/* Instantiate a public key crypto key from an X.509 Certificate * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #define pr_fmt(fmt) "X.509: "fmt #include #include #include #include #include #include #include #include #include #include #include "asymmetric_keys.h" #include "public_key.h" #include "x509_parser.h" /* * Find a key in the given keyring by issuer and authority. */ static struct key *x509_request_asymmetric_key( struct key *keyring, const char *signer, size_t signer_len, const char *authority, size_t auth_len) { key_ref_t key; char *id; /* Construct an identifier. */ id = kmalloc(signer_len + 2 + auth_len + 1, GFP_KERNEL); if (!id) return ERR_PTR(-ENOMEM); memcpy(id, signer, signer_len); id[signer_len + 0] = ':'; id[signer_len + 1] = ' '; memcpy(id + signer_len + 2, authority, auth_len); id[signer_len + 2 + auth_len] = 0; pr_debug("Look up: \"%s\"\n", id); key = keyring_search(make_key_ref(keyring, 1), &key_type_asymmetric, id); if (IS_ERR(key)) pr_debug("Request for module key '%s' err %ld\n", id, PTR_ERR(key)); kfree(id); if (IS_ERR(key)) { switch (PTR_ERR(key)) { /* Hide some search errors */ case -EACCES: case -ENOTDIR: case -EAGAIN: return ERR_PTR(-ENOKEY); default: return ERR_CAST(key); } } pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key_ref_to_ptr(key))); return key_ref_to_ptr(key); } /* * Set up the signature parameters in an X.509 certificate. This involves * digesting the signed data and extracting the signature. */ int x509_get_sig_params(struct x509_certificate *cert) { struct crypto_shash *tfm; struct shash_desc *desc; size_t digest_size, desc_size; void *digest; int ret; pr_devel("==>%s()\n", __func__); if (cert->sig.rsa.s) return 0; cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size); if (!cert->sig.rsa.s) return -ENOMEM; cert->sig.nr_mpi = 1; /* Allocate the hashing algorithm we're going to need and find out how * big the hash operational data will be. */ tfm = crypto_alloc_shash(pkey_hash_algo_name[cert->sig.pkey_hash_algo], 0, 0); if (IS_ERR(tfm)) return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm); desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); digest_size = crypto_shash_digestsize(tfm); /* We allocate the hash operational data storage on the end of the * digest storage space. */ ret = -ENOMEM; digest = kzalloc(digest_size + desc_size, GFP_KERNEL); if (!digest) goto error; cert->sig.digest = digest; cert->sig.digest_size = digest_size; desc = digest + digest_size; desc->tfm = tfm; desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; ret = crypto_shash_init(desc); if (ret < 0) goto error; might_sleep(); ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest); error: crypto_free_shash(tfm); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } EXPORT_SYMBOL_GPL(x509_get_sig_params); /* * Check the signature on a certificate using the provided public key */ int x509_check_signature(const struct public_key *pub, struct x509_certificate *cert) { int ret; pr_devel("==>%s()\n", __func__); ret = x509_get_sig_params(cert); if (ret < 0) return ret; ret = public_key_verify_signature(pub, &cert->sig); pr_debug("Cert Verification: %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(x509_check_signature); /* * Check the new certificate against the ones in the trust keyring. If one of * those is the signing key and validates the new certificate, then mark the * new certificate as being trusted. * * Return 0 if the new certificate was successfully validated, 1 if we couldn't * find a matching parent certificate in the trusted list and an error if there * is a matching certificate but the signature check fails. */ static int x509_validate_trust(struct x509_certificate *cert, struct key *trust_keyring) { const struct public_key *pk; struct key *key; int ret = 1; key = x509_request_asymmetric_key(trust_keyring, cert->issuer, strlen(cert->issuer), cert->authority, strlen(cert->authority)); if (!IS_ERR(key)) { pk = key->payload.data; ret = x509_check_signature(pk, cert); } return ret; } /* * Attempt to parse a data blob for a key as an X509 certificate. */ static int x509_key_preparse(struct key_preparsed_payload *prep) { struct x509_certificate *cert; size_t srlen, sulen; char *desc = NULL; int ret; cert = x509_cert_parse(prep->data, prep->datalen); if (IS_ERR(cert)) return PTR_ERR(cert); pr_devel("Cert Issuer: %s\n", cert->issuer); pr_devel("Cert Subject: %s\n", cert->subject); if (cert->pub->pkey_algo >= PKEY_ALGO__LAST || cert->sig.pkey_algo >= PKEY_ALGO__LAST || cert->sig.pkey_hash_algo >= PKEY_HASH__LAST || !pkey_algo[cert->pub->pkey_algo] || !pkey_algo[cert->sig.pkey_algo] || !pkey_hash_algo_name[cert->sig.pkey_hash_algo]) { ret = -ENOPKG; goto error_free_cert; } pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]); pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n", cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1, cert->valid_from.tm_mday, cert->valid_from.tm_hour, cert->valid_from.tm_min, cert->valid_from.tm_sec); pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n", cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1, cert->valid_to.tm_mday, cert->valid_to.tm_hour, cert->valid_to.tm_min, cert->valid_to.tm_sec); pr_devel("Cert Signature: %s + %s\n", pkey_algo_name[cert->sig.pkey_algo], pkey_hash_algo_name[cert->sig.pkey_hash_algo]); if (!cert->fingerprint) { pr_warn("Cert for '%s' must have a SubjKeyId extension\n", cert->subject); ret = -EKEYREJECTED; goto error_free_cert; } cert->pub->algo = pkey_algo[cert->pub->pkey_algo]; cert->pub->id_type = PKEY_ID_X509; /* Check the signature on the key if it appears to be self-signed */ if (!cert->authority || strcmp(cert->fingerprint, cert->authority) == 0) { ret = x509_check_signature(cert->pub, cert); /* self-signed */ if (ret < 0) goto error_free_cert; } else { ret = x509_validate_trust(cert, system_trusted_keyring); if (!ret) prep->trusted = 1; } /* Propose a description */ sulen = strlen(cert->subject); srlen = strlen(cert->fingerprint); ret = -ENOMEM; desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL); if (!desc) goto error_free_cert; memcpy(desc, cert->subject, sulen); desc[sulen] = ':'; desc[sulen + 1] = ' '; memcpy(desc + sulen + 2, cert->fingerprint, srlen); desc[sulen + 2 + srlen] = 0; /* We're pinning the module by being linked against it */ __module_get(public_key_subtype.owner); prep->type_data[0] = &public_key_subtype; prep->type_data[1] = cert->fingerprint; prep->payload = cert->pub; prep->description = desc; prep->quotalen = 100; /* We've finished with the certificate */ cert->pub = NULL; cert->fingerprint = NULL; desc = NULL; ret = 0; error_free_cert: x509_free_certificate(cert); return ret; } static struct asymmetric_key_parser x509_key_parser = { .owner = THIS_MODULE, .name = "x509", .parse = x509_key_preparse, }; /* * Module stuff */ static int __init x509_key_init(void) { return register_asymmetric_key_parser(&x509_key_parser); } static void __exit x509_key_exit(void) { unregister_asymmetric_key_parser(&x509_key_parser); } module_init(x509_key_init); module_exit(x509_key_exit);