#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_LOCAL_APIC #include #endif #include "cpu.h" u32 elf_hwcap2 __read_mostly; /* all of these masks are initialized in setup_cpu_local_masks() */ cpumask_var_t cpu_initialized_mask; cpumask_var_t cpu_callout_mask; cpumask_var_t cpu_callin_mask; /* representing cpus for which sibling maps can be computed */ cpumask_var_t cpu_sibling_setup_mask; /* correctly size the local cpu masks */ void __init setup_cpu_local_masks(void) { alloc_bootmem_cpumask_var(&cpu_initialized_mask); alloc_bootmem_cpumask_var(&cpu_callin_mask); alloc_bootmem_cpumask_var(&cpu_callout_mask); alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); } static void default_init(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 cpu_detect_cache_sizes(c); #else /* Not much we can do here... */ /* Check if at least it has cpuid */ if (c->cpuid_level == -1) { /* No cpuid. It must be an ancient CPU */ if (c->x86 == 4) strcpy(c->x86_model_id, "486"); else if (c->x86 == 3) strcpy(c->x86_model_id, "386"); } #endif } static const struct cpu_dev default_cpu = { .c_init = default_init, .c_vendor = "Unknown", .c_x86_vendor = X86_VENDOR_UNKNOWN, }; static const struct cpu_dev *this_cpu = &default_cpu; DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { #ifdef CONFIG_X86_64 /* * We need valid kernel segments for data and code in long mode too * IRET will check the segment types kkeil 2000/10/28 * Also sysret mandates a special GDT layout * * TLS descriptors are currently at a different place compared to i386. * Hopefully nobody expects them at a fixed place (Wine?) */ [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), #else [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), /* * Segments used for calling PnP BIOS have byte granularity. * They code segments and data segments have fixed 64k limits, * the transfer segment sizes are set at run time. */ /* 32-bit code */ [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), /* 16-bit code */ [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), /* 16-bit data */ [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), /* * The APM segments have byte granularity and their bases * are set at run time. All have 64k limits. */ /* 32-bit code */ [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), /* 16-bit code */ [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), /* data */ [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), GDT_STACK_CANARY_INIT #endif } }; EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); static int __init x86_mpx_setup(char *s) { /* require an exact match without trailing characters */ if (strlen(s)) return 0; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_MPX)) return 1; setup_clear_cpu_cap(X86_FEATURE_MPX); pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); return 1; } __setup("nompx", x86_mpx_setup); #ifdef CONFIG_X86_64 static int __init x86_nopcid_setup(char *s) { /* nopcid doesn't accept parameters */ if (s) return -EINVAL; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_PCID)) return 0; setup_clear_cpu_cap(X86_FEATURE_PCID); pr_info("nopcid: PCID feature disabled\n"); return 0; } early_param("nopcid", x86_nopcid_setup); #endif static int __init x86_noinvpcid_setup(char *s) { /* noinvpcid doesn't accept parameters */ if (s) return -EINVAL; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_INVPCID)) return 0; setup_clear_cpu_cap(X86_FEATURE_INVPCID); pr_info("noinvpcid: INVPCID feature disabled\n"); return 0; } early_param("noinvpcid", x86_noinvpcid_setup); #ifdef CONFIG_X86_32 static int cachesize_override = -1; static int disable_x86_serial_nr = 1; static int __init cachesize_setup(char *str) { get_option(&str, &cachesize_override); return 1; } __setup("cachesize=", cachesize_setup); static int __init x86_sep_setup(char *s) { setup_clear_cpu_cap(X86_FEATURE_SEP); return 1; } __setup("nosep", x86_sep_setup); /* Standard macro to see if a specific flag is changeable */ static inline int flag_is_changeable_p(u32 flag) { u32 f1, f2; /* * Cyrix and IDT cpus allow disabling of CPUID * so the code below may return different results * when it is executed before and after enabling * the CPUID. Add "volatile" to not allow gcc to * optimize the subsequent calls to this function. */ asm volatile ("pushfl \n\t" "pushfl \n\t" "popl %0 \n\t" "movl %0, %1 \n\t" "xorl %2, %0 \n\t" "pushl %0 \n\t" "popfl \n\t" "pushfl \n\t" "popl %0 \n\t" "popfl \n\t" : "=&r" (f1), "=&r" (f2) : "ir" (flag)); return ((f1^f2) & flag) != 0; } /* Probe for the CPUID instruction */ int have_cpuid_p(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { unsigned long lo, hi; if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) return; /* Disable processor serial number: */ rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); lo |= 0x200000; wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); pr_notice("CPU serial number disabled.\n"); clear_cpu_cap(c, X86_FEATURE_PN); /* Disabling the serial number may affect the cpuid level */ c->cpuid_level = cpuid_eax(0); } static int __init x86_serial_nr_setup(char *s) { disable_x86_serial_nr = 0; return 1; } __setup("serialnumber", x86_serial_nr_setup); #else static inline int flag_is_changeable_p(u32 flag) { return 1; } static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { } #endif static __init int setup_disable_smep(char *arg) { setup_clear_cpu_cap(X86_FEATURE_SMEP); /* Check for things that depend on SMEP being enabled: */ check_mpx_erratum(&boot_cpu_data); return 1; } __setup("nosmep", setup_disable_smep); static __always_inline void setup_smep(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_SMEP)) cr4_set_bits(X86_CR4_SMEP); } static __init int setup_disable_smap(char *arg) { setup_clear_cpu_cap(X86_FEATURE_SMAP); return 1; } __setup("nosmap", setup_disable_smap); static __always_inline void setup_smap(struct cpuinfo_x86 *c) { unsigned long eflags = native_save_fl(); /* This should have been cleared long ago */ BUG_ON(eflags & X86_EFLAGS_AC); if (cpu_has(c, X86_FEATURE_SMAP)) { #ifdef CONFIG_X86_SMAP cr4_set_bits(X86_CR4_SMAP); #else cr4_clear_bits(X86_CR4_SMAP); #endif } } /* * Protection Keys are not available in 32-bit mode. */ static bool pku_disabled; static __always_inline void setup_pku(struct cpuinfo_x86 *c) { /* check the boot processor, plus compile options for PKU: */ if (!cpu_feature_enabled(X86_FEATURE_PKU)) return; /* checks the actual processor's cpuid bits: */ if (!cpu_has(c, X86_FEATURE_PKU)) return; if (pku_disabled) return; cr4_set_bits(X86_CR4_PKE); /* * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE * cpuid bit to be set. We need to ensure that we * update that bit in this CPU's "cpu_info". */ get_cpu_cap(c); } #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static __init int setup_disable_pku(char *arg) { /* * Do not clear the X86_FEATURE_PKU bit. All of the * runtime checks are against OSPKE so clearing the * bit does nothing. * * This way, we will see "pku" in cpuinfo, but not * "ospke", which is exactly what we want. It shows * that the CPU has PKU, but the OS has not enabled it. * This happens to be exactly how a system would look * if we disabled the config option. */ pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); pku_disabled = true; return 1; } __setup("nopku", setup_disable_pku); #endif /* CONFIG_X86_64 */ /* * Some CPU features depend on higher CPUID levels, which may not always * be available due to CPUID level capping or broken virtualization * software. Add those features to this table to auto-disable them. */ struct cpuid_dependent_feature { u32 feature; u32 level; }; static const struct cpuid_dependent_feature cpuid_dependent_features[] = { { X86_FEATURE_MWAIT, 0x00000005 }, { X86_FEATURE_DCA, 0x00000009 }, { X86_FEATURE_XSAVE, 0x0000000d }, { 0, 0 } }; static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) { const struct cpuid_dependent_feature *df; for (df = cpuid_dependent_features; df->feature; df++) { if (!cpu_has(c, df->feature)) continue; /* * Note: cpuid_level is set to -1 if unavailable, but * extended_extended_level is set to 0 if unavailable * and the legitimate extended levels are all negative * when signed; hence the weird messing around with * signs here... */ if (!((s32)df->level < 0 ? (u32)df->level > (u32)c->extended_cpuid_level : (s32)df->level > (s32)c->cpuid_level)) continue; clear_cpu_cap(c, df->feature); if (!warn) continue; pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", x86_cap_flag(df->feature), df->level); } } /* * Naming convention should be: [()] * This table only is used unless init_() below doesn't set it; * in particular, if CPUID levels 0x80000002..4 are supported, this * isn't used */ /* Look up CPU names by table lookup. */ static const char *table_lookup_model(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 const struct legacy_cpu_model_info *info; if (c->x86_model >= 16) return NULL; /* Range check */ if (!this_cpu) return NULL; info = this_cpu->legacy_models; while (info->family) { if (info->family == c->x86) return info->model_names[c->x86_model]; info++; } #endif return NULL; /* Not found */ } __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; void load_percpu_segment(int cpu) { #ifdef CONFIG_X86_32 loadsegment(fs, __KERNEL_PERCPU); #else __loadsegment_simple(gs, 0); wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); #endif load_stack_canary_segment(); } #ifdef CONFIG_X86_32 /* The 32-bit entry code needs to find cpu_entry_area. */ DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); #endif #ifdef CONFIG_X86_64 /* * Special IST stacks which the CPU switches to when it calls * an IST-marked descriptor entry. Up to 7 stacks (hardware * limit), all of them are 4K, except the debug stack which * is 8K. */ static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, [DEBUG_STACK - 1] = DEBUG_STKSZ }; #endif /* Load the original GDT from the per-cpu structure */ void load_direct_gdt(int cpu) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_rw(cpu); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } EXPORT_SYMBOL_GPL(load_direct_gdt); /* Load a fixmap remapping of the per-cpu GDT */ void load_fixmap_gdt(int cpu) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_ro(cpu); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } EXPORT_SYMBOL_GPL(load_fixmap_gdt); /* * Current gdt points %fs at the "master" per-cpu area: after this, * it's on the real one. */ void switch_to_new_gdt(int cpu) { /* Load the original GDT */ load_direct_gdt(cpu); /* Reload the per-cpu base */ load_percpu_segment(cpu); } static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; static void get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; char *p, *q, *s; if (c->extended_cpuid_level < 0x80000004) return; v = (unsigned int *)c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; /* Trim whitespace */ p = q = s = &c->x86_model_id[0]; while (*p == ' ') p++; while (*p) { /* Note the last non-whitespace index */ if (!isspace(*p)) s = q; *q++ = *p++; } *(s + 1) = '\0'; } void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) { unsigned int n, dummy, ebx, ecx, edx, l2size; n = c->extended_cpuid_level; if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); c->x86_cache_size = (ecx>>24) + (edx>>24); #ifdef CONFIG_X86_64 /* On K8 L1 TLB is inclusive, so don't count it */ c->x86_tlbsize = 0; #endif } if (n < 0x80000006) /* Some chips just has a large L1. */ return; cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); l2size = ecx >> 16; #ifdef CONFIG_X86_64 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); #else /* do processor-specific cache resizing */ if (this_cpu->legacy_cache_size) l2size = this_cpu->legacy_cache_size(c, l2size); /* Allow user to override all this if necessary. */ if (cachesize_override != -1) l2size = cachesize_override; if (l2size == 0) return; /* Again, no L2 cache is possible */ #endif c->x86_cache_size = l2size; } u16 __read_mostly tlb_lli_4k[NR_INFO]; u16 __read_mostly tlb_lli_2m[NR_INFO]; u16 __read_mostly tlb_lli_4m[NR_INFO]; u16 __read_mostly tlb_lld_4k[NR_INFO]; u16 __read_mostly tlb_lld_2m[NR_INFO]; u16 __read_mostly tlb_lld_4m[NR_INFO]; u16 __read_mostly tlb_lld_1g[NR_INFO]; static void cpu_detect_tlb(struct cpuinfo_x86 *c) { if (this_cpu->c_detect_tlb) this_cpu->c_detect_tlb(c); pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], tlb_lli_4m[ENTRIES]); pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); } void detect_ht(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP u32 eax, ebx, ecx, edx; int index_msb, core_bits; static bool printed; if (!cpu_has(c, X86_FEATURE_HT)) return; if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) goto out; if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) return; cpuid(1, &eax, &ebx, &ecx, &edx); smp_num_siblings = (ebx & 0xff0000) >> 16; if (smp_num_siblings == 1) { pr_info_once("CPU0: Hyper-Threading is disabled\n"); goto out; } if (smp_num_siblings <= 1) goto out; index_msb = get_count_order(smp_num_siblings); c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); smp_num_siblings = smp_num_siblings / c->x86_max_cores; index_msb = get_count_order(smp_num_siblings); core_bits = get_count_order(c->x86_max_cores); c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & ((1 << core_bits) - 1); out: if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { pr_info("CPU: Physical Processor ID: %d\n", c->phys_proc_id); pr_info("CPU: Processor Core ID: %d\n", c->cpu_core_id); printed = 1; } #endif } static void get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; int i; for (i = 0; i < X86_VENDOR_NUM; i++) { if (!cpu_devs[i]) break; if (!strcmp(v, cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v, cpu_devs[i]->c_ident[1]))) { this_cpu = cpu_devs[i]; c->x86_vendor = this_cpu->c_x86_vendor; return; } } pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ "CPU: Your system may be unstable.\n", v); c->x86_vendor = X86_VENDOR_UNKNOWN; this_cpu = &default_cpu; } void cpu_detect(struct cpuinfo_x86 *c) { /* Get vendor name */ cpuid(0x00000000, (unsigned int *)&c->cpuid_level, (unsigned int *)&c->x86_vendor_id[0], (unsigned int *)&c->x86_vendor_id[8], (unsigned int *)&c->x86_vendor_id[4]); c->x86 = 4; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { u32 junk, tfms, cap0, misc; cpuid(0x00000001, &tfms, &misc, &junk, &cap0); c->x86 = x86_family(tfms); c->x86_model = x86_model(tfms); c->x86_mask = x86_stepping(tfms); if (cap0 & (1<<19)) { c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; c->x86_cache_alignment = c->x86_clflush_size; } } } static void apply_forced_caps(struct cpuinfo_x86 *c) { int i; for (i = 0; i < NCAPINTS + NBUGINTS; i++) { c->x86_capability[i] &= ~cpu_caps_cleared[i]; c->x86_capability[i] |= cpu_caps_set[i]; } } void get_cpu_cap(struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { cpuid(0x00000001, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_1_ECX] = ecx; c->x86_capability[CPUID_1_EDX] = edx; } /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ if (c->cpuid_level >= 0x00000006) c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); /* Additional Intel-defined flags: level 0x00000007 */ if (c->cpuid_level >= 0x00000007) { cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_7_0_EBX] = ebx; c->x86_capability[CPUID_7_ECX] = ecx; } /* Extended state features: level 0x0000000d */ if (c->cpuid_level >= 0x0000000d) { cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_D_1_EAX] = eax; } /* Additional Intel-defined flags: level 0x0000000F */ if (c->cpuid_level >= 0x0000000F) { /* QoS sub-leaf, EAX=0Fh, ECX=0 */ cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_F_0_EDX] = edx; if (cpu_has(c, X86_FEATURE_CQM_LLC)) { /* will be overridden if occupancy monitoring exists */ c->x86_cache_max_rmid = ebx; /* QoS sub-leaf, EAX=0Fh, ECX=1 */ cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_F_1_EDX] = edx; if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) || ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) || (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) { c->x86_cache_max_rmid = ecx; c->x86_cache_occ_scale = ebx; } } else { c->x86_cache_max_rmid = -1; c->x86_cache_occ_scale = -1; } } /* AMD-defined flags: level 0x80000001 */ eax = cpuid_eax(0x80000000); c->extended_cpuid_level = eax; if ((eax & 0xffff0000) == 0x80000000) { if (eax >= 0x80000001) { cpuid(0x80000001, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0001_ECX] = ecx; c->x86_capability[CPUID_8000_0001_EDX] = edx; } } if (c->extended_cpuid_level >= 0x80000007) { cpuid(0x80000007, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0007_EBX] = ebx; c->x86_power = edx; } if (c->extended_cpuid_level >= 0x80000008) { cpuid(0x80000008, &eax, &ebx, &ecx, &edx); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; c->x86_capability[CPUID_8000_0008_EBX] = ebx; } #ifdef CONFIG_X86_32 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) c->x86_phys_bits = 36; #endif if (c->extended_cpuid_level >= 0x8000000a) c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); init_scattered_cpuid_features(c); /* * Clear/Set all flags overridden by options, after probe. * This needs to happen each time we re-probe, which may happen * several times during CPU initialization. */ apply_forced_caps(c); } static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 int i; /* * First of all, decide if this is a 486 or higher * It's a 486 if we can modify the AC flag */ if (flag_is_changeable_p(X86_EFLAGS_AC)) c->x86 = 4; else c->x86 = 3; for (i = 0; i < X86_VENDOR_NUM; i++) if (cpu_devs[i] && cpu_devs[i]->c_identify) { c->x86_vendor_id[0] = 0; cpu_devs[i]->c_identify(c); if (c->x86_vendor_id[0]) { get_cpu_vendor(c); break; } } #endif } /* * Do minimum CPU detection early. * Fields really needed: vendor, cpuid_level, family, model, mask, * cache alignment. * The others are not touched to avoid unwanted side effects. * * WARNING: this function is only called on the BP. Don't add code here * that is supposed to run on all CPUs. */ static void __init early_identify_cpu(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 c->x86_clflush_size = 64; c->x86_phys_bits = 36; c->x86_virt_bits = 48; #else c->x86_clflush_size = 32; c->x86_phys_bits = 32; c->x86_virt_bits = 32; #endif c->x86_cache_alignment = c->x86_clflush_size; memset(&c->x86_capability, 0, sizeof c->x86_capability); c->extended_cpuid_level = 0; /* cyrix could have cpuid enabled via c_identify()*/ if (have_cpuid_p()) { cpu_detect(c); get_cpu_vendor(c); get_cpu_cap(c); setup_force_cpu_cap(X86_FEATURE_CPUID); if (this_cpu->c_early_init) this_cpu->c_early_init(c); c->cpu_index = 0; filter_cpuid_features(c, false); if (this_cpu->c_bsp_init) this_cpu->c_bsp_init(c); } else { identify_cpu_without_cpuid(c); setup_clear_cpu_cap(X86_FEATURE_CPUID); } setup_force_cpu_cap(X86_FEATURE_ALWAYS); /* Assume for now that ALL x86 CPUs are insecure */ setup_force_cpu_bug(X86_BUG_CPU_INSECURE); fpu__init_system(c); #ifdef CONFIG_X86_32 /* * Regardless of whether PCID is enumerated, the SDM says * that it can't be enabled in 32-bit mode. */ setup_clear_cpu_cap(X86_FEATURE_PCID); #endif } void __init early_cpu_init(void) { const struct cpu_dev *const *cdev; int count = 0; #ifdef CONFIG_PROCESSOR_SELECT pr_info("KERNEL supported cpus:\n"); #endif for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { const struct cpu_dev *cpudev = *cdev; if (count >= X86_VENDOR_NUM) break; cpu_devs[count] = cpudev; count++; #ifdef CONFIG_PROCESSOR_SELECT { unsigned int j; for (j = 0; j < 2; j++) { if (!cpudev->c_ident[j]) continue; pr_info(" %s %s\n", cpudev->c_vendor, cpudev->c_ident[j]); } } #endif } early_identify_cpu(&boot_cpu_data); } /* * The NOPL instruction is supposed to exist on all CPUs of family >= 6; * unfortunately, that's not true in practice because of early VIA * chips and (more importantly) broken virtualizers that are not easy * to detect. In the latter case it doesn't even *fail* reliably, so * probing for it doesn't even work. Disable it completely on 32-bit * unless we can find a reliable way to detect all the broken cases. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). */ static void detect_nopl(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 clear_cpu_cap(c, X86_FEATURE_NOPL); #else set_cpu_cap(c, X86_FEATURE_NOPL); #endif } static void detect_null_seg_behavior(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 /* * Empirically, writing zero to a segment selector on AMD does * not clear the base, whereas writing zero to a segment * selector on Intel does clear the base. Intel's behavior * allows slightly faster context switches in the common case * where GS is unused by the prev and next threads. * * Since neither vendor documents this anywhere that I can see, * detect it directly instead of hardcoding the choice by * vendor. * * I've designated AMD's behavior as the "bug" because it's * counterintuitive and less friendly. */ unsigned long old_base, tmp; rdmsrl(MSR_FS_BASE, old_base); wrmsrl(MSR_FS_BASE, 1); loadsegment(fs, 0); rdmsrl(MSR_FS_BASE, tmp); if (tmp != 0) set_cpu_bug(c, X86_BUG_NULL_SEG); wrmsrl(MSR_FS_BASE, old_base); #endif } static void generic_identify(struct cpuinfo_x86 *c) { c->extended_cpuid_level = 0; if (!have_cpuid_p()) identify_cpu_without_cpuid(c); /* cyrix could have cpuid enabled via c_identify()*/ if (!have_cpuid_p()) return; cpu_detect(c); get_cpu_vendor(c); get_cpu_cap(c); if (c->cpuid_level >= 0x00000001) { c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; #ifdef CONFIG_X86_32 # ifdef CONFIG_SMP c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); # else c->apicid = c->initial_apicid; # endif #endif c->phys_proc_id = c->initial_apicid; } get_model_name(c); /* Default name */ detect_nopl(c); detect_null_seg_behavior(c); /* * ESPFIX is a strange bug. All real CPUs have it. Paravirt * systems that run Linux at CPL > 0 may or may not have the * issue, but, even if they have the issue, there's absolutely * nothing we can do about it because we can't use the real IRET * instruction. * * NB: For the time being, only 32-bit kernels support * X86_BUG_ESPFIX as such. 64-bit kernels directly choose * whether to apply espfix using paravirt hooks. If any * non-paravirt system ever shows up that does *not* have the * ESPFIX issue, we can change this. */ #ifdef CONFIG_X86_32 # ifdef CONFIG_PARAVIRT do { extern void native_iret(void); if (pv_cpu_ops.iret == native_iret) set_cpu_bug(c, X86_BUG_ESPFIX); } while (0); # else set_cpu_bug(c, X86_BUG_ESPFIX); # endif #endif } static void x86_init_cache_qos(struct cpuinfo_x86 *c) { /* * The heavy lifting of max_rmid and cache_occ_scale are handled * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu * in case CQM bits really aren't there in this CPU. */ if (c != &boot_cpu_data) { boot_cpu_data.x86_cache_max_rmid = min(boot_cpu_data.x86_cache_max_rmid, c->x86_cache_max_rmid); } } /* * Validate that ACPI/mptables have the same information about the * effective APIC id and update the package map. */ static void validate_apic_and_package_id(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP unsigned int apicid, cpu = smp_processor_id(); apicid = apic->cpu_present_to_apicid(cpu); if (apicid != c->apicid) { pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", cpu, apicid, c->initial_apicid); } BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); #else c->logical_proc_id = 0; #endif } /* * This does the hard work of actually picking apart the CPU stuff... */ static void identify_cpu(struct cpuinfo_x86 *c) { int i; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = -1; c->x86_vendor = X86_VENDOR_UNKNOWN; c->x86_model = c->x86_mask = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ c->x86_max_cores = 1; c->x86_coreid_bits = 0; c->cu_id = 0xff; #ifdef CONFIG_X86_64 c->x86_clflush_size = 64; c->x86_phys_bits = 36; c->x86_virt_bits = 48; #else c->cpuid_level = -1; /* CPUID not detected */ c->x86_clflush_size = 32; c->x86_phys_bits = 32; c->x86_virt_bits = 32; #endif c->x86_cache_alignment = c->x86_clflush_size; memset(&c->x86_capability, 0, sizeof c->x86_capability); generic_identify(c); if (this_cpu->c_identify) this_cpu->c_identify(c); /* Clear/Set all flags overridden by options, after probe */ apply_forced_caps(c); #ifdef CONFIG_X86_64 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); #endif /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ if (this_cpu->c_init) this_cpu->c_init(c); /* Disable the PN if appropriate */ squash_the_stupid_serial_number(c); /* Set up SMEP/SMAP */ setup_smep(c); setup_smap(c); /* * The vendor-specific functions might have changed features. * Now we do "generic changes." */ /* Filter out anything that depends on CPUID levels we don't have */ filter_cpuid_features(c, true); /* If the model name is still unset, do table lookup. */ if (!c->x86_model_id[0]) { const char *p; p = table_lookup_model(c); if (p) strcpy(c->x86_model_id, p); else /* Last resort... */ sprintf(c->x86_model_id, "%02x/%02x", c->x86, c->x86_model); } #ifdef CONFIG_X86_64 detect_ht(c); #endif x86_init_rdrand(c); x86_init_cache_qos(c); setup_pku(c); /* * Clear/Set all flags overridden by options, need do it * before following smp all cpus cap AND. */ apply_forced_caps(c); /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if (c != &boot_cpu_data) { /* AND the already accumulated flags with these */ for (i = 0; i < NCAPINTS; i++) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; /* OR, i.e. replicate the bug flags */ for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; } /* Init Machine Check Exception if available. */ mcheck_cpu_init(c); select_idle_routine(c); #ifdef CONFIG_NUMA numa_add_cpu(smp_processor_id()); #endif } /* * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions * on 32-bit kernels: */ #ifdef CONFIG_X86_32 void enable_sep_cpu(void) { struct tss_struct *tss; int cpu; if (!boot_cpu_has(X86_FEATURE_SEP)) return; cpu = get_cpu(); tss = &per_cpu(cpu_tss_rw, cpu); /* * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- * see the big comment in struct x86_hw_tss's definition. */ tss->x86_tss.ss1 = __KERNEL_CS; wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); put_cpu(); } #endif void __init identify_boot_cpu(void) { identify_cpu(&boot_cpu_data); #ifdef CONFIG_X86_32 sysenter_setup(); enable_sep_cpu(); #endif cpu_detect_tlb(&boot_cpu_data); } void identify_secondary_cpu(struct cpuinfo_x86 *c) { BUG_ON(c == &boot_cpu_data); identify_cpu(c); #ifdef CONFIG_X86_32 enable_sep_cpu(); #endif mtrr_ap_init(); validate_apic_and_package_id(c); } static __init int setup_noclflush(char *arg) { setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); return 1; } __setup("noclflush", setup_noclflush); void print_cpu_info(struct cpuinfo_x86 *c) { const char *vendor = NULL; if (c->x86_vendor < X86_VENDOR_NUM) { vendor = this_cpu->c_vendor; } else { if (c->cpuid_level >= 0) vendor = c->x86_vendor_id; } if (vendor && !strstr(c->x86_model_id, vendor)) pr_cont("%s ", vendor); if (c->x86_model_id[0]) pr_cont("%s", c->x86_model_id); else pr_cont("%d86", c->x86); pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); if (c->x86_mask || c->cpuid_level >= 0) pr_cont(", stepping: 0x%x)\n", c->x86_mask); else pr_cont(")\n"); } /* * clearcpuid= was already parsed in fpu__init_parse_early_param. * But we need to keep a dummy __setup around otherwise it would * show up as an environment variable for init. */ static __init int setup_clearcpuid(char *arg) { return 1; } __setup("clearcpuid=", setup_clearcpuid); #ifdef CONFIG_X86_64 DEFINE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __aligned(PAGE_SIZE) __visible; /* * The following percpu variables are hot. Align current_task to * cacheline size such that they fall in the same cacheline. */ DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = &init_task; EXPORT_PER_CPU_SYMBOL(current_task); DEFINE_PER_CPU(char *, irq_stack_ptr) = init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE; DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; EXPORT_PER_CPU_SYMBOL(__preempt_count); /* May not be marked __init: used by software suspend */ void syscall_init(void) { extern char _entry_trampoline[]; extern char entry_SYSCALL_64_trampoline[]; int cpu = smp_processor_id(); unsigned long SYSCALL64_entry_trampoline = (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline + (entry_SYSCALL_64_trampoline - _entry_trampoline); wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline); #ifdef CONFIG_IA32_EMULATION wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); /* * This only works on Intel CPUs. * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. * This does not cause SYSENTER to jump to the wrong location, because * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). */ wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1)); wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); #else wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); #endif /* Flags to clear on syscall */ wrmsrl(MSR_SYSCALL_MASK, X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); } /* * Copies of the original ist values from the tss are only accessed during * debugging, no special alignment required. */ DEFINE_PER_CPU(struct orig_ist, orig_ist); static DEFINE_PER_CPU(unsigned long, debug_stack_addr); DEFINE_PER_CPU(int, debug_stack_usage); int is_debug_stack(unsigned long addr) { return __this_cpu_read(debug_stack_usage) || (addr <= __this_cpu_read(debug_stack_addr) && addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); } NOKPROBE_SYMBOL(is_debug_stack); DEFINE_PER_CPU(u32, debug_idt_ctr); void debug_stack_set_zero(void) { this_cpu_inc(debug_idt_ctr); load_current_idt(); } NOKPROBE_SYMBOL(debug_stack_set_zero); void debug_stack_reset(void) { if (WARN_ON(!this_cpu_read(debug_idt_ctr))) return; if (this_cpu_dec_return(debug_idt_ctr) == 0) load_current_idt(); } NOKPROBE_SYMBOL(debug_stack_reset); #else /* CONFIG_X86_64 */ DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; EXPORT_PER_CPU_SYMBOL(current_task); DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; EXPORT_PER_CPU_SYMBOL(__preempt_count); /* * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find * the top of the kernel stack. Use an extra percpu variable to track the * top of the kernel stack directly. */ DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = (unsigned long)&init_thread_union + THREAD_SIZE; EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); #ifdef CONFIG_CC_STACKPROTECTOR DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); #endif #endif /* CONFIG_X86_64 */ /* * Clear all 6 debug registers: */ static void clear_all_debug_regs(void) { int i; for (i = 0; i < 8; i++) { /* Ignore db4, db5 */ if ((i == 4) || (i == 5)) continue; set_debugreg(0, i); } } #ifdef CONFIG_KGDB /* * Restore debug regs if using kgdbwait and you have a kernel debugger * connection established. */ static void dbg_restore_debug_regs(void) { if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) arch_kgdb_ops.correct_hw_break(); } #else /* ! CONFIG_KGDB */ #define dbg_restore_debug_regs() #endif /* ! CONFIG_KGDB */ static void wait_for_master_cpu(int cpu) { #ifdef CONFIG_SMP /* * wait for ACK from master CPU before continuing * with AP initialization */ WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); while (!cpumask_test_cpu(cpu, cpu_callout_mask)) cpu_relax(); #endif } /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT * and IDT. We reload them nevertheless, this function acts as a * 'CPU state barrier', nothing should get across. * A lot of state is already set up in PDA init for 64 bit */ #ifdef CONFIG_X86_64 void cpu_init(void) { struct orig_ist *oist; struct task_struct *me; struct tss_struct *t; unsigned long v; int cpu = raw_smp_processor_id(); int i; wait_for_master_cpu(cpu); /* * Initialize the CR4 shadow before doing anything that could * try to read it. */ cr4_init_shadow(); if (cpu) load_ucode_ap(); t = &per_cpu(cpu_tss_rw, cpu); oist = &per_cpu(orig_ist, cpu); #ifdef CONFIG_NUMA if (this_cpu_read(numa_node) == 0 && early_cpu_to_node(cpu) != NUMA_NO_NODE) set_numa_node(early_cpu_to_node(cpu)); #endif me = current; pr_debug("Initializing CPU#%d\n", cpu); cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); /* * Initialize the per-CPU GDT with the boot GDT, * and set up the GDT descriptor: */ switch_to_new_gdt(cpu); loadsegment(fs, 0); load_current_idt(); memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); syscall_init(); wrmsrl(MSR_FS_BASE, 0); wrmsrl(MSR_KERNEL_GS_BASE, 0); barrier(); x86_configure_nx(); x2apic_setup(); /* * set up and load the per-CPU TSS */ if (!oist->ist[0]) { char *estacks = get_cpu_entry_area(cpu)->exception_stacks; for (v = 0; v < N_EXCEPTION_STACKS; v++) { estacks += exception_stack_sizes[v]; oist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks; if (v == DEBUG_STACK-1) per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; } } t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; /* * <= is required because the CPU will access up to * 8 bits beyond the end of the IO permission bitmap. */ for (i = 0; i <= IO_BITMAP_LONGS; i++) t->io_bitmap[i] = ~0UL; mmgrab(&init_mm); me->active_mm = &init_mm; BUG_ON(me->mm); initialize_tlbstate_and_flush(); enter_lazy_tlb(&init_mm, me); /* * Initialize the TSS. sp0 points to the entry trampoline stack * regardless of what task is running. */ set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); load_TR_desc(); load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); load_mm_ldt(&init_mm); clear_all_debug_regs(); dbg_restore_debug_regs(); fpu__init_cpu(); if (is_uv_system()) uv_cpu_init(); load_fixmap_gdt(cpu); } #else void cpu_init(void) { int cpu = smp_processor_id(); struct task_struct *curr = current; struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu); wait_for_master_cpu(cpu); /* * Initialize the CR4 shadow before doing anything that could * try to read it. */ cr4_init_shadow(); show_ucode_info_early(); pr_info("Initializing CPU#%d\n", cpu); if (cpu_feature_enabled(X86_FEATURE_VME) || boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); load_current_idt(); switch_to_new_gdt(cpu); /* * Set up and load the per-CPU TSS and LDT */ mmgrab(&init_mm); curr->active_mm = &init_mm; BUG_ON(curr->mm); initialize_tlbstate_and_flush(); enter_lazy_tlb(&init_mm, curr); /* * Initialize the TSS. Don't bother initializing sp0, as the initial * task never enters user mode. */ set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); load_TR_desc(); load_mm_ldt(&init_mm); t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; #ifdef CONFIG_DOUBLEFAULT /* Set up doublefault TSS pointer in the GDT */ __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); #endif clear_all_debug_regs(); dbg_restore_debug_regs(); fpu__init_cpu(); load_fixmap_gdt(cpu); } #endif static void bsp_resume(void) { if (this_cpu->c_bsp_resume) this_cpu->c_bsp_resume(&boot_cpu_data); } static struct syscore_ops cpu_syscore_ops = { .resume = bsp_resume, }; static int __init init_cpu_syscore(void) { register_syscore_ops(&cpu_syscore_ops); return 0; } core_initcall(init_cpu_syscore);