1. 27 5月, 2011 1 次提交
  2. 24 5月, 2011 1 次提交
    • J
      Btrfs: kill BTRFS_I(inode)->block_group · d82a6f1d
      Josef Bacik 提交于
      Originally this was going to be used as a way to give hints to the allocator,
      but frankly we can get much better hints elsewhere and it's not even used at all
      for anything usefull.  In addition to be completely useless, when we initialize
      an inode we try and find a freeish block group to set as the inodes block group,
      and with a completely full 40gb fs this takes _forever_, so I imagine with say
      1tb fs this is just unbearable.  So just axe the thing altoghether, we don't
      need it and it saves us 8 bytes in the inode and saves us 500 microseconds per
      inode lookup in my testcase.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      d82a6f1d
  3. 21 5月, 2011 1 次提交
    • M
      btrfs: implement delayed inode items operation · 16cdcec7
      Miao Xie 提交于
      Changelog V5 -> V6:
      - Fix oom when the memory load is high, by storing the delayed nodes into the
        root's radix tree, and letting btrfs inodes go.
      
      Changelog V4 -> V5:
      - Fix the race on adding the delayed node to the inode, which is spotted by
        Chris Mason.
      - Merge Chris Mason's incremental patch into this patch.
      - Fix deadlock between readdir() and memory fault, which is reported by
        Itaru Kitayama.
      
      Changelog V3 -> V4:
      - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
        inode in time.
      
      Changelog V2 -> V3:
      - Fix the race between the delayed worker and the task which does delayed items
        balance, which is reported by Tsutomu Itoh.
      - Modify the patch address David Sterba's comment.
      - Fix the bug of the cpu recursion spinlock, reported by Chris Mason
      
      Changelog V1 -> V2:
      - break up the global rb-tree, use a list to manage the delayed nodes,
        which is created for every directory and file, and used to manage the
        delayed directory name index items and the delayed inode item.
      - introduce a worker to deal with the delayed nodes.
      
      Compare with Ext3/4, the performance of file creation and deletion on btrfs
      is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
      such as inode item, directory name item, directory name index and so on.
      
      If we can do some delayed b+ tree insertion or deletion, we can improve the
      performance, so we made this patch which implemented delayed directory name
      index insertion/deletion and delayed inode update.
      
      Implementation:
      - introduce a delayed root object into the filesystem, that use two lists to
        manage the delayed nodes which are created for every file/directory.
        One is used to manage all the delayed nodes that have delayed items. And the
        other is used to manage the delayed nodes which is waiting to be dealt with
        by the work thread.
      - Every delayed node has two rb-tree, one is used to manage the directory name
        index which is going to be inserted into b+ tree, and the other is used to
        manage the directory name index which is going to be deleted from b+ tree.
      - introduce a worker to deal with the delayed operation. This worker is used
        to deal with the works of the delayed directory name index items insertion
        and deletion and the delayed inode update.
        When the delayed items is beyond the lower limit, we create works for some
        delayed nodes and insert them into the work queue of the worker, and then
        go back.
        When the delayed items is beyond the upper bound, we create works for all
        the delayed nodes that haven't been dealt with, and insert them into the work
        queue of the worker, and then wait for that the untreated items is below some
        threshold value.
      - When we want to insert a directory name index into b+ tree, we just add the
        information into the delayed inserting rb-tree.
        And then we check the number of the delayed items and do delayed items
        balance. (The balance policy is above.)
      - When we want to delete a directory name index from the b+ tree, we search it
        in the inserting rb-tree at first. If we look it up, just drop it. If not,
        add the key of it into the delayed deleting rb-tree.
        Similar to the delayed inserting rb-tree, we also check the number of the
        delayed items and do delayed items balance.
        (The same to inserting manipulation)
      - When we want to update the metadata of some inode, we cached the data of the
        inode into the delayed node. the worker will flush it into the b+ tree after
        dealing with the delayed insertion and deletion.
      - We will move the delayed node to the tail of the list after we access the
        delayed node, By this way, we can cache more delayed items and merge more
        inode updates.
      - If we want to commit transaction, we will deal with all the delayed node.
      - the delayed node will be freed when we free the btrfs inode.
      - Before we log the inode items, we commit all the directory name index items
        and the delayed inode update.
      
      I did a quick test by the benchmark tool[1] and found we can improve the
      performance of file creation by ~15%, and file deletion by ~20%.
      
      Before applying this patch:
      Create files:
              Total files: 50000
              Total time: 1.096108
              Average time: 0.000022
      Delete files:
              Total files: 50000
              Total time: 1.510403
              Average time: 0.000030
      
      After applying this patch:
      Create files:
              Total files: 50000
              Total time: 0.932899
              Average time: 0.000019
      Delete files:
              Total files: 50000
              Total time: 1.215732
              Average time: 0.000024
      
      [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
      
      Many thanks for Kitayama-san's help!
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dave@jikos.cz>
      Tested-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Tested-by: NItaru Kitayama <kitayama@cl.bb4u.ne.jp>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      16cdcec7
  4. 25 4月, 2011 1 次提交
    • L
      Btrfs: Always use 64bit inode number · 33345d01
      Li Zefan 提交于
      There's a potential problem in 32bit system when we exhaust 32bit inode
      numbers and start to allocate big inode numbers, because btrfs uses
      inode->i_ino in many places.
      
      So here we always use BTRFS_I(inode)->location.objectid, which is an
      u64 variable.
      
      There are 2 exceptions that BTRFS_I(inode)->location.objectid !=
      inode->i_ino: the btree inode (0 vs 1) and empty subvol dirs (256 vs 2),
      and inode->i_ino will be used in those cases.
      
      Another reason to make this change is I'm going to use a special inode
      to save free ino cache, and the inode number must be > (u64)-256.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      33345d01
  5. 18 3月, 2011 1 次提交
    • J
      Btrfs: change reserved_extents to an atomic_t · 57a45ced
      Josef Bacik 提交于
      We track delayed allocation per inodes via 2 counters, one is
      outstanding_extents and reserved_extents.  Outstanding_extents is already an
      atomic_t, but reserved_extents is not and is protected by a spinlock.  So
      convert this to an atomic_t and instead of using a spinlock, use atomic_cmpxchg
      when releasing delalloc bytes.  This makes our inode 72 bytes smaller, and
      reduces locking overhead (albiet it was minimal to begin with).  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      57a45ced
  6. 22 12月, 2010 1 次提交
  7. 25 5月, 2010 2 次提交
  8. 15 3月, 2010 1 次提交
    • C
      Btrfs: add new defrag-range ioctl. · 1e701a32
      Chris Mason 提交于
      The btrfs defrag ioctl was limited to doing the entire file.  This
      commit adds a new interface that can defrag a specific range inside
      the file.
      
      It can also force compression on the file, allowing you to selectively
      compress individual files after they were created, even when mount -o
      compress isn't turned on.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1e701a32
  9. 18 12月, 2009 1 次提交
  10. 14 10月, 2009 1 次提交
    • C
      Btrfs: avoid tree log commit when there are no changes · 257c62e1
      Chris Mason 提交于
      rpm has a habit of running fdatasync when the file hasn't
      changed.  We already detect if a file hasn't been changed
      in the current transaction but it might have been sent to
      the tree-log in this transaction and not changed since
      the last call to fsync.
      
      In this case, we want to avoid a tree log sync, which includes
      a number of synchronous writes and barriers.  This commit
      extends the existing tracking of the last transaction to change
      a file to also track the last sub-transaction.
      
      The end result is that rpm -ivh and -Uvh are roughly twice as fast,
      and on par with ext3.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      257c62e1
  11. 09 10月, 2009 1 次提交
    • J
      Btrfs: release delalloc reservations on extent item insertion · 32c00aff
      Josef Bacik 提交于
      This patch fixes an issue with the delalloc metadata space reservation
      code.  The problem is we used to free the reservation as soon as we
      allocated the delalloc region.  The problem with this is if we are not
      inserting an inline extent, we don't actually insert the extent item until
      after the ordered extent is written out.  This patch does 3 things,
      
      1) It moves the reservation clearing stuff into the ordered code, so when
      we remove the ordered extent we remove the reservation.
      2) It adds a EXTENT_DO_ACCOUNTING flag that gets passed when we clear
      delalloc bits in the cases where we want to clear the metadata reservation
      when we clear the delalloc extent, in the case that we do an inline extent
      or we invalidate the page.
      3) It adds another waitqueue to the space info so that when we start a fs
      wide delalloc flush, anybody else who also hits that area will simply wait
      for the flush to finish and then try to make their allocation.
      
      This has been tested thoroughly to make sure we did not regress on
      performance.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      32c00aff
  12. 29 9月, 2009 1 次提交
    • J
      Btrfs: proper -ENOSPC handling · 9ed74f2d
      Josef Bacik 提交于
      At the start of a transaction we do a btrfs_reserve_metadata_space() and
      specify how many items we plan on modifying.  Then once we've done our
      modifications and such, just call btrfs_unreserve_metadata_space() for
      the same number of items we reserved.
      
      For keeping track of metadata needed for data I've had to add an extent_io op
      for when we merge extents.  This lets us track space properly when we are doing
      sequential writes, so we don't end up reserving way more metadata space than
      what we need.
      
      The only place where the metadata space accounting is not done is in the
      relocation code.  This is because Yan is going to be reworking that code in the
      near future, so running btrfs-vol -b could still possibly result in a ENOSPC
      related panic.  This patch also turns off the metadata_ratio stuff in order to
      allow users to more efficiently use their disk space.
      
      This patch makes it so we track how much metadata we need for an inode's
      delayed allocation extents by tracking how many extents are currently
      waiting for allocation.  It introduces two new callbacks for the
      extent_io tree's, merge_extent_hook and split_extent_hook.  These help
      us keep track of when we merge delalloc extents together and split them
      up.  Reservations are handled prior to any actually dirty'ing occurs,
      and then we unreserve after we dirty.
      
      btrfs_unreserve_metadata_for_delalloc() will make the appropriate
      unreservations as needed based on the number of reservations we
      currently have and the number of extents we currently have.  Doing the
      reservation outside of doing any of the actual dirty'ing lets us do
      things like filemap_flush() the inode to try and force delalloc to
      happen, or as a last resort actually start allocation on all delalloc
      inodes in the fs.  This has survived dbench, fs_mark and an fsx torture
      test.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9ed74f2d
  13. 22 9月, 2009 1 次提交
    • Y
      Btrfs: change how subvolumes are organized · 4df27c4d
      Yan, Zheng 提交于
      btrfs allows subvolumes and snapshots anywhere in the directory tree.
      If we snapshot a subvolume that contains a link to other subvolume
      called subvolA, subvolA can be accessed through both the original
      subvolume and the snapshot. This is similar to creating hard link to
      directory, and has the very similar problems.
      
      The aim of this patch is enforcing there is only one access point to
      each subvolume. Only the first directory entry (the one added when
      the subvolume/snapshot was created) is treated as valid access point.
      The first directory entry is distinguished by checking root forward
      reference. If the corresponding root forward reference is missing,
      we know the entry is not the first one.
      
      This patch also adds snapshot/subvolume rename support, the code
      allows rename subvolume link across subvolumes.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      4df27c4d
  14. 24 6月, 2009 1 次提交
  15. 10 6月, 2009 2 次提交
    • C
      Btrfs: implement FS_IOC_GETFLAGS/SETFLAGS/GETVERSION · 6cbff00f
      Christoph Hellwig 提交于
      Add support for the standard attributes set via chattr and read via
      lsattr.  Currently we store the attributes in the flags value in
      the btrfs inode, but I wonder whether we should split it into two so
      that we don't have to keep converting between the two formats.
      
      Remove the btrfs_clear_flag/btrfs_set_flag/btrfs_test_flag macros
      as they were confusing the existing code and got in the way of the
      new additions.
      
      Also add the FS_IOC_GETVERSION ioctl for getting i_generation as it's
      trivial.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      6cbff00f
    • Y
      Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) · 5d4f98a2
      Yan Zheng 提交于
      This commit introduces a new kind of back reference for btrfs metadata.
      Once a filesystem has been mounted with this commit, IT WILL NO LONGER
      BE MOUNTABLE BY OLDER KERNELS.
      
      When a tree block in subvolume tree is cow'd, the reference counts of all
      extents it points to are increased by one.  At transaction commit time,
      the old root of the subvolume is recorded in a "dead root" data structure,
      and the btree it points to is later walked, dropping reference counts
      and freeing any blocks where the reference count goes to 0.
      
      The increments done during cow and decrements done after commit cancel out,
      and the walk is a very expensive way to go about freeing the blocks that
      are no longer referenced by the new btree root.  This commit reduces the
      transaction overhead by avoiding the need for dead root records.
      
      When a non-shared tree block is cow'd, we free the old block at once, and the
      new block inherits old block's references. When a tree block with reference
      count > 1 is cow'd, we increase the reference counts of all extents
      the new block points to by one, and decrease the old block's reference count by
      one.
      
      This dead tree avoidance code removes the need to modify the reference
      counts of lower level extents when a non-shared tree block is cow'd.
      But we still need to update back ref for all pointers in the block.
      This is because the location of the block is recorded in the back ref
      item.
      
      We can solve this by introducing a new type of back ref. The new
      back ref provides information about pointer's key, level and in which
      tree the pointer lives. This information allow us to find the pointer
      by searching the tree. The shortcoming of the new back ref is that it
      only works for pointers in tree blocks referenced by their owner trees.
      
      This is mostly a problem for snapshots, where resolving one of these
      fuzzy back references would be O(number_of_snapshots) and quite slow.
      The solution used here is to use the fuzzy back references in the common
      case where a given tree block is only referenced by one root,
      and use the full back references when multiple roots have a reference
      on a given block.
      
      This commit adds per subvolume red-black tree to keep trace of cached
      inodes. The red-black tree helps the balancing code to find cached
      inodes whose inode numbers within a given range.
      
      This commit improves the balancing code by introducing several data
      structures to keep the state of balancing. The most important one
      is the back ref cache. It caches how the upper level tree blocks are
      referenced. This greatly reduce the overhead of checking back ref.
      
      The improved balancing code scales significantly better with a large
      number of snapshots.
      
      This is a very large commit and was written in a number of
      pieces.  But, they depend heavily on the disk format change and were
      squashed together to make sure git bisect didn't end up in a
      bad state wrt space balancing or the format change.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      5d4f98a2
  16. 01 4月, 2009 1 次提交
    • C
      Btrfs: add extra flushing for renames and truncates · 5a3f23d5
      Chris Mason 提交于
      Renames and truncates are both common ways to replace old data with new
      data.  The filesystem can make an effort to make sure the new data is
      on disk before actually replacing the old data.
      
      This is especially important for rename, which many application use as
      though it were atomic for both the data and the metadata involved.  The
      current btrfs code will happily replace a file that is fully on disk
      with one that was just created and still has pending IO.
      
      If we crash after transaction commit but before the IO is done, we'll end
      up replacing a good file with a zero length file.  The solution used
      here is to create a list of inodes that need special ordering and force
      them to disk before the commit is done.  This is similar to the
      ext3 style data=ordering, except it is only done on selected files.
      
      Btrfs is able to get away with this because it does not wait on commits
      very often, even for fsync (which use a sub-commit).
      
      For renames, we order the file when it wasn't already
      on disk and when it is replacing an existing file.  Larger files
      are sent to filemap_flush right away (before the transaction handle is
      opened).
      
      For truncates, we order if the file goes from non-zero size down to
      zero size.  This is a little different, because at the time of the
      truncate the file has no dirty bytes to order.  But, we flag the inode
      so that it is added to the ordered list on close (via release method).  We
      also immediately add it to the ordered list of the current transaction
      so that we can try to flush down any writes the application sneaks in
      before commit.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      5a3f23d5
  17. 25 3月, 2009 1 次提交
    • C
      Btrfs: tree logging unlink/rename fixes · 12fcfd22
      Chris Mason 提交于
      The tree logging code allows individual files or directories to be logged
      without including operations on other files and directories in the FS.
      It tries to commit the minimal set of changes to disk in order to
      fsync the single file or directory that was sent to fsync or O_SYNC.
      
      The tree logging code was allowing files and directories to be unlinked
      if they were part of a rename operation where only one directory
      in the rename was in the fsync log.  This patch adds a few new rules
      to the tree logging.
      
      1) on rename or unlink, if the inode being unlinked isn't in the fsync
      log, we must force a full commit before doing an fsync of the directory
      where the unlink was done.  The commit isn't done during the unlink,
      but it is forced the next time we try to log the parent directory.
      
      Solution: record transid of last unlink/rename per directory when the
      directory wasn't already logged.  For renames this is only done when
      renaming to a different directory.
      
      mkdir foo/some_dir
      normal commit
      rename foo/some_dir foo2/some_dir
      mkdir foo/some_dir
      fsync foo/some_dir/some_file
      
      The fsync above will unlink the original some_dir without recording
      it in its new location (foo2).  After a crash, some_dir will be gone
      unless the fsync of some_file forces a full commit
      
      2) we must log any new names for any file or dir that is in the fsync
      log.  This way we make sure not to lose files that are unlinked during
      the same transaction.
      
      2a) we must log any new names for any file or dir during rename
      when the directory they are being removed from was logged.
      
      2a is actually the more important variant.  Without the extra logging
      a crash might unlink the old name without recreating the new one
      
      3) after a crash, we must go through any directories with a link count
      of zero and redo the rm -rf
      
      mkdir f1/foo
      normal commit
      rm -rf f1/foo
      fsync(f1)
      
      The directory f1 was fully removed from the FS, but fsync was never
      called on f1, only its parent dir.  After a crash the rm -rf must
      be replayed.  This must be able to recurse down the entire
      directory tree.  The inode link count fixup code takes care of the
      ugly details.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      12fcfd22
  18. 21 2月, 2009 1 次提交
    • J
      Btrfs: add better -ENOSPC handling · 6a63209f
      Josef Bacik 提交于
      This is a step in the direction of better -ENOSPC handling.  Instead of
      checking the global bytes counter we check the space_info bytes counters to
      make sure we have enough space.
      
      If we don't we go ahead and try to allocate a new chunk, and then if that fails
      we return -ENOSPC.  This patch adds two counters to btrfs_space_info,
      bytes_delalloc and bytes_may_use.
      
      bytes_delalloc account for extents we've actually setup for delalloc and will
      be allocated at some point down the line. 
      
      bytes_may_use is to keep track of how many bytes we may use for delalloc at
      some point.  When we actually set the extent_bit for the delalloc bytes we
      subtract the reserved bytes from the bytes_may_use counter.  This keeps us from
      not actually being able to allocate space for any delalloc bytes.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      
      
      
      6a63209f
  19. 12 12月, 2008 1 次提交
    • Y
      Btrfs: fix leaking block group on balance · d2fb3437
      Yan Zheng 提交于
      The block group structs are referenced in many different
      places, and it's not safe to free while balancing.  So, those block
      group structs were simply leaked instead.
      
      This patch replaces the block group pointer in the inode with the starting byte
      offset of the block group and adds reference counting to the block group
      struct.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      d2fb3437
  20. 09 12月, 2008 1 次提交
    • C
      Btrfs: Add inode sequence number for NFS and reserved space in a few structs · c3027eb5
      Chris Mason 提交于
      This adds a sequence number to the btrfs inode that is increased on
      every update.  NFS will be able to use that to detect when an inode has
      changed, without relying on inaccurate time fields.
      
      While we're here, this also:
      
      Puts reserved space into the super block and inode
      
      Adds a log root transid to the super so we can pick the newest super
      based on the fsync log as well as the main transaction ID.  For now
      the log root transid is always zero, but that'll get fixed.
      
      Adds a starting offset to the dev_item.  This will let us do better
      alignment calculations if we know the start of a partition on the disk.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c3027eb5
  21. 30 9月, 2008 1 次提交
    • C
      Btrfs: add and improve comments · d352ac68
      Chris Mason 提交于
      This improves the comments at the top of many functions.  It didn't
      dive into the guts of functions because I was trying to
      avoid merging problems with the new allocator and back reference work.
      
      extent-tree.c and volumes.c were both skipped, and there is definitely
      more work todo in cleaning and commenting the code.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      d352ac68
  22. 25 9月, 2008 17 次提交