >= current->mm->start_code && (fp + 1)->pc <= current->mm->end_code) { verbose_printk(KERN_NOTICE "It might be better to look around here : \n"); verbose_printk(KERN_NOTICE "-------------------------------------------\n"); show_regs(fp + 1); verbose_printk(KERN_NOTICE "-------------------------------------------\n"); } } #endif } #endif } void show_regs(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_VERBOSE char buf [150]; struct irqaction *action; unsigned int i; unsigned long flags = 0; unsigned int cpu = smp_processor_id(); unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted()); verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx SYSCFG: %04lx\n", (long)fp->seqstat, fp->ipend, fp->syscfg); if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) { verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n", (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14); #ifdef EBIU_ERRMST /* If the error was from the EBIU, print it out */ if (bfin_read_EBIU_ERRMST() & CORE_ERROR) { verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n", bfin_read_EBIU_ERRMST()); verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n", bfin_read_EBIU_ERRADD()); } #endif } verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n", fp->seqstat & SEQSTAT_EXCAUSE); for (i = 2; i <= 15 ; i++) { if (fp->ipend & (1 << i)) { if (i != 4) { decode_address(buf, bfin_read32(EVT0 + 4*i)); verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf); } else verbose_printk(KERN_NOTICE " interrupts disabled\n"); } } /* if no interrupts are going off, don't print this out */ if (fp->ipend & ~0x3F) { for (i = 0; i < (NR_IRQS - 1); i++) { if (!in_atomic) spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (!action) goto unlock; decode_address(buf, (unsigned int)action->handler); verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf); for (action = action->next; action; action = action->next) { decode_address(buf, (unsigned int)action->handler); verbose_printk(", %s", buf); } verbose_printk("\n"); unlock: if (!in_atomic) spin_unlock_irqrestore(&irq_desc[i].lock, flags); } } decode_address(buf, fp->rete); verbose_printk(KERN_NOTICE " RETE: %s\n", buf); decode_address(buf, fp->retn); verbose_printk(KERN_NOTICE " RETN: %s\n", buf); decode_address(buf, fp->retx); verbose_printk(KERN_NOTICE " RETX: %s\n", buf); decode_address(buf, fp->rets); verbose_printk(KERN_NOTICE " RETS: %s\n", buf); decode_address(buf, fp->pc); verbose_printk(KERN_NOTICE " PC : %s\n", buf); if (((long)fp->seqstat & SEQSTAT_EXCAUSE) && (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) { decode_address(buf, cpu_pda[cpu].dcplb_fault_addr); verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf); decode_address(buf, cpu_pda[cpu].icplb_fault_addr); verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf); } verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n"); verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n", fp->r0, fp->r1, fp->r2, fp->r3); verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n", fp->r4, fp->r5, fp->r6, fp->r7); verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n", fp->p0, fp->p1, fp->p2, fp->p3); verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n", fp->p4, fp->p5, fp->fp, (long)fp); verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n", fp->lb0, fp->lt0, fp->lc0); verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n", fp->lb1, fp->lt1, fp->lc1); verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n", fp->b0, fp->l0, fp->m0, fp->i0); verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n", fp->b1, fp->l1, fp->m1, fp->i1); verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n", fp->b2, fp->l2, fp->m2, fp->i2); verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n", fp->b3, fp->l3, fp->m3, fp->i3); verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n", fp->a0w, fp->a0x, fp->a1w, fp->a1x); verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n", rdusp(), fp->astat); verbose_printk(KERN_NOTICE "\n"); #endif } #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1 asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text)); #endif static DEFINE_SPINLOCK(bfin_spinlock_lock); asmlinkage int sys_bfin_spinlock(int *p) { int ret, tmp = 0; spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */ ret = get_user(tmp, p); if (likely(ret == 0)) { if (unlikely(tmp)) ret = 1; else put_user(1, p); } spin_unlock(&bfin_spinlock_lock); return ret; } int bfin_request_exception(unsigned int exception, void (*handler)(void)) { void (*curr_handler)(void); if (exception > 0x3F) return -EINVAL; curr_handler = ex_table[exception]; if (curr_handler != ex_replaceable) return -EBUSY; ex_table[exception] = handler; return 0; } EXPORT_SYMBOL(bfin_request_exception); int bfin_free_exception(unsigned int exception, void (*handler)(void)) { void (*curr_handler)(void); if (exception > 0x3F) return -EINVAL; curr_handler = ex_table[exception]; if (curr_handler != handler) return -EBUSY; ex_table[exception] = ex_replaceable; return 0; } EXPORT_SYMBOL(bfin_free_exception); void panic_cplb_error(int cplb_panic, struct pt_regs *fp) { switch (cplb_panic) { case CPLB_NO_UNLOCKED: printk(KERN_EMERG "All CPLBs are locked\n"); break; case CPLB_PROT_VIOL: return; case CPLB_NO_ADDR_MATCH: return; case CPLB_UNKNOWN_ERR: printk(KERN_EMERG "Unknown CPLB Exception\n"); break; } oops_in_progress = 1; dump_bfin_process(fp); dump_bfin_mem(fp); show_regs(fp); dump_stack(); panic("Unrecoverable event"); }