/* * Driver for USB Windows Media Center Ed. eHome Infrared Transceivers * * Copyright (c) 2010 by Jarod Wilson * * Based on the original lirc_mceusb and lirc_mceusb2 drivers, by Dan * Conti, Martin Blatter and Daniel Melander, the latter of which was * in turn also based on the lirc_atiusb driver by Paul Miller. The * two mce drivers were merged into one by Jarod Wilson, with transmit * support for the 1st-gen device added primarily by Patrick Calhoun, * with a bit of tweaks by Jarod. Debugging improvements and proper * support for what appears to be 3rd-gen hardware added by Jarod. * Initial port from lirc driver to ir-core drivery by Jarod, based * partially on a port to an earlier proposed IR infrastructure by * Jon Smirl, which included enhancements and simplifications to the * incoming IR buffer parsing routines. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #define DRIVER_VERSION "1.91" #define DRIVER_AUTHOR "Jarod Wilson " #define DRIVER_DESC "Windows Media Center Ed. eHome Infrared Transceiver " \ "device driver" #define DRIVER_NAME "mceusb" #define USB_BUFLEN 32 /* USB reception buffer length */ #define USB_CTRL_MSG_SZ 2 /* Size of usb ctrl msg on gen1 hw */ #define MCE_G1_INIT_MSGS 40 /* Init messages on gen1 hw to throw out */ /* MCE constants */ #define MCE_CMDBUF_SIZE 384 /* MCE Command buffer length */ #define MCE_TIME_UNIT 50 /* Approx 50us resolution */ #define MCE_CODE_LENGTH 5 /* Normal length of packet (with header) */ #define MCE_PACKET_SIZE 4 /* Normal length of packet (without header) */ #define MCE_PACKET_HEADER 0x84 /* Actual header format is 0x80 + num_bytes */ #define MCE_CONTROL_HEADER 0x9F /* MCE status header */ #define MCE_TX_HEADER_LENGTH 3 /* # of bytes in the initializing tx header */ #define MCE_MAX_CHANNELS 2 /* Two transmitters, hardware dependent? */ #define MCE_DEFAULT_TX_MASK 0x03 /* Val opts: TX1=0x01, TX2=0x02, ALL=0x03 */ #define MCE_PULSE_BIT 0x80 /* Pulse bit, MSB set == PULSE else SPACE */ #define MCE_PULSE_MASK 0x7F /* Pulse mask */ #define MCE_MAX_PULSE_LENGTH 0x7F /* Longest transmittable pulse symbol */ #define MCE_PACKET_LENGTH_MASK 0x1F /* Packet length mask */ /* module parameters */ #ifdef CONFIG_USB_DEBUG static int debug = 1; #else static int debug; #endif /* general constants */ #define SEND_FLAG_IN_PROGRESS 1 #define SEND_FLAG_COMPLETE 2 #define RECV_FLAG_IN_PROGRESS 3 #define RECV_FLAG_COMPLETE 4 #define MCEUSB_RX 1 #define MCEUSB_TX 2 #define VENDOR_PHILIPS 0x0471 #define VENDOR_SMK 0x0609 #define VENDOR_TATUNG 0x1460 #define VENDOR_GATEWAY 0x107b #define VENDOR_SHUTTLE 0x1308 #define VENDOR_SHUTTLE2 0x051c #define VENDOR_MITSUMI 0x03ee #define VENDOR_TOPSEED 0x1784 #define VENDOR_RICAVISION 0x179d #define VENDOR_ITRON 0x195d #define VENDOR_FIC 0x1509 #define VENDOR_LG 0x043e #define VENDOR_MICROSOFT 0x045e #define VENDOR_FORMOSA 0x147a #define VENDOR_FINTEK 0x1934 #define VENDOR_PINNACLE 0x2304 #define VENDOR_ECS 0x1019 #define VENDOR_WISTRON 0x0fb8 #define VENDOR_COMPRO 0x185b #define VENDOR_NORTHSTAR 0x04eb #define VENDOR_REALTEK 0x0bda #define VENDOR_TIVO 0x105a static struct usb_device_id mceusb_dev_table[] = { /* Original Microsoft MCE IR Transceiver (often HP-branded) */ { USB_DEVICE(VENDOR_MICROSOFT, 0x006d) }, /* Philips Infrared Transceiver - Sahara branded */ { USB_DEVICE(VENDOR_PHILIPS, 0x0608) }, /* Philips Infrared Transceiver - HP branded */ { USB_DEVICE(VENDOR_PHILIPS, 0x060c) }, /* Philips SRM5100 */ { USB_DEVICE(VENDOR_PHILIPS, 0x060d) }, /* Philips Infrared Transceiver - Omaura */ { USB_DEVICE(VENDOR_PHILIPS, 0x060f) }, /* Philips Infrared Transceiver - Spinel plus */ { USB_DEVICE(VENDOR_PHILIPS, 0x0613) }, /* Philips eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_PHILIPS, 0x0815) }, /* Realtek MCE IR Receiver */ { USB_DEVICE(VENDOR_REALTEK, 0x0161) }, /* SMK/Toshiba G83C0004D410 */ { USB_DEVICE(VENDOR_SMK, 0x031d) }, /* SMK eHome Infrared Transceiver (Sony VAIO) */ { USB_DEVICE(VENDOR_SMK, 0x0322) }, /* bundled with Hauppauge PVR-150 */ { USB_DEVICE(VENDOR_SMK, 0x0334) }, /* SMK eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_SMK, 0x0338) }, /* Tatung eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TATUNG, 0x9150) }, /* Shuttle eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_SHUTTLE, 0xc001) }, /* Shuttle eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_SHUTTLE2, 0xc001) }, /* Gateway eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_GATEWAY, 0x3009) }, /* Mitsumi */ { USB_DEVICE(VENDOR_MITSUMI, 0x2501) }, /* Topseed eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TOPSEED, 0x0001) }, /* Topseed HP eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TOPSEED, 0x0006) }, /* Topseed eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TOPSEED, 0x0007) }, /* Topseed eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TOPSEED, 0x0008) }, /* Topseed eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TOPSEED, 0x000a) }, /* Topseed eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_TOPSEED, 0x0011) }, /* Ricavision internal Infrared Transceiver */ { USB_DEVICE(VENDOR_RICAVISION, 0x0010) }, /* Itron ione Libra Q-11 */ { USB_DEVICE(VENDOR_ITRON, 0x7002) }, /* FIC eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_FIC, 0x9242) }, /* LG eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_LG, 0x9803) }, /* Microsoft MCE Infrared Transceiver */ { USB_DEVICE(VENDOR_MICROSOFT, 0x00a0) }, /* Formosa eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_FORMOSA, 0xe015) }, /* Formosa21 / eHome Infrared Receiver */ { USB_DEVICE(VENDOR_FORMOSA, 0xe016) }, /* Formosa aim / Trust MCE Infrared Receiver */ { USB_DEVICE(VENDOR_FORMOSA, 0xe017) }, /* Formosa Industrial Computing / Beanbag Emulation Device */ { USB_DEVICE(VENDOR_FORMOSA, 0xe018) }, /* Formosa21 / eHome Infrared Receiver */ { USB_DEVICE(VENDOR_FORMOSA, 0xe03a) }, /* Formosa Industrial Computing AIM IR605/A */ { USB_DEVICE(VENDOR_FORMOSA, 0xe03c) }, /* Formosa Industrial Computing */ { USB_DEVICE(VENDOR_FORMOSA, 0xe03e) }, /* Fintek eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_FINTEK, 0x0602) }, /* Fintek eHome Infrared Transceiver (in the AOpen MP45) */ { USB_DEVICE(VENDOR_FINTEK, 0x0702) }, /* Pinnacle Remote Kit */ { USB_DEVICE(VENDOR_PINNACLE, 0x0225) }, /* Elitegroup Computer Systems IR */ { USB_DEVICE(VENDOR_ECS, 0x0f38) }, /* Wistron Corp. eHome Infrared Receiver */ { USB_DEVICE(VENDOR_WISTRON, 0x0002) }, /* Compro K100 */ { USB_DEVICE(VENDOR_COMPRO, 0x3020) }, /* Compro K100 v2 */ { USB_DEVICE(VENDOR_COMPRO, 0x3082) }, /* Northstar Systems, Inc. eHome Infrared Transceiver */ { USB_DEVICE(VENDOR_NORTHSTAR, 0xe004) }, /* TiVo PC IR Receiver */ { USB_DEVICE(VENDOR_TIVO, 0x2000) }, /* Terminating entry */ { } }; static struct usb_device_id gen3_list[] = { { USB_DEVICE(VENDOR_PINNACLE, 0x0225) }, { USB_DEVICE(VENDOR_TOPSEED, 0x0008) }, {} }; static struct usb_device_id microsoft_gen1_list[] = { { USB_DEVICE(VENDOR_MICROSOFT, 0x006d) }, {} }; static struct usb_device_id std_tx_mask_list[] = { { USB_DEVICE(VENDOR_MICROSOFT, 0x006d) }, { USB_DEVICE(VENDOR_PHILIPS, 0x060c) }, { USB_DEVICE(VENDOR_SMK, 0x031d) }, { USB_DEVICE(VENDOR_SMK, 0x0322) }, { USB_DEVICE(VENDOR_SMK, 0x0334) }, { USB_DEVICE(VENDOR_TOPSEED, 0x0001) }, { USB_DEVICE(VENDOR_TOPSEED, 0x0006) }, { USB_DEVICE(VENDOR_TOPSEED, 0x0007) }, { USB_DEVICE(VENDOR_TOPSEED, 0x0008) }, { USB_DEVICE(VENDOR_TOPSEED, 0x000a) }, { USB_DEVICE(VENDOR_TOPSEED, 0x0011) }, { USB_DEVICE(VENDOR_PINNACLE, 0x0225) }, {} }; /* data structure for each usb transceiver */ struct mceusb_dev { /* ir-core bits */ struct ir_input_dev *irdev; struct ir_dev_props *props; struct ir_raw_event rawir; /* core device bits */ struct device *dev; struct input_dev *idev; /* usb */ struct usb_device *usbdev; struct urb *urb_in; struct usb_endpoint_descriptor *usb_ep_in; struct usb_endpoint_descriptor *usb_ep_out; /* buffers and dma */ unsigned char *buf_in; unsigned int len_in; u8 cmd; /* MCE command type */ u8 rem; /* Remaining IR data bytes in packet */ dma_addr_t dma_in; dma_addr_t dma_out; struct { u32 connected:1; u32 tx_mask_inverted:1; u32 microsoft_gen1:1; u32 gen3:1; u32 reserved:28; } flags; /* transmit support */ int send_flags; u32 carrier; unsigned char tx_mask; char name[128]; char phys[64]; }; /* * MCE Device Command Strings * Device command responses vary from device to device... * - DEVICE_RESET resets the hardware to its default state * - GET_REVISION fetches the hardware/software revision, common * replies are ff 0b 45 ff 1b 08 and ff 0b 50 ff 1b 42 * - GET_CARRIER_FREQ gets the carrier mode and frequency of the * device, with replies in the form of 9f 06 MM FF, where MM is 0-3, * meaning clk of 10000000, 2500000, 625000 or 156250, and FF is * ((clk / frequency) - 1) * - GET_RX_TIMEOUT fetches the receiver timeout in units of 50us, * response in the form of 9f 0c msb lsb * - GET_TX_BITMASK fetches the transmitter bitmask, replies in * the form of 9f 08 bm, where bm is the bitmask * - GET_RX_SENSOR fetches the RX sensor setting -- long-range * general use one or short-range learning one, in the form of * 9f 14 ss, where ss is either 01 for long-range or 02 for short * - SET_CARRIER_FREQ sets a new carrier mode and frequency * - SET_TX_BITMASK sets the transmitter bitmask * - SET_RX_TIMEOUT sets the receiver timeout * - SET_RX_SENSOR sets which receiver sensor to use */ static char DEVICE_RESET[] = {0x00, 0xff, 0xaa}; static char GET_REVISION[] = {0xff, 0x0b}; static char GET_UNKNOWN[] = {0xff, 0x18}; static char GET_CARRIER_FREQ[] = {0x9f, 0x07}; static char GET_RX_TIMEOUT[] = {0x9f, 0x0d}; static char GET_TX_BITMASK[] = {0x9f, 0x13}; static char GET_RX_SENSOR[] = {0x9f, 0x15}; /* sub in desired values in lower byte or bytes for full command */ /* FIXME: make use of these for transmit. static char SET_CARRIER_FREQ[] = {0x9f, 0x06, 0x00, 0x00}; static char SET_TX_BITMASK[] = {0x9f, 0x08, 0x00}; static char SET_RX_TIMEOUT[] = {0x9f, 0x0c, 0x00, 0x00}; static char SET_RX_SENSOR[] = {0x9f, 0x14, 0x00}; */ static void mceusb_dev_printdata(struct mceusb_dev *ir, char *buf, int len, bool out) { char codes[USB_BUFLEN * 3 + 1]; char inout[9]; int i; u8 cmd, subcmd, data1, data2; struct device *dev = ir->dev; int idx = 0; /* skip meaningless 0xb1 0x60 header bytes on orig receiver */ if (ir->flags.microsoft_gen1 && !out) idx = 2; if (len <= idx) return; for (i = 0; i < len && i < USB_BUFLEN; i++) snprintf(codes + i * 3, 4, "%02x ", buf[i] & 0xFF); dev_info(dev, "%sx data: %s (length=%d)\n", (out ? "t" : "r"), codes, len); if (out) strcpy(inout, "Request\0"); else strcpy(inout, "Got\0"); cmd = buf[idx] & 0xff; subcmd = buf[idx + 1] & 0xff; data1 = buf[idx + 2] & 0xff; data2 = buf[idx + 3] & 0xff; switch (cmd) { case 0x00: if (subcmd == 0xff && data1 == 0xaa) dev_info(dev, "Device reset requested\n"); else dev_info(dev, "Unknown command 0x%02x 0x%02x\n", cmd, subcmd); break; case 0xff: switch (subcmd) { case 0x0b: if (len == 2) dev_info(dev, "Get hw/sw rev?\n"); else dev_info(dev, "hw/sw rev 0x%02x 0x%02x " "0x%02x 0x%02x\n", data1, data2, buf[idx + 4], buf[idx + 5]); break; case 0xaa: dev_info(dev, "Device reset requested\n"); break; case 0xfe: dev_info(dev, "Previous command not supported\n"); break; case 0x18: case 0x1b: default: dev_info(dev, "Unknown command 0x%02x 0x%02x\n", cmd, subcmd); break; } break; case 0x9f: switch (subcmd) { case 0x03: dev_info(dev, "Ping\n"); break; case 0x04: dev_info(dev, "Resp to 9f 05 of 0x%02x 0x%02x\n", data1, data2); break; case 0x06: dev_info(dev, "%s carrier mode and freq of " "0x%02x 0x%02x\n", inout, data1, data2); break; case 0x07: dev_info(dev, "Get carrier mode and freq\n"); break; case 0x08: dev_info(dev, "%s transmit blaster mask of 0x%02x\n", inout, data1); break; case 0x0c: /* value is in units of 50us, so x*50/100 or x/2 ms */ dev_info(dev, "%s receive timeout of %d ms\n", inout, ((data1 << 8) | data2) / 2); break; case 0x0d: dev_info(dev, "Get receive timeout\n"); break; case 0x13: dev_info(dev, "Get transmit blaster mask\n"); break; case 0x14: dev_info(dev, "%s %s-range receive sensor in use\n", inout, data1 == 0x02 ? "short" : "long"); break; case 0x15: if (len == 2) dev_info(dev, "Get receive sensor\n"); else dev_info(dev, "Received pulse count is %d\n", ((data1 << 8) | data2)); break; case 0xfe: dev_info(dev, "Error! Hardware is likely wedged...\n"); break; case 0x05: case 0x09: case 0x0f: default: dev_info(dev, "Unknown command 0x%02x 0x%02x\n", cmd, subcmd); break; } break; default: break; } } static void usb_async_callback(struct urb *urb, struct pt_regs *regs) { struct mceusb_dev *ir; int len; if (!urb) return; ir = urb->context; if (ir) { len = urb->actual_length; dev_dbg(ir->dev, "callback called (status=%d len=%d)\n", urb->status, len); if (debug) mceusb_dev_printdata(ir, urb->transfer_buffer, len, true); } } /* request incoming or send outgoing usb packet - used to initialize remote */ static void mce_request_packet(struct mceusb_dev *ir, struct usb_endpoint_descriptor *ep, unsigned char *data, int size, int urb_type) { int res; struct urb *async_urb; struct device *dev = ir->dev; unsigned char *async_buf; if (urb_type == MCEUSB_TX) { async_urb = usb_alloc_urb(0, GFP_KERNEL); if (unlikely(!async_urb)) { dev_err(dev, "Error, couldn't allocate urb!\n"); return; } async_buf = kzalloc(size, GFP_KERNEL); if (!async_buf) { dev_err(dev, "Error, couldn't allocate buf!\n"); usb_free_urb(async_urb); return; } /* outbound data */ usb_fill_int_urb(async_urb, ir->usbdev, usb_sndintpipe(ir->usbdev, ep->bEndpointAddress), async_buf, size, (usb_complete_t) usb_async_callback, ir, ep->bInterval); memcpy(async_buf, data, size); } else if (urb_type == MCEUSB_RX) { /* standard request */ async_urb = ir->urb_in; ir->send_flags = RECV_FLAG_IN_PROGRESS; } else { dev_err(dev, "Error! Unknown urb type %d\n", urb_type); return; } dev_dbg(dev, "receive request called (size=%#x)\n", size); async_urb->transfer_buffer_length = size; async_urb->dev = ir->usbdev; res = usb_submit_urb(async_urb, GFP_ATOMIC); if (res) { dev_dbg(dev, "receive request FAILED! (res=%d)\n", res); return; } dev_dbg(dev, "receive request complete (res=%d)\n", res); } static void mce_async_out(struct mceusb_dev *ir, unsigned char *data, int size) { mce_request_packet(ir, ir->usb_ep_out, data, size, MCEUSB_TX); } static void mce_sync_in(struct mceusb_dev *ir, unsigned char *data, int size) { mce_request_packet(ir, ir->usb_ep_in, data, size, MCEUSB_RX); } /* Send data out the IR blaster port(s) */ static int mceusb_tx_ir(void *priv, int *txbuf, u32 n) { struct mceusb_dev *ir = priv; int i, ret = 0; int count, cmdcount = 0; unsigned char *cmdbuf; /* MCE command buffer */ long signal_duration = 0; /* Singnal length in us */ struct timeval start_time, end_time; do_gettimeofday(&start_time); count = n / sizeof(int); cmdbuf = kzalloc(sizeof(int) * MCE_CMDBUF_SIZE, GFP_KERNEL); if (!cmdbuf) return -ENOMEM; /* MCE tx init header */ cmdbuf[cmdcount++] = MCE_CONTROL_HEADER; cmdbuf[cmdcount++] = 0x08; cmdbuf[cmdcount++] = ir->tx_mask; /* Generate mce packet data */ for (i = 0; (i < count) && (cmdcount < MCE_CMDBUF_SIZE); i++) { signal_duration += txbuf[i]; txbuf[i] = txbuf[i] / MCE_TIME_UNIT; do { /* loop to support long pulses/spaces > 127*50us=6.35ms */ /* Insert mce packet header every 4th entry */ if ((cmdcount < MCE_CMDBUF_SIZE) && (cmdcount - MCE_TX_HEADER_LENGTH) % MCE_CODE_LENGTH == 0) cmdbuf[cmdcount++] = MCE_PACKET_HEADER; /* Insert mce packet data */ if (cmdcount < MCE_CMDBUF_SIZE) cmdbuf[cmdcount++] = (txbuf[i] < MCE_PULSE_BIT ? txbuf[i] : MCE_MAX_PULSE_LENGTH) | (i & 1 ? 0x00 : MCE_PULSE_BIT); else { ret = -EINVAL; goto out; } } while ((txbuf[i] > MCE_MAX_PULSE_LENGTH) && (txbuf[i] -= MCE_MAX_PULSE_LENGTH)); } /* Fix packet length in last header */ cmdbuf[cmdcount - (cmdcount - MCE_TX_HEADER_LENGTH) % MCE_CODE_LENGTH] = 0x80 + (cmdcount - MCE_TX_HEADER_LENGTH) % MCE_CODE_LENGTH - 1; /* Check if we have room for the empty packet at the end */ if (cmdcount >= MCE_CMDBUF_SIZE) { ret = -EINVAL; goto out; } /* All mce commands end with an empty packet (0x80) */ cmdbuf[cmdcount++] = 0x80; /* Transmit the command to the mce device */ mce_async_out(ir, cmdbuf, cmdcount); /* * The lircd gap calculation expects the write function to * wait the time it takes for the ircommand to be sent before * it returns. */ do_gettimeofday(&end_time); signal_duration -= (end_time.tv_usec - start_time.tv_usec) + (end_time.tv_sec - start_time.tv_sec) * 1000000; /* delay with the closest number of ticks */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(usecs_to_jiffies(signal_duration)); out: kfree(cmdbuf); return ret ? ret : n; } /* Sets active IR outputs -- mce devices typically (all?) have two */ static int mceusb_set_tx_mask(void *priv, u32 mask) { struct mceusb_dev *ir = priv; if (ir->flags.tx_mask_inverted) ir->tx_mask = (mask != 0x03 ? mask ^ 0x03 : mask) << 1; else ir->tx_mask = mask; return 0; } /* Sets the send carrier frequency and mode */ static int mceusb_set_tx_carrier(void *priv, u32 carrier) { struct mceusb_dev *ir = priv; int clk = 10000000; int prescaler = 0, divisor = 0; unsigned char cmdbuf[4] = { 0x9f, 0x06, 0x00, 0x00 }; /* Carrier has changed */ if (ir->carrier != carrier) { if (carrier == 0) { ir->carrier = carrier; cmdbuf[2] = 0x01; cmdbuf[3] = 0x80; dev_dbg(ir->dev, "%s: disabling carrier " "modulation\n", __func__); mce_async_out(ir, cmdbuf, sizeof(cmdbuf)); return carrier; } for (prescaler = 0; prescaler < 4; ++prescaler) { divisor = (clk >> (2 * prescaler)) / carrier; if (divisor <= 0xFF) { ir->carrier = carrier; cmdbuf[2] = prescaler; cmdbuf[3] = divisor; dev_dbg(ir->dev, "%s: requesting %u HZ " "carrier\n", __func__, carrier); /* Transmit new carrier to mce device */ mce_async_out(ir, cmdbuf, sizeof(cmdbuf)); return carrier; } } return -EINVAL; } return carrier; } static void mceusb_process_ir_data(struct mceusb_dev *ir, int buf_len) { struct ir_raw_event rawir = { .pulse = false, .duration = 0 }; int i, start_index = 0; u8 hdr = MCE_CONTROL_HEADER; /* skip meaningless 0xb1 0x60 header bytes on orig receiver */ if (ir->flags.microsoft_gen1) start_index = 2; for (i = start_index; i < buf_len;) { if (ir->rem == 0) { /* decode mce packets of the form (84),AA,BB,CC,DD */ /* IR data packets can span USB messages - rem */ hdr = ir->buf_in[i]; ir->rem = (hdr & MCE_PACKET_LENGTH_MASK); ir->cmd = (hdr & ~MCE_PACKET_LENGTH_MASK); dev_dbg(ir->dev, "New data. rem: 0x%02x, cmd: 0x%02x\n", ir->rem, ir->cmd); i++; } /* don't process MCE commands */ if (hdr == MCE_CONTROL_HEADER || hdr == 0xff) { ir->rem = 0; return; } for (; (ir->rem > 0) && (i < buf_len); i++) { ir->rem--; rawir.pulse = ((ir->buf_in[i] & MCE_PULSE_BIT) != 0); rawir.duration = (ir->buf_in[i] & MCE_PULSE_MASK) * MCE_TIME_UNIT * 1000; if ((ir->buf_in[i] & MCE_PULSE_MASK) == 0x7f) { if (ir->rawir.pulse == rawir.pulse) ir->rawir.duration += rawir.duration; else { ir->rawir.duration = rawir.duration; ir->rawir.pulse = rawir.pulse; } continue; } rawir.duration += ir->rawir.duration; ir->rawir.duration = 0; ir->rawir.pulse = rawir.pulse; dev_dbg(ir->dev, "Storing %s with duration %d\n", rawir.pulse ? "pulse" : "space", rawir.duration); ir_raw_event_store(ir->idev, &rawir); } if (ir->buf_in[i] == 0x80 || ir->buf_in[i] == 0x9f) ir->rem = 0; dev_dbg(ir->dev, "calling ir_raw_event_handle\n"); ir_raw_event_handle(ir->idev); } } static void mceusb_dev_recv(struct urb *urb, struct pt_regs *regs) { struct mceusb_dev *ir; int buf_len; if (!urb) return; ir = urb->context; if (!ir) { usb_unlink_urb(urb); return; } buf_len = urb->actual_length; if (debug) mceusb_dev_printdata(ir, urb->transfer_buffer, buf_len, false); if (ir->send_flags == RECV_FLAG_IN_PROGRESS) { ir->send_flags = SEND_FLAG_COMPLETE; dev_dbg(&ir->irdev->dev, "setup answer received %d bytes\n", buf_len); } switch (urb->status) { /* success */ case 0: mceusb_process_ir_data(ir, buf_len); break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: usb_unlink_urb(urb); return; case -EPIPE: default: break; } usb_submit_urb(urb, GFP_ATOMIC); } static void mceusb_gen1_init(struct mceusb_dev *ir) { int i, ret; int partial = 0; struct device *dev = ir->dev; char *data; data = kzalloc(USB_CTRL_MSG_SZ, GFP_KERNEL); if (!data) { dev_err(dev, "%s: memory allocation failed!\n", __func__); return; } /* * This is a strange one. Windows issues a set address to the device * on the receive control pipe and expect a certain value pair back */ ret = usb_control_msg(ir->usbdev, usb_rcvctrlpipe(ir->usbdev, 0), USB_REQ_SET_ADDRESS, USB_TYPE_VENDOR, 0, 0, data, USB_CTRL_MSG_SZ, HZ * 3); dev_dbg(dev, "%s - ret = %d\n", __func__, ret); dev_dbg(dev, "%s - data[0] = %d, data[1] = %d\n", __func__, data[0], data[1]); /* set feature: bit rate 38400 bps */ ret = usb_control_msg(ir->usbdev, usb_sndctrlpipe(ir->usbdev, 0), USB_REQ_SET_FEATURE, USB_TYPE_VENDOR, 0xc04e, 0x0000, NULL, 0, HZ * 3); dev_dbg(dev, "%s - ret = %d\n", __func__, ret); /* bRequest 4: set char length to 8 bits */ ret = usb_control_msg(ir->usbdev, usb_sndctrlpipe(ir->usbdev, 0), 4, USB_TYPE_VENDOR, 0x0808, 0x0000, NULL, 0, HZ * 3); dev_dbg(dev, "%s - retB = %d\n", __func__, ret); /* bRequest 2: set handshaking to use DTR/DSR */ ret = usb_control_msg(ir->usbdev, usb_sndctrlpipe(ir->usbdev, 0), 2, USB_TYPE_VENDOR, 0x0000, 0x0100, NULL, 0, HZ * 3); dev_dbg(dev, "%s - retC = %d\n", __func__, ret); kfree(data); }; static void mceusb_gen2_init(struct mceusb_dev *ir) { int maxp = ir->len_in; /* device reset */ mce_async_out(ir, DEVICE_RESET, sizeof(DEVICE_RESET)); mce_sync_in(ir, NULL, maxp); /* get hw/sw revision? */ mce_async_out(ir, GET_REVISION, sizeof(GET_REVISION)); mce_sync_in(ir, NULL, maxp); /* unknown what this actually returns... */ mce_async_out(ir, GET_UNKNOWN, sizeof(GET_UNKNOWN)); mce_sync_in(ir, NULL, maxp); } static void mceusb_gen3_init(struct mceusb_dev *ir) { int maxp = ir->len_in; /* device reset */ mce_async_out(ir, DEVICE_RESET, sizeof(DEVICE_RESET)); mce_sync_in(ir, NULL, maxp); /* get the carrier and frequency */ mce_async_out(ir, GET_CARRIER_FREQ, sizeof(GET_CARRIER_FREQ)); mce_sync_in(ir, NULL, maxp); /* get the transmitter bitmask */ mce_async_out(ir, GET_TX_BITMASK, sizeof(GET_TX_BITMASK)); mce_sync_in(ir, NULL, maxp); /* get receiver timeout value */ mce_async_out(ir, GET_RX_TIMEOUT, sizeof(GET_RX_TIMEOUT)); mce_sync_in(ir, NULL, maxp); /* get receiver sensor setting */ mce_async_out(ir, GET_RX_SENSOR, sizeof(GET_RX_SENSOR)); mce_sync_in(ir, NULL, maxp); } static struct input_dev *mceusb_init_input_dev(struct mceusb_dev *ir) { struct input_dev *idev; struct ir_dev_props *props; struct ir_input_dev *irdev; struct device *dev = ir->dev; int ret = -ENODEV; idev = input_allocate_device(); if (!idev) { dev_err(dev, "remote input dev allocation failed\n"); goto idev_alloc_failed; } ret = -ENOMEM; props = kzalloc(sizeof(struct ir_dev_props), GFP_KERNEL); if (!props) { dev_err(dev, "remote ir dev props allocation failed\n"); goto props_alloc_failed; } irdev = kzalloc(sizeof(struct ir_input_dev), GFP_KERNEL); if (!irdev) { dev_err(dev, "remote ir input dev allocation failed\n"); goto ir_dev_alloc_failed; } snprintf(ir->name, sizeof(ir->name), "Media Center Ed. eHome " "Infrared Remote Transceiver (%04x:%04x)", le16_to_cpu(ir->usbdev->descriptor.idVendor), le16_to_cpu(ir->usbdev->descriptor.idProduct)); idev->name = ir->name; usb_make_path(ir->usbdev, ir->phys, sizeof(ir->phys)); strlcat(ir->phys, "/input0", sizeof(ir->phys)); idev->phys = ir->phys; props->priv = ir; props->driver_type = RC_DRIVER_IR_RAW; props->allowed_protos = IR_TYPE_ALL; props->s_tx_mask = mceusb_set_tx_mask; props->s_tx_carrier = mceusb_set_tx_carrier; props->tx_ir = mceusb_tx_ir; ir->props = props; ir->irdev = irdev; input_set_drvdata(idev, irdev); ret = ir_input_register(idev, RC_MAP_RC6_MCE, props, DRIVER_NAME); if (ret < 0) { dev_err(dev, "remote input device register failed\n"); goto irdev_failed; } return idev; irdev_failed: kfree(irdev); ir_dev_alloc_failed: kfree(props); props_alloc_failed: input_free_device(idev); idev_alloc_failed: return NULL; } static int __devinit mceusb_dev_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); struct usb_host_interface *idesc; struct usb_endpoint_descriptor *ep = NULL; struct usb_endpoint_descriptor *ep_in = NULL; struct usb_endpoint_descriptor *ep_out = NULL; struct usb_host_config *config; struct mceusb_dev *ir = NULL; int pipe, maxp, i; char buf[63], name[128] = ""; bool is_gen3; bool is_microsoft_gen1; bool tx_mask_inverted; dev_dbg(&intf->dev, ": %s called\n", __func__); config = dev->actconfig; idesc = intf->cur_altsetting; is_gen3 = usb_match_id(intf, gen3_list) ? 1 : 0; is_microsoft_gen1 = usb_match_id(intf, microsoft_gen1_list) ? 1 : 0; tx_mask_inverted = usb_match_id(intf, std_tx_mask_list) ? 0 : 1; /* step through the endpoints to find first bulk in and out endpoint */ for (i = 0; i < idesc->desc.bNumEndpoints; ++i) { ep = &idesc->endpoint[i].desc; if ((ep_in == NULL) && ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) && (((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) || ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT))) { ep_in = ep; ep_in->bmAttributes = USB_ENDPOINT_XFER_INT; ep_in->bInterval = 1; dev_dbg(&intf->dev, ": acceptable inbound endpoint " "found\n"); } if ((ep_out == NULL) && ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) && (((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) || ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT))) { ep_out = ep; ep_out->bmAttributes = USB_ENDPOINT_XFER_INT; ep_out->bInterval = 1; dev_dbg(&intf->dev, ": acceptable outbound endpoint " "found\n"); } } if (ep_in == NULL) { dev_dbg(&intf->dev, ": inbound and/or endpoint not found\n"); return -ENODEV; } pipe = usb_rcvintpipe(dev, ep_in->bEndpointAddress); maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); ir = kzalloc(sizeof(struct mceusb_dev), GFP_KERNEL); if (!ir) goto mem_alloc_fail; ir->buf_in = usb_alloc_coherent(dev, maxp, GFP_ATOMIC, &ir->dma_in); if (!ir->buf_in) goto buf_in_alloc_fail; ir->urb_in = usb_alloc_urb(0, GFP_KERNEL); if (!ir->urb_in) goto urb_in_alloc_fail; ir->usbdev = dev; ir->dev = &intf->dev; ir->len_in = maxp; ir->flags.gen3 = is_gen3; ir->flags.microsoft_gen1 = is_microsoft_gen1; ir->flags.tx_mask_inverted = tx_mask_inverted; /* Saving usb interface data for use by the transmitter routine */ ir->usb_ep_in = ep_in; ir->usb_ep_out = ep_out; if (dev->descriptor.iManufacturer && usb_string(dev, dev->descriptor.iManufacturer, buf, sizeof(buf)) > 0) strlcpy(name, buf, sizeof(name)); if (dev->descriptor.iProduct && usb_string(dev, dev->descriptor.iProduct, buf, sizeof(buf)) > 0) snprintf(name + strlen(name), sizeof(name) - strlen(name), " %s", buf); ir->idev = mceusb_init_input_dev(ir); if (!ir->idev) goto input_dev_fail; /* flush buffers on the device */ mce_sync_in(ir, NULL, maxp); mce_sync_in(ir, NULL, maxp); /* wire up inbound data handler */ usb_fill_int_urb(ir->urb_in, dev, pipe, ir->buf_in, maxp, (usb_complete_t) mceusb_dev_recv, ir, ep_in->bInterval); ir->urb_in->transfer_dma = ir->dma_in; ir->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* initialize device */ if (ir->flags.gen3) mceusb_gen3_init(ir); else if (ir->flags.microsoft_gen1) mceusb_gen1_init(ir); else mceusb_gen2_init(ir); mce_sync_in(ir, NULL, maxp); mceusb_set_tx_mask(ir, MCE_DEFAULT_TX_MASK); usb_set_intfdata(intf, ir); dev_info(&intf->dev, "Registered %s on usb%d:%d\n", name, dev->bus->busnum, dev->devnum); return 0; /* Error-handling path */ input_dev_fail: usb_free_urb(ir->urb_in); urb_in_alloc_fail: usb_free_coherent(dev, maxp, ir->buf_in, ir->dma_in); buf_in_alloc_fail: kfree(ir); mem_alloc_fail: dev_err(&intf->dev, "%s: device setup failed!\n", __func__); return -ENOMEM; } static void __devexit mceusb_dev_disconnect(struct usb_interface *intf) { struct usb_device *dev = interface_to_usbdev(intf); struct mceusb_dev *ir = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (!ir) return; ir->usbdev = NULL; ir_input_unregister(ir->idev); usb_kill_urb(ir->urb_in); usb_free_urb(ir->urb_in); usb_free_coherent(dev, ir->len_in, ir->buf_in, ir->dma_in); kfree(ir); } static int mceusb_dev_suspend(struct usb_interface *intf, pm_message_t message) { struct mceusb_dev *ir = usb_get_intfdata(intf); dev_info(ir->dev, "suspend\n"); usb_kill_urb(ir->urb_in); return 0; } static int mceusb_dev_resume(struct usb_interface *intf) { struct mceusb_dev *ir = usb_get_intfdata(intf); dev_info(ir->dev, "resume\n"); if (usb_submit_urb(ir->urb_in, GFP_ATOMIC)) return -EIO; return 0; } static struct usb_driver mceusb_dev_driver = { .name = DRIVER_NAME, .probe = mceusb_dev_probe, .disconnect = mceusb_dev_disconnect, .suspend = mceusb_dev_suspend, .resume = mceusb_dev_resume, .reset_resume = mceusb_dev_resume, .id_table = mceusb_dev_table }; static int __init mceusb_dev_init(void) { int ret; ret = usb_register(&mceusb_dev_driver); if (ret < 0) printk(KERN_ERR DRIVER_NAME ": usb register failed, result = %d\n", ret); return ret; } static void __exit mceusb_dev_exit(void) { usb_deregister(&mceusb_dev_driver); } module_init(mceusb_dev_init); module_exit(mceusb_dev_exit); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(usb, mceusb_dev_table); module_param(debug, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Debug enabled or not");