// SPDX-License-Identifier: GPL-2.0 /* * Interface for controlling IO bandwidth on a request queue * * Copyright (C) 2010 Vivek Goyal */ #include #include #include #include #include #include #include "blk.h" /* Max dispatch from a group in 1 round */ static int throtl_grp_quantum = 8; /* Total max dispatch from all groups in one round */ static int throtl_quantum = 32; /* Throttling is performed over a slice and after that slice is renewed */ #define DFL_THROTL_SLICE_HD (HZ / 10) #define DFL_THROTL_SLICE_SSD (HZ / 50) #define MAX_THROTL_SLICE (HZ) #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ #define MIN_THROTL_BPS (320 * 1024) #define MIN_THROTL_IOPS (10) #define DFL_LATENCY_TARGET (-1L) #define DFL_IDLE_THRESHOLD (0) #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ #define LATENCY_FILTERED_SSD (0) /* * For HD, very small latency comes from sequential IO. Such IO is helpless to * help determine if its IO is impacted by others, hence we ignore the IO */ #define LATENCY_FILTERED_HD (1000L) /* 1ms */ static struct blkcg_policy blkcg_policy_throtl; /* A workqueue to queue throttle related work */ static struct workqueue_struct *kthrotld_workqueue; /* * To implement hierarchical throttling, throtl_grps form a tree and bios * are dispatched upwards level by level until they reach the top and get * issued. When dispatching bios from the children and local group at each * level, if the bios are dispatched into a single bio_list, there's a risk * of a local or child group which can queue many bios at once filling up * the list starving others. * * To avoid such starvation, dispatched bios are queued separately * according to where they came from. When they are again dispatched to * the parent, they're popped in round-robin order so that no single source * hogs the dispatch window. * * throtl_qnode is used to keep the queued bios separated by their sources. * Bios are queued to throtl_qnode which in turn is queued to * throtl_service_queue and then dispatched in round-robin order. * * It's also used to track the reference counts on blkg's. A qnode always * belongs to a throtl_grp and gets queued on itself or the parent, so * incrementing the reference of the associated throtl_grp when a qnode is * queued and decrementing when dequeued is enough to keep the whole blkg * tree pinned while bios are in flight. */ struct throtl_qnode { struct list_head node; /* service_queue->queued[] */ struct bio_list bios; /* queued bios */ struct throtl_grp *tg; /* tg this qnode belongs to */ }; struct throtl_service_queue { struct throtl_service_queue *parent_sq; /* the parent service_queue */ /* * Bios queued directly to this service_queue or dispatched from * children throtl_grp's. */ struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ unsigned int nr_queued[2]; /* number of queued bios */ long nr_queued_bytes[2]; /* number of queued bytes */ wait_queue_head_t wait[2]; /* * RB tree of active children throtl_grp's, which are sorted by * their ->disptime. */ struct rb_root pending_tree; /* RB tree of active tgs */ struct rb_node *first_pending; /* first node in the tree */ unsigned int nr_pending; /* # queued in the tree */ unsigned long first_pending_disptime; /* disptime of the first tg */ struct timer_list pending_timer; /* fires on first_pending_disptime */ }; enum tg_state_flags { THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ }; #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) enum { LIMIT_LOW, LIMIT_MAX, LIMIT_CNT, }; struct throtl_grp { /* must be the first member */ struct blkg_policy_data pd; /* active throtl group service_queue member */ struct rb_node rb_node; /* throtl_data this group belongs to */ struct throtl_data *td; /* this group's service queue */ struct throtl_service_queue service_queue; /* * qnode_on_self is used when bios are directly queued to this * throtl_grp so that local bios compete fairly with bios * dispatched from children. qnode_on_parent is used when bios are * dispatched from this throtl_grp into its parent and will compete * with the sibling qnode_on_parents and the parent's * qnode_on_self. */ struct throtl_qnode qnode_on_self[2]; struct throtl_qnode qnode_on_parent[2]; /* * Dispatch time in jiffies. This is the estimated time when group * will unthrottle and is ready to dispatch more bio. It is used as * key to sort active groups in service tree. */ unsigned long disptime; unsigned int flags; /* are there any throtl rules between this group and td? */ bool has_rules[2]; /* internally used bytes per second rate limits */ uint64_t bps[2][LIMIT_CNT]; /* user configured bps limits */ uint64_t bps_conf[2][LIMIT_CNT]; /* internally used IOPS limits */ unsigned int iops[2][LIMIT_CNT]; /* user configured IOPS limits */ unsigned int iops_conf[2][LIMIT_CNT]; /* Number of bytes disptached in current slice */ uint64_t bytes_disp[2]; /* Number of bio's dispatched in current slice */ unsigned int io_disp[2]; unsigned long last_low_overflow_time[2]; uint64_t last_bytes_disp[2]; unsigned int last_io_disp[2]; unsigned long last_check_time; unsigned long latency_target; /* us */ unsigned long latency_target_conf; /* us */ /* When did we start a new slice */ unsigned long slice_start[2]; unsigned long slice_end[2]; unsigned long last_finish_time; /* ns / 1024 */ unsigned long checked_last_finish_time; /* ns / 1024 */ unsigned long avg_idletime; /* ns / 1024 */ unsigned long idletime_threshold; /* us */ unsigned long idletime_threshold_conf; /* us */ unsigned int bio_cnt; /* total bios */ unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ unsigned long bio_cnt_reset_time; /* total time spent on lower layer: scheduler, device and others */ struct blkg_rwstat service_time; /* total time spent on block throttle */ struct blkg_rwstat wait_time; /* total IOs completed */ struct blkg_rwstat completed; /* total bytes throttled */ struct blkg_rwstat total_bytes_queued; /* total IOs throttled */ struct blkg_rwstat total_io_queued; }; /* We measure latency for request size from <= 4k to >= 1M */ #define LATENCY_BUCKET_SIZE 9 struct latency_bucket { unsigned long total_latency; /* ns / 1024 */ int samples; }; struct avg_latency_bucket { unsigned long latency; /* ns / 1024 */ bool valid; }; struct throtl_data { /* service tree for active throtl groups */ struct throtl_service_queue service_queue; struct request_queue *queue; /* Total Number of queued bios on READ and WRITE lists */ unsigned int nr_queued[2]; unsigned int throtl_slice; /* Work for dispatching throttled bios */ struct work_struct dispatch_work; unsigned int limit_index; bool limit_valid[LIMIT_CNT]; unsigned long low_upgrade_time; unsigned long low_downgrade_time; unsigned int scale; struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; struct latency_bucket __percpu *latency_buckets[2]; unsigned long last_calculate_time; unsigned long filtered_latency; bool track_bio_latency; }; static void throtl_pending_timer_fn(struct timer_list *t); static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) { return pd ? container_of(pd, struct throtl_grp, pd) : NULL; } static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) { return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); } static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) { return pd_to_blkg(&tg->pd); } /** * sq_to_tg - return the throl_grp the specified service queue belongs to * @sq: the throtl_service_queue of interest * * Return the throtl_grp @sq belongs to. If @sq is the top-level one * embedded in throtl_data, %NULL is returned. */ static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) { if (sq && sq->parent_sq) return container_of(sq, struct throtl_grp, service_queue); else return NULL; } /** * sq_to_td - return throtl_data the specified service queue belongs to * @sq: the throtl_service_queue of interest * * A service_queue can be embedded in either a throtl_grp or throtl_data. * Determine the associated throtl_data accordingly and return it. */ static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) { struct throtl_grp *tg = sq_to_tg(sq); if (tg) return tg->td; else return container_of(sq, struct throtl_data, service_queue); } /* * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to * make the IO dispatch more smooth. * Scale up: linearly scale up according to lapsed time since upgrade. For * every throtl_slice, the limit scales up 1/2 .low limit till the * limit hits .max limit * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit */ static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) { /* arbitrary value to avoid too big scale */ if (td->scale < 4096 && time_after_eq(jiffies, td->low_upgrade_time + td->scale * td->throtl_slice)) td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; return low + (low >> 1) * td->scale; } static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) { struct blkcg_gq *blkg = tg_to_blkg(tg); struct throtl_data *td; uint64_t ret; if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) return U64_MAX; td = tg->td; ret = tg->bps[rw][td->limit_index]; if (ret == 0 && td->limit_index == LIMIT_LOW) { /* intermediate node or iops isn't 0 */ if (!list_empty(&blkg->blkcg->css.children) || tg->iops[rw][td->limit_index]) return U64_MAX; else return MIN_THROTL_BPS; } if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { uint64_t adjusted; adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); ret = min(tg->bps[rw][LIMIT_MAX], adjusted); } return ret; } static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) { struct blkcg_gq *blkg = tg_to_blkg(tg); struct throtl_data *td; unsigned int ret; if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) return UINT_MAX; td = tg->td; ret = tg->iops[rw][td->limit_index]; if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { /* intermediate node or bps isn't 0 */ if (!list_empty(&blkg->blkcg->css.children) || tg->bps[rw][td->limit_index]) return UINT_MAX; else return MIN_THROTL_IOPS; } if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { uint64_t adjusted; adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); if (adjusted > UINT_MAX) adjusted = UINT_MAX; ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); } return ret; } #define request_bucket_index(sectors) \ clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) /** * throtl_log - log debug message via blktrace * @sq: the service_queue being reported * @fmt: printf format string * @args: printf args * * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a * throtl_grp; otherwise, just "throtl". */ #define throtl_log(sq, fmt, args...) do { \ struct throtl_grp *__tg = sq_to_tg((sq)); \ struct throtl_data *__td = sq_to_td((sq)); \ \ (void)__td; \ if (likely(!blk_trace_note_message_enabled(__td->queue))) \ break; \ if ((__tg)) { \ blk_add_cgroup_trace_msg(__td->queue, \ tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ } else { \ blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ } \ } while (0) static inline unsigned int throtl_bio_data_size(struct bio *bio) { /* assume it's one sector */ if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) return 512; return bio->bi_iter.bi_size; } static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) { INIT_LIST_HEAD(&qn->node); bio_list_init(&qn->bios); qn->tg = tg; } /** * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it * @bio: bio being added * @qn: qnode to add bio to * @queued: the service_queue->queued[] list @qn belongs to * * Add @bio to @qn and put @qn on @queued if it's not already on. * @qn->tg's reference count is bumped when @qn is activated. See the * comment on top of throtl_qnode definition for details. */ static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, struct list_head *queued) { bio_list_add(&qn->bios, bio); if (list_empty(&qn->node)) { list_add_tail(&qn->node, queued); blkg_get(tg_to_blkg(qn->tg)); } } /** * throtl_peek_queued - peek the first bio on a qnode list * @queued: the qnode list to peek */ static struct bio *throtl_peek_queued(struct list_head *queued) { struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); struct bio *bio; if (list_empty(queued)) return NULL; bio = bio_list_peek(&qn->bios); WARN_ON_ONCE(!bio); return bio; } /** * throtl_pop_queued - pop the first bio form a qnode list * @queued: the qnode list to pop a bio from * @tg_to_put: optional out argument for throtl_grp to put * * Pop the first bio from the qnode list @queued. After popping, the first * qnode is removed from @queued if empty or moved to the end of @queued so * that the popping order is round-robin. * * When the first qnode is removed, its associated throtl_grp should be put * too. If @tg_to_put is NULL, this function automatically puts it; * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is * responsible for putting it. */ static struct bio *throtl_pop_queued(struct list_head *queued, struct throtl_grp **tg_to_put) { struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); struct bio *bio; if (list_empty(queued)) return NULL; bio = bio_list_pop(&qn->bios); WARN_ON_ONCE(!bio); if (bio_list_empty(&qn->bios)) { list_del_init(&qn->node); if (tg_to_put) *tg_to_put = qn->tg; else blkg_put(tg_to_blkg(qn->tg)); } else { list_move_tail(&qn->node, queued); } return bio; } /* init a service_queue, assumes the caller zeroed it */ static void throtl_service_queue_init(struct throtl_service_queue *sq) { INIT_LIST_HEAD(&sq->queued[0]); INIT_LIST_HEAD(&sq->queued[1]); sq->nr_queued_bytes[0] = 0; sq->nr_queued_bytes[1] = 0; init_waitqueue_head(&sq->wait[0]); init_waitqueue_head(&sq->wait[1]); sq->pending_tree = RB_ROOT; timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); } static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, struct request_queue *q, struct blkcg *blkcg) { struct throtl_grp *tg; int rw; tg = kzalloc_node(sizeof(*tg), gfp, q->node); if (!tg) return NULL; if (blkg_rwstat_init(&tg->service_time, gfp) || blkg_rwstat_init(&tg->wait_time, gfp) || blkg_rwstat_init(&tg->completed, gfp) || blkg_rwstat_init(&tg->total_bytes_queued, gfp) || blkg_rwstat_init(&tg->total_io_queued, gfp)) goto err; throtl_service_queue_init(&tg->service_queue); for (rw = READ; rw <= WRITE; rw++) { throtl_qnode_init(&tg->qnode_on_self[rw], tg); throtl_qnode_init(&tg->qnode_on_parent[rw], tg); } RB_CLEAR_NODE(&tg->rb_node); tg->bps[READ][LIMIT_MAX] = U64_MAX; tg->bps[WRITE][LIMIT_MAX] = U64_MAX; tg->iops[READ][LIMIT_MAX] = UINT_MAX; tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; /* LIMIT_LOW will have default value 0 */ tg->latency_target = DFL_LATENCY_TARGET; tg->latency_target_conf = DFL_LATENCY_TARGET; tg->idletime_threshold = DFL_IDLE_THRESHOLD; tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; return &tg->pd; err: blkg_rwstat_exit(&tg->service_time); blkg_rwstat_exit(&tg->wait_time); blkg_rwstat_exit(&tg->completed); blkg_rwstat_exit(&tg->total_bytes_queued); blkg_rwstat_exit(&tg->total_io_queued); kfree(tg); return NULL; } static void throtl_pd_init(struct blkg_policy_data *pd) { struct throtl_grp *tg = pd_to_tg(pd); struct blkcg_gq *blkg = tg_to_blkg(tg); struct throtl_data *td = blkg->q->td; struct throtl_service_queue *sq = &tg->service_queue; /* * If on the default hierarchy, we switch to properly hierarchical * behavior where limits on a given throtl_grp are applied to the * whole subtree rather than just the group itself. e.g. If 16M * read_bps limit is set on the root group, the whole system can't * exceed 16M for the device. * * If not on the default hierarchy, the broken flat hierarchy * behavior is retained where all throtl_grps are treated as if * they're all separate root groups right below throtl_data. * Limits of a group don't interact with limits of other groups * regardless of the position of the group in the hierarchy. */ sq->parent_sq = &td->service_queue; /* Enable hierarchical throttling even on traditional hierarchy */ if (blkg->parent) sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; tg->td = td; } /* * Set has_rules[] if @tg or any of its parents have limits configured. * This doesn't require walking up to the top of the hierarchy as the * parent's has_rules[] is guaranteed to be correct. */ static void tg_update_has_rules(struct throtl_grp *tg) { struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); struct throtl_data *td = tg->td; int rw; for (rw = READ; rw <= WRITE; rw++) tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || (td->limit_valid[td->limit_index] && (tg_bps_limit(tg, rw) != U64_MAX || tg_iops_limit(tg, rw) != UINT_MAX)); } static void throtl_pd_online(struct blkg_policy_data *pd) { struct throtl_grp *tg = pd_to_tg(pd); /* * We don't want new groups to escape the limits of its ancestors. * Update has_rules[] after a new group is brought online. */ tg_update_has_rules(tg); } static void blk_throtl_update_limit_valid(struct throtl_data *td) { struct cgroup_subsys_state *pos_css; struct blkcg_gq *blkg; bool low_valid = false; rcu_read_lock(); blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { struct throtl_grp *tg = blkg_to_tg(blkg); if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { low_valid = true; break; } } rcu_read_unlock(); td->limit_valid[LIMIT_LOW] = low_valid; } static void throtl_upgrade_state(struct throtl_data *td); static void throtl_pd_offline(struct blkg_policy_data *pd) { struct throtl_grp *tg = pd_to_tg(pd); struct blkcg_gq *blkg = pd_to_blkg(pd); struct blkcg_gq *parent = blkg->parent; tg->bps[READ][LIMIT_LOW] = 0; tg->bps[WRITE][LIMIT_LOW] = 0; tg->iops[READ][LIMIT_LOW] = 0; tg->iops[WRITE][LIMIT_LOW] = 0; blk_throtl_update_limit_valid(tg->td); if (!tg->td->limit_valid[tg->td->limit_index]) throtl_upgrade_state(tg->td); if (parent) { blkg_rwstat_add_aux(&blkg_to_tg(parent)->service_time, &tg->service_time); blkg_rwstat_add_aux(&blkg_to_tg(parent)->wait_time, &tg->wait_time); blkg_rwstat_add_aux(&blkg_to_tg(parent)->completed, &tg->completed); blkg_rwstat_add_aux(&blkg_to_tg(parent)->total_bytes_queued, &tg->total_bytes_queued); blkg_rwstat_add_aux(&blkg_to_tg(parent)->total_io_queued, &tg->total_io_queued); } } static void throtl_pd_free(struct blkg_policy_data *pd) { struct throtl_grp *tg = pd_to_tg(pd); del_timer_sync(&tg->service_queue.pending_timer); blkg_rwstat_exit(&tg->service_time); blkg_rwstat_exit(&tg->wait_time); blkg_rwstat_exit(&tg->completed); blkg_rwstat_exit(&tg->total_bytes_queued); blkg_rwstat_exit(&tg->total_io_queued); kfree(tg); } static void throtl_pd_reset(struct blkg_policy_data *pd) { struct throtl_grp *tg = pd_to_tg(pd); blkg_rwstat_reset(&tg->service_time); blkg_rwstat_reset(&tg->wait_time); blkg_rwstat_reset(&tg->completed); blkg_rwstat_reset(&tg->total_bytes_queued); blkg_rwstat_reset(&tg->total_io_queued); } static struct throtl_grp * throtl_rb_first(struct throtl_service_queue *parent_sq) { /* Service tree is empty */ if (!parent_sq->nr_pending) return NULL; if (!parent_sq->first_pending) parent_sq->first_pending = rb_first(&parent_sq->pending_tree); if (parent_sq->first_pending) return rb_entry_tg(parent_sq->first_pending); return NULL; } static void rb_erase_init(struct rb_node *n, struct rb_root *root) { rb_erase(n, root); RB_CLEAR_NODE(n); } static void throtl_rb_erase(struct rb_node *n, struct throtl_service_queue *parent_sq) { if (parent_sq->first_pending == n) parent_sq->first_pending = NULL; rb_erase_init(n, &parent_sq->pending_tree); --parent_sq->nr_pending; } static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) { struct throtl_grp *tg; tg = throtl_rb_first(parent_sq); if (!tg) return; parent_sq->first_pending_disptime = tg->disptime; } static void tg_service_queue_add(struct throtl_grp *tg) { struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; struct rb_node **node = &parent_sq->pending_tree.rb_node; struct rb_node *parent = NULL; struct throtl_grp *__tg; unsigned long key = tg->disptime; int left = 1; while (*node != NULL) { parent = *node; __tg = rb_entry_tg(parent); if (time_before(key, __tg->disptime)) node = &parent->rb_left; else { node = &parent->rb_right; left = 0; } } if (left) parent_sq->first_pending = &tg->rb_node; rb_link_node(&tg->rb_node, parent, node); rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); } static void __throtl_enqueue_tg(struct throtl_grp *tg) { tg_service_queue_add(tg); tg->flags |= THROTL_TG_PENDING; tg->service_queue.parent_sq->nr_pending++; } static void throtl_enqueue_tg(struct throtl_grp *tg) { if (!(tg->flags & THROTL_TG_PENDING)) __throtl_enqueue_tg(tg); } static void __throtl_dequeue_tg(struct throtl_grp *tg) { throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); tg->flags &= ~THROTL_TG_PENDING; } static void throtl_dequeue_tg(struct throtl_grp *tg) { if (tg->flags & THROTL_TG_PENDING) __throtl_dequeue_tg(tg); } /* Call with queue lock held */ static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, unsigned long expires) { unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; /* * Since we are adjusting the throttle limit dynamically, the sleep * time calculated according to previous limit might be invalid. It's * possible the cgroup sleep time is very long and no other cgroups * have IO running so notify the limit changes. Make sure the cgroup * doesn't sleep too long to avoid the missed notification. */ if (time_after(expires, max_expire)) expires = max_expire; mod_timer(&sq->pending_timer, expires); throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", expires - jiffies, jiffies); } /** * throtl_schedule_next_dispatch - schedule the next dispatch cycle * @sq: the service_queue to schedule dispatch for * @force: force scheduling * * Arm @sq->pending_timer so that the next dispatch cycle starts on the * dispatch time of the first pending child. Returns %true if either timer * is armed or there's no pending child left. %false if the current * dispatch window is still open and the caller should continue * dispatching. * * If @force is %true, the dispatch timer is always scheduled and this * function is guaranteed to return %true. This is to be used when the * caller can't dispatch itself and needs to invoke pending_timer * unconditionally. Note that forced scheduling is likely to induce short * delay before dispatch starts even if @sq->first_pending_disptime is not * in the future and thus shouldn't be used in hot paths. */ static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, bool force) { /* any pending children left? */ if (!sq->nr_pending) return true; update_min_dispatch_time(sq); /* is the next dispatch time in the future? */ if (force || time_after(sq->first_pending_disptime, jiffies)) { throtl_schedule_pending_timer(sq, sq->first_pending_disptime); return true; } /* tell the caller to continue dispatching */ return false; } static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, bool rw, unsigned long start) { tg->bytes_disp[rw] = 0; tg->io_disp[rw] = 0; /* * Previous slice has expired. We must have trimmed it after last * bio dispatch. That means since start of last slice, we never used * that bandwidth. Do try to make use of that bandwidth while giving * credit. */ if (time_after_eq(start, tg->slice_start[rw])) tg->slice_start[rw] = start; tg->slice_end[rw] = jiffies + tg->td->throtl_slice; throtl_log(&tg->service_queue, "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", rw == READ ? 'R' : 'W', tg->slice_start[rw], tg->slice_end[rw], jiffies); } static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) { tg->bytes_disp[rw] = 0; tg->io_disp[rw] = 0; tg->slice_start[rw] = jiffies; tg->slice_end[rw] = jiffies + tg->td->throtl_slice; throtl_log(&tg->service_queue, "[%c] new slice start=%lu end=%lu jiffies=%lu", rw == READ ? 'R' : 'W', tg->slice_start[rw], tg->slice_end[rw], jiffies); } static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, unsigned long jiffy_end) { tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); } static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, unsigned long jiffy_end) { tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); throtl_log(&tg->service_queue, "[%c] extend slice start=%lu end=%lu jiffies=%lu", rw == READ ? 'R' : 'W', tg->slice_start[rw], tg->slice_end[rw], jiffies); } /* Determine if previously allocated or extended slice is complete or not */ static bool throtl_slice_used(struct throtl_grp *tg, bool rw) { if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) return false; return true; } /* Trim the used slices and adjust slice start accordingly */ static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) { unsigned long nr_slices, time_elapsed, io_trim; u64 bytes_trim, tmp; BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); /* * If bps are unlimited (-1), then time slice don't get * renewed. Don't try to trim the slice if slice is used. A new * slice will start when appropriate. */ if (throtl_slice_used(tg, rw)) return; /* * A bio has been dispatched. Also adjust slice_end. It might happen * that initially cgroup limit was very low resulting in high * slice_end, but later limit was bumped up and bio was dispached * sooner, then we need to reduce slice_end. A high bogus slice_end * is bad because it does not allow new slice to start. */ throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); time_elapsed = jiffies - tg->slice_start[rw]; nr_slices = time_elapsed / tg->td->throtl_slice; if (!nr_slices) return; tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; do_div(tmp, HZ); bytes_trim = tmp; io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / HZ; if (!bytes_trim && !io_trim) return; if (tg->bytes_disp[rw] >= bytes_trim) tg->bytes_disp[rw] -= bytes_trim; else tg->bytes_disp[rw] = 0; if (tg->io_disp[rw] >= io_trim) tg->io_disp[rw] -= io_trim; else tg->io_disp[rw] = 0; tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; throtl_log(&tg->service_queue, "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw], jiffies); } static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, unsigned long *wait) { bool rw = bio_data_dir(bio); unsigned int io_allowed; unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; u64 tmp; jiffy_elapsed = jiffies - tg->slice_start[rw]; /* Round up to the next throttle slice, wait time must be nonzero */ jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); /* * jiffy_elapsed_rnd should not be a big value as minimum iops can be * 1 then at max jiffy elapsed should be equivalent of 1 second as we * will allow dispatch after 1 second and after that slice should * have been trimmed. */ tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; do_div(tmp, HZ); if (tmp > UINT_MAX) io_allowed = UINT_MAX; else io_allowed = tmp; if (tg->io_disp[rw] + 1 <= io_allowed) { if (wait) *wait = 0; return true; } /* Calc approx time to dispatch */ jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; if (wait) *wait = jiffy_wait; return false; } static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, unsigned long *wait) { bool rw = bio_data_dir(bio); u64 bytes_allowed, extra_bytes, tmp; unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; unsigned int bio_size = throtl_bio_data_size(bio); jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; /* Slice has just started. Consider one slice interval */ if (!jiffy_elapsed) jiffy_elapsed_rnd = tg->td->throtl_slice; jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; do_div(tmp, HZ); bytes_allowed = tmp; if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { if (wait) *wait = 0; return true; } /* Calc approx time to dispatch */ extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); if (!jiffy_wait) jiffy_wait = 1; /* * This wait time is without taking into consideration the rounding * up we did. Add that time also. */ jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); if (wait) *wait = jiffy_wait; return false; } /* * Returns whether one can dispatch a bio or not. Also returns approx number * of jiffies to wait before this bio is with-in IO rate and can be dispatched */ static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, unsigned long *wait) { bool rw = bio_data_dir(bio); unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; /* * Currently whole state machine of group depends on first bio * queued in the group bio list. So one should not be calling * this function with a different bio if there are other bios * queued. */ BUG_ON(tg->service_queue.nr_queued[rw] && bio != throtl_peek_queued(&tg->service_queue.queued[rw])); /* If tg->bps = -1, then BW is unlimited */ if (tg_bps_limit(tg, rw) == U64_MAX && tg_iops_limit(tg, rw) == UINT_MAX) { if (wait) *wait = 0; return true; } /* * If previous slice expired, start a new one otherwise renew/extend * existing slice to make sure it is at least throtl_slice interval * long since now. New slice is started only for empty throttle group. * If there is queued bio, that means there should be an active * slice and it should be extended instead. */ if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) throtl_start_new_slice(tg, rw); else { if (time_before(tg->slice_end[rw], jiffies + tg->td->throtl_slice)) throtl_extend_slice(tg, rw, jiffies + tg->td->throtl_slice); } if (tg_with_in_bps_limit(tg, bio, &bps_wait) && tg_with_in_iops_limit(tg, bio, &iops_wait)) { if (wait) *wait = 0; return true; } max_wait = max(bps_wait, iops_wait); if (wait) *wait = max_wait; if (time_before(tg->slice_end[rw], jiffies + max_wait)) throtl_extend_slice(tg, rw, jiffies + max_wait); return false; } static void throtl_stats_update_completion(struct throtl_grp *tg, uint64_t start_time, uint64_t io_start_time, int op) { unsigned long flags; uint64_t now = sched_clock(); local_irq_save(flags); if (time_after64(now, io_start_time)) blkg_rwstat_add(&tg->service_time, op, now - io_start_time); if (time_after64(io_start_time, start_time)) blkg_rwstat_add(&tg->wait_time, op, io_start_time - start_time); blkg_rwstat_add(&tg->completed, op, 1); local_irq_restore(flags); } static void throtl_bio_end_io(struct bio *bio) { struct throtl_grp *tg; rcu_read_lock(); /* see comments in throtl_bio_stats_start() */ if (bio_flagged(bio, BIO_THROTL_STATED)) goto out; tg = (struct throtl_grp *)bio->bi_tg_private; if (!tg) goto out; throtl_stats_update_completion(tg, bio_start_time_ns(bio), bio_io_start_time_ns(bio), bio_op(bio)); blkg_put(tg_to_blkg(tg)); bio_clear_flag(bio, BIO_THROTL_STATED); out: rcu_read_unlock(); } static inline void throtl_bio_stats_start(struct bio *bio, struct throtl_grp *tg) { int op = bio_op(bio); /* * It may happen that end_io will be called twice like dm-thin, * which will save origin end_io first, and call its overwrite * end_io and then the saved end_io. We use bio flag * BIO_THROTL_STATED to do only once statistics. */ if ((op == REQ_OP_READ || op == REQ_OP_WRITE) && !bio_flagged(bio, BIO_THROTL_STATED)) { blkg_get(tg_to_blkg(tg)); bio_set_flag(bio, BIO_THROTL_STATED); bio->bi_tg_end_io = throtl_bio_end_io; bio->bi_tg_private = tg; bio_set_start_time_ns(bio); } } static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) { bool rw = bio_data_dir(bio); unsigned int bio_size = throtl_bio_data_size(bio); /* Charge the bio to the group */ tg->bytes_disp[rw] += bio_size; tg->io_disp[rw]++; tg->last_bytes_disp[rw] += bio_size; tg->last_io_disp[rw]++; /* * BIO_THROTTLED is used to prevent the same bio to be throttled * more than once as a throttled bio will go through blk-throtl the * second time when it eventually gets issued. Set it when a bio * is being charged to a tg. */ if (!bio_flagged(bio, BIO_THROTTLED)) bio_set_flag(bio, BIO_THROTTLED); } /** * throtl_add_bio_tg - add a bio to the specified throtl_grp * @bio: bio to add * @qn: qnode to use * @tg: the target throtl_grp * * Add @bio to @tg's service_queue using @qn. If @qn is not specified, * tg->qnode_on_self[] is used. */ static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, struct throtl_grp *tg) { struct throtl_service_queue *sq = &tg->service_queue; bool rw = bio_data_dir(bio); if (!qn) qn = &tg->qnode_on_self[rw]; /* * If @tg doesn't currently have any bios queued in the same * direction, queueing @bio can change when @tg should be * dispatched. Mark that @tg was empty. This is automatically * cleaered on the next tg_update_disptime(). */ if (!sq->nr_queued[rw]) tg->flags |= THROTL_TG_WAS_EMPTY; throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); sq->nr_queued[rw]++; sq->nr_queued_bytes[rw] += throtl_bio_data_size(bio); blkg_rwstat_add(&tg->total_bytes_queued, bio_op(bio), throtl_bio_data_size(bio)); blkg_rwstat_add(&tg->total_io_queued, bio_op(bio), 1); throtl_enqueue_tg(tg); } static void tg_update_disptime(struct throtl_grp *tg) { struct throtl_service_queue *sq = &tg->service_queue; unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; struct bio *bio; bio = throtl_peek_queued(&sq->queued[READ]); if (bio) tg_may_dispatch(tg, bio, &read_wait); bio = throtl_peek_queued(&sq->queued[WRITE]); if (bio) tg_may_dispatch(tg, bio, &write_wait); min_wait = min(read_wait, write_wait); disptime = jiffies + min_wait; /* Update dispatch time */ throtl_dequeue_tg(tg); tg->disptime = disptime; throtl_enqueue_tg(tg); /* see throtl_add_bio_tg() */ tg->flags &= ~THROTL_TG_WAS_EMPTY; } static void start_parent_slice_with_credit(struct throtl_grp *child_tg, struct throtl_grp *parent_tg, bool rw) { if (throtl_slice_used(parent_tg, rw)) { throtl_start_new_slice_with_credit(parent_tg, rw, child_tg->slice_start[rw]); } } static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) { struct throtl_service_queue *sq = &tg->service_queue; struct throtl_service_queue *parent_sq = sq->parent_sq; struct throtl_grp *parent_tg = sq_to_tg(parent_sq); struct throtl_grp *tg_to_put = NULL; struct bio *bio; /* * @bio is being transferred from @tg to @parent_sq. Popping a bio * from @tg may put its reference and @parent_sq might end up * getting released prematurely. Remember the tg to put and put it * after @bio is transferred to @parent_sq. */ bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); sq->nr_queued[rw]--; sq->nr_queued_bytes[rw] -= throtl_bio_data_size(bio); WARN_ON_ONCE(sq->nr_queued_bytes[rw] < 0); if (wq_has_sleeper(&sq->wait[rw])) { if (sq->nr_queued_bytes[rw] > 0) wake_up(&sq->wait[rw]); else wake_up_all(&sq->wait[rw]); } throtl_charge_bio(tg, bio); /* * If our parent is another tg, we just need to transfer @bio to * the parent using throtl_add_bio_tg(). If our parent is * @td->service_queue, @bio is ready to be issued. Put it on its * bio_lists[] and decrease total number queued. The caller is * responsible for issuing these bios. */ if (parent_tg) { throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); start_parent_slice_with_credit(tg, parent_tg, rw); } else { throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], &parent_sq->queued[rw]); BUG_ON(tg->td->nr_queued[rw] <= 0); tg->td->nr_queued[rw]--; } throtl_trim_slice(tg, rw); if (tg_to_put) blkg_put(tg_to_blkg(tg_to_put)); } static int throtl_dispatch_tg(struct throtl_grp *tg) { struct throtl_service_queue *sq = &tg->service_queue; unsigned int nr_reads = 0, nr_writes = 0; unsigned int max_nr_reads = throtl_grp_quantum*3/4; unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; struct bio *bio; /* Try to dispatch 75% READS and 25% WRITES */ while ((bio = throtl_peek_queued(&sq->queued[READ])) && tg_may_dispatch(tg, bio, NULL)) { tg_dispatch_one_bio(tg, bio_data_dir(bio)); nr_reads++; if (nr_reads >= max_nr_reads) break; } while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && tg_may_dispatch(tg, bio, NULL)) { tg_dispatch_one_bio(tg, bio_data_dir(bio)); nr_writes++; if (nr_writes >= max_nr_writes) break; } return nr_reads + nr_writes; } static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) { unsigned int nr_disp = 0; while (1) { struct throtl_grp *tg = throtl_rb_first(parent_sq); struct throtl_service_queue *sq; if (!tg) break; if (time_before(jiffies, tg->disptime)) break; throtl_dequeue_tg(tg); nr_disp += throtl_dispatch_tg(tg); sq = &tg->service_queue; if (sq->nr_queued[0] || sq->nr_queued[1]) tg_update_disptime(tg); if (nr_disp >= throtl_quantum) break; } return nr_disp; } static bool throtl_can_upgrade(struct throtl_data *td, struct throtl_grp *this_tg); /** * throtl_pending_timer_fn - timer function for service_queue->pending_timer * @arg: the throtl_service_queue being serviced * * This timer is armed when a child throtl_grp with active bio's become * pending and queued on the service_queue's pending_tree and expires when * the first child throtl_grp should be dispatched. This function * dispatches bio's from the children throtl_grps to the parent * service_queue. * * If the parent's parent is another throtl_grp, dispatching is propagated * by either arming its pending_timer or repeating dispatch directly. If * the top-level service_tree is reached, throtl_data->dispatch_work is * kicked so that the ready bio's are issued. */ static void throtl_pending_timer_fn(struct timer_list *t) { struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); struct throtl_grp *tg = sq_to_tg(sq); struct throtl_data *td = sq_to_td(sq); struct request_queue *q = td->queue; struct throtl_service_queue *parent_sq; bool dispatched; int ret; spin_lock_irq(q->queue_lock); if (throtl_can_upgrade(td, NULL)) throtl_upgrade_state(td); again: parent_sq = sq->parent_sq; dispatched = false; while (true) { throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", sq->nr_queued[READ] + sq->nr_queued[WRITE], sq->nr_queued[READ], sq->nr_queued[WRITE]); ret = throtl_select_dispatch(sq); if (ret) { throtl_log(sq, "bios disp=%u", ret); dispatched = true; } if (throtl_schedule_next_dispatch(sq, false)) break; /* this dispatch windows is still open, relax and repeat */ spin_unlock_irq(q->queue_lock); cpu_relax(); spin_lock_irq(q->queue_lock); } if (!dispatched) goto out_unlock; if (parent_sq) { /* @parent_sq is another throl_grp, propagate dispatch */ if (tg->flags & THROTL_TG_WAS_EMPTY) { tg_update_disptime(tg); if (!throtl_schedule_next_dispatch(parent_sq, false)) { /* window is already open, repeat dispatching */ sq = parent_sq; tg = sq_to_tg(sq); goto again; } } } else { /* reached the top-level, queue issueing */ queue_work(kthrotld_workqueue, &td->dispatch_work); } out_unlock: spin_unlock_irq(q->queue_lock); } /** * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work * @work: work item being executed * * This function is queued for execution when bio's reach the bio_lists[] * of throtl_data->service_queue. Those bio's are ready and issued by this * function. */ static void blk_throtl_dispatch_work_fn(struct work_struct *work) { struct throtl_data *td = container_of(work, struct throtl_data, dispatch_work); struct throtl_service_queue *td_sq = &td->service_queue; struct request_queue *q = td->queue; struct bio_list bio_list_on_stack; struct bio *bio; struct blk_plug plug; int rw; bio_list_init(&bio_list_on_stack); spin_lock_irq(q->queue_lock); for (rw = READ; rw <= WRITE; rw++) while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) bio_list_add(&bio_list_on_stack, bio); spin_unlock_irq(q->queue_lock); if (!bio_list_empty(&bio_list_on_stack)) { blk_start_plug(&plug); while((bio = bio_list_pop(&bio_list_on_stack))) generic_make_request(bio); blk_finish_plug(&plug); } } static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct throtl_grp *tg = pd_to_tg(pd); u64 v = *(u64 *)((void *)tg + off); if (v == U64_MAX) return 0; return __blkg_prfill_u64(sf, pd, v); } static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct throtl_grp *tg = pd_to_tg(pd); unsigned int v = *(unsigned int *)((void *)tg + off); if (v == UINT_MAX) return 0; return __blkg_prfill_u64(sf, pd, v); } static int tg_print_conf_u64(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, &blkcg_policy_throtl, seq_cft(sf)->private, false); return 0; } static int tg_print_conf_uint(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, &blkcg_policy_throtl, seq_cft(sf)->private, false); return 0; } static void tg_conf_updated(struct throtl_grp *tg, bool global) { struct throtl_service_queue *sq = &tg->service_queue; struct cgroup_subsys_state *pos_css; struct blkcg_gq *blkg; throtl_log(&tg->service_queue, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); /* * Update has_rules[] flags for the updated tg's subtree. A tg is * considered to have rules if either the tg itself or any of its * ancestors has rules. This identifies groups without any * restrictions in the whole hierarchy and allows them to bypass * blk-throttle. */ blkg_for_each_descendant_pre(blkg, pos_css, global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { struct throtl_grp *this_tg = blkg_to_tg(blkg); struct throtl_grp *parent_tg; tg_update_has_rules(this_tg); /* ignore root/second level */ if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || !blkg->parent->parent) continue; parent_tg = blkg_to_tg(blkg->parent); /* * make sure all children has lower idle time threshold and * higher latency target */ this_tg->idletime_threshold = min(this_tg->idletime_threshold, parent_tg->idletime_threshold); this_tg->latency_target = max(this_tg->latency_target, parent_tg->latency_target); } /* * We're already holding queue_lock and know @tg is valid. Let's * apply the new config directly. * * Restart the slices for both READ and WRITES. It might happen * that a group's limit are dropped suddenly and we don't want to * account recently dispatched IO with new low rate. */ throtl_start_new_slice(tg, 0); throtl_start_new_slice(tg, 1); if (tg->flags & THROTL_TG_PENDING) { tg_update_disptime(tg); throtl_schedule_next_dispatch(sq->parent_sq, true); } } static ssize_t tg_set_conf(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off, bool is_u64) { struct blkcg *blkcg = css_to_blkcg(of_css(of)); struct blkg_conf_ctx ctx; struct throtl_grp *tg; int ret; u64 v; ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); if (ret) return ret; ret = -EINVAL; if (sscanf(ctx.body, "%llu", &v) != 1) goto out_finish; if (!v) v = U64_MAX; tg = blkg_to_tg(ctx.blkg); if (is_u64) *(u64 *)((void *)tg + of_cft(of)->private) = v; else *(unsigned int *)((void *)tg + of_cft(of)->private) = v; tg_conf_updated(tg, false); ret = 0; out_finish: blkg_conf_finish(&ctx); return ret ?: nbytes; } static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return tg_set_conf(of, buf, nbytes, off, true); } static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return tg_set_conf(of, buf, nbytes, off, false); } static u64 tg_prfill_rwstat_field(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct throtl_grp *tg = pd_to_tg(pd); struct blkg_rwstat rwstat = blkg_rwstat_read((void *)tg + off); return __blkg_prfill_rwstat(sf, pd, &rwstat); } static int tg_print_rwstat(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_rwstat_field, &blkcg_policy_throtl, seq_cft(sf)->private, true); return 0; } static struct cftype throtl_legacy_files[] = { { .name = "throttle.read_bps_device", .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), .seq_show = tg_print_conf_u64, .write = tg_set_conf_u64, }, { .name = "throttle.write_bps_device", .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), .seq_show = tg_print_conf_u64, .write = tg_set_conf_u64, }, { .name = "throttle.read_iops_device", .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), .seq_show = tg_print_conf_uint, .write = tg_set_conf_uint, }, { .name = "throttle.write_iops_device", .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), .seq_show = tg_print_conf_uint, .write = tg_set_conf_uint, }, { .name = "throttle.io_service_bytes", .private = (unsigned long)&blkcg_policy_throtl, .seq_show = blkg_print_stat_bytes, }, { .name = "throttle.io_service_bytes_recursive", .private = (unsigned long)&blkcg_policy_throtl, .seq_show = blkg_print_stat_bytes_recursive, }, { .name = "throttle.io_serviced", .private = (unsigned long)&blkcg_policy_throtl, .seq_show = blkg_print_stat_ios, }, { .name = "throttle.io_serviced_recursive", .private = (unsigned long)&blkcg_policy_throtl, .seq_show = blkg_print_stat_ios_recursive, }, { .name = "throttle.io_service_time", .private = offsetof(struct throtl_grp, service_time), .seq_show = tg_print_rwstat, }, { .name = "throttle.io_wait_time", .private = offsetof(struct throtl_grp, wait_time), .seq_show = tg_print_rwstat, }, { .name = "throttle.io_completed", .private = offsetof(struct throtl_grp, completed), .seq_show = tg_print_rwstat, }, { .name = "throttle.total_bytes_queued", .private = offsetof(struct throtl_grp, total_bytes_queued), .seq_show = tg_print_rwstat, }, { .name = "throttle.total_io_queued", .private = offsetof(struct throtl_grp, total_io_queued), .seq_show = tg_print_rwstat, }, { } /* terminate */ }; static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct throtl_grp *tg = pd_to_tg(pd); const char *dname = blkg_dev_name(pd->blkg); char bufs[4][21] = { "max", "max", "max", "max" }; u64 bps_dft; unsigned int iops_dft; char idle_time[26] = ""; char latency_time[26] = ""; if (!dname) return 0; if (off == LIMIT_LOW) { bps_dft = 0; iops_dft = 0; } else { bps_dft = U64_MAX; iops_dft = UINT_MAX; } if (tg->bps_conf[READ][off] == bps_dft && tg->bps_conf[WRITE][off] == bps_dft && tg->iops_conf[READ][off] == iops_dft && tg->iops_conf[WRITE][off] == iops_dft && (off != LIMIT_LOW || (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && tg->latency_target_conf == DFL_LATENCY_TARGET))) return 0; if (tg->bps_conf[READ][off] != U64_MAX) snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps_conf[READ][off]); if (tg->bps_conf[WRITE][off] != U64_MAX) snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps_conf[WRITE][off]); if (tg->iops_conf[READ][off] != UINT_MAX) snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops_conf[READ][off]); if (tg->iops_conf[WRITE][off] != UINT_MAX) snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops_conf[WRITE][off]); if (off == LIMIT_LOW) { if (tg->idletime_threshold_conf == ULONG_MAX) strcpy(idle_time, " idle=max"); else snprintf(idle_time, sizeof(idle_time), " idle=%lu", tg->idletime_threshold_conf); if (tg->latency_target_conf == ULONG_MAX) strcpy(latency_time, " latency=max"); else snprintf(latency_time, sizeof(latency_time), " latency=%lu", tg->latency_target_conf); } seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, latency_time); return 0; } static int tg_print_limit(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, &blkcg_policy_throtl, seq_cft(sf)->private, false); return 0; } static ssize_t tg_set_limit(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct blkcg *blkcg = css_to_blkcg(of_css(of)); struct blkg_conf_ctx ctx; struct throtl_grp *tg; u64 v[4]; unsigned long idle_time; unsigned long latency_time; int ret; int index = of_cft(of)->private; ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); if (ret) return ret; tg = blkg_to_tg(ctx.blkg); v[0] = tg->bps_conf[READ][index]; v[1] = tg->bps_conf[WRITE][index]; v[2] = tg->iops_conf[READ][index]; v[3] = tg->iops_conf[WRITE][index]; idle_time = tg->idletime_threshold_conf; latency_time = tg->latency_target_conf; while (true) { char tok[27]; /* wiops=18446744073709551616 */ char *p; u64 val = U64_MAX; int len; if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) break; if (tok[0] == '\0') break; ctx.body += len; ret = -EINVAL; p = tok; strsep(&p, "="); if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) goto out_finish; ret = -ERANGE; if (!val) goto out_finish; ret = -EINVAL; if (!strcmp(tok, "rbps")) v[0] = val; else if (!strcmp(tok, "wbps")) v[1] = val; else if (!strcmp(tok, "riops")) v[2] = min_t(u64, val, UINT_MAX); else if (!strcmp(tok, "wiops")) v[3] = min_t(u64, val, UINT_MAX); else if (off == LIMIT_LOW && !strcmp(tok, "idle")) idle_time = val; else if (off == LIMIT_LOW && !strcmp(tok, "latency")) latency_time = val; else goto out_finish; } tg->bps_conf[READ][index] = v[0]; tg->bps_conf[WRITE][index] = v[1]; tg->iops_conf[READ][index] = v[2]; tg->iops_conf[WRITE][index] = v[3]; if (index == LIMIT_MAX) { tg->bps[READ][index] = v[0]; tg->bps[WRITE][index] = v[1]; tg->iops[READ][index] = v[2]; tg->iops[WRITE][index] = v[3]; } tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], tg->bps_conf[READ][LIMIT_MAX]); tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], tg->bps_conf[WRITE][LIMIT_MAX]); tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], tg->iops_conf[READ][LIMIT_MAX]); tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], tg->iops_conf[WRITE][LIMIT_MAX]); tg->idletime_threshold_conf = idle_time; tg->latency_target_conf = latency_time; /* force user to configure all settings for low limit */ if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || tg->latency_target_conf == DFL_LATENCY_TARGET) { tg->bps[READ][LIMIT_LOW] = 0; tg->bps[WRITE][LIMIT_LOW] = 0; tg->iops[READ][LIMIT_LOW] = 0; tg->iops[WRITE][LIMIT_LOW] = 0; tg->idletime_threshold = DFL_IDLE_THRESHOLD; tg->latency_target = DFL_LATENCY_TARGET; } else if (index == LIMIT_LOW) { tg->idletime_threshold = tg->idletime_threshold_conf; tg->latency_target = tg->latency_target_conf; } blk_throtl_update_limit_valid(tg->td); if (tg->td->limit_valid[LIMIT_LOW]) { if (index == LIMIT_LOW) tg->td->limit_index = LIMIT_LOW; } else tg->td->limit_index = LIMIT_MAX; tg_conf_updated(tg, index == LIMIT_LOW && tg->td->limit_valid[LIMIT_LOW]); ret = 0; out_finish: blkg_conf_finish(&ctx); return ret ?: nbytes; } static struct cftype throtl_files[] = { #ifdef CONFIG_BLK_DEV_THROTTLING_LOW { .name = "low", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = tg_print_limit, .write = tg_set_limit, .private = LIMIT_LOW, }, #endif { .name = "max", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = tg_print_limit, .write = tg_set_limit, .private = LIMIT_MAX, }, { } /* terminate */ }; static void throtl_shutdown_wq(struct request_queue *q) { struct throtl_data *td = q->td; cancel_work_sync(&td->dispatch_work); } static struct blkcg_policy blkcg_policy_throtl = { .dfl_cftypes = throtl_files, .legacy_cftypes = throtl_legacy_files, .pd_alloc_fn = throtl_pd_alloc, .pd_init_fn = throtl_pd_init, .pd_online_fn = throtl_pd_online, .pd_offline_fn = throtl_pd_offline, .pd_free_fn = throtl_pd_free, .pd_reset_stats_fn = throtl_pd_reset, }; static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) { unsigned long rtime = jiffies, wtime = jiffies; if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) rtime = tg->last_low_overflow_time[READ]; if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) wtime = tg->last_low_overflow_time[WRITE]; return min(rtime, wtime); } /* tg should not be an intermediate node */ static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) { struct throtl_service_queue *parent_sq; struct throtl_grp *parent = tg; unsigned long ret = __tg_last_low_overflow_time(tg); while (true) { parent_sq = parent->service_queue.parent_sq; parent = sq_to_tg(parent_sq); if (!parent) break; /* * The parent doesn't have low limit, it always reaches low * limit. Its overflow time is useless for children */ if (!parent->bps[READ][LIMIT_LOW] && !parent->iops[READ][LIMIT_LOW] && !parent->bps[WRITE][LIMIT_LOW] && !parent->iops[WRITE][LIMIT_LOW]) continue; if (time_after(__tg_last_low_overflow_time(parent), ret)) ret = __tg_last_low_overflow_time(parent); } return ret; } static bool throtl_tg_is_idle(struct throtl_grp *tg) { /* * cgroup is idle if: * - single idle is too long, longer than a fixed value (in case user * configure a too big threshold) or 4 times of idletime threshold * - average think time is more than threshold * - IO latency is largely below threshold */ unsigned long time; bool ret; time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); ret = tg->latency_target == DFL_LATENCY_TARGET || tg->idletime_threshold == DFL_IDLE_THRESHOLD || (ktime_get_ns() >> 10) - tg->last_finish_time > time || tg->avg_idletime > tg->idletime_threshold || (tg->latency_target && tg->bio_cnt && tg->bad_bio_cnt * 5 < tg->bio_cnt); throtl_log(&tg->service_queue, "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, tg->bio_cnt, ret, tg->td->scale); return ret; } static bool throtl_tg_can_upgrade(struct throtl_grp *tg) { struct throtl_service_queue *sq = &tg->service_queue; bool read_limit, write_limit; /* * if cgroup reaches low limit (if low limit is 0, the cgroup always * reaches), it's ok to upgrade to next limit */ read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; if (!read_limit && !write_limit) return true; if (read_limit && sq->nr_queued[READ] && (!write_limit || sq->nr_queued[WRITE])) return true; if (write_limit && sq->nr_queued[WRITE] && (!read_limit || sq->nr_queued[READ])) return true; if (time_after_eq(jiffies, tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && throtl_tg_is_idle(tg)) return true; return false; } static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) { while (true) { if (throtl_tg_can_upgrade(tg)) return true; tg = sq_to_tg(tg->service_queue.parent_sq); if (!tg || !tg_to_blkg(tg)->parent) return false; } return false; } static bool throtl_can_upgrade(struct throtl_data *td, struct throtl_grp *this_tg) { struct cgroup_subsys_state *pos_css; struct blkcg_gq *blkg; if (td->limit_index != LIMIT_LOW) return false; if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) return false; rcu_read_lock(); blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { struct throtl_grp *tg = blkg_to_tg(blkg); if (tg == this_tg) continue; if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) continue; if (!throtl_hierarchy_can_upgrade(tg)) { rcu_read_unlock(); return false; } } rcu_read_unlock(); return true; } static void throtl_upgrade_check(struct throtl_grp *tg) { unsigned long now = jiffies; if (tg->td->limit_index != LIMIT_LOW) return; if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) return; tg->last_check_time = now; if (!time_after_eq(now, __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) return; if (throtl_can_upgrade(tg->td, NULL)) throtl_upgrade_state(tg->td); } static void throtl_upgrade_state(struct throtl_data *td) { struct cgroup_subsys_state *pos_css; struct blkcg_gq *blkg; throtl_log(&td->service_queue, "upgrade to max"); td->limit_index = LIMIT_MAX; td->low_upgrade_time = jiffies; td->scale = 0; rcu_read_lock(); blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { struct throtl_grp *tg = blkg_to_tg(blkg); struct throtl_service_queue *sq = &tg->service_queue; tg->disptime = jiffies - 1; throtl_select_dispatch(sq); throtl_schedule_next_dispatch(sq, true); } rcu_read_unlock(); throtl_select_dispatch(&td->service_queue); throtl_schedule_next_dispatch(&td->service_queue, true); queue_work(kthrotld_workqueue, &td->dispatch_work); } static void throtl_downgrade_state(struct throtl_data *td, int new) { td->scale /= 2; throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); if (td->scale) { td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; return; } td->limit_index = new; td->low_downgrade_time = jiffies; } static bool throtl_tg_can_downgrade(struct throtl_grp *tg) { struct throtl_data *td = tg->td; unsigned long now = jiffies; /* * If cgroup is below low limit, consider downgrade and throttle other * cgroups */ if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && time_after_eq(now, tg_last_low_overflow_time(tg) + td->throtl_slice) && (!throtl_tg_is_idle(tg) || !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) return true; return false; } static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) { while (true) { if (!throtl_tg_can_downgrade(tg)) return false; tg = sq_to_tg(tg->service_queue.parent_sq); if (!tg || !tg_to_blkg(tg)->parent) break; } return true; } static void throtl_downgrade_check(struct throtl_grp *tg) { uint64_t bps; unsigned int iops; unsigned long elapsed_time; unsigned long now = jiffies; if (tg->td->limit_index != LIMIT_MAX || !tg->td->limit_valid[LIMIT_LOW]) return; if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) return; if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) return; elapsed_time = now - tg->last_check_time; tg->last_check_time = now; if (time_before(now, tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) return; if (tg->bps[READ][LIMIT_LOW]) { bps = tg->last_bytes_disp[READ] * HZ; do_div(bps, elapsed_time); if (bps >= tg->bps[READ][LIMIT_LOW]) tg->last_low_overflow_time[READ] = now; } if (tg->bps[WRITE][LIMIT_LOW]) { bps = tg->last_bytes_disp[WRITE] * HZ; do_div(bps, elapsed_time); if (bps >= tg->bps[WRITE][LIMIT_LOW]) tg->last_low_overflow_time[WRITE] = now; } if (tg->iops[READ][LIMIT_LOW]) { iops = tg->last_io_disp[READ] * HZ / elapsed_time; if (iops >= tg->iops[READ][LIMIT_LOW]) tg->last_low_overflow_time[READ] = now; } if (tg->iops[WRITE][LIMIT_LOW]) { iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; if (iops >= tg->iops[WRITE][LIMIT_LOW]) tg->last_low_overflow_time[WRITE] = now; } /* * If cgroup is below low limit, consider downgrade and throttle other * cgroups */ if (throtl_hierarchy_can_downgrade(tg)) throtl_downgrade_state(tg->td, LIMIT_LOW); tg->last_bytes_disp[READ] = 0; tg->last_bytes_disp[WRITE] = 0; tg->last_io_disp[READ] = 0; tg->last_io_disp[WRITE] = 0; } static void blk_throtl_update_idletime(struct throtl_grp *tg) { unsigned long now = ktime_get_ns() >> 10; unsigned long last_finish_time = tg->last_finish_time; if (now <= last_finish_time || last_finish_time == 0 || last_finish_time == tg->checked_last_finish_time) return; tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; tg->checked_last_finish_time = last_finish_time; } #ifdef CONFIG_BLK_DEV_THROTTLING_LOW static void throtl_update_latency_buckets(struct throtl_data *td) { struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; int i, cpu, rw; unsigned long last_latency[2] = { 0 }; unsigned long latency[2]; if (!blk_queue_nonrot(td->queue)) return; if (time_before(jiffies, td->last_calculate_time + HZ)) return; td->last_calculate_time = jiffies; memset(avg_latency, 0, sizeof(avg_latency)); for (rw = READ; rw <= WRITE; rw++) { for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; for_each_possible_cpu(cpu) { struct latency_bucket *bucket; /* this isn't race free, but ok in practice */ bucket = per_cpu_ptr(td->latency_buckets[rw], cpu); tmp->total_latency += bucket[i].total_latency; tmp->samples += bucket[i].samples; bucket[i].total_latency = 0; bucket[i].samples = 0; } if (tmp->samples >= 32) { int samples = tmp->samples; latency[rw] = tmp->total_latency; tmp->total_latency = 0; tmp->samples = 0; latency[rw] /= samples; if (latency[rw] == 0) continue; avg_latency[rw][i].latency = latency[rw]; } } } for (rw = READ; rw <= WRITE; rw++) { for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { if (!avg_latency[rw][i].latency) { if (td->avg_buckets[rw][i].latency < last_latency[rw]) td->avg_buckets[rw][i].latency = last_latency[rw]; continue; } if (!td->avg_buckets[rw][i].valid) latency[rw] = avg_latency[rw][i].latency; else latency[rw] = (td->avg_buckets[rw][i].latency * 7 + avg_latency[rw][i].latency) >> 3; td->avg_buckets[rw][i].latency = max(latency[rw], last_latency[rw]); td->avg_buckets[rw][i].valid = true; last_latency[rw] = td->avg_buckets[rw][i].latency; } } for (i = 0; i < LATENCY_BUCKET_SIZE; i++) throtl_log(&td->service_queue, "Latency bucket %d: read latency=%ld, read valid=%d, " "write latency=%ld, write valid=%d", i, td->avg_buckets[READ][i].latency, td->avg_buckets[READ][i].valid, td->avg_buckets[WRITE][i].latency, td->avg_buckets[WRITE][i].valid); } #else static inline void throtl_update_latency_buckets(struct throtl_data *td) { } #endif static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio) { #ifdef CONFIG_BLK_DEV_THROTTLING_LOW /* fallback to root_blkg if we fail to get a blkg ref */ if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV)) bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg); bio_issue_init(&bio->bi_issue, bio_sectors(bio)); #endif } bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, struct bio *bio, wait_queue_head_t **wait) { struct throtl_qnode *qn = NULL; struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); struct throtl_service_queue *sq; bool rw = bio_data_dir(bio); bool throttled = false; struct throtl_data *td = tg->td; WARN_ON_ONCE(!rcu_read_lock_held()); /* see throtl_charge_bio() */ if (bio_flagged(bio, BIO_THROTTLED)) goto out; throtl_bio_stats_start(bio, tg); if (!tg->has_rules[rw]) goto out; spin_lock_irq(q->queue_lock); throtl_update_latency_buckets(td); if (unlikely(blk_queue_bypass(q))) goto out_unlock; blk_throtl_assoc_bio(tg, bio); blk_throtl_update_idletime(tg); sq = &tg->service_queue; again: while (true) { if (tg->last_low_overflow_time[rw] == 0) tg->last_low_overflow_time[rw] = jiffies; throtl_downgrade_check(tg); throtl_upgrade_check(tg); /* throtl is FIFO - if bios are already queued, should queue */ if (sq->nr_queued[rw]) break; /* if above limits, break to queue */ if (!tg_may_dispatch(tg, bio, NULL)) { tg->last_low_overflow_time[rw] = jiffies; if (throtl_can_upgrade(td, tg)) { throtl_upgrade_state(td); goto again; } break; } /* within limits, let's charge and dispatch directly */ throtl_charge_bio(tg, bio); /* * We need to trim slice even when bios are not being queued * otherwise it might happen that a bio is not queued for * a long time and slice keeps on extending and trim is not * called for a long time. Now if limits are reduced suddenly * we take into account all the IO dispatched so far at new * low rate and * newly queued IO gets a really long dispatch * time. * * So keep on trimming slice even if bio is not queued. */ throtl_trim_slice(tg, rw); /* * @bio passed through this layer without being throttled. * Climb up the ladder. If we''re already at the top, it * can be executed directly. */ qn = &tg->qnode_on_parent[rw]; sq = sq->parent_sq; tg = sq_to_tg(sq); if (!tg) goto out_unlock; } /* out-of-limit, queue to @tg */ throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", rw == READ ? 'R' : 'W', tg->bytes_disp[rw], bio->bi_iter.bi_size, tg_bps_limit(tg, rw), tg->io_disp[rw], tg_iops_limit(tg, rw), sq->nr_queued[READ], sq->nr_queued[WRITE]); tg->last_low_overflow_time[rw] = jiffies; td->nr_queued[rw]++; if (rw == WRITE) { u64 bps_limit = tg_bps_limit(tg, rw); if (bps_limit != U64_MAX && (wq_has_sleeper(&sq->wait[rw]) || sq->nr_queued_bytes[rw] > div_u64(bps_limit, 2))) *wait = &sq->wait[rw]; } throtl_add_bio_tg(bio, qn, tg); throttled = true; /* * Update @tg's dispatch time and force schedule dispatch if @tg * was empty before @bio. The forced scheduling isn't likely to * cause undue delay as @bio is likely to be dispatched directly if * its @tg's disptime is not in the future. */ if (tg->flags & THROTL_TG_WAS_EMPTY) { tg_update_disptime(tg); throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); } out_unlock: spin_unlock_irq(q->queue_lock); out: if (!throttled) bio_set_io_start_time_ns(bio); bio_set_flag(bio, BIO_THROTTLED); #ifdef CONFIG_BLK_DEV_THROTTLING_LOW if (throttled || !td->track_bio_latency) bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; #endif return throttled; } #ifdef CONFIG_BLK_DEV_THROTTLING_LOW static void throtl_track_latency(struct throtl_data *td, sector_t size, int op, unsigned long time) { struct latency_bucket *latency; int index; if (!td || td->limit_index != LIMIT_LOW || !(op == REQ_OP_READ || op == REQ_OP_WRITE) || !blk_queue_nonrot(td->queue)) return; index = request_bucket_index(size); latency = get_cpu_ptr(td->latency_buckets[op]); latency[index].total_latency += time; latency[index].samples++; put_cpu_ptr(td->latency_buckets[op]); } void blk_throtl_stat_add(struct request *rq, u64 time_ns) { struct request_queue *q = rq->q; struct throtl_data *td = q->td; throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10); } void blk_throtl_bio_endio(struct bio *bio) { struct blkcg_gq *blkg; struct throtl_grp *tg; u64 finish_time_ns; unsigned long finish_time; unsigned long start_time; unsigned long lat; int rw = bio_data_dir(bio); blkg = bio->bi_blkg; if (!blkg) return; tg = blkg_to_tg(blkg); finish_time_ns = ktime_get_ns(); tg->last_finish_time = finish_time_ns >> 10; start_time = bio_issue_time(&bio->bi_issue) >> 10; finish_time = __bio_issue_time(finish_time_ns) >> 10; if (!start_time || finish_time <= start_time) return; lat = finish_time - start_time; /* this is only for bio based driver */ if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), bio_op(bio), lat); if (tg->latency_target && lat >= tg->td->filtered_latency) { int bucket; unsigned int threshold; bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); threshold = tg->td->avg_buckets[rw][bucket].latency + tg->latency_target; if (lat > threshold) tg->bad_bio_cnt++; /* * Not race free, could get wrong count, which means cgroups * will be throttled */ tg->bio_cnt++; } if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; tg->bio_cnt /= 2; tg->bad_bio_cnt /= 2; } } #endif /* * Dispatch all bios from all children tg's queued on @parent_sq. On * return, @parent_sq is guaranteed to not have any active children tg's * and all bios from previously active tg's are on @parent_sq->bio_lists[]. */ static void tg_drain_bios(struct throtl_service_queue *parent_sq) { struct throtl_grp *tg; while ((tg = throtl_rb_first(parent_sq))) { struct throtl_service_queue *sq = &tg->service_queue; struct bio *bio; throtl_dequeue_tg(tg); while ((bio = throtl_peek_queued(&sq->queued[READ]))) tg_dispatch_one_bio(tg, bio_data_dir(bio)); while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) tg_dispatch_one_bio(tg, bio_data_dir(bio)); } } /** * blk_throtl_drain - drain throttled bios * @q: request_queue to drain throttled bios for * * Dispatch all currently throttled bios on @q through ->make_request_fn(). */ void blk_throtl_drain(struct request_queue *q) __releases(q->queue_lock) __acquires(q->queue_lock) { struct throtl_data *td = q->td; struct blkcg_gq *blkg; struct cgroup_subsys_state *pos_css; struct bio *bio; int rw; queue_lockdep_assert_held(q); rcu_read_lock(); /* * Drain each tg while doing post-order walk on the blkg tree, so * that all bios are propagated to td->service_queue. It'd be * better to walk service_queue tree directly but blkg walk is * easier. */ blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) tg_drain_bios(&blkg_to_tg(blkg)->service_queue); /* finally, transfer bios from top-level tg's into the td */ tg_drain_bios(&td->service_queue); rcu_read_unlock(); spin_unlock_irq(q->queue_lock); /* all bios now should be in td->service_queue, issue them */ for (rw = READ; rw <= WRITE; rw++) while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], NULL))) generic_make_request(bio); spin_lock_irq(q->queue_lock); } int blk_throtl_init(struct request_queue *q) { struct throtl_data *td; int ret; td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); if (!td) return -ENOMEM; td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * LATENCY_BUCKET_SIZE, __alignof__(u64)); if (!td->latency_buckets[READ]) { kfree(td); return -ENOMEM; } td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * LATENCY_BUCKET_SIZE, __alignof__(u64)); if (!td->latency_buckets[WRITE]) { free_percpu(td->latency_buckets[READ]); kfree(td); return -ENOMEM; } INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); throtl_service_queue_init(&td->service_queue); q->td = td; td->queue = q; td->limit_valid[LIMIT_MAX] = true; td->limit_index = LIMIT_MAX; td->low_upgrade_time = jiffies; td->low_downgrade_time = jiffies; /* activate policy */ ret = blkcg_activate_policy(q, &blkcg_policy_throtl); if (ret) { free_percpu(td->latency_buckets[READ]); free_percpu(td->latency_buckets[WRITE]); kfree(td); } return ret; } void blk_throtl_exit(struct request_queue *q) { BUG_ON(!q->td); throtl_shutdown_wq(q); blkcg_deactivate_policy(q, &blkcg_policy_throtl); free_percpu(q->td->latency_buckets[READ]); free_percpu(q->td->latency_buckets[WRITE]); kfree(q->td); } void blk_throtl_register_queue(struct request_queue *q) { struct throtl_data *td; int i; td = q->td; BUG_ON(!td); if (blk_queue_nonrot(q)) { td->throtl_slice = DFL_THROTL_SLICE_SSD; td->filtered_latency = LATENCY_FILTERED_SSD; } else { td->throtl_slice = DFL_THROTL_SLICE_HD; td->filtered_latency = LATENCY_FILTERED_HD; for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; } } #ifndef CONFIG_BLK_DEV_THROTTLING_LOW /* if no low limit, use previous default */ td->throtl_slice = DFL_THROTL_SLICE_HD; #endif td->track_bio_latency = !queue_is_rq_based(q); if (!td->track_bio_latency) blk_stat_enable_accounting(q); } #ifdef CONFIG_BLK_DEV_THROTTLING_LOW ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) { if (!q->td) return -EINVAL; return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); } ssize_t blk_throtl_sample_time_store(struct request_queue *q, const char *page, size_t count) { unsigned long v; unsigned long t; if (!q->td) return -EINVAL; if (kstrtoul(page, 10, &v)) return -EINVAL; t = msecs_to_jiffies(v); if (t == 0 || t > MAX_THROTL_SLICE) return -EINVAL; q->td->throtl_slice = t; return count; } #endif static int __init throtl_init(void) { kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); if (!kthrotld_workqueue) panic("Failed to create kthrotld\n"); return blkcg_policy_register(&blkcg_policy_throtl); } module_init(throtl_init);