/* * Copyright (c) 2008-2010 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "hw.h" #include "hw-ops.h" #include "rc.h" #include "ar9003_mac.h" static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static int __init ath9k_init(void) { return 0; } module_init(ath9k_init); static void __exit ath9k_exit(void) { return; } module_exit(ath9k_exit); /* Private hardware callbacks */ static void ath9k_hw_init_cal_settings(struct ath_hw *ah) { ath9k_hw_private_ops(ah)->init_cal_settings(ah); } static void ath9k_hw_init_mode_regs(struct ath_hw *ah) { ath9k_hw_private_ops(ah)->init_mode_regs(ah); } static bool ath9k_hw_macversion_supported(struct ath_hw *ah) { struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); return priv_ops->macversion_supported(ah->hw_version.macVersion); } static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, struct ath9k_channel *chan) { return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); } static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) { if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) return; ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); } static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) { /* You will not have this callback if using the old ANI */ if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) return; ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); } /********************/ /* Helper Functions */ /********************/ static void ath9k_hw_set_clockrate(struct ath_hw *ah) { struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; struct ath_common *common = ath9k_hw_common(ah); unsigned int clockrate; if (!ah->curchan) /* should really check for CCK instead */ clockrate = ATH9K_CLOCK_RATE_CCK; else if (conf->channel->band == IEEE80211_BAND_2GHZ) clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; else clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; if (conf_is_ht40(conf)) clockrate *= 2; common->clockrate = clockrate; } static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) { struct ath_common *common = ath9k_hw_common(ah); return usecs * common->clockrate; } bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) { int i; BUG_ON(timeout < AH_TIME_QUANTUM); for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { if ((REG_READ(ah, reg) & mask) == val) return true; udelay(AH_TIME_QUANTUM); } ath_print(ath9k_hw_common(ah), ATH_DBG_ANY, "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", timeout, reg, REG_READ(ah, reg), mask, val); return false; } EXPORT_SYMBOL(ath9k_hw_wait); u32 ath9k_hw_reverse_bits(u32 val, u32 n) { u32 retval; int i; for (i = 0, retval = 0; i < n; i++) { retval = (retval << 1) | (val & 1); val >>= 1; } return retval; } bool ath9k_get_channel_edges(struct ath_hw *ah, u16 flags, u16 *low, u16 *high) { struct ath9k_hw_capabilities *pCap = &ah->caps; if (flags & CHANNEL_5GHZ) { *low = pCap->low_5ghz_chan; *high = pCap->high_5ghz_chan; return true; } if ((flags & CHANNEL_2GHZ)) { *low = pCap->low_2ghz_chan; *high = pCap->high_2ghz_chan; return true; } return false; } u16 ath9k_hw_computetxtime(struct ath_hw *ah, u8 phy, int kbps, u32 frameLen, u16 rateix, bool shortPreamble) { u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; if (kbps == 0) return 0; switch (phy) { case WLAN_RC_PHY_CCK: phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; if (shortPreamble) phyTime >>= 1; numBits = frameLen << 3; txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); break; case WLAN_RC_PHY_OFDM: if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_QUARTER + OFDM_PREAMBLE_TIME_QUARTER + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); } else if (ah->curchan && IS_CHAN_HALF_RATE(ah->curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_HALF + OFDM_PREAMBLE_TIME_HALF + (numSymbols * OFDM_SYMBOL_TIME_HALF); } else { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME + (numSymbols * OFDM_SYMBOL_TIME); } break; default: ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, "Unknown phy %u (rate ix %u)\n", phy, rateix); txTime = 0; break; } return txTime; } EXPORT_SYMBOL(ath9k_hw_computetxtime); void ath9k_hw_get_channel_centers(struct ath_hw *ah, struct ath9k_channel *chan, struct chan_centers *centers) { int8_t extoff; if (!IS_CHAN_HT40(chan)) { centers->ctl_center = centers->ext_center = centers->synth_center = chan->channel; return; } if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) { centers->synth_center = chan->channel + HT40_CHANNEL_CENTER_SHIFT; extoff = 1; } else { centers->synth_center = chan->channel - HT40_CHANNEL_CENTER_SHIFT; extoff = -1; } centers->ctl_center = centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); /* 25 MHz spacing is supported by hw but not on upper layers */ centers->ext_center = centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); } /******************/ /* Chip Revisions */ /******************/ static void ath9k_hw_read_revisions(struct ath_hw *ah) { u32 val; val = REG_READ(ah, AR_SREV) & AR_SREV_ID; if (val == 0xFF) { val = REG_READ(ah, AR_SREV); ah->hw_version.macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; } else { if (!AR_SREV_9100(ah)) ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); ah->hw_version.macRev = val & AR_SREV_REVISION; if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ah->is_pciexpress = true; } } /************************************/ /* HW Attach, Detach, Init Routines */ /************************************/ static void ath9k_hw_disablepcie(struct ath_hw *ah) { if (AR_SREV_9100(ah)) return; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); REGWRITE_BUFFER_FLUSH(ah); } /* This should work for all families including legacy */ static bool ath9k_hw_chip_test(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 regAddr[2] = { AR_STA_ID0 }; u32 regHold[2]; static const u32 patternData[4] = { 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 }; int i, j, loop_max; if (!AR_SREV_9300_20_OR_LATER(ah)) { loop_max = 2; regAddr[1] = AR_PHY_BASE + (8 << 2); } else loop_max = 1; for (i = 0; i < loop_max; i++) { u32 addr = regAddr[i]; u32 wrData, rdData; regHold[i] = REG_READ(ah, addr); for (j = 0; j < 0x100; j++) { wrData = (j << 16) | j; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (rdData != wrData) { ath_print(common, ATH_DBG_FATAL, "address test failed " "addr: 0x%08x - wr:0x%08x != " "rd:0x%08x\n", addr, wrData, rdData); return false; } } for (j = 0; j < 4; j++) { wrData = patternData[j]; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (wrData != rdData) { ath_print(common, ATH_DBG_FATAL, "address test failed " "addr: 0x%08x - wr:0x%08x != " "rd:0x%08x\n", addr, wrData, rdData); return false; } } REG_WRITE(ah, regAddr[i], regHold[i]); } udelay(100); return true; } static void ath9k_hw_init_config(struct ath_hw *ah) { int i; ah->config.dma_beacon_response_time = 2; ah->config.sw_beacon_response_time = 10; ah->config.additional_swba_backoff = 0; ah->config.ack_6mb = 0x0; ah->config.cwm_ignore_extcca = 0; ah->config.pcie_powersave_enable = 0; ah->config.pcie_clock_req = 0; ah->config.pcie_waen = 0; ah->config.analog_shiftreg = 1; ah->config.enable_ani = true; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { ah->config.spurchans[i][0] = AR_NO_SPUR; ah->config.spurchans[i][1] = AR_NO_SPUR; } if (ah->hw_version.devid != AR2427_DEVID_PCIE) ah->config.ht_enable = 1; else ah->config.ht_enable = 0; ah->config.rx_intr_mitigation = true; ah->config.pcieSerDesWrite = true; /* * We need this for PCI devices only (Cardbus, PCI, miniPCI) * _and_ if on non-uniprocessor systems (Multiprocessor/HT). * This means we use it for all AR5416 devices, and the few * minor PCI AR9280 devices out there. * * Serialization is required because these devices do not handle * well the case of two concurrent reads/writes due to the latency * involved. During one read/write another read/write can be issued * on another CPU while the previous read/write may still be working * on our hardware, if we hit this case the hardware poops in a loop. * We prevent this by serializing reads and writes. * * This issue is not present on PCI-Express devices or pre-AR5416 * devices (legacy, 802.11abg). */ if (num_possible_cpus() > 1) ah->config.serialize_regmode = SER_REG_MODE_AUTO; } static void ath9k_hw_init_defaults(struct ath_hw *ah) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); regulatory->country_code = CTRY_DEFAULT; regulatory->power_limit = MAX_RATE_POWER; regulatory->tp_scale = ATH9K_TP_SCALE_MAX; ah->hw_version.magic = AR5416_MAGIC; ah->hw_version.subvendorid = 0; ah->atim_window = 0; ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | AR_STA_ID1_MCAST_KSRCH; ah->beacon_interval = 100; ah->enable_32kHz_clock = DONT_USE_32KHZ; ah->slottime = (u32) -1; ah->globaltxtimeout = (u32) -1; ah->power_mode = ATH9K_PM_UNDEFINED; } static int ath9k_hw_init_macaddr(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 sum; int i; u16 eeval; static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; sum = 0; for (i = 0; i < 3; i++) { eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); sum += eeval; common->macaddr[2 * i] = eeval >> 8; common->macaddr[2 * i + 1] = eeval & 0xff; } if (sum == 0 || sum == 0xffff * 3) return -EADDRNOTAVAIL; return 0; } static int ath9k_hw_post_init(struct ath_hw *ah) { int ecode; if (!AR_SREV_9271(ah)) { if (!ath9k_hw_chip_test(ah)) return -ENODEV; } if (!AR_SREV_9300_20_OR_LATER(ah)) { ecode = ar9002_hw_rf_claim(ah); if (ecode != 0) return ecode; } ecode = ath9k_hw_eeprom_init(ah); if (ecode != 0) return ecode; ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n", ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah)); ecode = ath9k_hw_rf_alloc_ext_banks(ah); if (ecode) { ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, "Failed allocating banks for " "external radio\n"); return ecode; } if (!AR_SREV_9100(ah)) { ath9k_hw_ani_setup(ah); ath9k_hw_ani_init(ah); } return 0; } static void ath9k_hw_attach_ops(struct ath_hw *ah) { if (AR_SREV_9300_20_OR_LATER(ah)) ar9003_hw_attach_ops(ah); else ar9002_hw_attach_ops(ah); } /* Called for all hardware families */ static int __ath9k_hw_init(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int r = 0; if (ah->hw_version.devid == AR5416_AR9100_DEVID) ah->hw_version.macVersion = AR_SREV_VERSION_9100; if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { ath_print(common, ATH_DBG_FATAL, "Couldn't reset chip\n"); return -EIO; } ath9k_hw_init_defaults(ah); ath9k_hw_init_config(ah); ath9k_hw_attach_ops(ah); if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n"); return -EIO; } if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) && !ah->is_pciexpress)) { ah->config.serialize_regmode = SER_REG_MODE_ON; } else { ah->config.serialize_regmode = SER_REG_MODE_OFF; } } ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n", ah->config.serialize_regmode); if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; else ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; if (!ath9k_hw_macversion_supported(ah)) { ath_print(common, ATH_DBG_FATAL, "Mac Chip Rev 0x%02x.%x is not supported by " "this driver\n", ah->hw_version.macVersion, ah->hw_version.macRev); return -EOPNOTSUPP; } if (AR_SREV_9271(ah) || AR_SREV_9100(ah)) ah->is_pciexpress = false; ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); ath9k_hw_init_cal_settings(ah); ah->ani_function = ATH9K_ANI_ALL; if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; if (!AR_SREV_9300_20_OR_LATER(ah)) ah->ani_function &= ~ATH9K_ANI_MRC_CCK; ath9k_hw_init_mode_regs(ah); /* * Read back AR_WA into a permanent copy and set bits 14 and 17. * We need to do this to avoid RMW of this register. We cannot * read the reg when chip is asleep. */ ah->WARegVal = REG_READ(ah, AR_WA); ah->WARegVal |= (AR_WA_D3_L1_DISABLE | AR_WA_ASPM_TIMER_BASED_DISABLE); if (ah->is_pciexpress) ath9k_hw_configpcipowersave(ah, 0, 0); else ath9k_hw_disablepcie(ah); if (!AR_SREV_9300_20_OR_LATER(ah)) ar9002_hw_cck_chan14_spread(ah); r = ath9k_hw_post_init(ah); if (r) return r; ath9k_hw_init_mode_gain_regs(ah); r = ath9k_hw_fill_cap_info(ah); if (r) return r; r = ath9k_hw_init_macaddr(ah); if (r) { ath_print(common, ATH_DBG_FATAL, "Failed to initialize MAC address\n"); return r; } if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); else ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); ah->bb_watchdog_timeout_ms = 25; common->state = ATH_HW_INITIALIZED; return 0; } int ath9k_hw_init(struct ath_hw *ah) { int ret; struct ath_common *common = ath9k_hw_common(ah); /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */ switch (ah->hw_version.devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: case AR5416_AR9100_DEVID: case AR9160_DEVID_PCI: case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: case AR9285_DEVID_PCIE: case AR9287_DEVID_PCI: case AR9287_DEVID_PCIE: case AR2427_DEVID_PCIE: case AR9300_DEVID_PCIE: break; default: if (common->bus_ops->ath_bus_type == ATH_USB) break; ath_print(common, ATH_DBG_FATAL, "Hardware device ID 0x%04x not supported\n", ah->hw_version.devid); return -EOPNOTSUPP; } ret = __ath9k_hw_init(ah); if (ret) { ath_print(common, ATH_DBG_FATAL, "Unable to initialize hardware; " "initialization status: %d\n", ret); return ret; } return 0; } EXPORT_SYMBOL(ath9k_hw_init); static void ath9k_hw_init_qos(struct ath_hw *ah) { ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); REG_WRITE(ah, AR_QOS_NO_ACK, SM(2, AR_QOS_NO_ACK_TWO_BIT) | SM(5, AR_QOS_NO_ACK_BIT_OFF) | SM(0, AR_QOS_NO_ACK_BYTE_OFF)); REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); REGWRITE_BUFFER_FLUSH(ah); } static void ath9k_hw_init_pll(struct ath_hw *ah, struct ath9k_channel *chan) { u32 pll = ath9k_hw_compute_pll_control(ah, chan); REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); /* Switch the core clock for ar9271 to 117Mhz */ if (AR_SREV_9271(ah)) { udelay(500); REG_WRITE(ah, 0x50040, 0x304); } udelay(RTC_PLL_SETTLE_DELAY); REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); } static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, enum nl80211_iftype opmode) { u32 imr_reg = AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_BCNMISC; if (AR_SREV_9300_20_OR_LATER(ah)) { imr_reg |= AR_IMR_RXOK_HP; if (ah->config.rx_intr_mitigation) imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; else imr_reg |= AR_IMR_RXOK_LP; } else { if (ah->config.rx_intr_mitigation) imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; else imr_reg |= AR_IMR_RXOK; } if (ah->config.tx_intr_mitigation) imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; else imr_reg |= AR_IMR_TXOK; if (opmode == NL80211_IFTYPE_AP) imr_reg |= AR_IMR_MIB; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_IMR, imr_reg); ah->imrs2_reg |= AR_IMR_S2_GTT; REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); } REGWRITE_BUFFER_FLUSH(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); } } static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us); val = min(val, (u32) 0xFFFF); REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); } static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us); val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); } static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us); val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); } static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) { if (tu > 0xFFFF) { ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT, "bad global tx timeout %u\n", tu); ah->globaltxtimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); ah->globaltxtimeout = tu; return true; } } void ath9k_hw_init_global_settings(struct ath_hw *ah) { struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; int acktimeout; int slottime; int sifstime; ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n", ah->misc_mode); if (ah->misc_mode != 0) REG_WRITE(ah, AR_PCU_MISC, REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ) sifstime = 16; else sifstime = 10; /* As defined by IEEE 802.11-2007 17.3.8.6 */ slottime = ah->slottime + 3 * ah->coverage_class; acktimeout = slottime + sifstime; /* * Workaround for early ACK timeouts, add an offset to match the * initval's 64us ack timeout value. * This was initially only meant to work around an issue with delayed * BA frames in some implementations, but it has been found to fix ACK * timeout issues in other cases as well. */ if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) acktimeout += 64 - sifstime - ah->slottime; ath9k_hw_setslottime(ah, slottime); ath9k_hw_set_ack_timeout(ah, acktimeout); ath9k_hw_set_cts_timeout(ah, acktimeout); if (ah->globaltxtimeout != (u32) -1) ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); } EXPORT_SYMBOL(ath9k_hw_init_global_settings); void ath9k_hw_deinit(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (common->state < ATH_HW_INITIALIZED) goto free_hw; ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); free_hw: ath9k_hw_rf_free_ext_banks(ah); } EXPORT_SYMBOL(ath9k_hw_deinit); /*******/ /* INI */ /*******/ u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) { u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); if (IS_CHAN_B(chan)) ctl |= CTL_11B; else if (IS_CHAN_G(chan)) ctl |= CTL_11G; else ctl |= CTL_11A; return ctl; } /****************************************/ /* Reset and Channel Switching Routines */ /****************************************/ static inline void ath9k_hw_set_dma(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 regval; ENABLE_REGWRITE_BUFFER(ah); /* * set AHB_MODE not to do cacheline prefetches */ if (!AR_SREV_9300_20_OR_LATER(ah)) { regval = REG_READ(ah, AR_AHB_MODE); REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); } /* * let mac dma reads be in 128 byte chunks */ regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); REGWRITE_BUFFER_FLUSH(ah); /* * Restore TX Trigger Level to its pre-reset value. * The initial value depends on whether aggregation is enabled, and is * adjusted whenever underruns are detected. */ if (!AR_SREV_9300_20_OR_LATER(ah)) REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); ENABLE_REGWRITE_BUFFER(ah); /* * let mac dma writes be in 128 byte chunks */ regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); /* * Setup receive FIFO threshold to hold off TX activities */ REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - ah->caps.rx_status_len); } /* * reduce the number of usable entries in PCU TXBUF to avoid * wrap around issues. */ if (AR_SREV_9285(ah)) { /* For AR9285 the number of Fifos are reduced to half. * So set the usable tx buf size also to half to * avoid data/delimiter underruns */ REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); } else if (!AR_SREV_9271(ah)) { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); } REGWRITE_BUFFER_FLUSH(ah); if (AR_SREV_9300_20_OR_LATER(ah)) ath9k_hw_reset_txstatus_ring(ah); } static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) { u32 val; val = REG_READ(ah, AR_STA_ID1); val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); switch (opmode) { case NL80211_IFTYPE_AP: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE); REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE); REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_MONITOR: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); break; } } void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, u32 *coef_mantissa, u32 *coef_exponent) { u32 coef_exp, coef_man; for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; coef_exp = 14 - (coef_exp - COEF_SCALE_S); coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); *coef_exponent = coef_exp - 16; } static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) { u32 rst_flags; u32 tmpReg; if (AR_SREV_9100(ah)) { u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); val &= ~AR_RTC_DERIVED_CLK_PERIOD; val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); (void)REG_READ(ah, AR_RTC_DERIVED_CLK); } ENABLE_REGWRITE_BUFFER(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (AR_SREV_9100(ah)) { rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; } else { tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { u32 val; REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); val = AR_RC_HOSTIF; if (!AR_SREV_9300_20_OR_LATER(ah)) val |= AR_RC_AHB; REG_WRITE(ah, AR_RC, val); } else if (!AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB); rst_flags = AR_RTC_RC_MAC_WARM; if (type == ATH9K_RESET_COLD) rst_flags |= AR_RTC_RC_MAC_COLD; } REG_WRITE(ah, AR_RTC_RC, rst_flags); REGWRITE_BUFFER_FLUSH(ah); udelay(50); REG_WRITE(ah, AR_RTC_RC, 0); if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "RTC stuck in MAC reset\n"); return false; } if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, 0); if (AR_SREV_9100(ah)) udelay(50); return true; } static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) { ENABLE_REGWRITE_BUFFER(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB); REG_WRITE(ah, AR_RTC_RESET, 0); udelay(2); REGWRITE_BUFFER_FLUSH(ah); if (!AR_SREV_9300_20_OR_LATER(ah)) udelay(2); if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, 0); REG_WRITE(ah, AR_RTC_RESET, 1); if (!ath9k_hw_wait(ah, AR_RTC_STATUS, AR_RTC_STATUS_M, AR_RTC_STATUS_ON, AH_WAIT_TIMEOUT)) { ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "RTC not waking up\n"); return false; } ath9k_hw_read_revisions(ah); return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); } static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) { if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); switch (type) { case ATH9K_RESET_POWER_ON: return ath9k_hw_set_reset_power_on(ah); case ATH9K_RESET_WARM: case ATH9K_RESET_COLD: return ath9k_hw_set_reset(ah, type); default: return false; } } static bool ath9k_hw_chip_reset(struct ath_hw *ah, struct ath9k_channel *chan) { if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) { if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) return false; } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) return false; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; ah->chip_fullsleep = false; ath9k_hw_init_pll(ah, chan); ath9k_hw_set_rfmode(ah, chan); return true; } static bool ath9k_hw_channel_change(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_channel *channel = chan->chan; u32 qnum; int r; for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { if (ath9k_hw_numtxpending(ah, qnum)) { ath_print(common, ATH_DBG_QUEUE, "Transmit frames pending on " "queue %d\n", qnum); return false; } } if (!ath9k_hw_rfbus_req(ah)) { ath_print(common, ATH_DBG_FATAL, "Could not kill baseband RX\n"); return false; } ath9k_hw_set_channel_regs(ah, chan); r = ath9k_hw_rf_set_freq(ah, chan); if (r) { ath_print(common, ATH_DBG_FATAL, "Failed to set channel\n"); return false; } ath9k_hw_set_clockrate(ah); ah->eep_ops->set_txpower(ah, chan, ath9k_regd_get_ctl(regulatory, chan), channel->max_antenna_gain * 2, channel->max_power * 2, min((u32) MAX_RATE_POWER, (u32) regulatory->power_limit), false); ath9k_hw_rfbus_done(ah); if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); ath9k_hw_spur_mitigate_freq(ah, chan); return true; } bool ath9k_hw_check_alive(struct ath_hw *ah) { int count = 50; u32 reg; if (AR_SREV_9285_12_OR_LATER(ah)) return true; do { reg = REG_READ(ah, AR_OBS_BUS_1); if ((reg & 0x7E7FFFEF) == 0x00702400) continue; switch (reg & 0x7E000B00) { case 0x1E000000: case 0x52000B00: case 0x18000B00: continue; default: return true; } } while (count-- > 0); return false; } EXPORT_SYMBOL(ath9k_hw_check_alive); int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, struct ath9k_hw_cal_data *caldata, bool bChannelChange) { struct ath_common *common = ath9k_hw_common(ah); u32 saveLedState; struct ath9k_channel *curchan = ah->curchan; u32 saveDefAntenna; u32 macStaId1; u64 tsf = 0; int i, r; ah->txchainmask = common->tx_chainmask; ah->rxchainmask = common->rx_chainmask; if (!ah->chip_fullsleep) { ath9k_hw_abortpcurecv(ah); if (!ath9k_hw_stopdmarecv(ah)) { ath_print(common, ATH_DBG_XMIT, "Failed to stop receive dma\n"); bChannelChange = false; } } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return -EIO; if (curchan && !ah->chip_fullsleep) ath9k_hw_getnf(ah, curchan); ah->caldata = caldata; if (caldata && (chan->channel != caldata->channel || (chan->channelFlags & ~CHANNEL_CW_INT) != (caldata->channelFlags & ~CHANNEL_CW_INT))) { /* Operating channel changed, reset channel calibration data */ memset(caldata, 0, sizeof(*caldata)); ath9k_init_nfcal_hist_buffer(ah, chan); } if (bChannelChange && (ah->chip_fullsleep != true) && (ah->curchan != NULL) && (chan->channel != ah->curchan->channel) && ((chan->channelFlags & CHANNEL_ALL) == (ah->curchan->channelFlags & CHANNEL_ALL)) && (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) { if (ath9k_hw_channel_change(ah, chan)) { ath9k_hw_loadnf(ah, ah->curchan); ath9k_hw_start_nfcal(ah, true); if (AR_SREV_9271(ah)) ar9002_hw_load_ani_reg(ah, chan); return 0; } } saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) saveDefAntenna = 1; macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; /* For chips on which RTC reset is done, save TSF before it gets cleared */ if (AR_SREV_9100(ah) || (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) tsf = ath9k_hw_gettsf64(ah); saveLedState = REG_READ(ah, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); ath9k_hw_mark_phy_inactive(ah); /* Only required on the first reset */ if (AR_SREV_9271(ah) && ah->htc_reset_init) { REG_WRITE(ah, AR9271_RESET_POWER_DOWN_CONTROL, AR9271_RADIO_RF_RST); udelay(50); } if (!ath9k_hw_chip_reset(ah, chan)) { ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n"); return -EINVAL; } /* Only required on the first reset */ if (AR_SREV_9271(ah) && ah->htc_reset_init) { ah->htc_reset_init = false; REG_WRITE(ah, AR9271_RESET_POWER_DOWN_CONTROL, AR9271_GATE_MAC_CTL); udelay(50); } /* Restore TSF */ if (tsf) ath9k_hw_settsf64(ah, tsf); if (AR_SREV_9280_20_OR_LATER(ah)) REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); if (!AR_SREV_9300_20_OR_LATER(ah)) ar9002_hw_enable_async_fifo(ah); r = ath9k_hw_process_ini(ah, chan); if (r) return r; /* * Some AR91xx SoC devices frequently fail to accept TSF writes * right after the chip reset. When that happens, write a new * value after the initvals have been applied, with an offset * based on measured time difference */ if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { tsf += 1500; ath9k_hw_settsf64(ah, tsf); } /* Setup MFP options for CCMP */ if (AR_SREV_9280_20_OR_LATER(ah)) { /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt * frames when constructing CCMP AAD. */ REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 0xc7ff); ah->sw_mgmt_crypto = false; } else if (AR_SREV_9160_10_OR_LATER(ah)) { /* Disable hardware crypto for management frames */ REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); REG_SET_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); ah->sw_mgmt_crypto = true; } else ah->sw_mgmt_crypto = true; if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); ath9k_hw_spur_mitigate_freq(ah, chan); ah->eep_ops->set_board_values(ah, chan); ath9k_hw_set_operating_mode(ah, ah->opmode); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) | macStaId1 | AR_STA_ID1_RTS_USE_DEF | (ah->config. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) | ah->sta_id1_defaults); ath_hw_setbssidmask(common); REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); ath9k_hw_write_associd(ah); REG_WRITE(ah, AR_ISR, ~0); REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); REGWRITE_BUFFER_FLUSH(ah); r = ath9k_hw_rf_set_freq(ah, chan); if (r) return r; ath9k_hw_set_clockrate(ah); ENABLE_REGWRITE_BUFFER(ah); for (i = 0; i < AR_NUM_DCU; i++) REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); REGWRITE_BUFFER_FLUSH(ah); ah->intr_txqs = 0; for (i = 0; i < ah->caps.total_queues; i++) ath9k_hw_resettxqueue(ah, i); ath9k_hw_init_interrupt_masks(ah, ah->opmode); ath9k_hw_ani_cache_ini_regs(ah); ath9k_hw_init_qos(ah); if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) ath9k_enable_rfkill(ah); ath9k_hw_init_global_settings(ah); if (!AR_SREV_9300_20_OR_LATER(ah)) { ar9002_hw_update_async_fifo(ah); ar9002_hw_enable_wep_aggregation(ah); } REG_WRITE(ah, AR_STA_ID1, REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); ath9k_hw_set_dma(ah); REG_WRITE(ah, AR_OBS, 8); if (ah->config.rx_intr_mitigation) { REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); } if (ah->config.tx_intr_mitigation) { REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); } ath9k_hw_init_bb(ah, chan); if (!ath9k_hw_init_cal(ah, chan)) return -EIO; ENABLE_REGWRITE_BUFFER(ah); ath9k_hw_restore_chainmask(ah); REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); REGWRITE_BUFFER_FLUSH(ah); /* * For big endian systems turn on swapping for descriptors */ if (AR_SREV_9100(ah)) { u32 mask; mask = REG_READ(ah, AR_CFG); if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { ath_print(common, ATH_DBG_RESET, "CFG Byte Swap Set 0x%x\n", mask); } else { mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; REG_WRITE(ah, AR_CFG, mask); ath_print(common, ATH_DBG_RESET, "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); } } else { if (common->bus_ops->ath_bus_type == ATH_USB) { /* Configure AR9271 target WLAN */ if (AR_SREV_9271(ah)) REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); else REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); } #ifdef __BIG_ENDIAN else REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); #endif } if (ah->btcoex_hw.enabled) ath9k_hw_btcoex_enable(ah); if (AR_SREV_9300_20_OR_LATER(ah)) ar9003_hw_bb_watchdog_config(ah); return 0; } EXPORT_SYMBOL(ath9k_hw_reset); /******************************/ /* Power Management (Chipset) */ /******************************/ /* * Notify Power Mgt is disabled in self-generated frames. * If requested, force chip to sleep. */ static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { /* * Clear the RTC force wake bit to allow the * mac to go to sleep. */ REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); /* Shutdown chip. Active low */ if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) REG_CLR_BIT(ah, (AR_RTC_RESET), AR_RTC_RESET_EN); } /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ if (AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); } /* * Notify Power Management is enabled in self-generating * frames. If request, set power mode of chip to * auto/normal. Duration in units of 128us (1/8 TU). */ static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { struct ath9k_hw_capabilities *pCap = &ah->caps; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { /* Set WakeOnInterrupt bit; clear ForceWake bit */ REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_ON_INT); } else { /* * Clear the RTC force wake bit to allow the * mac to go to sleep. */ REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } } /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ if (AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); } static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) { u32 val; int i; /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } if (setChip) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON) != true) { return false; } if (!AR_SREV_9300_20_OR_LATER(ah)) ath9k_hw_init_pll(ah, NULL); } if (AR_SREV_9100(ah)) REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); udelay(50); for (i = POWER_UP_TIME / 50; i > 0; i--) { val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; if (val == AR_RTC_STATUS_ON) break; udelay(50); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } if (i == 0) { ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, "Failed to wakeup in %uus\n", POWER_UP_TIME / 20); return false; } } REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); return true; } bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) { struct ath_common *common = ath9k_hw_common(ah); int status = true, setChip = true; static const char *modes[] = { "AWAKE", "FULL-SLEEP", "NETWORK SLEEP", "UNDEFINED" }; if (ah->power_mode == mode) return status; ath_print(common, ATH_DBG_RESET, "%s -> %s\n", modes[ah->power_mode], modes[mode]); switch (mode) { case ATH9K_PM_AWAKE: status = ath9k_hw_set_power_awake(ah, setChip); break; case ATH9K_PM_FULL_SLEEP: ath9k_set_power_sleep(ah, setChip); ah->chip_fullsleep = true; break; case ATH9K_PM_NETWORK_SLEEP: ath9k_set_power_network_sleep(ah, setChip); break; default: ath_print(common, ATH_DBG_FATAL, "Unknown power mode %u\n", mode); return false; } ah->power_mode = mode; return status; } EXPORT_SYMBOL(ath9k_hw_setpower); /*******************/ /* Beacon Handling */ /*******************/ void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) { int flags = 0; ah->beacon_interval = beacon_period; ENABLE_REGWRITE_BUFFER(ah); switch (ah->opmode) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_MONITOR: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); flags |= AR_TBTT_TIMER_EN; break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: REG_SET_BIT(ah, AR_TXCFG, AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); REG_WRITE(ah, AR_NEXT_NDP_TIMER, TU_TO_USEC(next_beacon + (ah->atim_window ? ah-> atim_window : 1))); flags |= AR_NDP_TIMER_EN; case NL80211_IFTYPE_AP: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, TU_TO_USEC(next_beacon - ah->config. dma_beacon_response_time)); REG_WRITE(ah, AR_NEXT_SWBA, TU_TO_USEC(next_beacon - ah->config. sw_beacon_response_time)); flags |= AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; break; default: ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON, "%s: unsupported opmode: %d\n", __func__, ah->opmode); return; break; } REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); REGWRITE_BUFFER_FLUSH(ah); beacon_period &= ~ATH9K_BEACON_ENA; if (beacon_period & ATH9K_BEACON_RESET_TSF) { ath9k_hw_reset_tsf(ah); } REG_SET_BIT(ah, AR_TIMER_MODE, flags); } EXPORT_SYMBOL(ath9k_hw_beaconinit); void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, const struct ath9k_beacon_state *bs) { u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REGWRITE_BUFFER_FLUSH(ah); REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; if (bs->bs_sleepduration > beaconintval) beaconintval = bs->bs_sleepduration; dtimperiod = bs->bs_dtimperiod; if (bs->bs_sleepduration > dtimperiod) dtimperiod = bs->bs_sleepduration; if (beaconintval == dtimperiod) nextTbtt = bs->bs_nextdtim; else nextTbtt = bs->bs_nexttbtt; ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_NEXT_DTIM, TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); REG_WRITE(ah, AR_SLEEP1, SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) | AR_SLEEP1_ASSUME_DTIM); if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) beacontimeout = (BEACON_TIMEOUT_VAL << 3); else beacontimeout = MIN_BEACON_TIMEOUT_VAL; REG_WRITE(ah, AR_SLEEP2, SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); REGWRITE_BUFFER_FLUSH(ah); REG_SET_BIT(ah, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN); /* TSF Out of Range Threshold */ REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); } EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); /*******************/ /* HW Capabilities */ /*******************/ int ath9k_hw_fill_cap_info(struct ath_hw *ah) { struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ath_common *common = ath9k_hw_common(ah); struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw; u16 capField = 0, eeval; u8 ant_div_ctl1; eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); regulatory->current_rd = eeval; eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); if (AR_SREV_9285_12_OR_LATER(ah)) eeval |= AR9285_RDEXT_DEFAULT; regulatory->current_rd_ext = eeval; capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); if (ah->opmode != NL80211_IFTYPE_AP && ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { if (regulatory->current_rd == 0x64 || regulatory->current_rd == 0x65) regulatory->current_rd += 5; else if (regulatory->current_rd == 0x41) regulatory->current_rd = 0x43; ath_print(common, ATH_DBG_REGULATORY, "regdomain mapped to 0x%x\n", regulatory->current_rd); } eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { ath_print(common, ATH_DBG_FATAL, "no band has been marked as supported in EEPROM.\n"); return -EINVAL; } if (eeval & AR5416_OPFLAGS_11A) pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; if (eeval & AR5416_OPFLAGS_11G) pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); /* * For AR9271 we will temporarilly uses the rx chainmax as read from * the EEPROM. */ if ((ah->hw_version.devid == AR5416_DEVID_PCI) && !(eeval & AR5416_OPFLAGS_11A) && !(AR_SREV_9271(ah))) /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; else /* Use rx_chainmask from EEPROM. */ pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; pCap->low_2ghz_chan = 2312; pCap->high_2ghz_chan = 2732; pCap->low_5ghz_chan = 4920; pCap->high_5ghz_chan = 6100; common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; if (ah->config.ht_enable) pCap->hw_caps |= ATH9K_HW_CAP_HT; else pCap->hw_caps &= ~ATH9K_HW_CAP_HT; if (capField & AR_EEPROM_EEPCAP_MAXQCU) pCap->total_queues = MS(capField, AR_EEPROM_EEPCAP_MAXQCU); else pCap->total_queues = ATH9K_NUM_TX_QUEUES; if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) pCap->keycache_size = 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); else pCap->keycache_size = AR_KEYTABLE_SIZE; if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1; else pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; if (AR_SREV_9271(ah)) pCap->num_gpio_pins = AR9271_NUM_GPIO; else if (AR_DEVID_7010(ah)) pCap->num_gpio_pins = AR7010_NUM_GPIO; else if (AR_SREV_9285_12_OR_LATER(ah)) pCap->num_gpio_pins = AR9285_NUM_GPIO; else if (AR_SREV_9280_20_OR_LATER(ah)) pCap->num_gpio_pins = AR928X_NUM_GPIO; else pCap->num_gpio_pins = AR_NUM_GPIO; if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_CST; pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; } else { pCap->rts_aggr_limit = (8 * 1024); } pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); if (ah->rfsilent & EEP_RFSILENT_ENABLED) { ah->rfkill_gpio = MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); ah->rfkill_polarity = MS(ah->rfsilent, EEP_RFSILENT_POLARITY); pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; } #endif if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; else pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; else pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | AR_EEPROM_EEREGCAP_EN_KK_U2 | AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; } else { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; } /* Advertise midband for AR5416 with FCC midband set in eeprom */ if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) && AR_SREV_5416(ah)) pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; pCap->num_antcfg_5ghz = ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ); pCap->num_antcfg_2ghz = ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ); if (AR_SREV_9280_20_OR_LATER(ah) && ath9k_hw_btcoex_supported(ah)) { btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO; btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO; if (AR_SREV_9285(ah)) { btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO; } else { btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE; } } else { btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE; } if (AR_SREV_9300_20_OR_LATER(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC | ATH9K_HW_CAP_FASTCLOCK; pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; pCap->rx_status_len = sizeof(struct ar9003_rxs); pCap->tx_desc_len = sizeof(struct ar9003_txc); pCap->txs_len = sizeof(struct ar9003_txs); if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; } else { pCap->tx_desc_len = sizeof(struct ath_desc); if (AR_SREV_9280_20(ah) && ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <= AR5416_EEP_MINOR_VER_16) || ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G))) pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; } if (AR_SREV_9300_20_OR_LATER(ah)) pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; if (AR_SREV_9300_20_OR_LATER(ah)) ah->ent_mode = REG_READ(ah, AR_ENT_OTP); if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; if (AR_SREV_9285(ah)) if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; } return 0; } /****************************/ /* GPIO / RFKILL / Antennae */ /****************************/ static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type) { int addr; u32 gpio_shift, tmp; if (gpio > 11) addr = AR_GPIO_OUTPUT_MUX3; else if (gpio > 5) addr = AR_GPIO_OUTPUT_MUX2; else addr = AR_GPIO_OUTPUT_MUX1; gpio_shift = (gpio % 6) * 5; if (AR_SREV_9280_20_OR_LATER(ah) || (addr != AR_GPIO_OUTPUT_MUX1)) { REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift)); } else { tmp = REG_READ(ah, addr); tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); tmp &= ~(0x1f << gpio_shift); tmp |= (type << gpio_shift); REG_WRITE(ah, addr, tmp); } } void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) { u32 gpio_shift; BUG_ON(gpio >= ah->caps.num_gpio_pins); if (AR_DEVID_7010(ah)) { gpio_shift = gpio; REG_RMW(ah, AR7010_GPIO_OE, (AR7010_GPIO_OE_AS_INPUT << gpio_shift), (AR7010_GPIO_OE_MASK << gpio_shift)); return; } gpio_shift = gpio << 1; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) { #define MS_REG_READ(x, y) \ (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) if (gpio >= ah->caps.num_gpio_pins) return 0xffffffff; if (AR_DEVID_7010(ah)) { u32 val; val = REG_READ(ah, AR7010_GPIO_IN); return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; } else if (AR_SREV_9300_20_OR_LATER(ah)) return MS_REG_READ(AR9300, gpio) != 0; else if (AR_SREV_9271(ah)) return MS_REG_READ(AR9271, gpio) != 0; else if (AR_SREV_9287_11_OR_LATER(ah)) return MS_REG_READ(AR9287, gpio) != 0; else if (AR_SREV_9285_12_OR_LATER(ah)) return MS_REG_READ(AR9285, gpio) != 0; else if (AR_SREV_9280_20_OR_LATER(ah)) return MS_REG_READ(AR928X, gpio) != 0; else return MS_REG_READ(AR, gpio) != 0; } EXPORT_SYMBOL(ath9k_hw_gpio_get); void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, u32 ah_signal_type) { u32 gpio_shift; if (AR_DEVID_7010(ah)) { gpio_shift = gpio; REG_RMW(ah, AR7010_GPIO_OE, (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), (AR7010_GPIO_OE_MASK << gpio_shift)); return; } ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); gpio_shift = 2 * gpio; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } EXPORT_SYMBOL(ath9k_hw_cfg_output); void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) { if (AR_DEVID_7010(ah)) { val = val ? 0 : 1; REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), AR_GPIO_BIT(gpio)); return; } if (AR_SREV_9271(ah)) val = ~val; REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), AR_GPIO_BIT(gpio)); } EXPORT_SYMBOL(ath9k_hw_set_gpio); u32 ath9k_hw_getdefantenna(struct ath_hw *ah) { return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; } EXPORT_SYMBOL(ath9k_hw_getdefantenna); void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) { REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } EXPORT_SYMBOL(ath9k_hw_setantenna); /*********************/ /* General Operation */ /*********************/ u32 ath9k_hw_getrxfilter(struct ath_hw *ah) { u32 bits = REG_READ(ah, AR_RX_FILTER); u32 phybits = REG_READ(ah, AR_PHY_ERR); if (phybits & AR_PHY_ERR_RADAR) bits |= ATH9K_RX_FILTER_PHYRADAR; if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) bits |= ATH9K_RX_FILTER_PHYERR; return bits; } EXPORT_SYMBOL(ath9k_hw_getrxfilter); void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) { u32 phybits; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_RX_FILTER, bits); phybits = 0; if (bits & ATH9K_RX_FILTER_PHYRADAR) phybits |= AR_PHY_ERR_RADAR; if (bits & ATH9K_RX_FILTER_PHYERR) phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; REG_WRITE(ah, AR_PHY_ERR, phybits); if (phybits) REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); else REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); REGWRITE_BUFFER_FLUSH(ah); } EXPORT_SYMBOL(ath9k_hw_setrxfilter); bool ath9k_hw_phy_disable(struct ath_hw *ah) { if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) return false; ath9k_hw_init_pll(ah, NULL); return true; } EXPORT_SYMBOL(ath9k_hw_phy_disable); bool ath9k_hw_disable(struct ath_hw *ah) { if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) return false; ath9k_hw_init_pll(ah, NULL); return true; } EXPORT_SYMBOL(ath9k_hw_disable); void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ath9k_channel *chan = ah->curchan; struct ieee80211_channel *channel = chan->chan; regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER); ah->eep_ops->set_txpower(ah, chan, ath9k_regd_get_ctl(regulatory, chan), channel->max_antenna_gain * 2, channel->max_power * 2, min((u32) MAX_RATE_POWER, (u32) regulatory->power_limit), test); } EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); void ath9k_hw_setopmode(struct ath_hw *ah) { ath9k_hw_set_operating_mode(ah, ah->opmode); } EXPORT_SYMBOL(ath9k_hw_setopmode); void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) { REG_WRITE(ah, AR_MCAST_FIL0, filter0); REG_WRITE(ah, AR_MCAST_FIL1, filter1); } EXPORT_SYMBOL(ath9k_hw_setmcastfilter); void ath9k_hw_write_associd(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); } EXPORT_SYMBOL(ath9k_hw_write_associd); #define ATH9K_MAX_TSF_READ 10 u64 ath9k_hw_gettsf64(struct ath_hw *ah) { u32 tsf_lower, tsf_upper1, tsf_upper2; int i; tsf_upper1 = REG_READ(ah, AR_TSF_U32); for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { tsf_lower = REG_READ(ah, AR_TSF_L32); tsf_upper2 = REG_READ(ah, AR_TSF_U32); if (tsf_upper2 == tsf_upper1) break; tsf_upper1 = tsf_upper2; } WARN_ON( i == ATH9K_MAX_TSF_READ ); return (((u64)tsf_upper1 << 32) | tsf_lower); } EXPORT_SYMBOL(ath9k_hw_gettsf64); void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) { REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); } EXPORT_SYMBOL(ath9k_hw_settsf64); void ath9k_hw_reset_tsf(struct ath_hw *ah) { if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, AH_TSF_WRITE_TIMEOUT)) ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } EXPORT_SYMBOL(ath9k_hw_reset_tsf); void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) { if (setting) ah->misc_mode |= AR_PCU_TX_ADD_TSF; else ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; } EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); void ath9k_hw_set11nmac2040(struct ath_hw *ah) { struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; u32 macmode; if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) macmode = AR_2040_JOINED_RX_CLEAR; else macmode = 0; REG_WRITE(ah, AR_2040_MODE, macmode); } /* HW Generic timers configuration */ static const struct ath_gen_timer_configuration gen_tmr_configuration[] = { {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, AR_NDP2_TIMER_MODE, 0x0002}, {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, AR_NDP2_TIMER_MODE, 0x0004}, {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, AR_NDP2_TIMER_MODE, 0x0008}, {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, AR_NDP2_TIMER_MODE, 0x0010}, {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, AR_NDP2_TIMER_MODE, 0x0020}, {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, AR_NDP2_TIMER_MODE, 0x0040}, {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, AR_NDP2_TIMER_MODE, 0x0080} }; /* HW generic timer primitives */ /* compute and clear index of rightmost 1 */ static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) { u32 b; b = *mask; b &= (0-b); *mask &= ~b; b *= debruijn32; b >>= 27; return timer_table->gen_timer_index[b]; } static u32 ath9k_hw_gettsf32(struct ath_hw *ah) { return REG_READ(ah, AR_TSF_L32); } struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, void (*trigger)(void *), void (*overflow)(void *), void *arg, u8 timer_index) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; struct ath_gen_timer *timer; timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); if (timer == NULL) { ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, "Failed to allocate memory" "for hw timer[%d]\n", timer_index); return NULL; } /* allocate a hardware generic timer slot */ timer_table->timers[timer_index] = timer; timer->index = timer_index; timer->trigger = trigger; timer->overflow = overflow; timer->arg = arg; return timer; } EXPORT_SYMBOL(ath_gen_timer_alloc); void ath9k_hw_gen_timer_start(struct ath_hw *ah, struct ath_gen_timer *timer, u32 timer_next, u32 timer_period) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; u32 tsf; BUG_ON(!timer_period); set_bit(timer->index, &timer_table->timer_mask.timer_bits); tsf = ath9k_hw_gettsf32(ah); ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER, "curent tsf %x period %x" "timer_next %x\n", tsf, timer_period, timer_next); /* * Pull timer_next forward if the current TSF already passed it * because of software latency */ if (timer_next < tsf) timer_next = tsf + timer_period; /* * Program generic timer registers */ REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, timer_next); REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, timer_period); REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, gen_tmr_configuration[timer->index].mode_mask); /* Enable both trigger and thresh interrupt masks */ REG_SET_BIT(ah, AR_IMR_S5, (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); } EXPORT_SYMBOL(ath9k_hw_gen_timer_start); void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; if ((timer->index < AR_FIRST_NDP_TIMER) || (timer->index >= ATH_MAX_GEN_TIMER)) { return; } /* Clear generic timer enable bits. */ REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, gen_tmr_configuration[timer->index].mode_mask); /* Disable both trigger and thresh interrupt masks */ REG_CLR_BIT(ah, AR_IMR_S5, (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); clear_bit(timer->index, &timer_table->timer_mask.timer_bits); } EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; /* free the hardware generic timer slot */ timer_table->timers[timer->index] = NULL; kfree(timer); } EXPORT_SYMBOL(ath_gen_timer_free); /* * Generic Timer Interrupts handling */ void ath_gen_timer_isr(struct ath_hw *ah) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; struct ath_gen_timer *timer; struct ath_common *common = ath9k_hw_common(ah); u32 trigger_mask, thresh_mask, index; /* get hardware generic timer interrupt status */ trigger_mask = ah->intr_gen_timer_trigger; thresh_mask = ah->intr_gen_timer_thresh; trigger_mask &= timer_table->timer_mask.val; thresh_mask &= timer_table->timer_mask.val; trigger_mask &= ~thresh_mask; while (thresh_mask) { index = rightmost_index(timer_table, &thresh_mask); timer = timer_table->timers[index]; BUG_ON(!timer); ath_print(common, ATH_DBG_HWTIMER, "TSF overflow for Gen timer %d\n", index); timer->overflow(timer->arg); } while (trigger_mask) { index = rightmost_index(timer_table, &trigger_mask); timer = timer_table->timers[index]; BUG_ON(!timer); ath_print(common, ATH_DBG_HWTIMER, "Gen timer[%d] trigger\n", index); timer->trigger(timer->arg); } } EXPORT_SYMBOL(ath_gen_timer_isr); /********/ /* HTC */ /********/ void ath9k_hw_htc_resetinit(struct ath_hw *ah) { ah->htc_reset_init = true; } EXPORT_SYMBOL(ath9k_hw_htc_resetinit); static struct { u32 version; const char * name; } ath_mac_bb_names[] = { /* Devices with external radios */ { AR_SREV_VERSION_5416_PCI, "5416" }, { AR_SREV_VERSION_5416_PCIE, "5418" }, { AR_SREV_VERSION_9100, "9100" }, { AR_SREV_VERSION_9160, "9160" }, /* Single-chip solutions */ { AR_SREV_VERSION_9280, "9280" }, { AR_SREV_VERSION_9285, "9285" }, { AR_SREV_VERSION_9287, "9287" }, { AR_SREV_VERSION_9271, "9271" }, { AR_SREV_VERSION_9300, "9300" }, }; /* For devices with external radios */ static struct { u16 version; const char * name; } ath_rf_names[] = { { 0, "5133" }, { AR_RAD5133_SREV_MAJOR, "5133" }, { AR_RAD5122_SREV_MAJOR, "5122" }, { AR_RAD2133_SREV_MAJOR, "2133" }, { AR_RAD2122_SREV_MAJOR, "2122" } }; /* * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. */ static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) { int i; for (i=0; i= AR9280 are single-chip */ if (AR_SREV_9280_20_OR_LATER(ah)) { used = snprintf(hw_name, len, "Atheros AR%s Rev:%x", ath9k_hw_mac_bb_name(ah->hw_version.macVersion), ah->hw_version.macRev); } else { used = snprintf(hw_name, len, "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", ath9k_hw_mac_bb_name(ah->hw_version.macVersion), ah->hw_version.macRev, ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & AR_RADIO_SREV_MAJOR)), ah->hw_version.phyRev); } hw_name[used] = '\0'; } EXPORT_SYMBOL(ath9k_hw_name);