提交 c6e387a2 编写于 作者: N Nick Kossifidis 提交者: John W. Linville

ath5k: HW code cleanup

 * No code changes...

 * Split hw.c to multiple files for better maintenance and add some documentation on each file
   code is going to grow soon (eeprom.c for example is going to get much stuff currently developed
   on ath_info) so it's better this way.

 * Rename following functions to maintain naming scheme:

     ah_setup_xtx_desc -> ah_setup_mrr_tx_desc
     (Because xtx doesn't say much, it's actually
     a multi-rate-retry tx descriptor)

     ath5k_hw_put_tx/rx_buf - > ath5k_hw_set_tx/rxdp
     ath5k_hw_get_tx/rx_buf -> ath5k_hw_get_tx/rxdp
     (We don't put any "buf" we set descriptor pointers on hw)

     ath5k_hw_tx_start -> ath5k_hw_start_tx_dma
     ath5k_hw_start_rx -> ath5k_hw_start_rx_dma
     ath5k_hw_stop_pcu_recv -> ath5k_hw_stop_rx_pcu
     (It's easier this way to identify them, we also
     have ath5k_hw_start_rx_pcu which completes the
     set)

     ath5k_hw_set_intr -> ath5k_hw_set_imr
     (As in get_isr we set imr here, not "intr")

  * Move ath5k_hw_setup_rx_desc on ah->ah_setup_rx_desc so we can
    include support for different rx descriptors in the future

  * Further cleanups so that checkpatch doesn't complain
    (only some > 80 col warnings for eeprom.h and reg.h as usual
    due to comments)

  Tested on 5211 and 5213 cards and works ok.

Changes-licensed-under: ISC
Signed-off-by: NNick Kossifidis <mickflemm@gmail.com>
Acked-by: NLuis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: NJohn W. Linville <linville@tuxdriver.com>
上级 fa9abe05
ath5k-y += base.o
ath5k-y += hw.o
ath5k-y += caps.o
ath5k-y += initvals.o
ath5k-y += eeprom.o
ath5k-y += gpio.o
ath5k-y += desc.o
ath5k-y += dma.o
ath5k-y += qcu.o
ath5k-y += pcu.o
ath5k-y += phy.o
ath5k-y += reset.o
ath5k-y += attach.o
ath5k-y += base.o
ath5k-$(CONFIG_ATH5K_DEBUG) += debug.o
obj-$(CONFIG_ATH5K) += ath5k.o
此差异已折叠。
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*************************************\
* Attach/Detach Functions and helpers *
\*************************************/
#include <linux/pci.h>
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/**
* ath5k_hw_post - Power On Self Test helper function
*
* @ah: The &struct ath5k_hw
*/
static int ath5k_hw_post(struct ath5k_hw *ah)
{
int i, c;
u16 cur_reg;
u16 regs[2] = {AR5K_STA_ID0, AR5K_PHY(8)};
u32 var_pattern;
u32 static_pattern[4] = {
0x55555555, 0xaaaaaaaa,
0x66666666, 0x99999999
};
u32 init_val;
u32 cur_val;
for (c = 0; c < 2; c++) {
cur_reg = regs[c];
/* Save previous value */
init_val = ath5k_hw_reg_read(ah, cur_reg);
for (i = 0; i < 256; i++) {
var_pattern = i << 16 | i;
ath5k_hw_reg_write(ah, var_pattern, cur_reg);
cur_val = ath5k_hw_reg_read(ah, cur_reg);
if (cur_val != var_pattern) {
ATH5K_ERR(ah->ah_sc, "POST Failed !!!\n");
return -EAGAIN;
}
/* Found on ndiswrapper dumps */
var_pattern = 0x0039080f;
ath5k_hw_reg_write(ah, var_pattern, cur_reg);
}
for (i = 0; i < 4; i++) {
var_pattern = static_pattern[i];
ath5k_hw_reg_write(ah, var_pattern, cur_reg);
cur_val = ath5k_hw_reg_read(ah, cur_reg);
if (cur_val != var_pattern) {
ATH5K_ERR(ah->ah_sc, "POST Failed !!!\n");
return -EAGAIN;
}
/* Found on ndiswrapper dumps */
var_pattern = 0x003b080f;
ath5k_hw_reg_write(ah, var_pattern, cur_reg);
}
/* Restore previous value */
ath5k_hw_reg_write(ah, init_val, cur_reg);
}
return 0;
}
/**
* ath5k_hw_attach - Check if hw is supported and init the needed structs
*
* @sc: The &struct ath5k_softc we got from the driver's attach function
* @mac_version: The mac version id (check out ath5k.h) based on pci id
*
* Check if the device is supported, perform a POST and initialize the needed
* structs. Returns -ENOMEM if we don't have memory for the needed structs,
* -ENODEV if the device is not supported or prints an error msg if something
* else went wrong.
*/
struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
{
struct ath5k_hw *ah;
struct pci_dev *pdev = sc->pdev;
u8 mac[ETH_ALEN];
int ret;
u32 srev;
/*If we passed the test malloc a ath5k_hw struct*/
ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
if (ah == NULL) {
ret = -ENOMEM;
ATH5K_ERR(sc, "out of memory\n");
goto err;
}
ah->ah_sc = sc;
ah->ah_iobase = sc->iobase;
/*
* HW information
*/
ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
ah->ah_turbo = false;
ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
ah->ah_imr = 0;
ah->ah_atim_window = 0;
ah->ah_aifs = AR5K_TUNE_AIFS;
ah->ah_cw_min = AR5K_TUNE_CWMIN;
ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
ah->ah_software_retry = false;
ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
/*
* Set the mac revision based on the pci id
*/
ah->ah_version = mac_version;
/*Fill the ath5k_hw struct with the needed functions*/
ret = ath5k_hw_init_desc_functions(ah);
if (ret)
goto err_free;
/* Bring device out of sleep and reset it's units */
ret = ath5k_hw_nic_wakeup(ah, CHANNEL_B, true);
if (ret)
goto err_free;
/* Get MAC, PHY and RADIO revisions */
srev = ath5k_hw_reg_read(ah, AR5K_SREV);
ah->ah_mac_srev = srev;
ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
0xffffffff;
ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
CHANNEL_5GHZ);
if (ah->ah_version == AR5K_AR5210)
ah->ah_radio_2ghz_revision = 0;
else
ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
CHANNEL_2GHZ);
/* Return on unsuported chips (unsupported eeprom etc) */
if ((srev >= AR5K_SREV_VER_AR5416) &&
(srev < AR5K_SREV_VER_AR2425)) {
ATH5K_ERR(sc, "Device not yet supported.\n");
ret = -ENODEV;
goto err_free;
} else if (srev == AR5K_SREV_VER_AR2425) {
ATH5K_WARN(sc, "Support for RF2425 is under development.\n");
}
/* Identify single chip solutions */
if (((srev <= AR5K_SREV_VER_AR5414) &&
(srev >= AR5K_SREV_VER_AR2413)) ||
(srev == AR5K_SREV_VER_AR2425)) {
ah->ah_single_chip = true;
} else {
ah->ah_single_chip = false;
}
/* Single chip radio */
if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
ah->ah_radio_2ghz_revision = 0;
/* Identify the radio chip*/
if (ah->ah_version == AR5K_AR5210) {
ah->ah_radio = AR5K_RF5110;
/*
* Register returns 0x0/0x04 for radio revision
* so ath5k_hw_radio_revision doesn't parse the value
* correctly. For now we are based on mac's srev to
* identify RF2425 radio.
*/
} else if (srev == AR5K_SREV_VER_AR2425) {
ah->ah_radio = AR5K_RF2425;
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2425;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
ah->ah_radio = AR5K_RF5111;
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5111;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC0) {
ah->ah_radio = AR5K_RF5112;
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
ah->ah_radio = AR5K_RF2413;
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2413;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC2) {
ah->ah_radio = AR5K_RF5413;
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5413;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5133) {
/* AR5424 */
if (srev >= AR5K_SREV_VER_AR5424) {
ah->ah_radio = AR5K_RF5413;
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5413;
/* AR2424 */
} else {
ah->ah_radio = AR5K_RF2413; /* For testing */
ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2413;
}
}
ah->ah_phy = AR5K_PHY(0);
/*
* Write PCI-E power save settings
*/
if ((ah->ah_version == AR5K_AR5212) && (pdev->is_pcie)) {
ath5k_hw_reg_write(ah, 0x9248fc00, 0x4080);
ath5k_hw_reg_write(ah, 0x24924924, 0x4080);
ath5k_hw_reg_write(ah, 0x28000039, 0x4080);
ath5k_hw_reg_write(ah, 0x53160824, 0x4080);
ath5k_hw_reg_write(ah, 0xe5980579, 0x4080);
ath5k_hw_reg_write(ah, 0x001defff, 0x4080);
ath5k_hw_reg_write(ah, 0x1aaabe40, 0x4080);
ath5k_hw_reg_write(ah, 0xbe105554, 0x4080);
ath5k_hw_reg_write(ah, 0x000e3007, 0x4080);
ath5k_hw_reg_write(ah, 0x00000000, 0x4084);
}
/*
* POST
*/
ret = ath5k_hw_post(ah);
if (ret)
goto err_free;
/* Write AR5K_PCICFG_UNK on 2112B and later chips */
if (ah->ah_radio_5ghz_revision > AR5K_SREV_RAD_2112B ||
srev > AR5K_SREV_VER_AR2413) {
ath5k_hw_reg_write(ah, AR5K_PCICFG_UNK, AR5K_PCICFG);
}
/*
* Get card capabilities, values, ...
*/
ret = ath5k_eeprom_init(ah);
if (ret) {
ATH5K_ERR(sc, "unable to init EEPROM\n");
goto err_free;
}
/* Get misc capabilities */
ret = ath5k_hw_set_capabilities(ah);
if (ret) {
ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
sc->pdev->device);
goto err_free;
}
/* Get MAC address */
ret = ath5k_eeprom_read_mac(ah, mac);
if (ret) {
ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
sc->pdev->device);
goto err_free;
}
ath5k_hw_set_lladdr(ah, mac);
/* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
memset(ah->ah_bssid, 0xff, ETH_ALEN);
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
ath5k_hw_set_opmode(ah);
ath5k_hw_set_rfgain_opt(ah);
return ah;
err_free:
kfree(ah);
err:
return ERR_PTR(ret);
}
/**
* ath5k_hw_detach - Free the ath5k_hw struct
*
* @ah: The &struct ath5k_hw
*/
void ath5k_hw_detach(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
__set_bit(ATH_STAT_INVALID, ah->ah_sc->status);
if (ah->ah_rf_banks != NULL)
kfree(ah->ah_rf_banks);
/* assume interrupts are down */
kfree(ah);
}
......@@ -707,7 +707,7 @@ ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
if (ret < 0)
goto err;
if (ret > 0)
......@@ -1137,7 +1137,7 @@ ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
ds = bf->desc;
ds->ds_link = bf->daddr; /* link to self */
ds->ds_data = bf->skbaddr;
ath5k_hw_setup_rx_desc(ah, ds,
ah->ah_setup_rx_desc(ah, ds,
skb_tailroom(skb), /* buffer size */
0);
......@@ -1188,12 +1188,12 @@ ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
list_add_tail(&bf->list, &txq->q);
sc->tx_stats[txq->qnum].len++;
if (txq->link == NULL) /* is this first packet? */
ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
else /* no, so only link it */
*txq->link = bf->daddr;
txq->link = &ds->ds_link;
ath5k_hw_tx_start(ah, txq->qnum);
ath5k_hw_start_tx_dma(ah, txq->qnum);
mmiowb();
spin_unlock_bh(&txq->lock);
......@@ -1393,7 +1393,7 @@ ath5k_beaconq_config(struct ath5k_softc *sc)
"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
if (ret) {
ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
"hardware queue!\n", __func__);
......@@ -1442,14 +1442,14 @@ ath5k_txq_cleanup(struct ath5k_softc *sc)
/* don't touch the hardware if marked invalid */
ath5k_hw_stop_tx_dma(ah, sc->bhalq);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
ath5k_hw_get_tx_buf(ah, sc->bhalq));
ath5k_hw_get_txdp(ah, sc->bhalq));
for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
if (sc->txqs[i].setup) {
ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
"link %p\n",
sc->txqs[i].qnum,
ath5k_hw_get_tx_buf(ah,
ath5k_hw_get_txdp(ah,
sc->txqs[i].qnum),
sc->txqs[i].link);
}
......@@ -1509,8 +1509,8 @@ ath5k_rx_start(struct ath5k_softc *sc)
bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
spin_unlock_bh(&sc->rxbuflock);
ath5k_hw_put_rx_buf(ah, bf->daddr);
ath5k_hw_start_rx(ah); /* enable recv descriptors */
ath5k_hw_set_rxdp(ah, bf->daddr);
ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
ath5k_mode_setup(sc); /* set filters, etc. */
ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
......@@ -1527,7 +1527,7 @@ ath5k_rx_stop(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
......@@ -1976,8 +1976,8 @@ ath5k_beacon_send(struct ath5k_softc *sc)
/* NB: hw still stops DMA, so proceed */
}
ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
ath5k_hw_tx_start(ah, sc->bhalq);
ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
ath5k_hw_start_tx_dma(ah, sc->bhalq);
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
......@@ -2106,7 +2106,7 @@ ath5k_beacon_config(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
ath5k_hw_set_intr(ah, 0);
ath5k_hw_set_imr(ah, 0);
sc->bmisscount = 0;
sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
......@@ -2132,7 +2132,7 @@ ath5k_beacon_config(struct ath5k_softc *sc)
}
/* TODO else AP */
ath5k_hw_set_intr(ah, sc->imask);
ath5k_hw_set_imr(ah, sc->imask);
}
......@@ -2211,7 +2211,7 @@ ath5k_stop_locked(struct ath5k_softc *sc)
if (!test_bit(ATH_STAT_INVALID, sc->status)) {
ath5k_led_off(sc);
ath5k_hw_set_intr(ah, 0);
ath5k_hw_set_imr(ah, 0);
synchronize_irq(sc->pdev->irq);
}
ath5k_txq_cleanup(sc);
......@@ -2604,7 +2604,7 @@ ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel)
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
if (stop) {
ath5k_hw_set_intr(ah, 0);
ath5k_hw_set_imr(ah, 0);
ath5k_txq_cleanup(sc);
ath5k_rx_stop(sc);
}
......
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/**************\
* Capabilities *
\**************/
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*
* Fill the capabilities struct
* TODO: Merge this with EEPROM code when we are done with it
*/
int ath5k_hw_set_capabilities(struct ath5k_hw *ah)
{
u16 ee_header;
ATH5K_TRACE(ah->ah_sc);
/* Capabilities stored in the EEPROM */
ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
if (ah->ah_version == AR5K_AR5210) {
/*
* Set radio capabilities
* (The AR5110 only supports the middle 5GHz band)
*/
ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
ah->ah_capabilities.cap_range.range_2ghz_min = 0;
ah->ah_capabilities.cap_range.range_2ghz_max = 0;
/* Set supported modes */
__set_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode);
__set_bit(AR5K_MODE_11A_TURBO, ah->ah_capabilities.cap_mode);
} else {
/*
* XXX The tranceiver supports frequencies from 4920 to 6100GHz
* XXX and from 2312 to 2732GHz. There are problems with the
* XXX current ieee80211 implementation because the IEEE
* XXX channel mapping does not support negative channel
* XXX numbers (2312MHz is channel -19). Of course, this
* XXX doesn't matter because these channels are out of range
* XXX but some regulation domains like MKK (Japan) will
* XXX support frequencies somewhere around 4.8GHz.
*/
/*
* Set radio capabilities
*/
if (AR5K_EEPROM_HDR_11A(ee_header)) {
/* 4920 */
ah->ah_capabilities.cap_range.range_5ghz_min = 5005;
ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
/* Set supported modes */
__set_bit(AR5K_MODE_11A,
ah->ah_capabilities.cap_mode);
__set_bit(AR5K_MODE_11A_TURBO,
ah->ah_capabilities.cap_mode);
if (ah->ah_version == AR5K_AR5212)
__set_bit(AR5K_MODE_11G_TURBO,
ah->ah_capabilities.cap_mode);
}
/* Enable 802.11b if a 2GHz capable radio (2111/5112) is
* connected */
if (AR5K_EEPROM_HDR_11B(ee_header) ||
AR5K_EEPROM_HDR_11G(ee_header)) {
/* 2312 */
ah->ah_capabilities.cap_range.range_2ghz_min = 2412;
ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
if (AR5K_EEPROM_HDR_11B(ee_header))
__set_bit(AR5K_MODE_11B,
ah->ah_capabilities.cap_mode);
if (AR5K_EEPROM_HDR_11G(ee_header))
__set_bit(AR5K_MODE_11G,
ah->ah_capabilities.cap_mode);
}
}
/* GPIO */
ah->ah_gpio_npins = AR5K_NUM_GPIO;
/* Set number of supported TX queues */
if (ah->ah_version == AR5K_AR5210)
ah->ah_capabilities.cap_queues.q_tx_num =
AR5K_NUM_TX_QUEUES_NOQCU;
else
ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
return 0;
}
/* Main function used by the driver part to check caps */
int ath5k_hw_get_capability(struct ath5k_hw *ah,
enum ath5k_capability_type cap_type,
u32 capability, u32 *result)
{
ATH5K_TRACE(ah->ah_sc);
switch (cap_type) {
case AR5K_CAP_NUM_TXQUEUES:
if (result) {
if (ah->ah_version == AR5K_AR5210)
*result = AR5K_NUM_TX_QUEUES_NOQCU;
else
*result = AR5K_NUM_TX_QUEUES;
goto yes;
}
case AR5K_CAP_VEOL:
goto yes;
case AR5K_CAP_COMPRESSION:
if (ah->ah_version == AR5K_AR5212)
goto yes;
else
goto no;
case AR5K_CAP_BURST:
goto yes;
case AR5K_CAP_TPC:
goto yes;
case AR5K_CAP_BSSIDMASK:
if (ah->ah_version == AR5K_AR5212)
goto yes;
else
goto no;
case AR5K_CAP_XR:
if (ah->ah_version == AR5K_AR5212)
goto yes;
else
goto no;
default:
goto no;
}
no:
return -EINVAL;
yes:
return 0;
}
/*
* TODO: Following functions should be part of a new function
* set_capability
*/
int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
u16 assoc_id)
{
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
return 0;
}
return -EIO;
}
int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
return 0;
}
return -EIO;
}
......@@ -58,8 +58,8 @@
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include "debug.h"
#include "base.h"
#include "debug.h"
static unsigned int ath5k_debug;
module_param_named(debug, ath5k_debug, uint, 0);
......@@ -525,7 +525,7 @@ ath5k_debug_printrxbuffs(struct ath5k_softc *sc, struct ath5k_hw *ah)
return;
printk(KERN_DEBUG "rx queue %x, link %p\n",
ath5k_hw_get_rx_buf(ah), sc->rxlink);
ath5k_hw_get_rxdp(ah), sc->rxlink);
spin_lock_bh(&sc->rxbuflock);
list_for_each_entry(bf, &sc->rxbuf, list) {
......
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/******************************\
Hardware Descriptor Functions
\******************************/
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*
* TX Descriptors
*/
/*
* Initialize the 2-word tx control descriptor on 5210/5211
*/
static int
ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
unsigned int rtscts_rate, unsigned int rtscts_duration)
{
u32 frame_type;
struct ath5k_hw_2w_tx_ctl *tx_ctl;
unsigned int frame_len;
tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
/*
* Validate input
* - Zero retries don't make sense.
* - A zero rate will put the HW into a mode where it continously sends
* noise on the channel, so it is important to avoid this.
*/
if (unlikely(tx_tries0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero retries\n");
WARN_ON(1);
return -EINVAL;
}
if (unlikely(tx_rate0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
/* Clear descriptor */
memset(&desc->ud.ds_tx5210, 0, sizeof(struct ath5k_hw_5210_tx_desc));
/* Setup control descriptor */
/* Verify and set frame length */
/* remove padding we might have added before */
frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
return -EINVAL;
tx_ctl->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
/* Verify and set buffer length */
/* NB: beacon's BufLen must be a multiple of 4 bytes */
if (type == AR5K_PKT_TYPE_BEACON)
pkt_len = roundup(pkt_len, 4);
if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
return -EINVAL;
tx_ctl->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
/*
* Verify and set header length
* XXX: I only found that on 5210 code, does it work on 5211 ?
*/
if (ah->ah_version == AR5K_AR5210) {
if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
return -EINVAL;
tx_ctl->tx_control_0 |=
AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
}
/*Diferences between 5210-5211*/
if (ah->ah_version == AR5K_AR5210) {
switch (type) {
case AR5K_PKT_TYPE_BEACON:
case AR5K_PKT_TYPE_PROBE_RESP:
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
case AR5K_PKT_TYPE_PIFS:
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
default:
frame_type = type /*<< 2 ?*/;
}
tx_ctl->tx_control_0 |=
AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
} else {
tx_ctl->tx_control_0 |=
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
AR5K_REG_SM(antenna_mode,
AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
tx_ctl->tx_control_1 |=
AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
}
#define _TX_FLAGS(_c, _flag) \
if (flags & AR5K_TXDESC_##_flag) { \
tx_ctl->tx_control_##_c |= \
AR5K_2W_TX_DESC_CTL##_c##_##_flag; \
}
_TX_FLAGS(0, CLRDMASK);
_TX_FLAGS(0, VEOL);
_TX_FLAGS(0, INTREQ);
_TX_FLAGS(0, RTSENA);
_TX_FLAGS(1, NOACK);
#undef _TX_FLAGS
/*
* WEP crap
*/
if (key_index != AR5K_TXKEYIX_INVALID) {
tx_ctl->tx_control_0 |=
AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
tx_ctl->tx_control_1 |=
AR5K_REG_SM(key_index,
AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
}
/*
* RTS/CTS Duration [5210 ?]
*/
if ((ah->ah_version == AR5K_AR5210) &&
(flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
tx_ctl->tx_control_1 |= rtscts_duration &
AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
return 0;
}
/*
* Initialize the 4-word tx control descriptor on 5212
*/
static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
unsigned int tx_tries0, unsigned int key_index,
unsigned int antenna_mode, unsigned int flags,
unsigned int rtscts_rate,
unsigned int rtscts_duration)
{
struct ath5k_hw_4w_tx_ctl *tx_ctl;
unsigned int frame_len;
ATH5K_TRACE(ah->ah_sc);
tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
/*
* Validate input
* - Zero retries don't make sense.
* - A zero rate will put the HW into a mode where it continously sends
* noise on the channel, so it is important to avoid this.
*/
if (unlikely(tx_tries0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero retries\n");
WARN_ON(1);
return -EINVAL;
}
if (unlikely(tx_rate0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
/* Clear descriptor */
memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc));
/* Setup control descriptor */
/* Verify and set frame length */
/* remove padding we might have added before */
frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
return -EINVAL;
tx_ctl->tx_control_0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
/* Verify and set buffer length */
/* NB: beacon's BufLen must be a multiple of 4 bytes */
if (type == AR5K_PKT_TYPE_BEACON)
pkt_len = roundup(pkt_len, 4);
if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
return -EINVAL;
tx_ctl->tx_control_1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
tx_ctl->tx_control_0 |=
AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
tx_ctl->tx_control_1 |= AR5K_REG_SM(type,
AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
tx_ctl->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
tx_ctl->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
#define _TX_FLAGS(_c, _flag) \
if (flags & AR5K_TXDESC_##_flag) { \
tx_ctl->tx_control_##_c |= \
AR5K_4W_TX_DESC_CTL##_c##_##_flag; \
}
_TX_FLAGS(0, CLRDMASK);
_TX_FLAGS(0, VEOL);
_TX_FLAGS(0, INTREQ);
_TX_FLAGS(0, RTSENA);
_TX_FLAGS(0, CTSENA);
_TX_FLAGS(1, NOACK);
#undef _TX_FLAGS
/*
* WEP crap
*/
if (key_index != AR5K_TXKEYIX_INVALID) {
tx_ctl->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
tx_ctl->tx_control_1 |= AR5K_REG_SM(key_index,
AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
}
/*
* RTS/CTS
*/
if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
if ((flags & AR5K_TXDESC_RTSENA) &&
(flags & AR5K_TXDESC_CTSENA))
return -EINVAL;
tx_ctl->tx_control_2 |= rtscts_duration &
AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
tx_ctl->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
}
return 0;
}
/*
* Initialize a 4-word multi rate retry tx control descriptor on 5212
*/
static int
ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2,
u_int tx_tries2, unsigned int tx_rate3, u_int tx_tries3)
{
struct ath5k_hw_4w_tx_ctl *tx_ctl;
/*
* Rates can be 0 as long as the retry count is 0 too.
* A zero rate and nonzero retry count will put the HW into a mode where
* it continously sends noise on the channel, so it is important to
* avoid this.
*/
if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
(tx_rate2 == 0 && tx_tries2 != 0) ||
(tx_rate3 == 0 && tx_tries3 != 0))) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
if (ah->ah_version == AR5K_AR5212) {
tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
#define _XTX_TRIES(_n) \
if (tx_tries##_n) { \
tx_ctl->tx_control_2 |= \
AR5K_REG_SM(tx_tries##_n, \
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
tx_ctl->tx_control_3 |= \
AR5K_REG_SM(tx_rate##_n, \
AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
}
_XTX_TRIES(1);
_XTX_TRIES(2);
_XTX_TRIES(3);
#undef _XTX_TRIES
return 1;
}
return 0;
}
/*
* Proccess the tx status descriptor on 5210/5211
*/
static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_tx_status *ts)
{
struct ath5k_hw_2w_tx_ctl *tx_ctl;
struct ath5k_hw_tx_status *tx_status;
ATH5K_TRACE(ah->ah_sc);
tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
tx_status = &desc->ud.ds_tx5210.tx_stat;
/* No frame has been send or error */
if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
return -EINPROGRESS;
/*
* Get descriptor status
*/
ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
/*TODO: ts->ts_virtcol + test*/
ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_SEQ_NUM);
ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
ts->ts_antenna = 1;
ts->ts_status = 0;
ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_0,
AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) {
if (tx_status->tx_status_0 &
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
ts->ts_status |= AR5K_TXERR_XRETRY;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
ts->ts_status |= AR5K_TXERR_FIFO;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
ts->ts_status |= AR5K_TXERR_FILT;
}
return 0;
}
/*
* Proccess a tx status descriptor on 5212
*/
static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_tx_status *ts)
{
struct ath5k_hw_4w_tx_ctl *tx_ctl;
struct ath5k_hw_tx_status *tx_status;
ATH5K_TRACE(ah->ah_sc);
tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
tx_status = &desc->ud.ds_tx5212.tx_stat;
/* No frame has been send or error */
if (unlikely(!(tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE)))
return -EINPROGRESS;
/*
* Get descriptor status
*/
ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_SEQ_NUM);
ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
ts->ts_antenna = (tx_status->tx_status_1 &
AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
ts->ts_status = 0;
switch (AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
case 0:
ts->ts_rate = tx_ctl->tx_control_3 &
AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
break;
case 1:
ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
break;
case 2:
ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
break;
case 3:
ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
break;
}
/* TX error */
if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) {
if (tx_status->tx_status_0 &
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
ts->ts_status |= AR5K_TXERR_XRETRY;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
ts->ts_status |= AR5K_TXERR_FIFO;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
ts->ts_status |= AR5K_TXERR_FILT;
}
return 0;
}
/*
* RX Descriptors
*/
/*
* Initialize an rx control descriptor
*/
static int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
u32 size, unsigned int flags)
{
struct ath5k_hw_rx_ctl *rx_ctl;
ATH5K_TRACE(ah->ah_sc);
rx_ctl = &desc->ud.ds_rx.rx_ctl;
/*
* Clear the descriptor
* If we don't clean the status descriptor,
* while scanning we get too many results,
* most of them virtual, after some secs
* of scanning system hangs. M.F.
*/
memset(&desc->ud.ds_rx, 0, sizeof(struct ath5k_hw_all_rx_desc));
/* Setup descriptor */
rx_ctl->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
if (unlikely(rx_ctl->rx_control_1 != size))
return -EINVAL;
if (flags & AR5K_RXDESC_INTREQ)
rx_ctl->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
return 0;
}
/*
* Proccess the rx status descriptor on 5210/5211
*/
static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_rx_status *rs)
{
struct ath5k_hw_rx_status *rx_status;
rx_status = &desc->ud.ds_rx.u.rx_stat;
/* No frame received / not ready */
if (unlikely(!(rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_DONE)))
return -EINPROGRESS;
/*
* Frame receive status
*/
rs->rs_datalen = rx_status->rx_status_0 &
AR5K_5210_RX_DESC_STATUS0_DATA_LEN;
rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL);
rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE);
rs->rs_antenna = rx_status->rx_status_0 &
AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA;
rs->rs_more = rx_status->rx_status_0 &
AR5K_5210_RX_DESC_STATUS0_MORE;
/* TODO: this timestamp is 13 bit, later on we assume 15 bit */
rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5210_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
rs->rs_status = 0;
rs->rs_phyerr = 0;
/*
* Key table status
*/
if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_KEY_INDEX_VALID)
rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5210_RX_DESC_STATUS1_KEY_INDEX);
else
rs->rs_keyix = AR5K_RXKEYIX_INVALID;
/*
* Receive/descriptor errors
*/
if (!(rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) {
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_CRC;
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_FIFO_OVERRUN)
rs->rs_status |= AR5K_RXERR_FIFO;
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_PHY_ERROR) {
rs->rs_status |= AR5K_RXERR_PHY;
rs->rs_phyerr |= AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5210_RX_DESC_STATUS1_PHY_ERROR);
}
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_DECRYPT;
}
return 0;
}
/*
* Proccess the rx status descriptor on 5212
*/
static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_rx_status *rs)
{
struct ath5k_hw_rx_status *rx_status;
struct ath5k_hw_rx_error *rx_err;
ATH5K_TRACE(ah->ah_sc);
rx_status = &desc->ud.ds_rx.u.rx_stat;
/* Overlay on error */
rx_err = &desc->ud.ds_rx.u.rx_err;
/* No frame received / not ready */
if (unlikely(!(rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_DONE)))
return -EINPROGRESS;
/*
* Frame receive status
*/
rs->rs_datalen = rx_status->rx_status_0 &
AR5K_5212_RX_DESC_STATUS0_DATA_LEN;
rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL);
rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5212_RX_DESC_STATUS0_RECEIVE_RATE);
rs->rs_antenna = rx_status->rx_status_0 &
AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA;
rs->rs_more = rx_status->rx_status_0 &
AR5K_5212_RX_DESC_STATUS0_MORE;
rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5212_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
rs->rs_status = 0;
rs->rs_phyerr = 0;
/*
* Key table status
*/
if (rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_KEY_INDEX_VALID)
rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5212_RX_DESC_STATUS1_KEY_INDEX);
else
rs->rs_keyix = AR5K_RXKEYIX_INVALID;
/*
* Receive/descriptor errors
*/
if (!(rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) {
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_CRC;
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_PHY_ERROR) {
rs->rs_status |= AR5K_RXERR_PHY;
rs->rs_phyerr |= AR5K_REG_MS(rx_err->rx_error_1,
AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
}
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_DECRYPT;
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_MIC_ERROR)
rs->rs_status |= AR5K_RXERR_MIC;
}
return 0;
}
/*
* Init function pointers inside ath5k_hw struct
*/
int ath5k_hw_init_desc_functions(struct ath5k_hw *ah)
{
if (ah->ah_version != AR5K_AR5210 &&
ah->ah_version != AR5K_AR5211 &&
ah->ah_version != AR5K_AR5212)
return -ENOTSUPP;
/* XXX: What is this magic value and where is it used ? */
if (ah->ah_version == AR5K_AR5212)
ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
else if (ah->ah_version == AR5K_AR5211)
ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
if (ah->ah_version == AR5K_AR5212) {
ah->ah_setup_rx_desc = ath5k_hw_setup_rx_desc;
ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
ah->ah_setup_mrr_tx_desc = ath5k_hw_setup_mrr_tx_desc;
ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
} else {
ah->ah_setup_rx_desc = ath5k_hw_setup_rx_desc;
ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
ah->ah_setup_mrr_tx_desc = ath5k_hw_setup_mrr_tx_desc;
ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
}
if (ah->ah_version == AR5K_AR5212)
ah->ah_proc_rx_desc = ath5k_hw_proc_5212_rx_status;
else if (ah->ah_version <= AR5K_AR5211)
ah->ah_proc_rx_desc = ath5k_hw_proc_5210_rx_status;
return 0;
}
/*
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
* Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
......@@ -15,159 +13,9 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <linux/delay.h>
/*
* Gain settings
*/
enum ath5k_rfgain {
AR5K_RFGAIN_INACTIVE = 0,
AR5K_RFGAIN_READ_REQUESTED,
AR5K_RFGAIN_NEED_CHANGE,
};
#define AR5K_GAIN_CRN_FIX_BITS_5111 4
#define AR5K_GAIN_CRN_FIX_BITS_5112 7
#define AR5K_GAIN_CRN_MAX_FIX_BITS AR5K_GAIN_CRN_FIX_BITS_5112
#define AR5K_GAIN_DYN_ADJUST_HI_MARGIN 15
#define AR5K_GAIN_DYN_ADJUST_LO_MARGIN 20
#define AR5K_GAIN_CCK_PROBE_CORR 5
#define AR5K_GAIN_CCK_OFDM_GAIN_DELTA 15
#define AR5K_GAIN_STEP_COUNT 10
#define AR5K_GAIN_PARAM_TX_CLIP 0
#define AR5K_GAIN_PARAM_PD_90 1
#define AR5K_GAIN_PARAM_PD_84 2
#define AR5K_GAIN_PARAM_GAIN_SEL 3
#define AR5K_GAIN_PARAM_MIX_ORN 0
#define AR5K_GAIN_PARAM_PD_138 1
#define AR5K_GAIN_PARAM_PD_137 2
#define AR5K_GAIN_PARAM_PD_136 3
#define AR5K_GAIN_PARAM_PD_132 4
#define AR5K_GAIN_PARAM_PD_131 5
#define AR5K_GAIN_PARAM_PD_130 6
#define AR5K_GAIN_CHECK_ADJUST(_g) \
((_g)->g_current <= (_g)->g_low || (_g)->g_current >= (_g)->g_high)
struct ath5k_gain_opt_step {
s16 gos_param[AR5K_GAIN_CRN_MAX_FIX_BITS];
s32 gos_gain;
};
struct ath5k_gain {
u32 g_step_idx;
u32 g_current;
u32 g_target;
u32 g_low;
u32 g_high;
u32 g_f_corr;
u32 g_active;
const struct ath5k_gain_opt_step *g_step;
};
/*
* HW SPECIFIC STRUCTS
*/
/* Some EEPROM defines */
#define AR5K_EEPROM_EEP_SCALE 100
#define AR5K_EEPROM_EEP_DELTA 10
#define AR5K_EEPROM_N_MODES 3
#define AR5K_EEPROM_N_5GHZ_CHAN 10
#define AR5K_EEPROM_N_2GHZ_CHAN 3
#define AR5K_EEPROM_MAX_CHAN 10
#define AR5K_EEPROM_N_PCDAC 11
#define AR5K_EEPROM_N_TEST_FREQ 8
#define AR5K_EEPROM_N_EDGES 8
#define AR5K_EEPROM_N_INTERCEPTS 11
#define AR5K_EEPROM_FREQ_M(_v) AR5K_EEPROM_OFF(_v, 0x7f, 0xff)
#define AR5K_EEPROM_PCDAC_M 0x3f
#define AR5K_EEPROM_PCDAC_START 1
#define AR5K_EEPROM_PCDAC_STOP 63
#define AR5K_EEPROM_PCDAC_STEP 1
#define AR5K_EEPROM_NON_EDGE_M 0x40
#define AR5K_EEPROM_CHANNEL_POWER 8
#define AR5K_EEPROM_N_OBDB 4
#define AR5K_EEPROM_OBDB_DIS 0xffff
#define AR5K_EEPROM_CHANNEL_DIS 0xff
#define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10)
#define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32)
#define AR5K_EEPROM_MAX_CTLS 32
#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4
#define AR5K_EEPROM_N_XPD0_POINTS 4
#define AR5K_EEPROM_N_XPD3_POINTS 3
#define AR5K_EEPROM_N_INTERCEPT_10_2GHZ 35
#define AR5K_EEPROM_N_INTERCEPT_10_5GHZ 55
#define AR5K_EEPROM_POWER_M 0x3f
#define AR5K_EEPROM_POWER_MIN 0
#define AR5K_EEPROM_POWER_MAX 3150
#define AR5K_EEPROM_POWER_STEP 50
#define AR5K_EEPROM_POWER_TABLE_SIZE 64
#define AR5K_EEPROM_N_POWER_LOC_11B 4
#define AR5K_EEPROM_N_POWER_LOC_11G 6
#define AR5K_EEPROM_I_GAIN 10
#define AR5K_EEPROM_CCK_OFDM_DELTA 15
#define AR5K_EEPROM_N_IQ_CAL 2
/* Struct to hold EEPROM calibration data */
struct ath5k_eeprom_info {
u16 ee_magic;
u16 ee_protect;
u16 ee_regdomain;
u16 ee_version;
u16 ee_header;
u16 ee_ant_gain;
u16 ee_misc0;
u16 ee_misc1;
u16 ee_cck_ofdm_gain_delta;
u16 ee_cck_ofdm_power_delta;
u16 ee_scaled_cck_delta;
/* Used for tx thermal adjustment (eeprom_init, rfregs) */
u16 ee_tx_clip;
u16 ee_pwd_84;
u16 ee_pwd_90;
u16 ee_gain_select;
/* RF Calibration settings (reset, rfregs) */
u16 ee_i_cal[AR5K_EEPROM_N_MODES];
u16 ee_q_cal[AR5K_EEPROM_N_MODES];
u16 ee_fixed_bias[AR5K_EEPROM_N_MODES];
u16 ee_turbo_max_power[AR5K_EEPROM_N_MODES];
u16 ee_xr_power[AR5K_EEPROM_N_MODES];
u16 ee_switch_settling[AR5K_EEPROM_N_MODES];
u16 ee_ant_tx_rx[AR5K_EEPROM_N_MODES];
u16 ee_ant_control[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PCDAC];
u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
u16 ee_tx_end2xlna_enable[AR5K_EEPROM_N_MODES];
u16 ee_tx_end2xpa_disable[AR5K_EEPROM_N_MODES];
u16 ee_tx_frm2xpa_enable[AR5K_EEPROM_N_MODES];
u16 ee_thr_62[AR5K_EEPROM_N_MODES];
u16 ee_xlna_gain[AR5K_EEPROM_N_MODES];
u16 ee_xpd[AR5K_EEPROM_N_MODES];
u16 ee_x_gain[AR5K_EEPROM_N_MODES];
u16 ee_i_gain[AR5K_EEPROM_N_MODES];
u16 ee_margin_tx_rx[AR5K_EEPROM_N_MODES];
/* Unused */
u16 ee_false_detect[AR5K_EEPROM_N_MODES];
u16 ee_cal_pier[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_2GHZ_CHAN];
u16 ee_channel[AR5K_EEPROM_N_MODES][AR5K_EEPROM_MAX_CHAN]; /*empty*/
/* Conformance test limits (Unused) */
u16 ee_ctls;
u16 ee_ctl[AR5K_EEPROM_MAX_CTLS];
/* Noise Floor Calibration settings */
s16 ee_noise_floor_thr[AR5K_EEPROM_N_MODES];
s8 ee_adc_desired_size[AR5K_EEPROM_N_MODES];
s8 ee_pga_desired_size[AR5K_EEPROM_N_MODES];
};
/*
* Internal RX/TX descriptor structures
* (rX: reserved fields possibily used by future versions of the ar5k chipset)
......@@ -178,14 +26,15 @@ struct ath5k_eeprom_info {
*/
struct ath5k_hw_rx_ctl {
u32 rx_control_0; /* RX control word 0 */
u32 rx_control_1; /* RX control word 1 */
} __packed;
/* RX control word 0 field/sflags */
#define AR5K_DESC_RX_CTL0 0x00000000
u32 rx_control_1; /* RX control word 1 */
/* RX control word 1 fields/flags */
#define AR5K_DESC_RX_CTL1_BUF_LEN 0x00000fff
#define AR5K_DESC_RX_CTL1_INTREQ 0x00002000
} __packed;
/*
* common hardware RX status descriptor
......@@ -197,6 +46,7 @@ struct ath5k_hw_rx_status {
} __packed;
/* 5210/5211 */
/* RX status word 0 fields/flags */
#define AR5K_5210_RX_DESC_STATUS0_DATA_LEN 0x00000fff
#define AR5K_5210_RX_DESC_STATUS0_MORE 0x00001000
#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE 0x00078000
......@@ -205,6 +55,8 @@ struct ath5k_hw_rx_status {
#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL_S 19
#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA 0x38000000
#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA_S 27
/* RX status word 1 fields/flags */
#define AR5K_5210_RX_DESC_STATUS1_DONE 0x00000001
#define AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK 0x00000002
#define AR5K_5210_RX_DESC_STATUS1_CRC_ERROR 0x00000004
......@@ -220,6 +72,7 @@ struct ath5k_hw_rx_status {
#define AR5K_5210_RX_DESC_STATUS1_KEY_CACHE_MISS 0x10000000
/* 5212 */
/* RX status word 0 fields/flags */
#define AR5K_5212_RX_DESC_STATUS0_DATA_LEN 0x00000fff
#define AR5K_5212_RX_DESC_STATUS0_MORE 0x00001000
#define AR5K_5212_RX_DESC_STATUS0_DECOMP_CRC_ERROR 0x00002000
......@@ -229,6 +82,8 @@ struct ath5k_hw_rx_status {
#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL_S 20
#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA 0xf0000000
#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA_S 28
/* RX status word 1 fields/flags */
#define AR5K_5212_RX_DESC_STATUS1_DONE 0x00000001
#define AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK 0x00000002
#define AR5K_5212_RX_DESC_STATUS1_CRC_ERROR 0x00000004
......@@ -246,16 +101,18 @@ struct ath5k_hw_rx_status {
* common hardware RX error descriptor
*/
struct ath5k_hw_rx_error {
u32 rx_error_0; /* RX error word 0 */
u32 rx_error_0; /* RX status word 0 */
u32 rx_error_1; /* RX status word 1 */
} __packed;
/* RX error word 0 fields/flags */
#define AR5K_RX_DESC_ERROR0 0x00000000
u32 rx_error_1; /* RX error word 1 */
/* RX error word 1 fields/flags */
#define AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE 0x0000ff00
#define AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE_S 8
} __packed;
/* PHY Error codes */
#define AR5K_DESC_RX_PHY_ERROR_NONE 0x00
#define AR5K_DESC_RX_PHY_ERROR_TIMING 0x20
#define AR5K_DESC_RX_PHY_ERROR_PARITY 0x40
......@@ -270,7 +127,10 @@ struct ath5k_hw_rx_error {
*/
struct ath5k_hw_2w_tx_ctl {
u32 tx_control_0; /* TX control word 0 */
u32 tx_control_1; /* TX control word 1 */
} __packed;
/* TX control word 0 fields/flags */
#define AR5K_2W_TX_DESC_CTL0_FRAME_LEN 0x00000fff
#define AR5K_2W_TX_DESC_CTL0_HEADER_LEN 0x0003f000 /*[5210 ?]*/
#define AR5K_2W_TX_DESC_CTL0_HEADER_LEN_S 12
......@@ -284,29 +144,34 @@ struct ath5k_hw_2w_tx_ctl {
#define AR5K_2W_TX_DESC_CTL0_FRAME_TYPE_S 26
#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5210 0x02000000
#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5211 0x1e000000
#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT (ah->ah_version == AR5K_AR5210 ? \
#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT \
(ah->ah_version == AR5K_AR5210 ? \
AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5210 : \
AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5211)
#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_S 25
#define AR5K_2W_TX_DESC_CTL0_INTREQ 0x20000000
#define AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID 0x40000000
u32 tx_control_1; /* TX control word 1 */
/* TX control word 1 fields/flags */
#define AR5K_2W_TX_DESC_CTL1_BUF_LEN 0x00000fff
#define AR5K_2W_TX_DESC_CTL1_MORE 0x00001000
#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5210 0x0007e000
#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5211 0x000fe000
#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX (ah->ah_version == AR5K_AR5210 ? \
#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX \
(ah->ah_version == AR5K_AR5210 ? \
AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5210 : \
AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5211)
#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_S 13
#define AR5K_2W_TX_DESC_CTL1_FRAME_TYPE 0x00700000 /*[5211]*/
#define AR5K_2W_TX_DESC_CTL1_FRAME_TYPE_S 20
#define AR5K_2W_TX_DESC_CTL1_NOACK 0x00800000 /*[5211]*/
#define AR5K_2W_TX_DESC_CTL1_RTS_DURATION 0xfff80000 /*[5210 ?]*/
} __packed;
/* Frame types */
#define AR5K_AR5210_TX_DESC_FRAME_TYPE_NORMAL 0x00
#define AR5K_AR5210_TX_DESC_FRAME_TYPE_ATIM 0x04
#define AR5K_AR5210_TX_DESC_FRAME_TYPE_PSPOLL 0x08
......@@ -378,7 +243,10 @@ struct ath5k_hw_4w_tx_ctl {
*/
struct ath5k_hw_tx_status {
u32 tx_status_0; /* TX status word 0 */
u32 tx_status_1; /* TX status word 1 */
} __packed;
/* TX status word 0 fields/flags */
#define AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK 0x00000001
#define AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES 0x00000002
#define AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN 0x00000004
......@@ -400,8 +268,7 @@ struct ath5k_hw_tx_status {
#define AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP 0xffff0000
#define AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP_S 16
u32 tx_status_1; /* TX status word 1 */
/* TX status word 1 fields/flags */
#define AR5K_DESC_TX_STATUS1_DONE 0x00000001
#define AR5K_DESC_TX_STATUS1_SEQ_NUM 0x00001ffe
#define AR5K_DESC_TX_STATUS1_SEQ_NUM_S 1
......@@ -411,8 +278,6 @@ struct ath5k_hw_tx_status {
#define AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX_S 21
#define AR5K_DESC_TX_STATUS1_COMP_SUCCESS 0x00800000
#define AR5K_DESC_TX_STATUS1_XMIT_ANTENNA 0x01000000
} __packed;
/*
* 5210/5211 hardware TX descriptor
......@@ -441,176 +306,27 @@ struct ath5k_hw_all_rx_desc {
} u;
} __packed;
/*
* AR5K REGISTER ACCESS
* Atheros hardware descriptor
* This is read and written to by the hardware
*/
struct ath5k_desc {
u32 ds_link; /* physical address of the next descriptor */
u32 ds_data; /* physical address of data buffer (skb) */
/*Swap RX/TX Descriptor for big endian archs*/
#if defined(__BIG_ENDIAN)
#define AR5K_INIT_CFG ( \
AR5K_CFG_SWTD | AR5K_CFG_SWRD \
)
#else
#define AR5K_INIT_CFG 0x00000000
#endif
/*#define AR5K_REG_READ(_reg) ath5k_hw_reg_read(ah, _reg)
#define AR5K_REG_WRITE(_reg, _val) ath5k_hw_reg_write(ah, _val, _reg)*/
#define AR5K_REG_SM(_val, _flags) \
(((_val) << _flags##_S) & (_flags))
#define AR5K_REG_MS(_val, _flags) \
(((_val) & (_flags)) >> _flags##_S)
/* Some registers can hold multiple values of interest. For this
* reason when we want to write to these registers we must first
* retrieve the values which we do not want to clear (lets call this
* old_data) and then set the register with this and our new_value:
* ( old_data | new_value) */
#define AR5K_REG_WRITE_BITS(ah, _reg, _flags, _val) \
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, _reg) & ~(_flags)) | \
(((_val) << _flags##_S) & (_flags)), _reg)
#define AR5K_REG_MASKED_BITS(ah, _reg, _flags, _mask) \
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, _reg) & \
(_mask)) | (_flags), _reg)
#define AR5K_REG_ENABLE_BITS(ah, _reg, _flags) \
ath5k_hw_reg_write(ah, ath5k_hw_reg_read(ah, _reg) | (_flags), _reg)
#define AR5K_REG_DISABLE_BITS(ah, _reg, _flags) \
ath5k_hw_reg_write(ah, ath5k_hw_reg_read(ah, _reg) & ~(_flags), _reg)
#define AR5K_PHY_WRITE(ah, _reg, _val) \
ath5k_hw_reg_write(ah, _val, (ah)->ah_phy + ((_reg) << 2))
#define AR5K_PHY_READ(ah, _reg) \
ath5k_hw_reg_read(ah, (ah)->ah_phy + ((_reg) << 2))
#define AR5K_REG_WAIT(_i) do { \
if (_i % 64) \
udelay(1); \
} while (0)
#define AR5K_EEPROM_READ(_o, _v) do { \
if ((ret = ath5k_hw_eeprom_read(ah, (_o), &(_v))) != 0) \
return (ret); \
} while (0)
#define AR5K_EEPROM_READ_HDR(_o, _v) \
AR5K_EEPROM_READ(_o, ah->ah_capabilities.cap_eeprom._v); \
/* Read status of selected queue */
#define AR5K_REG_READ_Q(ah, _reg, _queue) \
(ath5k_hw_reg_read(ah, _reg) & (1 << _queue)) \
#define AR5K_REG_WRITE_Q(ah, _reg, _queue) \
ath5k_hw_reg_write(ah, (1 << _queue), _reg)
#define AR5K_Q_ENABLE_BITS(_reg, _queue) do { \
_reg |= 1 << _queue; \
} while (0)
#define AR5K_Q_DISABLE_BITS(_reg, _queue) do { \
_reg &= ~(1 << _queue); \
} while (0)
#define AR5K_LOW_ID(_a)( \
(_a)[0] | (_a)[1] << 8 | (_a)[2] << 16 | (_a)[3] << 24 \
)
#define AR5K_HIGH_ID(_a) ((_a)[4] | (_a)[5] << 8)
/*
* Initial register values
*/
/*
* Common initial register values
*/
#define AR5K_INIT_MODE CHANNEL_B
#define AR5K_INIT_TX_LATENCY 502
#define AR5K_INIT_USEC 39
#define AR5K_INIT_USEC_TURBO 79
#define AR5K_INIT_USEC_32 31
#define AR5K_INIT_CARR_SENSE_EN 1
#define AR5K_INIT_PROG_IFS 920
#define AR5K_INIT_PROG_IFS_TURBO 960
#define AR5K_INIT_EIFS 3440
#define AR5K_INIT_EIFS_TURBO 6880
#define AR5K_INIT_SLOT_TIME 396
#define AR5K_INIT_SLOT_TIME_TURBO 480
#define AR5K_INIT_ACK_CTS_TIMEOUT 1024
#define AR5K_INIT_ACK_CTS_TIMEOUT_TURBO 0x08000800
#define AR5K_INIT_SIFS 560
#define AR5K_INIT_SIFS_TURBO 480
#define AR5K_INIT_SH_RETRY 10
#define AR5K_INIT_LG_RETRY AR5K_INIT_SH_RETRY
#define AR5K_INIT_SSH_RETRY 32
#define AR5K_INIT_SLG_RETRY AR5K_INIT_SSH_RETRY
#define AR5K_INIT_TX_RETRY 10
#define AR5K_INIT_TOPS 8
#define AR5K_INIT_RXNOFRM 8
#define AR5K_INIT_RPGTO 0
#define AR5K_INIT_TXNOFRM 0
#define AR5K_INIT_BEACON_PERIOD 65535
#define AR5K_INIT_TIM_OFFSET 0
#define AR5K_INIT_BEACON_EN 0
#define AR5K_INIT_RESET_TSF 0
#define AR5K_INIT_TRANSMIT_LATENCY ( \
(AR5K_INIT_TX_LATENCY << 14) | (AR5K_INIT_USEC_32 << 7) | \
(AR5K_INIT_USEC) \
)
#define AR5K_INIT_TRANSMIT_LATENCY_TURBO ( \
(AR5K_INIT_TX_LATENCY << 14) | (AR5K_INIT_USEC_32 << 7) | \
(AR5K_INIT_USEC_TURBO) \
)
#define AR5K_INIT_PROTO_TIME_CNTRL ( \
(AR5K_INIT_CARR_SENSE_EN << 26) | (AR5K_INIT_EIFS << 12) | \
(AR5K_INIT_PROG_IFS) \
)
#define AR5K_INIT_PROTO_TIME_CNTRL_TURBO ( \
(AR5K_INIT_CARR_SENSE_EN << 26) | (AR5K_INIT_EIFS_TURBO << 12) | \
(AR5K_INIT_PROG_IFS_TURBO) \
)
#define AR5K_INIT_BEACON_CONTROL ( \
(AR5K_INIT_RESET_TSF << 24) | (AR5K_INIT_BEACON_EN << 23) | \
(AR5K_INIT_TIM_OFFSET << 16) | (AR5K_INIT_BEACON_PERIOD) \
)
/*
* Non-common initial register values which have to be loaded into the
* card at boot time and after each reset.
*/
/* Register dumps are done per operation mode */
#define AR5K_INI_RFGAIN_5GHZ 0
#define AR5K_INI_RFGAIN_2GHZ 1
#define AR5K_INI_VAL_11A 0
#define AR5K_INI_VAL_11A_TURBO 1
#define AR5K_INI_VAL_11B 2
#define AR5K_INI_VAL_11G 3
#define AR5K_INI_VAL_11G_TURBO 4
#define AR5K_INI_VAL_XR 0
#define AR5K_INI_VAL_MAX 5
#define AR5K_RF5111_INI_RF_MAX_BANKS AR5K_MAX_RF_BANKS
#define AR5K_RF5112_INI_RF_MAX_BANKS AR5K_MAX_RF_BANKS
union {
struct ath5k_hw_5210_tx_desc ds_tx5210;
struct ath5k_hw_5212_tx_desc ds_tx5212;
struct ath5k_hw_all_rx_desc ds_rx;
} ud;
} __packed;
static inline u32 ath5k_hw_bitswap(u32 val, unsigned int bits)
{
u32 retval = 0, bit, i;
#define AR5K_RXDESC_INTREQ 0x0020
for (i = 0; i < bits; i++) {
bit = (val >> i) & 1;
retval = (retval << 1) | bit;
}
#define AR5K_TXDESC_CLRDMASK 0x0001
#define AR5K_TXDESC_NOACK 0x0002 /*[5211+]*/
#define AR5K_TXDESC_RTSENA 0x0004
#define AR5K_TXDESC_CTSENA 0x0008
#define AR5K_TXDESC_INTREQ 0x0010
#define AR5K_TXDESC_VEOL 0x0020 /*[5211+]*/
return retval;
}
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*************************************\
* DMA and interrupt masking functions *
\*************************************/
/*
* dma.c - DMA and interrupt masking functions
*
* Here we setup descriptor pointers (rxdp/txdp) start/stop dma engine and
* handle queue setup for 5210 chipset (rest are handled on qcu.c).
* Also we setup interrupt mask register (IMR) and read the various iterrupt
* status registers (ISR).
*
* TODO: Handle SISR on 5211+ and introduce a function to return the queue
* number that resulted the interrupt.
*/
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*********\
* Receive *
\*********/
/**
* ath5k_hw_start_rx_dma - Start DMA receive
*
* @ah: The &struct ath5k_hw
*/
void ath5k_hw_start_rx_dma(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
}
/**
* ath5k_hw_stop_rx_dma - Stop DMA receive
*
* @ah: The &struct ath5k_hw
*/
int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
{
unsigned int i;
ATH5K_TRACE(ah->ah_sc);
ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
/*
* It may take some time to disable the DMA receive unit
*/
for (i = 2000; i > 0 &&
(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
i--)
udelay(10);
return i ? 0 : -EBUSY;
}
/**
* ath5k_hw_get_rxdp - Get RX Descriptor's address
*
* @ah: The &struct ath5k_hw
*
* XXX: Is RXDP read and clear ?
*/
u32 ath5k_hw_get_rxdp(struct ath5k_hw *ah)
{
return ath5k_hw_reg_read(ah, AR5K_RXDP);
}
/**
* ath5k_hw_set_rxdp - Set RX Descriptor's address
*
* @ah: The &struct ath5k_hw
* @phys_addr: RX descriptor address
*
* XXX: Should we check if rx is enabled before setting rxdp ?
*/
void ath5k_hw_set_rxdp(struct ath5k_hw *ah, u32 phys_addr)
{
ATH5K_TRACE(ah->ah_sc);
ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
}
/**********\
* Transmit *
\**********/
/**
* ath5k_hw_start_tx_dma - Start DMA transmit for a specific queue
*
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Start DMA transmit for a specific queue and since 5210 doesn't have
* QCU/DCU, set up queue parameters for 5210 here based on queue type (one
* queue for normal data and one queue for beacons). For queue setup
* on newer chips check out qcu.c. Returns -EINVAL if queue number is out
* of range or if queue is already disabled.
*
* NOTE: Must be called after setting up tx control descriptor for that
* queue (see below).
*/
int ath5k_hw_start_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
u32 tx_queue;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EIO;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set the queue by type on 5210
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
break;
case AR5K_TX_QUEUE_BEACON:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
AR5K_BSR);
break;
case AR5K_TX_QUEUE_CAB:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
AR5K_BCR_BDMAE, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Start queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
} else {
/* Return if queue is disabled */
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
return -EIO;
/* Start queue */
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
}
return 0;
}
/**
* ath5k_hw_stop_tx_dma - Stop DMA transmit on a specific queue
*
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Stop DMA transmit on a specific hw queue and drain queue so we don't
* have any pending frames. Returns -EBUSY if we still have pending frames,
* -EINVAL if queue number is out of range.
*
* TODO: Test queue drain code
*/
int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
unsigned int i = 100;
u32 tx_queue, pending;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EIO;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set by queue type
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
/* XXX Fix me... */
tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, 0, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Stop queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
} else {
/*
* Schedule TX disable and wait until queue is empty
*/
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
/*Check for pending frames*/
do {
pending = ath5k_hw_reg_read(ah,
AR5K_QUEUE_STATUS(queue)) &
AR5K_QCU_STS_FRMPENDCNT;
udelay(100);
} while (--i && pending);
/* Clear register */
ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
if (pending)
return -EBUSY;
}
/* TODO: Check for success else return error */
return 0;
}
/**
* ath5k_hw_get_txdp - Get TX Descriptor's address for a specific queue
*
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Get TX descriptor's address for a specific queue. For 5210 we ignore
* the queue number and use tx queue type since we only have 2 queues.
* We use TXDP0 for normal data queue and TXDP1 for beacon queue.
* For newer chips with QCU/DCU we just read the corresponding TXDP register.
*
* XXX: Is TXDP read and clear ?
*/
u32 ath5k_hw_get_txdp(struct ath5k_hw *ah, unsigned int queue)
{
u16 tx_reg;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Get the transmit queue descriptor pointer from the selected queue
*/
/*5210 doesn't have QCU*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return 0xffffffff;
}
} else {
tx_reg = AR5K_QUEUE_TXDP(queue);
}
return ath5k_hw_reg_read(ah, tx_reg);
}
/**
* ath5k_hw_set_txdp - Set TX Descriptor's address for a specific queue
*
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Set TX descriptor's address for a specific queue. For 5210 we ignore
* the queue number and we use tx queue type since we only have 2 queues
* so as above we use TXDP0 for normal data queue and TXDP1 for beacon queue.
* For newer chips with QCU/DCU we just set the corresponding TXDP register.
* Returns -EINVAL if queue type is invalid for 5210 and -EIO if queue is still
* active.
*/
int ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
{
u16 tx_reg;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Set the transmit queue descriptor pointer register by type
* on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return -EINVAL;
}
} else {
/*
* Set the transmit queue descriptor pointer for
* the selected queue on QCU for 5211+
* (this won't work if the queue is still active)
*/
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
return -EIO;
tx_reg = AR5K_QUEUE_TXDP(queue);
}
/* Set descriptor pointer */
ath5k_hw_reg_write(ah, phys_addr, tx_reg);
return 0;
}
/**
* ath5k_hw_update_tx_triglevel - Update tx trigger level
*
* @ah: The &struct ath5k_hw
* @increase: Flag to force increase of trigger level
*
* This function increases/decreases the tx trigger level for the tx fifo
* buffer (aka FIFO threshold) that is used to indicate when PCU flushes
* the buffer and transmits it's data. Lowering this results sending small
* frames more quickly but can lead to tx underruns, raising it a lot can
* result other problems (i think bmiss is related). Right now we start with
* the lowest possible (64Bytes) and if we get tx underrun we increase it using
* the increase flag. Returns -EIO if we have have reached maximum/minimum.
*
* XXX: Link this with tx DMA size ?
* XXX: Use it to save interrupts ?
* TODO: Needs testing, i think it's related to bmiss...
*/
int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
{
u32 trigger_level, imr;
int ret = -EIO;
ATH5K_TRACE(ah->ah_sc);
/*
* Disable interrupts by setting the mask
*/
imr = ath5k_hw_set_imr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
AR5K_TXCFG_TXFULL);
if (!increase) {
if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
goto done;
} else
trigger_level +=
((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
/*
* Update trigger level on success
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
else
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_TXFULL, trigger_level);
ret = 0;
done:
/*
* Restore interrupt mask
*/
ath5k_hw_set_imr(ah, imr);
return ret;
}
/*******************\
* Interrupt masking *
\*******************/
/**
* ath5k_hw_is_intr_pending - Check if we have pending interrupts
*
* @ah: The &struct ath5k_hw
*
* Check if we have pending interrupts to process. Returns 1 if we
* have pending interrupts and 0 if we haven't.
*/
bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_reg_read(ah, AR5K_INTPEND);
}
/**
* ath5k_hw_get_isr - Get interrupt status
*
* @ah: The @struct ath5k_hw
* @interrupt_mask: Driver's interrupt mask used to filter out
* interrupts in sw.
*
* This function is used inside our interrupt handler to determine the reason
* for the interrupt by reading Primary Interrupt Status Register. Returns an
* abstract interrupt status mask which is mostly ISR with some uncommon bits
* being mapped on some standard non hw-specific positions
* (check out &ath5k_int).
*
* NOTE: We use read-and-clear register, so after this function is called ISR
* is zeroed.
*
* XXX: Why filter interrupts in sw with interrupt_mask ? No benefit at all
* plus it can be misleading (one might thing that we save interrupts this way)
*/
int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
{
u32 data;
ATH5K_TRACE(ah->ah_sc);
/*
* Read interrupt status from the Interrupt Status register
* on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
data = ath5k_hw_reg_read(ah, AR5K_ISR);
if (unlikely(data == AR5K_INT_NOCARD)) {
*interrupt_mask = data;
return -ENODEV;
}
} else {
/*
* Read interrupt status from the Read-And-Clear
* shadow register.
* Note: PISR/SISR Not available on 5210
*/
data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
}
/*
* Get abstract interrupt mask (driver-compatible)
*/
*interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
if (unlikely(data == AR5K_INT_NOCARD))
return -ENODEV;
if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
*interrupt_mask |= AR5K_INT_RX;
if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
| AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
*interrupt_mask |= AR5K_INT_TX;
if (ah->ah_version != AR5K_AR5210) {
/*HIU = Host Interface Unit (PCI etc)*/
if (unlikely(data & (AR5K_ISR_HIUERR)))
*interrupt_mask |= AR5K_INT_FATAL;
/*Beacon Not Ready*/
if (unlikely(data & (AR5K_ISR_BNR)))
*interrupt_mask |= AR5K_INT_BNR;
}
/*
* XXX: BMISS interrupts may occur after association.
* I found this on 5210 code but it needs testing. If this is
* true we should disable them before assoc and re-enable them
* after a successfull assoc + some jiffies.
*/
#if 0
interrupt_mask &= ~AR5K_INT_BMISS;
#endif
/*
* In case we didn't handle anything,
* print the register value.
*/
if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
ATH5K_PRINTF("0x%08x\n", data);
return 0;
}
/**
* ath5k_hw_set_imr - Set interrupt mask
*
* @ah: The &struct ath5k_hw
* @new_mask: The new interrupt mask to be set
*
* Set the interrupt mask in hw to save interrupts. We do that by mapping
* ath5k_int bits to hw-specific bits to remove abstraction and writing
* Interrupt Mask Register.
*/
enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask)
{
enum ath5k_int old_mask, int_mask;
/*
* Disable card interrupts to prevent any race conditions
* (they will be re-enabled afterwards).
*/
ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
ath5k_hw_reg_read(ah, AR5K_IER);
old_mask = ah->ah_imr;
/*
* Add additional, chipset-dependent interrupt mask flags
* and write them to the IMR (interrupt mask register).
*/
int_mask = new_mask & AR5K_INT_COMMON;
if (new_mask & AR5K_INT_RX)
int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
AR5K_IMR_RXDESC;
if (new_mask & AR5K_INT_TX)
int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
AR5K_IMR_TXURN;
if (ah->ah_version != AR5K_AR5210) {
if (new_mask & AR5K_INT_FATAL) {
int_mask |= AR5K_IMR_HIUERR;
AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
}
}
ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
/* Store new interrupt mask */
ah->ah_imr = new_mask;
/* ..re-enable interrupts */
ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
ath5k_hw_reg_read(ah, AR5K_IER);
return old_mask;
}
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*************************************\
* EEPROM access functions and helpers *
\*************************************/
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*
* Read from eeprom
*/
static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
{
u32 status, timeout;
ATH5K_TRACE(ah->ah_sc);
/*
* Initialize EEPROM access
*/
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
} else {
ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
AR5K_EEPROM_CMD_READ);
}
for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
if (status & AR5K_EEPROM_STAT_RDDONE) {
if (status & AR5K_EEPROM_STAT_RDERR)
return -EIO;
*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
0xffff);
return 0;
}
udelay(15);
}
return -ETIMEDOUT;
}
/*
* Translate binary channel representation in EEPROM to frequency
*/
static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin,
unsigned int mode)
{
u16 val;
if (bin == AR5K_EEPROM_CHANNEL_DIS)
return bin;
if (mode == AR5K_EEPROM_MODE_11A) {
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
val = (5 * bin) + 4800;
else
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
(bin * 10) + 5100;
} else {
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
val = bin + 2300;
else
val = bin + 2400;
}
return val;
}
/*
* Read antenna infos from eeprom
*/
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 o = *offset;
u16 val;
int ret, i = 0;
AR5K_EEPROM_READ(o++, val);
ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
ee->ee_ant_control[mode][i++] = val & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
ee->ee_ant_control[mode][i++] = val & 0x3f;
/* Get antenna modes */
ah->ah_antenna[mode][0] =
(ee->ee_ant_control[mode][0] << 4) | 0x1;
ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
ee->ee_ant_control[mode][1] |
(ee->ee_ant_control[mode][2] << 6) |
(ee->ee_ant_control[mode][3] << 12) |
(ee->ee_ant_control[mode][4] << 18) |
(ee->ee_ant_control[mode][5] << 24);
ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
ee->ee_ant_control[mode][6] |
(ee->ee_ant_control[mode][7] << 6) |
(ee->ee_ant_control[mode][8] << 12) |
(ee->ee_ant_control[mode][9] << 18) |
(ee->ee_ant_control[mode][10] << 24);
/* return new offset */
*offset = o;
return 0;
}
/*
* Read supported modes from eeprom
*/
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 o = *offset;
u16 val;
int ret;
AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
ee->ee_thr_62[mode] = val & 0xff;
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
AR5K_EEPROM_READ(o++, val);
ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
if ((val & 0xff) & 0x80)
ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
else
ee->ee_noise_floor_thr[mode] = val & 0xff;
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
ee->ee_noise_floor_thr[mode] =
mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
AR5K_EEPROM_READ(o++, val);
ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
ee->ee_x_gain[mode] = (val >> 1) & 0xf;
ee->ee_xpd[mode] = val & 0x1;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(o++, val);
ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
if (mode == AR5K_EEPROM_MODE_11A)
ee->ee_xr_power[mode] = val & 0x3f;
else {
ee->ee_ob[mode][0] = val & 0x7;
ee->ee_db[mode][0] = (val >> 3) & 0x7;
}
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
} else {
ee->ee_i_gain[mode] = (val >> 13) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_i_gain[mode] |= (val << 3) & 0x38;
if (mode == AR5K_EEPROM_MODE_11G)
ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
mode == AR5K_EEPROM_MODE_11A) {
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
mode == AR5K_EEPROM_MODE_11G)
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
/* return new offset */
*offset = o;
return 0;
}
/*
* Initialize eeprom & capabilities structs
*/
int ath5k_eeprom_init(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
unsigned int mode, i;
int ret;
u32 offset;
u16 val;
/* Initial TX thermal adjustment values */
ee->ee_tx_clip = 4;
ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
ee->ee_gain_select = 1;
/*
* Read values from EEPROM and store them in the capability structure
*/
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
/* Return if we have an old EEPROM */
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
return 0;
#ifdef notyet
/*
* Validate the checksum of the EEPROM date. There are some
* devices with invalid EEPROMs.
*/
for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
cksum ^= val;
}
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
return -EIO;
}
#endif
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
ee_ant_gain);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
}
/*
* Get conformance test limit values
*/
offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
for (i = 0; i < ee->ee_ctls; i++) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_ctl[i] = (val >> 8) & 0xff;
ee->ee_ctl[i + 1] = val & 0xff;
}
/*
* Get values for 802.11a (5GHz)
*/
mode = AR5K_EEPROM_MODE_11A;
ee->ee_turbo_max_power[mode] =
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
ee->ee_db[mode][3] = (val >> 2) & 0x7;
ee->ee_ob[mode][2] = (val << 1) & 0x7;
AR5K_EEPROM_READ(offset++, val);
ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
ee->ee_db[mode][2] = (val >> 12) & 0x7;
ee->ee_ob[mode][1] = (val >> 9) & 0x7;
ee->ee_db[mode][1] = (val >> 6) & 0x7;
ee->ee_ob[mode][0] = (val >> 3) & 0x7;
ee->ee_db[mode][0] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_margin_tx_rx[mode] = val & 0x3f;
}
/*
* Get values for 802.11b (2.4GHz)
*/
mode = AR5K_EEPROM_MODE_11B;
offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][0] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
ee->ee_cal_pier[mode][1] =
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][2] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
/*
* Get values for 802.11g (2.4GHz)
*/
mode = AR5K_EEPROM_MODE_11G;
offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][0] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
ee->ee_cal_pier[mode][1] =
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
AR5K_EEPROM_READ(offset++, val);
ee->ee_turbo_max_power[mode] = val & 0x7f;
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][2] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_cck_ofdm_gain_delta = val & 0xff;
}
}
/*
* Read 5GHz EEPROM channels
*/
return 0;
}
/*
* Read the MAC address from eeprom
*/
int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
{
u8 mac_d[ETH_ALEN];
u32 total, offset;
u16 data;
int octet, ret;
memset(mac, 0, ETH_ALEN);
memset(mac_d, 0, ETH_ALEN);
ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
if (ret)
return ret;
for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
ret = ath5k_hw_eeprom_read(ah, offset, &data);
if (ret)
return ret;
total += data;
mac_d[octet + 1] = data & 0xff;
mac_d[octet] = data >> 8;
octet += 2;
}
memcpy(mac, mac_d, ETH_ALEN);
if (!total || total == 3 * 0xffff)
return -EINVAL;
return 0;
}
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* Common ar5xxx EEPROM data offsets (set these on AR5K_EEPROM_BASE)
*/
#define AR5K_EEPROM_MAGIC 0x003d /* EEPROM Magic number */
#define AR5K_EEPROM_MAGIC_VALUE 0x5aa5 /* Default - found on EEPROM */
#define AR5K_EEPROM_MAGIC_5212 0x0000145c /* 5212 */
#define AR5K_EEPROM_MAGIC_5211 0x0000145b /* 5211 */
#define AR5K_EEPROM_MAGIC_5210 0x0000145a /* 5210 */
#define AR5K_EEPROM_PROTECT 0x003f /* EEPROM protect status */
#define AR5K_EEPROM_PROTECT_RD_0_31 0x0001 /* Read protection bit for offsets 0x0 - 0x1f */
#define AR5K_EEPROM_PROTECT_WR_0_31 0x0002 /* Write protection bit for offsets 0x0 - 0x1f */
#define AR5K_EEPROM_PROTECT_RD_32_63 0x0004 /* 0x20 - 0x3f */
#define AR5K_EEPROM_PROTECT_WR_32_63 0x0008
#define AR5K_EEPROM_PROTECT_RD_64_127 0x0010 /* 0x40 - 0x7f */
#define AR5K_EEPROM_PROTECT_WR_64_127 0x0020
#define AR5K_EEPROM_PROTECT_RD_128_191 0x0040 /* 0x80 - 0xbf (regdom) */
#define AR5K_EEPROM_PROTECT_WR_128_191 0x0080
#define AR5K_EEPROM_PROTECT_RD_192_207 0x0100 /* 0xc0 - 0xcf */
#define AR5K_EEPROM_PROTECT_WR_192_207 0x0200
#define AR5K_EEPROM_PROTECT_RD_208_223 0x0400 /* 0xd0 - 0xdf */
#define AR5K_EEPROM_PROTECT_WR_208_223 0x0800
#define AR5K_EEPROM_PROTECT_RD_224_239 0x1000 /* 0xe0 - 0xef */
#define AR5K_EEPROM_PROTECT_WR_224_239 0x2000
#define AR5K_EEPROM_PROTECT_RD_240_255 0x4000 /* 0xf0 - 0xff */
#define AR5K_EEPROM_PROTECT_WR_240_255 0x8000
#define AR5K_EEPROM_REG_DOMAIN 0x00bf /* EEPROM regdom */
#define AR5K_EEPROM_INFO_BASE 0x00c0 /* EEPROM header */
#define AR5K_EEPROM_INFO_MAX (0x400 - AR5K_EEPROM_INFO_BASE)
#define AR5K_EEPROM_INFO_CKSUM 0xffff
#define AR5K_EEPROM_INFO(_n) (AR5K_EEPROM_INFO_BASE + (_n))
#define AR5K_EEPROM_VERSION AR5K_EEPROM_INFO(1) /* EEPROM Version */
#define AR5K_EEPROM_VERSION_3_0 0x3000 /* No idea what's going on before this version */
#define AR5K_EEPROM_VERSION_3_1 0x3001 /* ob/db values for 2Ghz (ar5211_rfregs) */
#define AR5K_EEPROM_VERSION_3_2 0x3002 /* different frequency representation (eeprom_bin2freq) */
#define AR5K_EEPROM_VERSION_3_3 0x3003 /* offsets changed, has 32 CTLs (see below) and ee_false_detect (eeprom_read_modes) */
#define AR5K_EEPROM_VERSION_3_4 0x3004 /* has ee_i_gain ee_cck_ofdm_power_delta (eeprom_read_modes) */
#define AR5K_EEPROM_VERSION_4_0 0x4000 /* has ee_misc*, ee_cal_pier, ee_turbo_max_power and ee_xr_power (eeprom_init) */
#define AR5K_EEPROM_VERSION_4_1 0x4001 /* has ee_margin_tx_rx (eeprom_init) */
#define AR5K_EEPROM_VERSION_4_2 0x4002 /* has ee_cck_ofdm_gain_delta (eeprom_init) */
#define AR5K_EEPROM_VERSION_4_3 0x4003
#define AR5K_EEPROM_VERSION_4_4 0x4004
#define AR5K_EEPROM_VERSION_4_5 0x4005
#define AR5K_EEPROM_VERSION_4_6 0x4006 /* has ee_scaled_cck_delta */
#define AR5K_EEPROM_VERSION_4_7 0x4007
#define AR5K_EEPROM_MODE_11A 0
#define AR5K_EEPROM_MODE_11B 1
#define AR5K_EEPROM_MODE_11G 2
#define AR5K_EEPROM_HDR AR5K_EEPROM_INFO(2) /* Header that contains the device caps */
#define AR5K_EEPROM_HDR_11A(_v) (((_v) >> AR5K_EEPROM_MODE_11A) & 0x1)
#define AR5K_EEPROM_HDR_11B(_v) (((_v) >> AR5K_EEPROM_MODE_11B) & 0x1)
#define AR5K_EEPROM_HDR_11G(_v) (((_v) >> AR5K_EEPROM_MODE_11G) & 0x1)
#define AR5K_EEPROM_HDR_T_2GHZ_DIS(_v) (((_v) >> 3) & 0x1) /* Disable turbo for 2Ghz (?) */
#define AR5K_EEPROM_HDR_T_5GHZ_DBM(_v) (((_v) >> 4) & 0x7f) /* Max turbo power for a/XR mode (eeprom_init) */
#define AR5K_EEPROM_HDR_DEVICE(_v) (((_v) >> 11) & 0x7)
#define AR5K_EEPROM_HDR_T_5GHZ_DIS(_v) (((_v) >> 15) & 0x1) /* Disable turbo for 5Ghz (?) */
#define AR5K_EEPROM_HDR_RFKILL(_v) (((_v) >> 14) & 0x1) /* Device has RFKill support */
#define AR5K_EEPROM_RFKILL_GPIO_SEL 0x0000001c
#define AR5K_EEPROM_RFKILL_GPIO_SEL_S 2
#define AR5K_EEPROM_RFKILL_POLARITY 0x00000002
#define AR5K_EEPROM_RFKILL_POLARITY_S 1
/* Newer EEPROMs are using a different offset */
#define AR5K_EEPROM_OFF(_v, _v3_0, _v3_3) \
(((_v) >= AR5K_EEPROM_VERSION_3_3) ? _v3_3 : _v3_0)
#define AR5K_EEPROM_ANT_GAIN(_v) AR5K_EEPROM_OFF(_v, 0x00c4, 0x00c3)
#define AR5K_EEPROM_ANT_GAIN_5GHZ(_v) ((int8_t)(((_v) >> 8) & 0xff))
#define AR5K_EEPROM_ANT_GAIN_2GHZ(_v) ((int8_t)((_v) & 0xff))
/* calibration settings */
#define AR5K_EEPROM_MODES_11A(_v) AR5K_EEPROM_OFF(_v, 0x00c5, 0x00d4)
#define AR5K_EEPROM_MODES_11B(_v) AR5K_EEPROM_OFF(_v, 0x00d0, 0x00f2)
#define AR5K_EEPROM_MODES_11G(_v) AR5K_EEPROM_OFF(_v, 0x00da, 0x010d)
#define AR5K_EEPROM_CTL(_v) AR5K_EEPROM_OFF(_v, 0x00e4, 0x0128) /* Conformance test limits */
/* [3.1 - 3.3] */
#define AR5K_EEPROM_OBDB0_2GHZ 0x00ec
#define AR5K_EEPROM_OBDB1_2GHZ 0x00ed
/* Misc values available since EEPROM 4.0 */
#define AR5K_EEPROM_MISC0 0x00c4
#define AR5K_EEPROM_EARSTART(_v) ((_v) & 0xfff)
#define AR5K_EEPROM_EEMAP(_v) (((_v) >> 14) & 0x3)
#define AR5K_EEPROM_MISC1 0x00c5
#define AR5K_EEPROM_TARGET_PWRSTART(_v) ((_v) & 0xfff)
#define AR5K_EEPROM_HAS32KHZCRYSTAL(_v) (((_v) >> 14) & 0x1)
/* Some EEPROM defines */
#define AR5K_EEPROM_EEP_SCALE 100
#define AR5K_EEPROM_EEP_DELTA 10
#define AR5K_EEPROM_N_MODES 3
#define AR5K_EEPROM_N_5GHZ_CHAN 10
#define AR5K_EEPROM_N_2GHZ_CHAN 3
#define AR5K_EEPROM_MAX_CHAN 10
#define AR5K_EEPROM_N_PCDAC 11
#define AR5K_EEPROM_N_TEST_FREQ 8
#define AR5K_EEPROM_N_EDGES 8
#define AR5K_EEPROM_N_INTERCEPTS 11
#define AR5K_EEPROM_FREQ_M(_v) AR5K_EEPROM_OFF(_v, 0x7f, 0xff)
#define AR5K_EEPROM_PCDAC_M 0x3f
#define AR5K_EEPROM_PCDAC_START 1
#define AR5K_EEPROM_PCDAC_STOP 63
#define AR5K_EEPROM_PCDAC_STEP 1
#define AR5K_EEPROM_NON_EDGE_M 0x40
#define AR5K_EEPROM_CHANNEL_POWER 8
#define AR5K_EEPROM_N_OBDB 4
#define AR5K_EEPROM_OBDB_DIS 0xffff
#define AR5K_EEPROM_CHANNEL_DIS 0xff
#define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10)
#define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32)
#define AR5K_EEPROM_MAX_CTLS 32
#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4
#define AR5K_EEPROM_N_XPD0_POINTS 4
#define AR5K_EEPROM_N_XPD3_POINTS 3
#define AR5K_EEPROM_N_INTERCEPT_10_2GHZ 35
#define AR5K_EEPROM_N_INTERCEPT_10_5GHZ 55
#define AR5K_EEPROM_POWER_M 0x3f
#define AR5K_EEPROM_POWER_MIN 0
#define AR5K_EEPROM_POWER_MAX 3150
#define AR5K_EEPROM_POWER_STEP 50
#define AR5K_EEPROM_POWER_TABLE_SIZE 64
#define AR5K_EEPROM_N_POWER_LOC_11B 4
#define AR5K_EEPROM_N_POWER_LOC_11G 6
#define AR5K_EEPROM_I_GAIN 10
#define AR5K_EEPROM_CCK_OFDM_DELTA 15
#define AR5K_EEPROM_N_IQ_CAL 2
#define AR5K_EEPROM_READ(_o, _v) do { \
ret = ath5k_hw_eeprom_read(ah, (_o), &(_v)); \
if (ret) \
return ret; \
} while (0)
#define AR5K_EEPROM_READ_HDR(_o, _v) \
AR5K_EEPROM_READ(_o, ah->ah_capabilities.cap_eeprom._v); \
/* Struct to hold EEPROM calibration data */
struct ath5k_eeprom_info {
u16 ee_magic;
u16 ee_protect;
u16 ee_regdomain;
u16 ee_version;
u16 ee_header;
u16 ee_ant_gain;
u16 ee_misc0;
u16 ee_misc1;
u16 ee_cck_ofdm_gain_delta;
u16 ee_cck_ofdm_power_delta;
u16 ee_scaled_cck_delta;
/* Used for tx thermal adjustment (eeprom_init, rfregs) */
u16 ee_tx_clip;
u16 ee_pwd_84;
u16 ee_pwd_90;
u16 ee_gain_select;
/* RF Calibration settings (reset, rfregs) */
u16 ee_i_cal[AR5K_EEPROM_N_MODES];
u16 ee_q_cal[AR5K_EEPROM_N_MODES];
u16 ee_fixed_bias[AR5K_EEPROM_N_MODES];
u16 ee_turbo_max_power[AR5K_EEPROM_N_MODES];
u16 ee_xr_power[AR5K_EEPROM_N_MODES];
u16 ee_switch_settling[AR5K_EEPROM_N_MODES];
u16 ee_ant_tx_rx[AR5K_EEPROM_N_MODES];
u16 ee_ant_control[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PCDAC];
u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
u16 ee_tx_end2xlna_enable[AR5K_EEPROM_N_MODES];
u16 ee_tx_end2xpa_disable[AR5K_EEPROM_N_MODES];
u16 ee_tx_frm2xpa_enable[AR5K_EEPROM_N_MODES];
u16 ee_thr_62[AR5K_EEPROM_N_MODES];
u16 ee_xlna_gain[AR5K_EEPROM_N_MODES];
u16 ee_xpd[AR5K_EEPROM_N_MODES];
u16 ee_x_gain[AR5K_EEPROM_N_MODES];
u16 ee_i_gain[AR5K_EEPROM_N_MODES];
u16 ee_margin_tx_rx[AR5K_EEPROM_N_MODES];
/* Unused */
u16 ee_false_detect[AR5K_EEPROM_N_MODES];
u16 ee_cal_pier[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_2GHZ_CHAN];
u16 ee_channel[AR5K_EEPROM_N_MODES][AR5K_EEPROM_MAX_CHAN]; /*empty*/
/* Conformance test limits (Unused) */
u16 ee_ctls;
u16 ee_ctl[AR5K_EEPROM_MAX_CTLS];
/* Noise Floor Calibration settings */
s16 ee_noise_floor_thr[AR5K_EEPROM_N_MODES];
s8 ee_adc_desired_size[AR5K_EEPROM_N_MODES];
s8 ee_pga_desired_size[AR5K_EEPROM_N_MODES];
};
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/****************\
GPIO Functions
\****************/
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*
* Set led state
*/
void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
{
u32 led;
/*5210 has different led mode handling*/
u32 led_5210;
ATH5K_TRACE(ah->ah_sc);
/*Reset led status*/
if (ah->ah_version != AR5K_AR5210)
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
/*
* Some blinking values, define at your wish
*/
switch (state) {
case AR5K_LED_SCAN:
case AR5K_LED_AUTH:
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
break;
case AR5K_LED_INIT:
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
led_5210 = AR5K_PCICFG_LED_PEND;
break;
case AR5K_LED_ASSOC:
case AR5K_LED_RUN:
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
led_5210 = AR5K_PCICFG_LED_ASSOC;
break;
default:
led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
led_5210 = AR5K_PCICFG_LED_PEND;
break;
}
/*Write new status to the register*/
if (ah->ah_version != AR5K_AR5210)
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
else
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
}
/*
* Set GPIO inputs
*/
int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
{
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return -EINVAL;
ath5k_hw_reg_write(ah,
(ath5k_hw_reg_read(ah, AR5K_GPIOCR) & ~AR5K_GPIOCR_OUT(gpio))
| AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
return 0;
}
/*
* Set GPIO outputs
*/
int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
{
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return -EINVAL;
ath5k_hw_reg_write(ah,
(ath5k_hw_reg_read(ah, AR5K_GPIOCR) & ~AR5K_GPIOCR_OUT(gpio))
| AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
return 0;
}
/*
* Get GPIO state
*/
u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
{
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return 0xffffffff;
/* GPIO input magic */
return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
0x1;
}
/*
* Set GPIO state
*/
int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
{
u32 data;
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return -EINVAL;
/* GPIO output magic */
data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
data &= ~(1 << gpio);
data |= (val & 1) << gpio;
ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
return 0;
}
/*
* Initialize the GPIO interrupt (RFKill switch)
*/
void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
u32 interrupt_level)
{
u32 data;
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return;
/*
* Set the GPIO interrupt
*/
data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
ath5k_hw_reg_write(ah, interrupt_level ? data :
(data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
ah->ah_imr |= AR5K_IMR_GPIO;
/* Enable GPIO interrupts */
AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
}
此差异已折叠。
/*
* Initial register settings functions
*
* Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006, 2007 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
......@@ -20,13 +20,9 @@
*/
#include "ath5k.h"
#include "base.h"
#include "reg.h"
/*
* MAC/PHY REGISTERS
*/
#include "debug.h"
#include "base.h"
/*
* Mode-independent initial register writes
......@@ -65,10 +61,10 @@ static const struct ath5k_ini ar5210_ini[] = {
{ AR5K_TXCFG, AR5K_DMASIZE_128B },
{ AR5K_RXCFG, AR5K_DMASIZE_128B },
{ AR5K_CFG, AR5K_INIT_CFG },
{ AR5K_TOPS, AR5K_INIT_TOPS },
{ AR5K_RXNOFRM, AR5K_INIT_RXNOFRM },
{ AR5K_RPGTO, AR5K_INIT_RPGTO },
{ AR5K_TXNOFRM, AR5K_INIT_TXNOFRM },
{ AR5K_TOPS, 8 },
{ AR5K_RXNOFRM, 8 },
{ AR5K_RPGTO, 0 },
{ AR5K_TXNOFRM, 0 },
{ AR5K_SFR, 0 },
{ AR5K_MIBC, 0 },
{ AR5K_MISC, 0 },
......
此差异已折叠。
/*
* PHY functions
*
* Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006, 2007 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
......@@ -19,6 +19,8 @@
*
*/
#define _ATH5K_PHY
#include <linux/delay.h>
#include "ath5k.h"
......@@ -2501,3 +2503,5 @@ int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power)
return ath5k_hw_txpower(ah, channel, power);
}
#undef _ATH5K_PHY
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册