/* * Copyright IBM Corp. 1999,2013 * * Author(s): Martin Schwidefsky , * * The description below was taken in large parts from the powerpc * bitops header file: * Within a word, bits are numbered LSB first. Lot's of places make * this assumption by directly testing bits with (val & (1< 1 word) bitmaps on a * big-endian system because, unlike little endian, the number of each * bit depends on the word size. * * The bitop functions are defined to work on unsigned longs, so the bits * end up numbered: * |63..............0|127............64|191...........128|255...........192| * * There are a few little-endian macros used mostly for filesystem * bitmaps, these work on similar bit array layouts, but byte-oriented: * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56| * * The main difference is that bit 3-5 in the bit number field needs to be * reversed compared to the big-endian bit fields. This can be achieved by * XOR with 0x38. * * We also have special functions which work with an MSB0 encoding. * The bits are numbered: * |0..............63|64............127|128...........191|192...........255| * * The main difference is that bit 0-63 in the bit number field needs to be * reversed compared to the LSB0 encoded bit fields. This can be achieved by * XOR with 0x3f. * */ #ifndef _S390_BITOPS_H #define _S390_BITOPS_H #ifndef _LINUX_BITOPS_H #error only can be included directly #endif #include #include #include #include #define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG) static inline unsigned long * __bitops_word(unsigned long nr, volatile unsigned long *ptr) { unsigned long addr; addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3); return (unsigned long *)addr; } static inline unsigned char * __bitops_byte(unsigned long nr, volatile unsigned long *ptr) { return ((unsigned char *)ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); } static inline void set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask; #ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES if (__builtin_constant_p(nr)) { unsigned char *caddr = __bitops_byte(nr, ptr); asm volatile( "oi %0,%b1\n" : "+Q" (*caddr) : "i" (1 << (nr & 7)) : "cc", "memory"); return; } #endif mask = 1UL << (nr & (BITS_PER_LONG - 1)); __atomic64_or(mask, addr); } static inline void clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask; #ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES if (__builtin_constant_p(nr)) { unsigned char *caddr = __bitops_byte(nr, ptr); asm volatile( "ni %0,%b1\n" : "+Q" (*caddr) : "i" (~(1 << (nr & 7))) : "cc", "memory"); return; } #endif mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); __atomic64_and(mask, addr); } static inline void change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask; #ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES if (__builtin_constant_p(nr)) { unsigned char *caddr = __bitops_byte(nr, ptr); asm volatile( "xi %0,%b1\n" : "+Q" (*caddr) : "i" (1 << (nr & 7)) : "cc", "memory"); return; } #endif mask = 1UL << (nr & (BITS_PER_LONG - 1)); __atomic64_xor(mask, addr); } static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long old, mask; mask = 1UL << (nr & (BITS_PER_LONG - 1)); old = __atomic64_or_barrier(mask, addr); return (old & mask) != 0; } static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long old, mask; mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); old = __atomic64_and_barrier(mask, addr); return (old & ~mask) != 0; } static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long old, mask; mask = 1UL << (nr & (BITS_PER_LONG - 1)); old = __atomic64_xor_barrier(mask, addr); return (old & mask) != 0; } static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned char *addr = __bitops_byte(nr, ptr); *addr |= 1 << (nr & 7); } static inline void __clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned char *addr = __bitops_byte(nr, ptr); *addr &= ~(1 << (nr & 7)); } static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned char *addr = __bitops_byte(nr, ptr); *addr ^= 1 << (nr & 7); } static inline int __test_and_set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned char *addr = __bitops_byte(nr, ptr); unsigned char ch; ch = *addr; *addr |= 1 << (nr & 7); return (ch >> (nr & 7)) & 1; } static inline int __test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned char *addr = __bitops_byte(nr, ptr); unsigned char ch; ch = *addr; *addr &= ~(1 << (nr & 7)); return (ch >> (nr & 7)) & 1; } static inline int __test_and_change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned char *addr = __bitops_byte(nr, ptr); unsigned char ch; ch = *addr; *addr ^= 1 << (nr & 7); return (ch >> (nr & 7)) & 1; } static inline int test_bit(unsigned long nr, const volatile unsigned long *ptr) { const volatile unsigned char *addr; addr = ((const volatile unsigned char *)ptr); addr += (nr ^ (BITS_PER_LONG - 8)) >> 3; return (*addr >> (nr & 7)) & 1; } static inline int test_and_set_bit_lock(unsigned long nr, volatile unsigned long *ptr) { if (test_bit(nr, ptr)) return 1; return test_and_set_bit(nr, ptr); } static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *ptr) { smp_mb__before_atomic(); clear_bit(nr, ptr); } static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *ptr) { smp_mb(); __clear_bit(nr, ptr); } /* * Functions which use MSB0 bit numbering. * The bits are numbered: * |0..............63|64............127|128...........191|192...........255| */ unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size); unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size, unsigned long offset); #define for_each_set_bit_inv(bit, addr, size) \ for ((bit) = find_first_bit_inv((addr), (size)); \ (bit) < (size); \ (bit) = find_next_bit_inv((addr), (size), (bit) + 1)) static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return set_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline int test_bit_inv(unsigned long nr, const volatile unsigned long *ptr) { return test_bit(nr ^ (BITS_PER_LONG - 1), ptr); } #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES /** * __flogr - find leftmost one * @word - The word to search * * Returns the bit number of the most significant bit set, * where the most significant bit has bit number 0. * If no bit is set this function returns 64. */ static inline unsigned char __flogr(unsigned long word) { if (__builtin_constant_p(word)) { unsigned long bit = 0; if (!word) return 64; if (!(word & 0xffffffff00000000UL)) { word <<= 32; bit += 32; } if (!(word & 0xffff000000000000UL)) { word <<= 16; bit += 16; } if (!(word & 0xff00000000000000UL)) { word <<= 8; bit += 8; } if (!(word & 0xf000000000000000UL)) { word <<= 4; bit += 4; } if (!(word & 0xc000000000000000UL)) { word <<= 2; bit += 2; } if (!(word & 0x8000000000000000UL)) { word <<= 1; bit += 1; } return bit; } else { register unsigned long bit asm("4") = word; register unsigned long out asm("5"); asm volatile( " flogr %[bit],%[bit]\n" : [bit] "+d" (bit), [out] "=d" (out) : : "cc"); return bit; } } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static inline unsigned long __ffs(unsigned long word) { return __flogr(-word & word) ^ (BITS_PER_LONG - 1); } /** * ffs - find first bit set * @word: the word to search * * This is defined the same way as the libc and * compiler builtin ffs routines (man ffs). */ static inline int ffs(int word) { unsigned long mask = 2 * BITS_PER_LONG - 1; unsigned int val = (unsigned int)word; return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask; } /** * __fls - find last (most-significant) set bit in a long word * @word: the word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static inline unsigned long __fls(unsigned long word) { return __flogr(word) ^ (BITS_PER_LONG - 1); } /** * fls64 - find last set bit in a 64-bit word * @word: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ static inline int fls64(unsigned long word) { unsigned long mask = 2 * BITS_PER_LONG - 1; return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask; } /** * fls - find last (most-significant) bit set * @word: the word to search * * This is defined the same way as ffs. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static inline int fls(int word) { return fls64((unsigned int)word); } #else /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */ #include #include #include #include #include #endif /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */ #include #include #include #include #include #include #endif /* _S390_BITOPS_H */