/* * Copyright 2014 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "dp.h" #include "conn.h" #include "nv50.h" #include #include #include #include struct lt_state { struct nvkm_dp *dp; int link_nr; u32 link_bw; u8 stat[6]; u8 conf[4]; bool pc2; u8 pc2stat; u8 pc2conf[2]; }; static int nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay) { struct nvkm_dp *dp = lt->dp; int ret; if (dp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL]) mdelay(dp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL] * 4); else udelay(delay); ret = nvkm_rdaux(dp->aux, DPCD_LS02, lt->stat, 6); if (ret) return ret; if (pc) { ret = nvkm_rdaux(dp->aux, DPCD_LS0C, <->pc2stat, 1); if (ret) lt->pc2stat = 0x00; OUTP_TRACE(&dp->outp, "status %6ph pc2 %02x", lt->stat, lt->pc2stat); } else { OUTP_TRACE(&dp->outp, "status %6ph", lt->stat); } return 0; } static int nvkm_dp_train_drive(struct lt_state *lt, bool pc) { struct nvkm_dp *dp = lt->dp; int ret, i; for (i = 0; i < lt->link_nr; i++) { u8 lane = (lt->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf; u8 lpc2 = (lt->pc2stat >> (i * 2)) & 0x3; u8 lpre = (lane & 0x0c) >> 2; u8 lvsw = (lane & 0x03) >> 0; u8 hivs = 3 - lpre; u8 hipe = 3; u8 hipc = 3; if (lpc2 >= hipc) lpc2 = hipc | DPCD_LC0F_LANE0_MAX_POST_CURSOR2_REACHED; if (lpre >= hipe) { lpre = hipe | DPCD_LC03_MAX_SWING_REACHED; /* yes. */ lvsw = hivs = 3 - (lpre & 3); } else if (lvsw >= hivs) { lvsw = hivs | DPCD_LC03_MAX_SWING_REACHED; } lt->conf[i] = (lpre << 3) | lvsw; lt->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4); OUTP_TRACE(&dp->outp, "config lane %d %02x %02x", i, lt->conf[i], lpc2); dp->func->drv_ctl(dp, i, lvsw & 3, lpre & 3, lpc2 & 3); } ret = nvkm_wraux(dp->aux, DPCD_LC03(0), lt->conf, 4); if (ret) return ret; if (pc) { ret = nvkm_wraux(dp->aux, DPCD_LC0F, lt->pc2conf, 2); if (ret) return ret; } return 0; } static void nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern) { struct nvkm_dp *dp = lt->dp; u8 sink_tp; OUTP_TRACE(&dp->outp, "training pattern %d", pattern); dp->func->pattern(dp, pattern); nvkm_rdaux(dp->aux, DPCD_LC02, &sink_tp, 1); sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET; sink_tp |= pattern; nvkm_wraux(dp->aux, DPCD_LC02, &sink_tp, 1); } static int nvkm_dp_train_eq(struct lt_state *lt) { bool eq_done = false, cr_done = true; int tries = 0, i; if (lt->dp->dpcd[2] & DPCD_RC02_TPS3_SUPPORTED) nvkm_dp_train_pattern(lt, 3); else nvkm_dp_train_pattern(lt, 2); do { if ((tries && nvkm_dp_train_drive(lt, lt->pc2)) || nvkm_dp_train_sense(lt, lt->pc2, 400)) break; eq_done = !!(lt->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE); for (i = 0; i < lt->link_nr && eq_done; i++) { u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DPCD_LS02_LANE0_CR_DONE)) cr_done = false; if (!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) || !(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) eq_done = false; } } while (!eq_done && cr_done && ++tries <= 5); return eq_done ? 0 : -1; } static int nvkm_dp_train_cr(struct lt_state *lt) { bool cr_done = false, abort = false; int voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET; int tries = 0, i; nvkm_dp_train_pattern(lt, 1); do { if (nvkm_dp_train_drive(lt, false) || nvkm_dp_train_sense(lt, false, 100)) break; cr_done = true; for (i = 0; i < lt->link_nr; i++) { u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DPCD_LS02_LANE0_CR_DONE)) { cr_done = false; if (lt->conf[i] & DPCD_LC03_MAX_SWING_REACHED) abort = true; break; } } if ((lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET) != voltage) { voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET; tries = 0; } } while (!cr_done && !abort && ++tries < 5); return cr_done ? 0 : -1; } static int nvkm_dp_train_links(struct lt_state *lt) { struct nvkm_dp *dp = lt->dp; struct nvkm_disp *disp = dp->outp.disp; struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_bios *bios = subdev->device->bios; struct nvbios_init init = { .subdev = subdev, .bios = bios, .offset = 0x0000, .outp = &dp->outp.info, .crtc = -1, .execute = 1, }; u32 lnkcmp; u8 sink[2]; int ret; OUTP_DBG(&dp->outp, "%d lanes at %d KB/s", lt->link_nr, lt->link_bw); /* Intersect misc. capabilities of the OR and sink. */ if (disp->engine.subdev.device->chipset < 0xd0) dp->dpcd[2] &= ~DPCD_RC02_TPS3_SUPPORTED; lt->pc2 = dp->dpcd[2] & DPCD_RC02_TPS3_SUPPORTED; /* Set desired link configuration on the source. */ if ((lnkcmp = lt->dp->info.lnkcmp)) { if (dp->version < 0x30) { while ((lt->link_bw / 10) < nvbios_rd16(bios, lnkcmp)) lnkcmp += 4; init.offset = nvbios_rd16(bios, lnkcmp + 2); } else { while ((lt->link_bw / 27000) < nvbios_rd08(bios, lnkcmp)) lnkcmp += 3; init.offset = nvbios_rd16(bios, lnkcmp + 1); } nvbios_exec(&init); } ret = dp->func->lnk_ctl(dp, lt->link_nr, lt->link_bw / 27000, dp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP); if (ret) { if (ret < 0) OUTP_ERR(&dp->outp, "lnk_ctl failed with %d", ret); return ret; } dp->func->lnk_pwr(dp, lt->link_nr); /* Set desired link configuration on the sink. */ sink[0] = lt->link_bw / 27000; sink[1] = lt->link_nr; if (dp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP) sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN; return nvkm_wraux(dp->aux, DPCD_LC00_LINK_BW_SET, sink, 2); } static void nvkm_dp_train_fini(struct lt_state *lt) { struct nvkm_dp *dp = lt->dp; struct nvkm_subdev *subdev = &dp->outp.disp->engine.subdev; struct nvbios_init init = { .subdev = subdev, .bios = subdev->device->bios, .outp = &dp->outp.info, .crtc = -1, .execute = 1, }; /* Execute AfterLinkTraining script from DP Info table. */ init.offset = dp->info.script[1], nvbios_exec(&init); } static void nvkm_dp_train_init(struct lt_state *lt, bool spread) { struct nvkm_dp *dp = lt->dp; struct nvkm_subdev *subdev = &dp->outp.disp->engine.subdev; struct nvbios_init init = { .subdev = subdev, .bios = subdev->device->bios, .outp = &dp->outp.info, .crtc = -1, .execute = 1, }; /* Execute EnableSpread/DisableSpread script from DP Info table. */ if (spread) init.offset = dp->info.script[2]; else init.offset = dp->info.script[3]; nvbios_exec(&init); /* Execute BeforeLinkTraining script from DP Info table. */ init.offset = dp->info.script[0]; nvbios_exec(&init); } static const struct dp_rates { u32 rate; u8 bw; u8 nr; } nvkm_dp_rates[] = { { 2160000, 0x14, 4 }, { 1080000, 0x0a, 4 }, { 1080000, 0x14, 2 }, { 648000, 0x06, 4 }, { 540000, 0x0a, 2 }, { 540000, 0x14, 1 }, { 324000, 0x06, 2 }, { 270000, 0x0a, 1 }, { 162000, 0x06, 1 }, {} }; static void nvkm_dp_train(struct nvkm_dp *dp) { struct nv50_disp *disp = nv50_disp(dp->outp.disp); const struct dp_rates *cfg = nvkm_dp_rates - 1; struct lt_state lt = { .dp = dp, }; u8 pwr; int ret; if (!dp->outp.info.location && disp->func->sor.magic) disp->func->sor.magic(&dp->outp); if ((dp->dpcd[2] & 0x1f) > dp->outp.info.dpconf.link_nr) { dp->dpcd[2] &= ~DPCD_RC02_MAX_LANE_COUNT; dp->dpcd[2] |= dp->outp.info.dpconf.link_nr; } if (dp->dpcd[1] > dp->outp.info.dpconf.link_bw) dp->dpcd[1] = dp->outp.info.dpconf.link_bw; /* Ensure sink is not in a low-power state. */ if (!nvkm_rdaux(dp->aux, DPCD_SC00, &pwr, 1)) { if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) { pwr &= ~DPCD_SC00_SET_POWER; pwr |= DPCD_SC00_SET_POWER_D0; nvkm_wraux(dp->aux, DPCD_SC00, &pwr, 1); } } /* Link training. */ nvkm_dp_train_init(<, dp->dpcd[3] & 0x01); while (ret = -EIO, (++cfg)->rate) { /* Skip configurations not supported by both OR and sink. */ while (cfg->nr > (dp->dpcd[2] & DPCD_RC02_MAX_LANE_COUNT) || cfg->bw > (dp->dpcd[DPCD_RC01_MAX_LINK_RATE])) cfg++; lt.link_bw = cfg->bw * 27000; lt.link_nr = cfg->nr; /* Program selected link configuration. */ ret = nvkm_dp_train_links(<); if (ret == 0) { /* Attempt to train the link in this configuration. */ memset(lt.stat, 0x00, sizeof(lt.stat)); if (!nvkm_dp_train_cr(<) && !nvkm_dp_train_eq(<)) break; } else if (ret) { /* nvkm_dp_train_links() handled training, or * we failed to communicate with the sink. */ break; } } nvkm_dp_train_pattern(<, 0); nvkm_dp_train_fini(<); if (ret < 0) OUTP_ERR(&dp->outp, "training failed"); OUTP_DBG(&dp->outp, "training done"); atomic_set(&dp->lt.done, 1); } int nvkm_output_dp_train(struct nvkm_outp *outp, u32 datarate) { struct nvkm_dp *dp = nvkm_dp(outp); bool retrain = true; u8 link[2], stat[3]; u32 linkrate; int ret, i; mutex_lock(&dp->mutex); /* check that the link is trained at a high enough rate */ ret = nvkm_rdaux(dp->aux, DPCD_LC00_LINK_BW_SET, link, 2); if (ret) { OUTP_DBG(&dp->outp, "failed to read link config, assuming no sink"); goto done; } linkrate = link[0] * 27000 * (link[1] & DPCD_LC01_LANE_COUNT_SET); linkrate = (linkrate * 8) / 10; /* 8B/10B coding overhead */ datarate = (datarate + 9) / 10; /* -> decakilobits */ if (linkrate < datarate) { OUTP_DBG(&dp->outp, "link not trained at sufficient rate"); goto done; } /* check that link is still trained */ ret = nvkm_rdaux(dp->aux, DPCD_LS02, stat, 3); if (ret) { OUTP_DBG(&dp->outp, "failed to read link status, assuming no sink"); goto done; } if (stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE) { for (i = 0; i < (link[1] & DPCD_LC01_LANE_COUNT_SET); i++) { u8 lane = (stat[i >> 1] >> ((i & 1) * 4)) & 0x0f; if (!(lane & DPCD_LS02_LANE0_CR_DONE) || !(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) || !(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) { OUTP_DBG(&dp->outp, "lane %d not equalised", lane); goto done; } } retrain = false; } else { OUTP_DBG(&dp->outp, "no inter-lane alignment"); } done: if (retrain || !atomic_read(&dp->lt.done)) { /* no sink, but still need to configure source */ if (dp->dpcd[DPCD_RC00_DPCD_REV] == 0x00) { dp->dpcd[DPCD_RC01_MAX_LINK_RATE] = dp->outp.info.dpconf.link_bw; dp->dpcd[DPCD_RC02] = dp->outp.info.dpconf.link_nr; } nvkm_dp_train(dp); } mutex_unlock(&dp->mutex); return ret; } static void nvkm_dp_enable(struct nvkm_dp *dp, bool enable) { struct nvkm_i2c_aux *aux = dp->aux; if (enable) { if (!dp->present) { OUTP_DBG(&dp->outp, "aux power -> always"); nvkm_i2c_aux_monitor(aux, true); dp->present = true; } if (!nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, dp->dpcd, sizeof(dp->dpcd))) { nvkm_output_dp_train(&dp->outp, 0); return; } } if (dp->present) { OUTP_DBG(&dp->outp, "aux power -> demand"); nvkm_i2c_aux_monitor(aux, false); dp->present = false; } atomic_set(&dp->lt.done, 0); } static int nvkm_dp_hpd(struct nvkm_notify *notify) { const struct nvkm_i2c_ntfy_rep *line = notify->data; struct nvkm_dp *dp = container_of(notify, typeof(*dp), hpd); struct nvkm_conn *conn = dp->outp.conn; struct nvkm_disp *disp = dp->outp.disp; struct nvif_notify_conn_rep_v0 rep = {}; OUTP_DBG(&dp->outp, "HPD: %d", line->mask); nvkm_dp_enable(dp, true); if (line->mask & NVKM_I2C_UNPLUG) rep.mask |= NVIF_NOTIFY_CONN_V0_UNPLUG; if (line->mask & NVKM_I2C_PLUG) rep.mask |= NVIF_NOTIFY_CONN_V0_PLUG; nvkm_event_send(&disp->hpd, rep.mask, conn->index, &rep, sizeof(rep)); return NVKM_NOTIFY_KEEP; } static int nvkm_dp_irq(struct nvkm_notify *notify) { const struct nvkm_i2c_ntfy_rep *line = notify->data; struct nvkm_dp *dp = container_of(notify, typeof(*dp), irq); struct nvkm_conn *conn = dp->outp.conn; struct nvkm_disp *disp = dp->outp.disp; struct nvif_notify_conn_rep_v0 rep = { .mask = NVIF_NOTIFY_CONN_V0_IRQ, }; OUTP_DBG(&dp->outp, "IRQ: %d", line->mask); nvkm_output_dp_train(&dp->outp, 0); nvkm_event_send(&disp->hpd, rep.mask, conn->index, &rep, sizeof(rep)); return NVKM_NOTIFY_KEEP; } static void nvkm_dp_fini(struct nvkm_outp *outp) { struct nvkm_dp *dp = nvkm_dp(outp); nvkm_notify_put(&dp->hpd); nvkm_notify_put(&dp->irq); nvkm_dp_enable(dp, false); } static void nvkm_dp_init(struct nvkm_outp *outp) { struct nvkm_dp *dp = nvkm_dp(outp); nvkm_notify_put(&dp->outp.conn->hpd); nvkm_dp_enable(dp, true); nvkm_notify_get(&dp->irq); nvkm_notify_get(&dp->hpd); } static void * nvkm_dp_dtor(struct nvkm_outp *outp) { struct nvkm_dp *dp = nvkm_dp(outp); nvkm_notify_fini(&dp->hpd); nvkm_notify_fini(&dp->irq); return dp; } static const struct nvkm_outp_func nvkm_dp_func = { .dtor = nvkm_dp_dtor, .init = nvkm_dp_init, .fini = nvkm_dp_fini, }; static int nvkm_dp_ctor(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, struct nvkm_i2c_aux *aux, struct nvkm_dp *dp) { struct nvkm_device *device = disp->engine.subdev.device; struct nvkm_bios *bios = device->bios; struct nvkm_i2c *i2c = device->i2c; u8 hdr, cnt, len; u32 data; int ret; ret = nvkm_outp_ctor(&nvkm_dp_func, disp, index, dcbE, &dp->outp); if (ret) return ret; dp->aux = aux; if (!dp->aux) { OUTP_ERR(&dp->outp, "no aux"); return -ENODEV; } /* bios data is not optional */ data = nvbios_dpout_match(bios, dp->outp.info.hasht, dp->outp.info.hashm, &dp->version, &hdr, &cnt, &len, &dp->info); if (!data) { OUTP_ERR(&dp->outp, "no bios dp data"); return -ENODEV; } OUTP_DBG(&dp->outp, "bios dp %02x %02x %02x %02x", dp->version, hdr, cnt, len); /* link maintenance */ ret = nvkm_notify_init(NULL, &i2c->event, nvkm_dp_irq, true, &(struct nvkm_i2c_ntfy_req) { .mask = NVKM_I2C_IRQ, .port = dp->aux->id, }, sizeof(struct nvkm_i2c_ntfy_req), sizeof(struct nvkm_i2c_ntfy_rep), &dp->irq); if (ret) { OUTP_ERR(&dp->outp, "error monitoring aux irq: %d", ret); return ret; } mutex_init(&dp->mutex); atomic_set(&dp->lt.done, 0); /* hotplug detect, replaces gpio-based mechanism with aux events */ ret = nvkm_notify_init(NULL, &i2c->event, nvkm_dp_hpd, true, &(struct nvkm_i2c_ntfy_req) { .mask = NVKM_I2C_PLUG | NVKM_I2C_UNPLUG, .port = dp->aux->id, }, sizeof(struct nvkm_i2c_ntfy_req), sizeof(struct nvkm_i2c_ntfy_rep), &dp->hpd); if (ret) { OUTP_ERR(&dp->outp, "error monitoring aux hpd: %d", ret); return ret; } return 0; } int nvkm_output_dp_new_(const struct nvkm_output_dp_func *func, struct nvkm_disp *disp, int index, struct dcb_output *dcbE, struct nvkm_outp **poutp) { struct nvkm_i2c *i2c = disp->engine.subdev.device->i2c; struct nvkm_i2c_aux *aux; struct nvkm_dp *dp; if (dcbE->location == 0) aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_CCB(dcbE->i2c_index)); else aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbE->extdev)); if (!(dp = kzalloc(sizeof(*dp), GFP_KERNEL))) return -ENOMEM; dp->func = func; *poutp = &dp->outp; return nvkm_dp_ctor(disp, index, dcbE, aux, dp); }