/* * Common code for the NVMe target. * Copyright (c) 2015-2016 HGST, a Western Digital Company. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include "nvmet.h" static struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; /* * This read/write semaphore is used to synchronize access to configuration * information on a target system that will result in discovery log page * information change for at least one host. * The full list of resources to protected by this semaphore is: * * - subsystems list * - per-subsystem allowed hosts list * - allow_any_host subsystem attribute * - nvmet_genctr * - the nvmet_transports array * * When updating any of those lists/structures write lock should be obtained, * while when reading (popolating discovery log page or checking host-subsystem * link) read lock is obtained to allow concurrent reads. */ DECLARE_RWSEM(nvmet_config_sem); static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, const char *subsysnqn); u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, size_t len) { if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; return 0; } u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) { if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; return 0; } static u32 nvmet_async_event_result(struct nvmet_async_event *aen) { return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); } static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) { struct nvmet_req *req; while (1) { mutex_lock(&ctrl->lock); if (!ctrl->nr_async_event_cmds) { mutex_unlock(&ctrl->lock); return; } req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; mutex_unlock(&ctrl->lock); nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); } } static void nvmet_async_event_work(struct work_struct *work) { struct nvmet_ctrl *ctrl = container_of(work, struct nvmet_ctrl, async_event_work); struct nvmet_async_event *aen; struct nvmet_req *req; while (1) { mutex_lock(&ctrl->lock); aen = list_first_entry_or_null(&ctrl->async_events, struct nvmet_async_event, entry); if (!aen || !ctrl->nr_async_event_cmds) { mutex_unlock(&ctrl->lock); return; } req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; nvmet_set_result(req, nvmet_async_event_result(aen)); list_del(&aen->entry); kfree(aen); mutex_unlock(&ctrl->lock); nvmet_req_complete(req, 0); } } static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, u8 event_info, u8 log_page) { struct nvmet_async_event *aen; aen = kmalloc(sizeof(*aen), GFP_KERNEL); if (!aen) return; aen->event_type = event_type; aen->event_info = event_info; aen->log_page = log_page; mutex_lock(&ctrl->lock); list_add_tail(&aen->entry, &ctrl->async_events); mutex_unlock(&ctrl->lock); schedule_work(&ctrl->async_event_work); } int nvmet_register_transport(struct nvmet_fabrics_ops *ops) { int ret = 0; down_write(&nvmet_config_sem); if (nvmet_transports[ops->type]) ret = -EINVAL; else nvmet_transports[ops->type] = ops; up_write(&nvmet_config_sem); return ret; } EXPORT_SYMBOL_GPL(nvmet_register_transport); void nvmet_unregister_transport(struct nvmet_fabrics_ops *ops) { down_write(&nvmet_config_sem); nvmet_transports[ops->type] = NULL; up_write(&nvmet_config_sem); } EXPORT_SYMBOL_GPL(nvmet_unregister_transport); int nvmet_enable_port(struct nvmet_port *port) { struct nvmet_fabrics_ops *ops; int ret; lockdep_assert_held(&nvmet_config_sem); ops = nvmet_transports[port->disc_addr.trtype]; if (!ops) { up_write(&nvmet_config_sem); request_module("nvmet-transport-%d", port->disc_addr.trtype); down_write(&nvmet_config_sem); ops = nvmet_transports[port->disc_addr.trtype]; if (!ops) { pr_err("transport type %d not supported\n", port->disc_addr.trtype); return -EINVAL; } } if (!try_module_get(ops->owner)) return -EINVAL; ret = ops->add_port(port); if (ret) { module_put(ops->owner); return ret; } port->enabled = true; return 0; } void nvmet_disable_port(struct nvmet_port *port) { struct nvmet_fabrics_ops *ops; lockdep_assert_held(&nvmet_config_sem); port->enabled = false; ops = nvmet_transports[port->disc_addr.trtype]; ops->remove_port(port); module_put(ops->owner); } static void nvmet_keep_alive_timer(struct work_struct *work) { struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), struct nvmet_ctrl, ka_work); pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", ctrl->cntlid, ctrl->kato); ctrl->ops->delete_ctrl(ctrl); } static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) { pr_debug("ctrl %d start keep-alive timer for %d secs\n", ctrl->cntlid, ctrl->kato); INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); } static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) { pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); cancel_delayed_work_sync(&ctrl->ka_work); } static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) { struct nvmet_ns *ns; list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { if (ns->nsid == le32_to_cpu(nsid)) return ns; } return NULL; } struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) { struct nvmet_ns *ns; rcu_read_lock(); ns = __nvmet_find_namespace(ctrl, nsid); if (ns) percpu_ref_get(&ns->ref); rcu_read_unlock(); return ns; } static void nvmet_destroy_namespace(struct percpu_ref *ref) { struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); complete(&ns->disable_done); } void nvmet_put_namespace(struct nvmet_ns *ns) { percpu_ref_put(&ns->ref); } int nvmet_ns_enable(struct nvmet_ns *ns) { struct nvmet_subsys *subsys = ns->subsys; struct nvmet_ctrl *ctrl; int ret = 0; mutex_lock(&subsys->lock); if (ns->enabled) goto out_unlock; ns->bdev = blkdev_get_by_path(ns->device_path, FMODE_READ | FMODE_WRITE, NULL); if (IS_ERR(ns->bdev)) { pr_err("nvmet: failed to open block device %s: (%ld)\n", ns->device_path, PTR_ERR(ns->bdev)); ret = PTR_ERR(ns->bdev); ns->bdev = NULL; goto out_unlock; } ns->size = i_size_read(ns->bdev->bd_inode); ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL); if (ret) goto out_blkdev_put; if (ns->nsid > subsys->max_nsid) subsys->max_nsid = ns->nsid; /* * The namespaces list needs to be sorted to simplify the implementation * of the Identify Namepace List subcommand. */ if (list_empty(&subsys->namespaces)) { list_add_tail_rcu(&ns->dev_link, &subsys->namespaces); } else { struct nvmet_ns *old; list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) { BUG_ON(ns->nsid == old->nsid); if (ns->nsid < old->nsid) break; } list_add_tail_rcu(&ns->dev_link, &old->dev_link); } list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 0, 0); ns->enabled = true; ret = 0; out_unlock: mutex_unlock(&subsys->lock); return ret; out_blkdev_put: blkdev_put(ns->bdev, FMODE_WRITE|FMODE_READ); ns->bdev = NULL; goto out_unlock; } void nvmet_ns_disable(struct nvmet_ns *ns) { struct nvmet_subsys *subsys = ns->subsys; struct nvmet_ctrl *ctrl; mutex_lock(&subsys->lock); if (!ns->enabled) goto out_unlock; ns->enabled = false; list_del_rcu(&ns->dev_link); mutex_unlock(&subsys->lock); /* * Now that we removed the namespaces from the lookup list, we * can kill the per_cpu ref and wait for any remaining references * to be dropped, as well as a RCU grace period for anyone only * using the namepace under rcu_read_lock(). Note that we can't * use call_rcu here as we need to ensure the namespaces have * been fully destroyed before unloading the module. */ percpu_ref_kill(&ns->ref); synchronize_rcu(); wait_for_completion(&ns->disable_done); percpu_ref_exit(&ns->ref); mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 0, 0); if (ns->bdev) blkdev_put(ns->bdev, FMODE_WRITE|FMODE_READ); out_unlock: mutex_unlock(&subsys->lock); } void nvmet_ns_free(struct nvmet_ns *ns) { nvmet_ns_disable(ns); kfree(ns->device_path); kfree(ns); } struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) { struct nvmet_ns *ns; ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) return NULL; INIT_LIST_HEAD(&ns->dev_link); init_completion(&ns->disable_done); ns->nsid = nsid; ns->subsys = subsys; return ns; } static void __nvmet_req_complete(struct nvmet_req *req, u16 status) { if (status) nvmet_set_status(req, status); /* XXX: need to fill in something useful for sq_head */ req->rsp->sq_head = 0; if (likely(req->sq)) /* may happen during early failure */ req->rsp->sq_id = cpu_to_le16(req->sq->qid); req->rsp->command_id = req->cmd->common.command_id; if (req->ns) nvmet_put_namespace(req->ns); req->ops->queue_response(req); } void nvmet_req_complete(struct nvmet_req *req, u16 status) { __nvmet_req_complete(req, status); percpu_ref_put(&req->sq->ref); } EXPORT_SYMBOL_GPL(nvmet_req_complete); void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, u16 qid, u16 size) { cq->qid = qid; cq->size = size; ctrl->cqs[qid] = cq; } void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, u16 qid, u16 size) { sq->qid = qid; sq->size = size; ctrl->sqs[qid] = sq; } void nvmet_sq_destroy(struct nvmet_sq *sq) { /* * If this is the admin queue, complete all AERs so that our * queue doesn't have outstanding requests on it. */ if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq) nvmet_async_events_free(sq->ctrl); percpu_ref_kill(&sq->ref); wait_for_completion(&sq->free_done); percpu_ref_exit(&sq->ref); if (sq->ctrl) { nvmet_ctrl_put(sq->ctrl); sq->ctrl = NULL; /* allows reusing the queue later */ } } EXPORT_SYMBOL_GPL(nvmet_sq_destroy); static void nvmet_sq_free(struct percpu_ref *ref) { struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); complete(&sq->free_done); } int nvmet_sq_init(struct nvmet_sq *sq) { int ret; ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); if (ret) { pr_err("percpu_ref init failed!\n"); return ret; } init_completion(&sq->free_done); return 0; } EXPORT_SYMBOL_GPL(nvmet_sq_init); bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, struct nvmet_sq *sq, struct nvmet_fabrics_ops *ops) { u8 flags = req->cmd->common.flags; u16 status; req->cq = cq; req->sq = sq; req->ops = ops; req->sg = NULL; req->sg_cnt = 0; req->rsp->status = 0; /* no support for fused commands yet */ if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto fail; } /* either variant of SGLs is fine, as we don't support metadata */ if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF && (flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METASEG)) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto fail; } if (unlikely(!req->sq->ctrl)) /* will return an error for any Non-connect command: */ status = nvmet_parse_connect_cmd(req); else if (likely(req->sq->qid != 0)) status = nvmet_parse_io_cmd(req); else if (req->cmd->common.opcode == nvme_fabrics_command) status = nvmet_parse_fabrics_cmd(req); else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC) status = nvmet_parse_discovery_cmd(req); else status = nvmet_parse_admin_cmd(req); if (status) goto fail; if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto fail; } return true; fail: __nvmet_req_complete(req, status); return false; } EXPORT_SYMBOL_GPL(nvmet_req_init); static inline bool nvmet_cc_en(u32 cc) { return cc & 0x1; } static inline u8 nvmet_cc_css(u32 cc) { return (cc >> 4) & 0x7; } static inline u8 nvmet_cc_mps(u32 cc) { return (cc >> 7) & 0xf; } static inline u8 nvmet_cc_ams(u32 cc) { return (cc >> 11) & 0x7; } static inline u8 nvmet_cc_shn(u32 cc) { return (cc >> 14) & 0x3; } static inline u8 nvmet_cc_iosqes(u32 cc) { return (cc >> 16) & 0xf; } static inline u8 nvmet_cc_iocqes(u32 cc) { return (cc >> 20) & 0xf; } static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) { lockdep_assert_held(&ctrl->lock); if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || nvmet_cc_mps(ctrl->cc) != 0 || nvmet_cc_ams(ctrl->cc) != 0 || nvmet_cc_css(ctrl->cc) != 0) { ctrl->csts = NVME_CSTS_CFS; return; } ctrl->csts = NVME_CSTS_RDY; } static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) { lockdep_assert_held(&ctrl->lock); /* XXX: tear down queues? */ ctrl->csts &= ~NVME_CSTS_RDY; ctrl->cc = 0; } void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) { u32 old; mutex_lock(&ctrl->lock); old = ctrl->cc; ctrl->cc = new; if (nvmet_cc_en(new) && !nvmet_cc_en(old)) nvmet_start_ctrl(ctrl); if (!nvmet_cc_en(new) && nvmet_cc_en(old)) nvmet_clear_ctrl(ctrl); if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { nvmet_clear_ctrl(ctrl); ctrl->csts |= NVME_CSTS_SHST_CMPLT; } if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; mutex_unlock(&ctrl->lock); } static void nvmet_init_cap(struct nvmet_ctrl *ctrl) { /* command sets supported: NVMe command set: */ ctrl->cap = (1ULL << 37); /* CC.EN timeout in 500msec units: */ ctrl->cap |= (15ULL << 24); /* maximum queue entries supported: */ ctrl->cap |= NVMET_QUEUE_SIZE - 1; } u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, struct nvmet_req *req, struct nvmet_ctrl **ret) { struct nvmet_subsys *subsys; struct nvmet_ctrl *ctrl; u16 status = 0; subsys = nvmet_find_get_subsys(req->port, subsysnqn); if (!subsys) { pr_warn("connect request for invalid subsystem %s!\n", subsysnqn); req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; } mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { if (ctrl->cntlid == cntlid) { if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { pr_warn("hostnqn mismatch.\n"); continue; } if (!kref_get_unless_zero(&ctrl->ref)) continue; *ret = ctrl; goto out; } } pr_warn("could not find controller %d for subsys %s / host %s\n", cntlid, subsysnqn, hostnqn); req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; out: mutex_unlock(&subsys->lock); nvmet_subsys_put(subsys); return status; } static bool __nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) { struct nvmet_host_link *p; if (subsys->allow_any_host) return true; list_for_each_entry(p, &subsys->hosts, entry) { if (!strcmp(nvmet_host_name(p->host), hostnqn)) return true; } return false; } static bool nvmet_host_discovery_allowed(struct nvmet_req *req, const char *hostnqn) { struct nvmet_subsys_link *s; list_for_each_entry(s, &req->port->subsystems, entry) { if (__nvmet_host_allowed(s->subsys, hostnqn)) return true; } return false; } bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys, const char *hostnqn) { lockdep_assert_held(&nvmet_config_sem); if (subsys->type == NVME_NQN_DISC) return nvmet_host_discovery_allowed(req, hostnqn); else return __nvmet_host_allowed(subsys, hostnqn); } u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) { struct nvmet_subsys *subsys; struct nvmet_ctrl *ctrl; int ret; u16 status; status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; subsys = nvmet_find_get_subsys(req->port, subsysnqn); if (!subsys) { pr_warn("connect request for invalid subsystem %s!\n", subsysnqn); req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); goto out; } status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; down_read(&nvmet_config_sem); if (!nvmet_host_allowed(req, subsys, hostnqn)) { pr_info("connect by host %s for subsystem %s not allowed\n", hostnqn, subsysnqn); req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); up_read(&nvmet_config_sem); goto out_put_subsystem; } up_read(&nvmet_config_sem); status = NVME_SC_INTERNAL; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) goto out_put_subsystem; mutex_init(&ctrl->lock); nvmet_init_cap(ctrl); INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); INIT_LIST_HEAD(&ctrl->async_events); memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); /* generate a random serial number as our controllers are ephemeral: */ get_random_bytes(&ctrl->serial, sizeof(ctrl->serial)); kref_init(&ctrl->ref); ctrl->subsys = subsys; ctrl->cqs = kcalloc(subsys->max_qid + 1, sizeof(struct nvmet_cq *), GFP_KERNEL); if (!ctrl->cqs) goto out_free_ctrl; ctrl->sqs = kcalloc(subsys->max_qid + 1, sizeof(struct nvmet_sq *), GFP_KERNEL); if (!ctrl->sqs) goto out_free_cqs; ret = ida_simple_get(&subsys->cntlid_ida, NVME_CNTLID_MIN, NVME_CNTLID_MAX, GFP_KERNEL); if (ret < 0) { status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; goto out_free_sqs; } ctrl->cntlid = ret; ctrl->ops = req->ops; if (ctrl->subsys->type == NVME_NQN_DISC) { /* Don't accept keep-alive timeout for discovery controllers */ if (kato) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto out_free_sqs; } /* * Discovery controllers use some arbitrary high value in order * to cleanup stale discovery sessions * * From the latest base diff RC: * "The Keep Alive command is not supported by * Discovery controllers. A transport may specify a * fixed Discovery controller activity timeout value * (e.g., 2 minutes). If no commands are received * by a Discovery controller within that time * period, the controller may perform the * actions for Keep Alive Timer expiration". */ ctrl->kato = NVMET_DISC_KATO; } else { /* keep-alive timeout in seconds */ ctrl->kato = DIV_ROUND_UP(kato, 1000); } nvmet_start_keep_alive_timer(ctrl); mutex_lock(&subsys->lock); list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); mutex_unlock(&subsys->lock); *ctrlp = ctrl; return 0; out_free_sqs: kfree(ctrl->sqs); out_free_cqs: kfree(ctrl->cqs); out_free_ctrl: kfree(ctrl); out_put_subsystem: nvmet_subsys_put(subsys); out: return status; } static void nvmet_ctrl_free(struct kref *ref) { struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); struct nvmet_subsys *subsys = ctrl->subsys; nvmet_stop_keep_alive_timer(ctrl); mutex_lock(&subsys->lock); list_del(&ctrl->subsys_entry); mutex_unlock(&subsys->lock); flush_work(&ctrl->async_event_work); cancel_work_sync(&ctrl->fatal_err_work); ida_simple_remove(&subsys->cntlid_ida, ctrl->cntlid); nvmet_subsys_put(subsys); kfree(ctrl->sqs); kfree(ctrl->cqs); kfree(ctrl); } void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) { kref_put(&ctrl->ref, nvmet_ctrl_free); } static void nvmet_fatal_error_handler(struct work_struct *work) { struct nvmet_ctrl *ctrl = container_of(work, struct nvmet_ctrl, fatal_err_work); pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); ctrl->ops->delete_ctrl(ctrl); } void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) { mutex_lock(&ctrl->lock); if (!(ctrl->csts & NVME_CSTS_CFS)) { ctrl->csts |= NVME_CSTS_CFS; INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); schedule_work(&ctrl->fatal_err_work); } mutex_unlock(&ctrl->lock); } EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, const char *subsysnqn) { struct nvmet_subsys_link *p; if (!port) return NULL; if (!strncmp(NVME_DISC_SUBSYS_NAME, subsysnqn, NVMF_NQN_SIZE)) { if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) return NULL; return nvmet_disc_subsys; } down_read(&nvmet_config_sem); list_for_each_entry(p, &port->subsystems, entry) { if (!strncmp(p->subsys->subsysnqn, subsysnqn, NVMF_NQN_SIZE)) { if (!kref_get_unless_zero(&p->subsys->ref)) break; up_read(&nvmet_config_sem); return p->subsys; } } up_read(&nvmet_config_sem); return NULL; } struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, enum nvme_subsys_type type) { struct nvmet_subsys *subsys; subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); if (!subsys) return NULL; subsys->ver = NVME_VS(1, 2, 1); /* NVMe 1.2.1 */ switch (type) { case NVME_NQN_NVME: subsys->max_qid = NVMET_NR_QUEUES; break; case NVME_NQN_DISC: subsys->max_qid = 0; break; default: pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); kfree(subsys); return NULL; } subsys->type = type; subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, GFP_KERNEL); if (!subsys->subsysnqn) { kfree(subsys); return NULL; } kref_init(&subsys->ref); mutex_init(&subsys->lock); INIT_LIST_HEAD(&subsys->namespaces); INIT_LIST_HEAD(&subsys->ctrls); ida_init(&subsys->cntlid_ida); INIT_LIST_HEAD(&subsys->hosts); return subsys; } static void nvmet_subsys_free(struct kref *ref) { struct nvmet_subsys *subsys = container_of(ref, struct nvmet_subsys, ref); WARN_ON_ONCE(!list_empty(&subsys->namespaces)); ida_destroy(&subsys->cntlid_ida); kfree(subsys->subsysnqn); kfree(subsys); } void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) { struct nvmet_ctrl *ctrl; mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) ctrl->ops->delete_ctrl(ctrl); mutex_unlock(&subsys->lock); } void nvmet_subsys_put(struct nvmet_subsys *subsys) { kref_put(&subsys->ref, nvmet_subsys_free); } static int __init nvmet_init(void) { int error; error = nvmet_init_discovery(); if (error) goto out; error = nvmet_init_configfs(); if (error) goto out_exit_discovery; return 0; out_exit_discovery: nvmet_exit_discovery(); out: return error; } static void __exit nvmet_exit(void) { nvmet_exit_configfs(); nvmet_exit_discovery(); BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); } module_init(nvmet_init); module_exit(nvmet_exit); MODULE_LICENSE("GPL v2");