/* * kaslr.c * * This contains the routines needed to generate a reasonable level of * entropy to choose a randomized kernel base address offset in support * of Kernel Address Space Layout Randomization (KASLR). Additionally * handles walking the physical memory maps (and tracking memory regions * to avoid) in order to select a physical memory location that can * contain the entire properly aligned running kernel image. * */ #include "misc.h" #include "error.h" #include #include #include #include #include #include #include #include /* Simplified build-specific string for starting entropy. */ static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; #define I8254_PORT_CONTROL 0x43 #define I8254_PORT_COUNTER0 0x40 #define I8254_CMD_READBACK 0xC0 #define I8254_SELECT_COUNTER0 0x02 #define I8254_STATUS_NOTREADY 0x40 static inline u16 i8254(void) { u16 status, timer; do { outb(I8254_PORT_CONTROL, I8254_CMD_READBACK | I8254_SELECT_COUNTER0); status = inb(I8254_PORT_COUNTER0); timer = inb(I8254_PORT_COUNTER0); timer |= inb(I8254_PORT_COUNTER0) << 8; } while (status & I8254_STATUS_NOTREADY); return timer; } static unsigned long rotate_xor(unsigned long hash, const void *area, size_t size) { size_t i; unsigned long *ptr = (unsigned long *)area; for (i = 0; i < size / sizeof(hash); i++) { /* Rotate by odd number of bits and XOR. */ hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); hash ^= ptr[i]; } return hash; } /* Attempt to create a simple but unpredictable starting entropy. */ static unsigned long get_random_boot(void) { unsigned long hash = 0; hash = rotate_xor(hash, build_str, sizeof(build_str)); hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); return hash; } static unsigned long get_random_long(void) { #ifdef CONFIG_X86_64 const unsigned long mix_const = 0x5d6008cbf3848dd3UL; #else const unsigned long mix_const = 0x3f39e593UL; #endif unsigned long raw, random = get_random_boot(); bool use_i8254 = true; debug_putstr("KASLR using"); if (has_cpuflag(X86_FEATURE_RDRAND)) { debug_putstr(" RDRAND"); if (rdrand_long(&raw)) { random ^= raw; use_i8254 = false; } } if (has_cpuflag(X86_FEATURE_TSC)) { debug_putstr(" RDTSC"); raw = rdtsc(); random ^= raw; use_i8254 = false; } if (use_i8254) { debug_putstr(" i8254"); random ^= i8254(); } /* Circular multiply for better bit diffusion */ asm("mul %3" : "=a" (random), "=d" (raw) : "a" (random), "rm" (mix_const)); random += raw; debug_putstr("...\n"); return random; } struct mem_vector { unsigned long start; unsigned long size; }; enum mem_avoid_index { MEM_AVOID_ZO_RANGE = 0, MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, MEM_AVOID_BOOTPARAMS, MEM_AVOID_MAX, }; static struct mem_vector mem_avoid[MEM_AVOID_MAX]; static bool mem_contains(struct mem_vector *region, struct mem_vector *item) { /* Item at least partially before region. */ if (item->start < region->start) return false; /* Item at least partially after region. */ if (item->start + item->size > region->start + region->size) return false; return true; } static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) { /* Item one is entirely before item two. */ if (one->start + one->size <= two->start) return false; /* Item one is entirely after item two. */ if (one->start >= two->start + two->size) return false; return true; } /* * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T). * The mem_avoid array is used to store the ranges that need to be avoided * when KASLR searches for an appropriate random address. We must avoid any * regions that are unsafe to overlap with during decompression, and other * things like the initrd, cmdline and boot_params. This comment seeks to * explain mem_avoid as clearly as possible since incorrect mem_avoid * memory ranges lead to really hard to debug boot failures. * * The initrd, cmdline, and boot_params are trivial to identify for * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and * MEM_AVOID_BOOTPARAMS respectively below. * * What is not obvious how to avoid is the range of memory that is used * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover * the compressed kernel (ZO) and its run space, which is used to extract * the uncompressed kernel (VO) and relocs. * * ZO's full run size sits against the end of the decompression buffer, so * we can calculate where text, data, bss, etc of ZO are positioned more * easily. * * For additional background, the decompression calculations can be found * in header.S, and the memory diagram is based on the one found in misc.c. * * The following conditions are already enforced by the image layouts and * associated code: * - input + input_size >= output + output_size * - kernel_total_size <= init_size * - kernel_total_size <= output_size (see Note below) * - output + init_size >= output + output_size * * (Note that kernel_total_size and output_size have no fundamental * relationship, but output_size is passed to choose_random_location * as a maximum of the two. The diagram is showing a case where * kernel_total_size is larger than output_size, but this case is * handled by bumping output_size.) * * The above conditions can be illustrated by a diagram: * * 0 output input input+input_size output+init_size * | | | | | * | | | | | * |-----|--------|--------|--------------|-----------|--|-------------| * | | | * | | | * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size * * [output, output+init_size) is the entire memory range used for * extracting the compressed image. * * [output, output+kernel_total_size) is the range needed for the * uncompressed kernel (VO) and its run size (bss, brk, etc). * * [output, output+output_size) is VO plus relocs (i.e. the entire * uncompressed payload contained by ZO). This is the area of the buffer * written to during decompression. * * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case * range of the copied ZO and decompression code. (i.e. the range * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) * * [input, input+input_size) is the original copied compressed image (ZO) * (i.e. it does not include its run size). This range must be avoided * because it contains the data used for decompression. * * [input+input_size, output+init_size) is [_text, _end) for ZO. This * range includes ZO's heap and stack, and must be avoided since it * performs the decompression. * * Since the above two ranges need to be avoided and they are adjacent, * they can be merged, resulting in: [input, output+init_size) which * becomes the MEM_AVOID_ZO_RANGE below. */ static void mem_avoid_init(unsigned long input, unsigned long input_size, unsigned long output) { unsigned long init_size = boot_params->hdr.init_size; u64 initrd_start, initrd_size; u64 cmd_line, cmd_line_size; char *ptr; /* * Avoid the region that is unsafe to overlap during * decompression. */ mem_avoid[MEM_AVOID_ZO_RANGE].start = input; mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start, mem_avoid[MEM_AVOID_ZO_RANGE].size); /* Avoid initrd. */ initrd_start = (u64)boot_params->ext_ramdisk_image << 32; initrd_start |= boot_params->hdr.ramdisk_image; initrd_size = (u64)boot_params->ext_ramdisk_size << 32; initrd_size |= boot_params->hdr.ramdisk_size; mem_avoid[MEM_AVOID_INITRD].start = initrd_start; mem_avoid[MEM_AVOID_INITRD].size = initrd_size; /* No need to set mapping for initrd, it will be handled in VO. */ /* Avoid kernel command line. */ cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; cmd_line |= boot_params->hdr.cmd_line_ptr; /* Calculate size of cmd_line. */ ptr = (char *)(unsigned long)cmd_line; for (cmd_line_size = 0; ptr[cmd_line_size++]; ) ; mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start, mem_avoid[MEM_AVOID_CMDLINE].size); /* Avoid boot parameters. */ mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start, mem_avoid[MEM_AVOID_BOOTPARAMS].size); /* We don't need to set a mapping for setup_data. */ #ifdef CONFIG_X86_VERBOSE_BOOTUP /* Make sure video RAM can be used. */ add_identity_map(0, PMD_SIZE); #endif } /* * Does this memory vector overlap a known avoided area? If so, record the * overlap region with the lowest address. */ static bool mem_avoid_overlap(struct mem_vector *img, struct mem_vector *overlap) { int i; struct setup_data *ptr; unsigned long earliest = img->start + img->size; bool is_overlapping = false; for (i = 0; i < MEM_AVOID_MAX; i++) { if (mem_overlaps(img, &mem_avoid[i]) && mem_avoid[i].start < earliest) { *overlap = mem_avoid[i]; is_overlapping = true; } } /* Avoid all entries in the setup_data linked list. */ ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; while (ptr) { struct mem_vector avoid; avoid.start = (unsigned long)ptr; avoid.size = sizeof(*ptr) + ptr->len; if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { *overlap = avoid; is_overlapping = true; } ptr = (struct setup_data *)(unsigned long)ptr->next; } return is_overlapping; } static unsigned long slots[KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN]; struct slot_area { unsigned long addr; int num; }; #define MAX_SLOT_AREA 100 static struct slot_area slot_areas[MAX_SLOT_AREA]; static unsigned long slot_max; static unsigned long slot_area_index; static void store_slot_info(struct mem_vector *region, unsigned long image_size) { struct slot_area slot_area; if (slot_area_index == MAX_SLOT_AREA) return; slot_area.addr = region->start; slot_area.num = (region->size - image_size) / CONFIG_PHYSICAL_ALIGN + 1; if (slot_area.num > 0) { slot_areas[slot_area_index++] = slot_area; slot_max += slot_area.num; } } static void slots_append(unsigned long addr) { /* Overflowing the slots list should be impossible. */ if (slot_max >= KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN) return; slots[slot_max++] = addr; } static unsigned long slots_fetch_random(void) { /* Handle case of no slots stored. */ if (slot_max == 0) return 0; return slots[get_random_long() % slot_max]; } static void process_e820_entry(struct e820entry *entry, unsigned long minimum, unsigned long image_size) { struct mem_vector region, img, overlap; /* Skip non-RAM entries. */ if (entry->type != E820_RAM) return; /* Ignore entries entirely above our maximum. */ if (entry->addr >= KERNEL_IMAGE_SIZE) return; /* Ignore entries entirely below our minimum. */ if (entry->addr + entry->size < minimum) return; region.start = entry->addr; region.size = entry->size; /* Potentially raise address to minimum location. */ if (region.start < minimum) region.start = minimum; /* Potentially raise address to meet alignment requirements. */ region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); /* Did we raise the address above the bounds of this e820 region? */ if (region.start > entry->addr + entry->size) return; /* Reduce size by any delta from the original address. */ region.size -= region.start - entry->addr; /* Reduce maximum size to fit end of image within maximum limit. */ if (region.start + region.size > KERNEL_IMAGE_SIZE) region.size = KERNEL_IMAGE_SIZE - region.start; /* Walk each aligned slot and check for avoided areas. */ for (img.start = region.start, img.size = image_size ; mem_contains(®ion, &img) ; img.start += CONFIG_PHYSICAL_ALIGN) { if (mem_avoid_overlap(&img, &overlap)) continue; slots_append(img.start); } } static unsigned long find_random_phys_addr(unsigned long minimum, unsigned long image_size) { int i; unsigned long addr; /* Make sure minimum is aligned. */ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); /* Verify potential e820 positions, appending to slots list. */ for (i = 0; i < boot_params->e820_entries; i++) { process_e820_entry(&boot_params->e820_map[i], minimum, image_size); } return slots_fetch_random(); } static unsigned long find_random_virt_addr(unsigned long minimum, unsigned long image_size) { unsigned long slots, random_addr; /* Make sure minimum is aligned. */ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); /* Align image_size for easy slot calculations. */ image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN); /* * There are how many CONFIG_PHYSICAL_ALIGN-sized slots * that can hold image_size within the range of minimum to * KERNEL_IMAGE_SIZE? */ slots = (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN + 1; random_addr = get_random_long() % slots; return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; } /* * Since this function examines addresses much more numerically, * it takes the input and output pointers as 'unsigned long'. */ unsigned char *choose_random_location(unsigned long input, unsigned long input_size, unsigned long output, unsigned long output_size) { unsigned long choice = output; unsigned long random_addr; #ifdef CONFIG_HIBERNATION if (!cmdline_find_option_bool("kaslr")) { warn("KASLR disabled: 'kaslr' not on cmdline (hibernation selected)."); goto out; } #else if (cmdline_find_option_bool("nokaslr")) { warn("KASLR disabled: 'nokaslr' on cmdline."); goto out; } #endif boot_params->hdr.loadflags |= KASLR_FLAG; /* Record the various known unsafe memory ranges. */ mem_avoid_init(input, input_size, output); /* Walk e820 and find a random address. */ random_addr = find_random_phys_addr(output, output_size); if (!random_addr) { warn("KASLR disabled: could not find suitable E820 region!"); goto out; } /* Always enforce the minimum. */ if (random_addr < choice) goto out; choice = random_addr; add_identity_map(choice, output_size); /* This actually loads the identity pagetable on x86_64. */ finalize_identity_maps(); out: return (unsigned char *)choice; }