提交 c4ca3d5a 编写于 作者: O Omar Ramirez Luna 提交者: Greg Kroah-Hartman

staging: ti dspbridge: add platform manager code

Add TI's DSP Bridge platform manager driver sources
Signed-off-by: NOmar Ramirez Luna <omar.ramirez@ti.com>
Signed-off-by: NKanigeri, Hari <h-kanigeri2@ti.com>
Signed-off-by: NAmeya Palande <ameya.palande@nokia.com>
Signed-off-by: NGuzman Lugo, Fernando <fernando.lugo@ti.com>
Signed-off-by: NHebbar, Shivananda <x0hebbar@ti.com>
Signed-off-by: NRamos Falcon, Ernesto <ernesto@ti.com>
Signed-off-by: NFelipe Contreras <felipe.contreras@gmail.com>
Signed-off-by: NAnna, Suman <s-anna@ti.com>
Signed-off-by: NGupta, Ramesh <grgupta@ti.com>
Signed-off-by: NGomez Castellanos, Ivan <ivan.gomez@ti.com>
Signed-off-by: NAndy Shevchenko <ext-andriy.shevchenko@nokia.com>
Signed-off-by: NArmando Uribe De Leon <x0095078@ti.com>
Signed-off-by: NDeepak Chitriki <deepak.chitriki@ti.com>
Signed-off-by: NMenon, Nishanth <nm@ti.com>
Signed-off-by: NPhil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: NOhad Ben-Cohen <ohad@wizery.com>
Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
上级 999e07d6
/*
* chnl.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP API channel interface: multiplexes data streams through the single
* physical link managed by a Bridge Bridge driver.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/sync.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/proc.h>
#include <dspbridge/dev.h>
/* ----------------------------------- Others */
#include <dspbridge/chnlpriv.h>
#include <chnlobj.h>
/* ----------------------------------- This */
#include <dspbridge/chnl.h>
/* ----------------------------------- Globals */
static u32 refs;
/*
* ======== chnl_create ========
* Purpose:
* Create a channel manager object, responsible for opening new channels
* and closing old ones for a given 'Bridge board.
*/
int chnl_create(OUT struct chnl_mgr **phChnlMgr,
struct dev_object *hdev_obj,
IN CONST struct chnl_mgrattrs *pMgrAttrs)
{
int status;
struct chnl_mgr *hchnl_mgr;
struct chnl_mgr_ *chnl_mgr_obj = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phChnlMgr != NULL);
DBC_REQUIRE(pMgrAttrs != NULL);
*phChnlMgr = NULL;
/* Validate args: */
if ((0 < pMgrAttrs->max_channels) &&
(pMgrAttrs->max_channels <= CHNL_MAXCHANNELS))
status = 0;
else if (pMgrAttrs->max_channels == 0)
status = -EINVAL;
else
status = -ECHRNG;
if (pMgrAttrs->word_size == 0)
status = -EINVAL;
if (DSP_SUCCEEDED(status)) {
status = dev_get_chnl_mgr(hdev_obj, &hchnl_mgr);
if (DSP_SUCCEEDED(status) && hchnl_mgr != NULL)
status = -EEXIST;
}
if (DSP_SUCCEEDED(status)) {
struct bridge_drv_interface *intf_fxns;
dev_get_intf_fxns(hdev_obj, &intf_fxns);
/* Let Bridge channel module finish the create: */
status = (*intf_fxns->pfn_chnl_create) (&hchnl_mgr, hdev_obj,
pMgrAttrs);
if (DSP_SUCCEEDED(status)) {
/* Fill in DSP API channel module's fields of the
* chnl_mgr structure */
chnl_mgr_obj = (struct chnl_mgr_ *)hchnl_mgr;
chnl_mgr_obj->intf_fxns = intf_fxns;
/* Finally, return the new channel manager handle: */
*phChnlMgr = hchnl_mgr;
}
}
DBC_ENSURE(DSP_FAILED(status) || chnl_mgr_obj);
return status;
}
/*
* ======== chnl_destroy ========
* Purpose:
* Close all open channels, and destroy the channel manager.
*/
int chnl_destroy(struct chnl_mgr *hchnl_mgr)
{
struct chnl_mgr_ *chnl_mgr_obj = (struct chnl_mgr_ *)hchnl_mgr;
struct bridge_drv_interface *intf_fxns;
int status;
DBC_REQUIRE(refs > 0);
if (chnl_mgr_obj) {
intf_fxns = chnl_mgr_obj->intf_fxns;
/* Let Bridge channel module destroy the chnl_mgr: */
status = (*intf_fxns->pfn_chnl_destroy) (hchnl_mgr);
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== chnl_exit ========
* Purpose:
* Discontinue usage of the CHNL module.
*/
void chnl_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== chnl_init ========
* Purpose:
* Initialize the CHNL module's private state.
*/
bool chnl_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* chnlobj.h
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Structure subcomponents of channel class library channel objects which
* are exposed to DSP API from Bridge driver.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef CHNLOBJ_
#define CHNLOBJ_
#include <dspbridge/chnldefs.h>
#include <dspbridge/dspdefs.h>
/*
* This struct is the first field in a chnl_mgr struct. Other. implementation
* specific fields follow this structure in memory.
*/
struct chnl_mgr_ {
/* These must be the first fields in a chnl_mgr struct: */
/* Function interface to Bridge driver. */
struct bridge_drv_interface *intf_fxns;
};
/*
* This struct is the first field in a chnl_object struct. Other,
* implementation specific fields follow this structure in memory.
*/
struct chnl_object_ {
/* These must be the first fields in a chnl_object struct: */
struct chnl_mgr_ *chnl_mgr_obj; /* Pointer back to channel manager. */
};
#endif /* CHNLOBJ_ */
/*
* cmm.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* The Communication(Shared) Memory Management(CMM) module provides
* shared memory management services for DSP/BIOS Bridge data streaming
* and messaging.
*
* Multiple shared memory segments can be registered with CMM.
* Each registered SM segment is represented by a SM "allocator" that
* describes a block of physically contiguous shared memory used for
* future allocations by CMM.
*
* Memory is coelesced back to the appropriate heap when a buffer is
* freed.
*
* Notes:
* Va: Virtual address.
* Pa: Physical or kernel system address.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/list.h>
#include <dspbridge/sync.h>
#include <dspbridge/utildefs.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
#include <dspbridge/proc.h>
/* ----------------------------------- This */
#include <dspbridge/cmm.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define NEXT_PA(pnode) (pnode->dw_pa + pnode->ul_size)
/* Other bus/platform translations */
#define DSPPA2GPPPA(base, x, y) ((x)+(y))
#define GPPPA2DSPPA(base, x, y) ((x)-(y))
/*
* Allocators define a block of contiguous memory used for future allocations.
*
* sma - shared memory allocator.
* vma - virtual memory allocator.(not used).
*/
struct cmm_allocator { /* sma */
unsigned int shm_base; /* Start of physical SM block */
u32 ul_sm_size; /* Size of SM block in bytes */
unsigned int dw_vm_base; /* Start of VM block. (Dev driver
* context for 'sma') */
u32 dw_dsp_phys_addr_offset; /* DSP PA to GPP PA offset for this
* SM space */
s8 c_factor; /* DSPPa to GPPPa Conversion Factor */
unsigned int dw_dsp_base; /* DSP virt base byte address */
u32 ul_dsp_size; /* DSP seg size in bytes */
struct cmm_object *hcmm_mgr; /* back ref to parent mgr */
/* node list of available memory */
struct lst_list *free_list_head;
/* node list of memory in use */
struct lst_list *in_use_list_head;
};
struct cmm_xlator { /* Pa<->Va translator object */
/* CMM object this translator associated */
struct cmm_object *hcmm_mgr;
/*
* Client process virtual base address that corresponds to phys SM
* base address for translator's ul_seg_id.
* Only 1 segment ID currently supported.
*/
unsigned int dw_virt_base; /* virtual base address */
u32 ul_virt_size; /* size of virt space in bytes */
u32 ul_seg_id; /* Segment Id */
};
/* CMM Mgr */
struct cmm_object {
/*
* Cmm Lock is used to serialize access mem manager for multi-threads.
*/
struct mutex cmm_lock; /* Lock to access cmm mgr */
struct lst_list *node_free_list_head; /* Free list of memory nodes */
u32 ul_min_block_size; /* Min SM block; default 16 bytes */
u32 dw_page_size; /* Memory Page size (1k/4k) */
/* GPP SM segment ptrs */
struct cmm_allocator *pa_gppsm_seg_tab[CMM_MAXGPPSEGS];
};
/* Default CMM Mgr attributes */
static struct cmm_mgrattrs cmm_dfltmgrattrs = {
/* ul_min_block_size, min block size(bytes) allocated by cmm mgr */
16
};
/* Default allocation attributes */
static struct cmm_attrs cmm_dfltalctattrs = {
1 /* ul_seg_id, default segment Id for allocator */
};
/* Address translator default attrs */
static struct cmm_xlatorattrs cmm_dfltxlatorattrs = {
/* ul_seg_id, does not have to match cmm_dfltalctattrs ul_seg_id */
1,
0, /* dw_dsp_bufs */
0, /* dw_dsp_buf_size */
NULL, /* vm_base */
0, /* dw_vm_size */
};
/* SM node representing a block of memory. */
struct cmm_mnode {
struct list_head link; /* must be 1st element */
u32 dw_pa; /* Phys addr */
u32 dw_va; /* Virtual address in device process context */
u32 ul_size; /* SM block size in bytes */
u32 client_proc; /* Process that allocated this mem block */
};
/* ----------------------------------- Globals */
static u32 refs; /* module reference count */
/* ----------------------------------- Function Prototypes */
static void add_to_free_list(struct cmm_allocator *allocator,
struct cmm_mnode *pnode);
static struct cmm_allocator *get_allocator(struct cmm_object *cmm_mgr_obj,
u32 ul_seg_id);
static struct cmm_mnode *get_free_block(struct cmm_allocator *allocator,
u32 usize);
static struct cmm_mnode *get_node(struct cmm_object *cmm_mgr_obj, u32 dw_pa,
u32 dw_va, u32 ul_size);
/* get available slot for new allocator */
static s32 get_slot(struct cmm_object *hcmm_mgr);
static void un_register_gppsm_seg(struct cmm_allocator *psma);
/*
* ======== cmm_calloc_buf ========
* Purpose:
* Allocate a SM buffer, zero contents, and return the physical address
* and optional driver context virtual address(pp_buf_va).
*
* The freelist is sorted in increasing size order. Get the first
* block that satifies the request and sort the remaining back on
* the freelist; if large enough. The kept block is placed on the
* inUseList.
*/
void *cmm_calloc_buf(struct cmm_object *hcmm_mgr, u32 usize,
struct cmm_attrs *pattrs, OUT void **pp_buf_va)
{
struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
void *buf_pa = NULL;
struct cmm_mnode *pnode = NULL;
struct cmm_mnode *new_node = NULL;
struct cmm_allocator *allocator = NULL;
u32 delta_size;
u8 *pbyte = NULL;
s32 cnt;
if (pattrs == NULL)
pattrs = &cmm_dfltalctattrs;
if (pp_buf_va != NULL)
*pp_buf_va = NULL;
if (cmm_mgr_obj && (usize != 0)) {
if (pattrs->ul_seg_id > 0) {
/* SegId > 0 is SM */
/* get the allocator object for this segment id */
allocator =
get_allocator(cmm_mgr_obj, pattrs->ul_seg_id);
/* keep block size a multiple of ul_min_block_size */
usize =
((usize - 1) & ~(cmm_mgr_obj->ul_min_block_size -
1))
+ cmm_mgr_obj->ul_min_block_size;
mutex_lock(&cmm_mgr_obj->cmm_lock);
pnode = get_free_block(allocator, usize);
}
if (pnode) {
delta_size = (pnode->ul_size - usize);
if (delta_size >= cmm_mgr_obj->ul_min_block_size) {
/* create a new block with the leftovers and
* add to freelist */
new_node =
get_node(cmm_mgr_obj, pnode->dw_pa + usize,
pnode->dw_va + usize,
(u32) delta_size);
/* leftovers go free */
add_to_free_list(allocator, new_node);
/* adjust our node's size */
pnode->ul_size = usize;
}
/* Tag node with client process requesting allocation
* We'll need to free up a process's alloc'd SM if the
* client process goes away.
*/
/* Return TGID instead of process handle */
pnode->client_proc = current->tgid;
/* put our node on InUse list */
lst_put_tail(allocator->in_use_list_head,
(struct list_head *)pnode);
buf_pa = (void *)pnode->dw_pa; /* physical address */
/* clear mem */
pbyte = (u8 *) pnode->dw_va;
for (cnt = 0; cnt < (s32) usize; cnt++, pbyte++)
*pbyte = 0;
if (pp_buf_va != NULL) {
/* Virtual address */
*pp_buf_va = (void *)pnode->dw_va;
}
}
mutex_unlock(&cmm_mgr_obj->cmm_lock);
}
return buf_pa;
}
/*
* ======== cmm_create ========
* Purpose:
* Create a communication memory manager object.
*/
int cmm_create(OUT struct cmm_object **ph_cmm_mgr,
struct dev_object *hdev_obj,
IN CONST struct cmm_mgrattrs *pMgrAttrs)
{
struct cmm_object *cmm_obj = NULL;
int status = 0;
struct util_sysinfo sys_info;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(ph_cmm_mgr != NULL);
*ph_cmm_mgr = NULL;
/* create, zero, and tag a cmm mgr object */
cmm_obj = kzalloc(sizeof(struct cmm_object), GFP_KERNEL);
if (cmm_obj != NULL) {
if (pMgrAttrs == NULL)
pMgrAttrs = &cmm_dfltmgrattrs; /* set defaults */
/* 4 bytes minimum */
DBC_ASSERT(pMgrAttrs->ul_min_block_size >= 4);
/* save away smallest block allocation for this cmm mgr */
cmm_obj->ul_min_block_size = pMgrAttrs->ul_min_block_size;
/* save away the systems memory page size */
sys_info.dw_page_size = PAGE_SIZE;
sys_info.dw_allocation_granularity = PAGE_SIZE;
sys_info.dw_number_of_processors = 1;
if (DSP_SUCCEEDED(status)) {
cmm_obj->dw_page_size = sys_info.dw_page_size;
} else {
cmm_obj->dw_page_size = 0;
status = -EPERM;
}
/* Note: DSP SM seg table(aDSPSMSegTab[]) zero'd by
* MEM_ALLOC_OBJECT */
if (DSP_SUCCEEDED(status)) {
/* create node free list */
cmm_obj->node_free_list_head =
kzalloc(sizeof(struct lst_list),
GFP_KERNEL);
if (cmm_obj->node_free_list_head == NULL)
status = -ENOMEM;
else
INIT_LIST_HEAD(&cmm_obj->
node_free_list_head->head);
}
if (DSP_SUCCEEDED(status))
mutex_init(&cmm_obj->cmm_lock);
if (DSP_SUCCEEDED(status))
*ph_cmm_mgr = cmm_obj;
else
cmm_destroy(cmm_obj, true);
} else {
status = -ENOMEM;
}
return status;
}
/*
* ======== cmm_destroy ========
* Purpose:
* Release the communication memory manager resources.
*/
int cmm_destroy(struct cmm_object *hcmm_mgr, bool bForce)
{
struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
struct cmm_info temp_info;
int status = 0;
s32 slot_seg;
struct cmm_mnode *pnode;
DBC_REQUIRE(refs > 0);
if (!hcmm_mgr) {
status = -EFAULT;
return status;
}
mutex_lock(&cmm_mgr_obj->cmm_lock);
/* If not force then fail if outstanding allocations exist */
if (!bForce) {
/* Check for outstanding memory allocations */
status = cmm_get_info(hcmm_mgr, &temp_info);
if (DSP_SUCCEEDED(status)) {
if (temp_info.ul_total_in_use_cnt > 0) {
/* outstanding allocations */
status = -EPERM;
}
}
}
if (DSP_SUCCEEDED(status)) {
/* UnRegister SM allocator */
for (slot_seg = 0; slot_seg < CMM_MAXGPPSEGS; slot_seg++) {
if (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] != NULL) {
un_register_gppsm_seg
(cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg]);
/* Set slot to NULL for future reuse */
cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] = NULL;
}
}
}
if (cmm_mgr_obj->node_free_list_head != NULL) {
/* Free the free nodes */
while (!LST_IS_EMPTY(cmm_mgr_obj->node_free_list_head)) {
pnode = (struct cmm_mnode *)
lst_get_head(cmm_mgr_obj->node_free_list_head);
kfree(pnode);
}
/* delete NodeFreeList list */
kfree(cmm_mgr_obj->node_free_list_head);
}
mutex_unlock(&cmm_mgr_obj->cmm_lock);
if (DSP_SUCCEEDED(status)) {
/* delete CS & cmm mgr object */
mutex_destroy(&cmm_mgr_obj->cmm_lock);
kfree(cmm_mgr_obj);
}
return status;
}
/*
* ======== cmm_exit ========
* Purpose:
* Discontinue usage of module; free resources when reference count
* reaches 0.
*/
void cmm_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
}
/*
* ======== cmm_free_buf ========
* Purpose:
* Free the given buffer.
*/
int cmm_free_buf(struct cmm_object *hcmm_mgr, void *buf_pa,
u32 ul_seg_id)
{
struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
int status = -EFAULT;
struct cmm_mnode *mnode_obj = NULL;
struct cmm_allocator *allocator = NULL;
struct cmm_attrs *pattrs;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(buf_pa != NULL);
if (ul_seg_id == 0) {
pattrs = &cmm_dfltalctattrs;
ul_seg_id = pattrs->ul_seg_id;
}
if (!hcmm_mgr || !(ul_seg_id > 0)) {
status = -EFAULT;
return status;
}
/* get the allocator for this segment id */
allocator = get_allocator(cmm_mgr_obj, ul_seg_id);
if (allocator != NULL) {
mutex_lock(&cmm_mgr_obj->cmm_lock);
mnode_obj =
(struct cmm_mnode *)lst_first(allocator->in_use_list_head);
while (mnode_obj) {
if ((u32) buf_pa == mnode_obj->dw_pa) {
/* Found it */
lst_remove_elem(allocator->in_use_list_head,
(struct list_head *)mnode_obj);
/* back to freelist */
add_to_free_list(allocator, mnode_obj);
status = 0; /* all right! */
break;
}
/* next node. */
mnode_obj = (struct cmm_mnode *)
lst_next(allocator->in_use_list_head,
(struct list_head *)mnode_obj);
}
mutex_unlock(&cmm_mgr_obj->cmm_lock);
}
return status;
}
/*
* ======== cmm_get_handle ========
* Purpose:
* Return the communication memory manager object for this device.
* This is typically called from the client process.
*/
int cmm_get_handle(void *hprocessor, OUT struct cmm_object ** ph_cmm_mgr)
{
int status = 0;
struct dev_object *hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(ph_cmm_mgr != NULL);
if (hprocessor != NULL)
status = proc_get_dev_object(hprocessor, &hdev_obj);
else
hdev_obj = dev_get_first(); /* default */
if (DSP_SUCCEEDED(status))
status = dev_get_cmm_mgr(hdev_obj, ph_cmm_mgr);
return status;
}
/*
* ======== cmm_get_info ========
* Purpose:
* Return the current memory utilization information.
*/
int cmm_get_info(struct cmm_object *hcmm_mgr,
OUT struct cmm_info *cmm_info_obj)
{
struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
u32 ul_seg;
int status = 0;
struct cmm_allocator *altr;
struct cmm_mnode *mnode_obj = NULL;
DBC_REQUIRE(cmm_info_obj != NULL);
if (!hcmm_mgr) {
status = -EFAULT;
return status;
}
mutex_lock(&cmm_mgr_obj->cmm_lock);
cmm_info_obj->ul_num_gppsm_segs = 0; /* # of SM segments */
/* Total # of outstanding alloc */
cmm_info_obj->ul_total_in_use_cnt = 0;
/* min block size */
cmm_info_obj->ul_min_block_size = cmm_mgr_obj->ul_min_block_size;
/* check SM memory segments */
for (ul_seg = 1; ul_seg <= CMM_MAXGPPSEGS; ul_seg++) {
/* get the allocator object for this segment id */
altr = get_allocator(cmm_mgr_obj, ul_seg);
if (altr != NULL) {
cmm_info_obj->ul_num_gppsm_segs++;
cmm_info_obj->seg_info[ul_seg - 1].dw_seg_base_pa =
altr->shm_base - altr->ul_dsp_size;
cmm_info_obj->seg_info[ul_seg - 1].ul_total_seg_size =
altr->ul_dsp_size + altr->ul_sm_size;
cmm_info_obj->seg_info[ul_seg - 1].dw_gpp_base_pa =
altr->shm_base;
cmm_info_obj->seg_info[ul_seg - 1].ul_gpp_size =
altr->ul_sm_size;
cmm_info_obj->seg_info[ul_seg - 1].dw_dsp_base_va =
altr->dw_dsp_base;
cmm_info_obj->seg_info[ul_seg - 1].ul_dsp_size =
altr->ul_dsp_size;
cmm_info_obj->seg_info[ul_seg - 1].dw_seg_base_va =
altr->dw_vm_base - altr->ul_dsp_size;
cmm_info_obj->seg_info[ul_seg - 1].ul_in_use_cnt = 0;
mnode_obj = (struct cmm_mnode *)
lst_first(altr->in_use_list_head);
/* Count inUse blocks */
while (mnode_obj) {
cmm_info_obj->ul_total_in_use_cnt++;
cmm_info_obj->seg_info[ul_seg -
1].ul_in_use_cnt++;
/* next node. */
mnode_obj = (struct cmm_mnode *)
lst_next(altr->in_use_list_head,
(struct list_head *)mnode_obj);
}
}
} /* end for */
mutex_unlock(&cmm_mgr_obj->cmm_lock);
return status;
}
/*
* ======== cmm_init ========
* Purpose:
* Initializes private state of CMM module.
*/
bool cmm_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== cmm_register_gppsm_seg ========
* Purpose:
* Register a block of SM with the CMM to be used for later GPP SM
* allocations.
*/
int cmm_register_gppsm_seg(struct cmm_object *hcmm_mgr,
u32 dw_gpp_base_pa, u32 ul_size,
u32 dwDSPAddrOffset, s8 c_factor,
u32 dw_dsp_base, u32 ul_dsp_size,
u32 *pulSegId, u32 dw_gpp_base_va)
{
struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
struct cmm_allocator *psma = NULL;
int status = 0;
struct cmm_mnode *new_node;
s32 slot_seg;
DBC_REQUIRE(ul_size > 0);
DBC_REQUIRE(pulSegId != NULL);
DBC_REQUIRE(dw_gpp_base_pa != 0);
DBC_REQUIRE(dw_gpp_base_va != 0);
DBC_REQUIRE((c_factor <= CMM_ADDTODSPPA) &&
(c_factor >= CMM_SUBFROMDSPPA));
dev_dbg(bridge, "%s: dw_gpp_base_pa %x ul_size %x dwDSPAddrOffset %x "
"dw_dsp_base %x ul_dsp_size %x dw_gpp_base_va %x\n", __func__,
dw_gpp_base_pa, ul_size, dwDSPAddrOffset, dw_dsp_base,
ul_dsp_size, dw_gpp_base_va);
if (!hcmm_mgr) {
status = -EFAULT;
return status;
}
/* make sure we have room for another allocator */
mutex_lock(&cmm_mgr_obj->cmm_lock);
slot_seg = get_slot(cmm_mgr_obj);
if (slot_seg < 0) {
/* get a slot number */
status = -EPERM;
goto func_end;
}
/* Check if input ul_size is big enough to alloc at least one block */
if (DSP_SUCCEEDED(status)) {
if (ul_size < cmm_mgr_obj->ul_min_block_size) {
status = -EINVAL;
goto func_end;
}
}
if (DSP_SUCCEEDED(status)) {
/* create, zero, and tag an SM allocator object */
psma = kzalloc(sizeof(struct cmm_allocator), GFP_KERNEL);
}
if (psma != NULL) {
psma->hcmm_mgr = hcmm_mgr; /* ref to parent */
psma->shm_base = dw_gpp_base_pa; /* SM Base phys */
psma->ul_sm_size = ul_size; /* SM segment size in bytes */
psma->dw_vm_base = dw_gpp_base_va;
psma->dw_dsp_phys_addr_offset = dwDSPAddrOffset;
psma->c_factor = c_factor;
psma->dw_dsp_base = dw_dsp_base;
psma->ul_dsp_size = ul_dsp_size;
if (psma->dw_vm_base == 0) {
status = -EPERM;
goto func_end;
}
if (DSP_SUCCEEDED(status)) {
/* return the actual segment identifier */
*pulSegId = (u32) slot_seg + 1;
/* create memory free list */
psma->free_list_head = kzalloc(sizeof(struct lst_list),
GFP_KERNEL);
if (psma->free_list_head == NULL) {
status = -ENOMEM;
goto func_end;
}
INIT_LIST_HEAD(&psma->free_list_head->head);
}
if (DSP_SUCCEEDED(status)) {
/* create memory in-use list */
psma->in_use_list_head = kzalloc(sizeof(struct
lst_list), GFP_KERNEL);
if (psma->in_use_list_head == NULL) {
status = -ENOMEM;
goto func_end;
}
INIT_LIST_HEAD(&psma->in_use_list_head->head);
}
if (DSP_SUCCEEDED(status)) {
/* Get a mem node for this hunk-o-memory */
new_node = get_node(cmm_mgr_obj, dw_gpp_base_pa,
psma->dw_vm_base, ul_size);
/* Place node on the SM allocator's free list */
if (new_node) {
lst_put_tail(psma->free_list_head,
(struct list_head *)new_node);
} else {
status = -ENOMEM;
goto func_end;
}
}
if (DSP_FAILED(status)) {
/* Cleanup allocator */
un_register_gppsm_seg(psma);
}
} else {
status = -ENOMEM;
goto func_end;
}
/* make entry */
if (DSP_SUCCEEDED(status))
cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] = psma;
func_end:
mutex_unlock(&cmm_mgr_obj->cmm_lock);
return status;
}
/*
* ======== cmm_un_register_gppsm_seg ========
* Purpose:
* UnRegister GPP SM segments with the CMM.
*/
int cmm_un_register_gppsm_seg(struct cmm_object *hcmm_mgr,
u32 ul_seg_id)
{
struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
int status = 0;
struct cmm_allocator *psma;
u32 ul_id = ul_seg_id;
DBC_REQUIRE(ul_seg_id > 0);
if (hcmm_mgr) {
if (ul_seg_id == CMM_ALLSEGMENTS)
ul_id = 1;
if ((ul_id > 0) && (ul_id <= CMM_MAXGPPSEGS)) {
while (ul_id <= CMM_MAXGPPSEGS) {
mutex_lock(&cmm_mgr_obj->cmm_lock);
/* slot = seg_id-1 */
psma = cmm_mgr_obj->pa_gppsm_seg_tab[ul_id - 1];
if (psma != NULL) {
un_register_gppsm_seg(psma);
/* Set alctr ptr to NULL for future
* reuse */
cmm_mgr_obj->pa_gppsm_seg_tab[ul_id -
1] = NULL;
} else if (ul_seg_id != CMM_ALLSEGMENTS) {
status = -EPERM;
}
mutex_unlock(&cmm_mgr_obj->cmm_lock);
if (ul_seg_id != CMM_ALLSEGMENTS)
break;
ul_id++;
} /* end while */
} else {
status = -EINVAL;
}
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== un_register_gppsm_seg ========
* Purpose:
* UnRegister the SM allocator by freeing all its resources and
* nulling cmm mgr table entry.
* Note:
* This routine is always called within cmm lock crit sect.
*/
static void un_register_gppsm_seg(struct cmm_allocator *psma)
{
struct cmm_mnode *mnode_obj = NULL;
struct cmm_mnode *next_node = NULL;
DBC_REQUIRE(psma != NULL);
if (psma->free_list_head != NULL) {
/* free nodes on free list */
mnode_obj = (struct cmm_mnode *)lst_first(psma->free_list_head);
while (mnode_obj) {
next_node =
(struct cmm_mnode *)lst_next(psma->free_list_head,
(struct list_head *)
mnode_obj);
lst_remove_elem(psma->free_list_head,
(struct list_head *)mnode_obj);
kfree((void *)mnode_obj);
/* next node. */
mnode_obj = next_node;
}
kfree(psma->free_list_head); /* delete freelist */
/* free nodes on InUse list */
mnode_obj =
(struct cmm_mnode *)lst_first(psma->in_use_list_head);
while (mnode_obj) {
next_node =
(struct cmm_mnode *)lst_next(psma->in_use_list_head,
(struct list_head *)
mnode_obj);
lst_remove_elem(psma->in_use_list_head,
(struct list_head *)mnode_obj);
kfree((void *)mnode_obj);
/* next node. */
mnode_obj = next_node;
}
kfree(psma->in_use_list_head); /* delete InUse list */
}
if ((void *)psma->dw_vm_base != NULL)
MEM_UNMAP_LINEAR_ADDRESS((void *)psma->dw_vm_base);
/* Free allocator itself */
kfree(psma);
}
/*
* ======== get_slot ========
* Purpose:
* An available slot # is returned. Returns negative on failure.
*/
static s32 get_slot(struct cmm_object *cmm_mgr_obj)
{
s32 slot_seg = -1; /* neg on failure */
DBC_REQUIRE(cmm_mgr_obj != NULL);
/* get first available slot in cmm mgr SMSegTab[] */
for (slot_seg = 0; slot_seg < CMM_MAXGPPSEGS; slot_seg++) {
if (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] == NULL)
break;
}
if (slot_seg == CMM_MAXGPPSEGS)
slot_seg = -1; /* failed */
return slot_seg;
}
/*
* ======== get_node ========
* Purpose:
* Get a memory node from freelist or create a new one.
*/
static struct cmm_mnode *get_node(struct cmm_object *cmm_mgr_obj, u32 dw_pa,
u32 dw_va, u32 ul_size)
{
struct cmm_mnode *pnode = NULL;
DBC_REQUIRE(cmm_mgr_obj != NULL);
DBC_REQUIRE(dw_pa != 0);
DBC_REQUIRE(dw_va != 0);
DBC_REQUIRE(ul_size != 0);
/* Check cmm mgr's node freelist */
if (LST_IS_EMPTY(cmm_mgr_obj->node_free_list_head)) {
pnode = kzalloc(sizeof(struct cmm_mnode), GFP_KERNEL);
} else {
/* surely a valid element */
pnode = (struct cmm_mnode *)
lst_get_head(cmm_mgr_obj->node_free_list_head);
}
if (pnode) {
lst_init_elem((struct list_head *)pnode); /* set self */
pnode->dw_pa = dw_pa; /* Physical addr of start of block */
pnode->dw_va = dw_va; /* Virtual " " */
pnode->ul_size = ul_size; /* Size of block */
}
return pnode;
}
/*
* ======== delete_node ========
* Purpose:
* Put a memory node on the cmm nodelist for later use.
* Doesn't actually delete the node. Heap thrashing friendly.
*/
static void delete_node(struct cmm_object *cmm_mgr_obj, struct cmm_mnode *pnode)
{
DBC_REQUIRE(pnode != NULL);
lst_init_elem((struct list_head *)pnode); /* init .self ptr */
lst_put_tail(cmm_mgr_obj->node_free_list_head,
(struct list_head *)pnode);
}
/*
* ====== get_free_block ========
* Purpose:
* Scan the free block list and return the first block that satisfies
* the size.
*/
static struct cmm_mnode *get_free_block(struct cmm_allocator *allocator,
u32 usize)
{
if (allocator) {
struct cmm_mnode *mnode_obj = (struct cmm_mnode *)
lst_first(allocator->free_list_head);
while (mnode_obj) {
if (usize <= (u32) mnode_obj->ul_size) {
lst_remove_elem(allocator->free_list_head,
(struct list_head *)mnode_obj);
return mnode_obj;
}
/* next node. */
mnode_obj = (struct cmm_mnode *)
lst_next(allocator->free_list_head,
(struct list_head *)mnode_obj);
}
}
return NULL;
}
/*
* ======== add_to_free_list ========
* Purpose:
* Coelesce node into the freelist in ascending size order.
*/
static void add_to_free_list(struct cmm_allocator *allocator,
struct cmm_mnode *pnode)
{
struct cmm_mnode *node_prev = NULL;
struct cmm_mnode *node_next = NULL;
struct cmm_mnode *mnode_obj;
u32 dw_this_pa;
u32 dw_next_pa;
DBC_REQUIRE(pnode != NULL);
DBC_REQUIRE(allocator != NULL);
dw_this_pa = pnode->dw_pa;
dw_next_pa = NEXT_PA(pnode);
mnode_obj = (struct cmm_mnode *)lst_first(allocator->free_list_head);
while (mnode_obj) {
if (dw_this_pa == NEXT_PA(mnode_obj)) {
/* found the block ahead of this one */
node_prev = mnode_obj;
} else if (dw_next_pa == mnode_obj->dw_pa) {
node_next = mnode_obj;
}
if ((node_prev == NULL) || (node_next == NULL)) {
/* next node. */
mnode_obj = (struct cmm_mnode *)
lst_next(allocator->free_list_head,
(struct list_head *)mnode_obj);
} else {
/* got 'em */
break;
}
} /* while */
if (node_prev != NULL) {
/* combine with previous block */
lst_remove_elem(allocator->free_list_head,
(struct list_head *)node_prev);
/* grow node to hold both */
pnode->ul_size += node_prev->ul_size;
pnode->dw_pa = node_prev->dw_pa;
pnode->dw_va = node_prev->dw_va;
/* place node on mgr nodeFreeList */
delete_node((struct cmm_object *)allocator->hcmm_mgr,
node_prev);
}
if (node_next != NULL) {
/* combine with next block */
lst_remove_elem(allocator->free_list_head,
(struct list_head *)node_next);
/* grow da node */
pnode->ul_size += node_next->ul_size;
/* place node on mgr nodeFreeList */
delete_node((struct cmm_object *)allocator->hcmm_mgr,
node_next);
}
/* Now, let's add to freelist in increasing size order */
mnode_obj = (struct cmm_mnode *)lst_first(allocator->free_list_head);
while (mnode_obj) {
if (pnode->ul_size <= mnode_obj->ul_size)
break;
/* next node. */
mnode_obj =
(struct cmm_mnode *)lst_next(allocator->free_list_head,
(struct list_head *)mnode_obj);
}
/* if mnode_obj is NULL then add our pnode to the end of the freelist */
if (mnode_obj == NULL) {
lst_put_tail(allocator->free_list_head,
(struct list_head *)pnode);
} else {
/* insert our node before the current traversed node */
lst_insert_before(allocator->free_list_head,
(struct list_head *)pnode,
(struct list_head *)mnode_obj);
}
}
/*
* ======== get_allocator ========
* Purpose:
* Return the allocator for the given SM Segid.
* SegIds: 1,2,3..max.
*/
static struct cmm_allocator *get_allocator(struct cmm_object *cmm_mgr_obj,
u32 ul_seg_id)
{
struct cmm_allocator *allocator = NULL;
DBC_REQUIRE(cmm_mgr_obj != NULL);
DBC_REQUIRE((ul_seg_id > 0) && (ul_seg_id <= CMM_MAXGPPSEGS));
allocator = cmm_mgr_obj->pa_gppsm_seg_tab[ul_seg_id - 1];
if (allocator != NULL) {
/* make sure it's for real */
if (!allocator) {
allocator = NULL;
DBC_ASSERT(false);
}
}
return allocator;
}
/*
* The CMM_Xlator[xxx] routines below are used by Node and Stream
* to perform SM address translation to the client process address space.
* A "translator" object is created by a node/stream for each SM seg used.
*/
/*
* ======== cmm_xlator_create ========
* Purpose:
* Create an address translator object.
*/
int cmm_xlator_create(OUT struct cmm_xlatorobject **phXlator,
struct cmm_object *hcmm_mgr,
struct cmm_xlatorattrs *pXlatorAttrs)
{
struct cmm_xlator *xlator_object = NULL;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phXlator != NULL);
DBC_REQUIRE(hcmm_mgr != NULL);
*phXlator = NULL;
if (pXlatorAttrs == NULL)
pXlatorAttrs = &cmm_dfltxlatorattrs; /* set defaults */
xlator_object = kzalloc(sizeof(struct cmm_xlator), GFP_KERNEL);
if (xlator_object != NULL) {
xlator_object->hcmm_mgr = hcmm_mgr; /* ref back to CMM */
/* SM seg_id */
xlator_object->ul_seg_id = pXlatorAttrs->ul_seg_id;
} else {
status = -ENOMEM;
}
if (DSP_SUCCEEDED(status))
*phXlator = (struct cmm_xlatorobject *)xlator_object;
return status;
}
/*
* ======== cmm_xlator_delete ========
* Purpose:
* Free the Xlator resources.
* VM gets freed later.
*/
int cmm_xlator_delete(struct cmm_xlatorobject *xlator, bool bForce)
{
struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
int status = 0;
DBC_REQUIRE(refs > 0);
if (xlator_obj)
kfree(xlator_obj);
else
status = -EFAULT;
return status;
}
/*
* ======== cmm_xlator_alloc_buf ========
*/
void *cmm_xlator_alloc_buf(struct cmm_xlatorobject *xlator, void *pVaBuf,
u32 uPaSize)
{
struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
void *pbuf = NULL;
struct cmm_attrs attrs;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(xlator != NULL);
DBC_REQUIRE(xlator_obj->hcmm_mgr != NULL);
DBC_REQUIRE(pVaBuf != NULL);
DBC_REQUIRE(uPaSize > 0);
DBC_REQUIRE(xlator_obj->ul_seg_id > 0);
if (xlator_obj) {
attrs.ul_seg_id = xlator_obj->ul_seg_id;
*(volatile u32 *)pVaBuf = 0;
/* Alloc SM */
pbuf =
cmm_calloc_buf(xlator_obj->hcmm_mgr, uPaSize, &attrs, NULL);
if (pbuf) {
/* convert to translator(node/strm) process Virtual
* address */
*(volatile u32 **)pVaBuf =
(u32 *) cmm_xlator_translate(xlator,
pbuf, CMM_PA2VA);
}
}
return pbuf;
}
/*
* ======== cmm_xlator_free_buf ========
* Purpose:
* Free the given SM buffer and descriptor.
* Does not free virtual memory.
*/
int cmm_xlator_free_buf(struct cmm_xlatorobject *xlator, void *pBufVa)
{
struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
int status = -EPERM;
void *buf_pa = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pBufVa != NULL);
DBC_REQUIRE(xlator_obj->ul_seg_id > 0);
if (xlator_obj) {
/* convert Va to Pa so we can free it. */
buf_pa = cmm_xlator_translate(xlator, pBufVa, CMM_VA2PA);
if (buf_pa) {
status = cmm_free_buf(xlator_obj->hcmm_mgr, buf_pa,
xlator_obj->ul_seg_id);
if (DSP_FAILED(status)) {
/* Uh oh, this shouldn't happen. Descriptor
* gone! */
DBC_ASSERT(false); /* CMM is leaking mem */
}
}
}
return status;
}
/*
* ======== cmm_xlator_info ========
* Purpose:
* Set/Get translator info.
*/
int cmm_xlator_info(struct cmm_xlatorobject *xlator, IN OUT u8 ** paddr,
u32 ul_size, u32 uSegId, bool set_info)
{
struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(paddr != NULL);
DBC_REQUIRE((uSegId > 0) && (uSegId <= CMM_MAXGPPSEGS));
if (xlator_obj) {
if (set_info) {
/* set translators virtual address range */
xlator_obj->dw_virt_base = (u32) *paddr;
xlator_obj->ul_virt_size = ul_size;
} else { /* return virt base address */
*paddr = (u8 *) xlator_obj->dw_virt_base;
}
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== cmm_xlator_translate ========
*/
void *cmm_xlator_translate(struct cmm_xlatorobject *xlator, void *paddr,
enum cmm_xlatetype xType)
{
u32 dw_addr_xlate = 0;
struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
struct cmm_object *cmm_mgr_obj = NULL;
struct cmm_allocator *allocator = NULL;
u32 dw_offset = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(paddr != NULL);
DBC_REQUIRE((xType >= CMM_VA2PA) && (xType <= CMM_DSPPA2PA));
if (!xlator_obj)
goto loop_cont;
cmm_mgr_obj = (struct cmm_object *)xlator_obj->hcmm_mgr;
/* get this translator's default SM allocator */
DBC_ASSERT(xlator_obj->ul_seg_id > 0);
allocator = cmm_mgr_obj->pa_gppsm_seg_tab[xlator_obj->ul_seg_id - 1];
if (!allocator)
goto loop_cont;
if ((xType == CMM_VA2DSPPA) || (xType == CMM_VA2PA) ||
(xType == CMM_PA2VA)) {
if (xType == CMM_PA2VA) {
/* Gpp Va = Va Base + offset */
dw_offset = (u8 *) paddr - (u8 *) (allocator->shm_base -
allocator->
ul_dsp_size);
dw_addr_xlate = xlator_obj->dw_virt_base + dw_offset;
/* Check if translated Va base is in range */
if ((dw_addr_xlate < xlator_obj->dw_virt_base) ||
(dw_addr_xlate >=
(xlator_obj->dw_virt_base +
xlator_obj->ul_virt_size))) {
dw_addr_xlate = 0; /* bad address */
}
} else {
/* Gpp PA = Gpp Base + offset */
dw_offset =
(u8 *) paddr - (u8 *) xlator_obj->dw_virt_base;
dw_addr_xlate =
allocator->shm_base - allocator->ul_dsp_size +
dw_offset;
}
} else {
dw_addr_xlate = (u32) paddr;
}
/*Now convert address to proper target physical address if needed */
if ((xType == CMM_VA2DSPPA) || (xType == CMM_PA2DSPPA)) {
/* Got Gpp Pa now, convert to DSP Pa */
dw_addr_xlate =
GPPPA2DSPPA((allocator->shm_base - allocator->ul_dsp_size),
dw_addr_xlate,
allocator->dw_dsp_phys_addr_offset *
allocator->c_factor);
} else if (xType == CMM_DSPPA2PA) {
/* Got DSP Pa, convert to GPP Pa */
dw_addr_xlate =
DSPPA2GPPPA(allocator->shm_base - allocator->ul_dsp_size,
dw_addr_xlate,
allocator->dw_dsp_phys_addr_offset *
allocator->c_factor);
}
loop_cont:
return (void *)dw_addr_xlate;
}
/*
* cod.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* This module implements DSP code management for the DSP/BIOS Bridge
* environment. It is mostly a thin wrapper.
*
* This module provides an interface for loading both static and
* dynamic code objects onto DSP systems.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/ldr.h>
/* ----------------------------------- Platform Manager */
/* Include appropriate loader header file */
#include <dspbridge/dbll.h>
/* ----------------------------------- This */
#include <dspbridge/cod.h>
/* magic number for handle validation */
#define MAGIC 0xc001beef
/* macro to validate COD manager handles */
#define IS_VALID(h) ((h) != NULL && (h)->ul_magic == MAGIC)
/*
* ======== cod_manager ========
*/
struct cod_manager {
struct dbll_tar_obj *target;
struct dbll_library_obj *base_lib;
bool loaded; /* Base library loaded? */
u32 ul_entry;
struct ldr_module *dll_obj;
struct dbll_fxns fxns;
struct dbll_attrs attrs;
char sz_zl_file[COD_MAXPATHLENGTH];
u32 ul_magic;
};
/*
* ======== cod_libraryobj ========
*/
struct cod_libraryobj {
struct dbll_library_obj *dbll_lib;
struct cod_manager *cod_mgr;
};
static u32 refs = 0L;
static struct dbll_fxns ldr_fxns = {
(dbll_close_fxn) dbll_close,
(dbll_create_fxn) dbll_create,
(dbll_delete_fxn) dbll_delete,
(dbll_exit_fxn) dbll_exit,
(dbll_get_attrs_fxn) dbll_get_attrs,
(dbll_get_addr_fxn) dbll_get_addr,
(dbll_get_c_addr_fxn) dbll_get_c_addr,
(dbll_get_sect_fxn) dbll_get_sect,
(dbll_init_fxn) dbll_init,
(dbll_load_fxn) dbll_load,
(dbll_load_sect_fxn) dbll_load_sect,
(dbll_open_fxn) dbll_open,
(dbll_read_sect_fxn) dbll_read_sect,
(dbll_set_attrs_fxn) dbll_set_attrs,
(dbll_unload_fxn) dbll_unload,
(dbll_unload_sect_fxn) dbll_unload_sect,
};
static bool no_op(void);
/*
* File operations (originally were under kfile.c)
*/
static s32 cod_f_close(struct file *filp)
{
/* Check for valid handle */
if (!filp)
return -EFAULT;
filp_close(filp, NULL);
/* we can't use 0 here */
return 0;
}
static struct file *cod_f_open(CONST char *psz_file_name, CONST char *pszMode)
{
mm_segment_t fs;
struct file *filp;
fs = get_fs();
set_fs(get_ds());
/* ignore given mode and open file as read-only */
filp = filp_open(psz_file_name, O_RDONLY, 0);
if (IS_ERR(filp))
filp = NULL;
set_fs(fs);
return filp;
}
static s32 cod_f_read(void __user *pbuffer, s32 size, s32 cCount,
struct file *filp)
{
/* check for valid file handle */
if (!filp)
return -EFAULT;
if ((size > 0) && (cCount > 0) && pbuffer) {
u32 dw_bytes_read;
mm_segment_t fs;
/* read from file */
fs = get_fs();
set_fs(get_ds());
dw_bytes_read = filp->f_op->read(filp, pbuffer, size * cCount,
&(filp->f_pos));
set_fs(fs);
if (!dw_bytes_read)
return -EBADF;
return dw_bytes_read / size;
}
return -EINVAL;
}
static s32 cod_f_seek(struct file *filp, s32 lOffset, s32 cOrigin)
{
loff_t dw_cur_pos;
/* check for valid file handle */
if (!filp)
return -EFAULT;
/* based on the origin flag, move the internal pointer */
dw_cur_pos = filp->f_op->llseek(filp, lOffset, cOrigin);
if ((s32) dw_cur_pos < 0)
return -EPERM;
/* we can't use 0 here */
return 0;
}
static s32 cod_f_tell(struct file *filp)
{
loff_t dw_cur_pos;
if (!filp)
return -EFAULT;
/* Get current position */
dw_cur_pos = filp->f_op->llseek(filp, 0, SEEK_CUR);
if ((s32) dw_cur_pos < 0)
return -EPERM;
return dw_cur_pos;
}
/*
* ======== cod_close ========
*/
void cod_close(struct cod_libraryobj *lib)
{
struct cod_manager *hmgr;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(lib != NULL);
DBC_REQUIRE(IS_VALID(((struct cod_libraryobj *)lib)->cod_mgr));
hmgr = lib->cod_mgr;
hmgr->fxns.close_fxn(lib->dbll_lib);
kfree(lib);
}
/*
* ======== cod_create ========
* Purpose:
* Create an object to manage code on a DSP system.
* This object can be used to load an initial program image with
* arguments that can later be expanded with
* dynamically loaded object files.
*
*/
int cod_create(OUT struct cod_manager **phMgr, char *pstrDummyFile,
IN OPTIONAL CONST struct cod_attrs *attrs)
{
struct cod_manager *mgr_new;
struct dbll_attrs zl_attrs;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phMgr != NULL);
/* assume failure */
*phMgr = NULL;
/* we don't support non-default attrs yet */
if (attrs != NULL)
return -ENOSYS;
mgr_new = kzalloc(sizeof(struct cod_manager), GFP_KERNEL);
if (mgr_new == NULL)
return -ENOMEM;
mgr_new->ul_magic = MAGIC;
/* Set up loader functions */
mgr_new->fxns = ldr_fxns;
/* initialize the ZL module */
mgr_new->fxns.init_fxn();
zl_attrs.alloc = (dbll_alloc_fxn) no_op;
zl_attrs.free = (dbll_free_fxn) no_op;
zl_attrs.fread = (dbll_read_fxn) cod_f_read;
zl_attrs.fseek = (dbll_seek_fxn) cod_f_seek;
zl_attrs.ftell = (dbll_tell_fxn) cod_f_tell;
zl_attrs.fclose = (dbll_f_close_fxn) cod_f_close;
zl_attrs.fopen = (dbll_f_open_fxn) cod_f_open;
zl_attrs.sym_lookup = NULL;
zl_attrs.base_image = true;
zl_attrs.log_write = NULL;
zl_attrs.log_write_handle = NULL;
zl_attrs.write = NULL;
zl_attrs.rmm_handle = NULL;
zl_attrs.input_params = NULL;
zl_attrs.sym_handle = NULL;
zl_attrs.sym_arg = NULL;
mgr_new->attrs = zl_attrs;
status = mgr_new->fxns.create_fxn(&mgr_new->target, &zl_attrs);
if (DSP_FAILED(status)) {
cod_delete(mgr_new);
return -ESPIPE;
}
/* return the new manager */
*phMgr = mgr_new;
return 0;
}
/*
* ======== cod_delete ========
* Purpose:
* Delete a code manager object.
*/
void cod_delete(struct cod_manager *hmgr)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(hmgr));
if (hmgr->base_lib) {
if (hmgr->loaded)
hmgr->fxns.unload_fxn(hmgr->base_lib, &hmgr->attrs);
hmgr->fxns.close_fxn(hmgr->base_lib);
}
if (hmgr->target) {
hmgr->fxns.delete_fxn(hmgr->target);
hmgr->fxns.exit_fxn();
}
hmgr->ul_magic = ~MAGIC;
kfree(hmgr);
}
/*
* ======== cod_exit ========
* Purpose:
* Discontinue usage of the COD module.
*
*/
void cod_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== cod_get_base_lib ========
* Purpose:
* Get handle to the base image DBL library.
*/
int cod_get_base_lib(struct cod_manager *cod_mgr_obj,
struct dbll_library_obj **plib)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(cod_mgr_obj));
DBC_REQUIRE(plib != NULL);
*plib = (struct dbll_library_obj *)cod_mgr_obj->base_lib;
return status;
}
/*
* ======== cod_get_base_name ========
*/
int cod_get_base_name(struct cod_manager *cod_mgr_obj, char *pszName,
u32 usize)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(cod_mgr_obj));
DBC_REQUIRE(pszName != NULL);
if (usize <= COD_MAXPATHLENGTH)
strncpy(pszName, cod_mgr_obj->sz_zl_file, usize);
else
status = -EPERM;
return status;
}
/*
* ======== cod_get_entry ========
* Purpose:
* Retrieve the entry point of a loaded DSP program image
*
*/
int cod_get_entry(struct cod_manager *cod_mgr_obj, u32 *pulEntry)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(cod_mgr_obj));
DBC_REQUIRE(pulEntry != NULL);
*pulEntry = cod_mgr_obj->ul_entry;
return 0;
}
/*
* ======== cod_get_loader ========
* Purpose:
* Get handle to the DBLL loader.
*/
int cod_get_loader(struct cod_manager *cod_mgr_obj,
struct dbll_tar_obj **phLoader)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(cod_mgr_obj));
DBC_REQUIRE(phLoader != NULL);
*phLoader = (struct dbll_tar_obj *)cod_mgr_obj->target;
return status;
}
/*
* ======== cod_get_section ========
* Purpose:
* Retrieve the starting address and length of a section in the COFF file
* given the section name.
*/
int cod_get_section(struct cod_libraryobj *lib, IN char *pstrSect,
OUT u32 *puAddr, OUT u32 *puLen)
{
struct cod_manager *cod_mgr_obj;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(lib != NULL);
DBC_REQUIRE(IS_VALID(lib->cod_mgr));
DBC_REQUIRE(pstrSect != NULL);
DBC_REQUIRE(puAddr != NULL);
DBC_REQUIRE(puLen != NULL);
*puAddr = 0;
*puLen = 0;
if (lib != NULL) {
cod_mgr_obj = lib->cod_mgr;
status = cod_mgr_obj->fxns.get_sect_fxn(lib->dbll_lib, pstrSect,
puAddr, puLen);
} else {
status = -ESPIPE;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((*puAddr == 0) && (*puLen == 0)));
return status;
}
/*
* ======== cod_get_sym_value ========
* Purpose:
* Retrieve the value for the specified symbol. The symbol is first
* searched for literally and then, if not found, searched for as a
* C symbol.
*
*/
int cod_get_sym_value(struct cod_manager *hmgr, char *pstrSym,
u32 *pul_value)
{
struct dbll_sym_val *dbll_sym;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(hmgr));
DBC_REQUIRE(pstrSym != NULL);
DBC_REQUIRE(pul_value != NULL);
dev_dbg(bridge, "%s: hmgr: %p pstrSym: %s pul_value: %p\n",
__func__, hmgr, pstrSym, pul_value);
if (hmgr->base_lib) {
if (!hmgr->fxns.
get_addr_fxn(hmgr->base_lib, pstrSym, &dbll_sym)) {
if (!hmgr->fxns.
get_c_addr_fxn(hmgr->base_lib, pstrSym, &dbll_sym))
return -ESPIPE;
}
} else {
return -ESPIPE;
}
*pul_value = dbll_sym->value;
return 0;
}
/*
* ======== cod_init ========
* Purpose:
* Initialize the COD module's private state.
*
*/
bool cod_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && refs > 0) || (!ret && refs >= 0));
return ret;
}
/*
* ======== cod_load_base ========
* Purpose:
* Load the initial program image, optionally with command-line arguments,
* on the DSP system managed by the supplied handle. The program to be
* loaded must be the first element of the args array and must be a fully
* qualified pathname.
* Details:
* if nArgc doesn't match the number of arguments in the aArgs array, the
* aArgs array is searched for a NULL terminating entry, and argc is
* recalculated to reflect this. In this way, we can support NULL
* terminating aArgs arrays, if nArgc is very large.
*/
int cod_load_base(struct cod_manager *hmgr, u32 nArgc, char *aArgs[],
cod_writefxn pfn_write, void *pArb, char *envp[])
{
dbll_flags flags;
struct dbll_attrs save_attrs;
struct dbll_attrs new_attrs;
int status;
u32 i;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(hmgr));
DBC_REQUIRE(nArgc > 0);
DBC_REQUIRE(aArgs != NULL);
DBC_REQUIRE(aArgs[0] != NULL);
DBC_REQUIRE(pfn_write != NULL);
DBC_REQUIRE(hmgr->base_lib != NULL);
/*
* Make sure every argv[] stated in argc has a value, or change argc to
* reflect true number in NULL terminated argv array.
*/
for (i = 0; i < nArgc; i++) {
if (aArgs[i] == NULL) {
nArgc = i;
break;
}
}
/* set the write function for this operation */
hmgr->fxns.get_attrs_fxn(hmgr->target, &save_attrs);
new_attrs = save_attrs;
new_attrs.write = (dbll_write_fxn) pfn_write;
new_attrs.input_params = pArb;
new_attrs.alloc = (dbll_alloc_fxn) no_op;
new_attrs.free = (dbll_free_fxn) no_op;
new_attrs.log_write = NULL;
new_attrs.log_write_handle = NULL;
/* Load the image */
flags = DBLL_CODE | DBLL_DATA | DBLL_SYMB;
status = hmgr->fxns.load_fxn(hmgr->base_lib, flags, &new_attrs,
&hmgr->ul_entry);
if (DSP_FAILED(status))
hmgr->fxns.close_fxn(hmgr->base_lib);
if (DSP_SUCCEEDED(status))
hmgr->loaded = true;
else
hmgr->base_lib = NULL;
return status;
}
/*
* ======== cod_open ========
* Open library for reading sections.
*/
int cod_open(struct cod_manager *hmgr, IN char *pszCoffPath,
u32 flags, struct cod_libraryobj **pLib)
{
int status = 0;
struct cod_libraryobj *lib = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(hmgr));
DBC_REQUIRE(pszCoffPath != NULL);
DBC_REQUIRE(flags == COD_NOLOAD || flags == COD_SYMB);
DBC_REQUIRE(pLib != NULL);
*pLib = NULL;
lib = kzalloc(sizeof(struct cod_libraryobj), GFP_KERNEL);
if (lib == NULL)
status = -ENOMEM;
if (DSP_SUCCEEDED(status)) {
lib->cod_mgr = hmgr;
status = hmgr->fxns.open_fxn(hmgr->target, pszCoffPath, flags,
&lib->dbll_lib);
if (DSP_SUCCEEDED(status))
*pLib = lib;
}
if (DSP_FAILED(status))
pr_err("%s: error status 0x%x, pszCoffPath: %s flags: 0x%x\n",
__func__, status, pszCoffPath, flags);
return status;
}
/*
* ======== cod_open_base ========
* Purpose:
* Open base image for reading sections.
*/
int cod_open_base(struct cod_manager *hmgr, IN char *pszCoffPath,
dbll_flags flags)
{
int status = 0;
struct dbll_library_obj *lib;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(IS_VALID(hmgr));
DBC_REQUIRE(pszCoffPath != NULL);
/* if we previously opened a base image, close it now */
if (hmgr->base_lib) {
if (hmgr->loaded) {
hmgr->fxns.unload_fxn(hmgr->base_lib, &hmgr->attrs);
hmgr->loaded = false;
}
hmgr->fxns.close_fxn(hmgr->base_lib);
hmgr->base_lib = NULL;
}
status = hmgr->fxns.open_fxn(hmgr->target, pszCoffPath, flags, &lib);
if (DSP_SUCCEEDED(status)) {
/* hang onto the library for subsequent sym table usage */
hmgr->base_lib = lib;
strncpy(hmgr->sz_zl_file, pszCoffPath, COD_MAXPATHLENGTH - 1);
hmgr->sz_zl_file[COD_MAXPATHLENGTH - 1] = '\0';
}
if (DSP_FAILED(status))
pr_err("%s: error status 0x%x pszCoffPath: %s\n", __func__,
status, pszCoffPath);
return status;
}
/*
* ======== cod_read_section ========
* Purpose:
* Retrieve the content of a code section given the section name.
*/
int cod_read_section(struct cod_libraryobj *lib, IN char *pstrSect,
OUT char *pstrContent, IN u32 cContentSize)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(lib != NULL);
DBC_REQUIRE(IS_VALID(lib->cod_mgr));
DBC_REQUIRE(pstrSect != NULL);
DBC_REQUIRE(pstrContent != NULL);
if (lib != NULL)
status =
lib->cod_mgr->fxns.read_sect_fxn(lib->dbll_lib, pstrSect,
pstrContent, cContentSize);
else
status = -ESPIPE;
return status;
}
/*
* ======== no_op ========
* Purpose:
* No Operation.
*
*/
static bool no_op(void)
{
return true;
}
/*
* dbll.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
#include <dspbridge/gh.h>
/* ----------------------------------- OS Adaptation Layer */
/* Dynamic loader library interface */
#include <dspbridge/dynamic_loader.h>
#include <dspbridge/getsection.h>
/* ----------------------------------- This */
#include <dspbridge/dbll.h>
#include <dspbridge/rmm.h>
/* Number of buckets for symbol hash table */
#define MAXBUCKETS 211
/* Max buffer length */
#define MAXEXPR 128
#ifndef UINT32_C
#define UINT32_C(zzz) ((uint32_t)zzz)
#endif
#define DOFF_ALIGN(x) (((x) + 3) & ~UINT32_C(3))
/*
* ======== struct dbll_tar_obj* ========
* A target may have one or more libraries of symbols/code/data loaded
* onto it, where a library is simply the symbols/code/data contained
* in a DOFF file.
*/
/*
* ======== dbll_tar_obj ========
*/
struct dbll_tar_obj {
struct dbll_attrs attrs;
struct dbll_library_obj *head; /* List of all opened libraries */
};
/*
* The following 4 typedefs are "super classes" of the dynamic loader
* library types used in dynamic loader functions (dynamic_loader.h).
*/
/*
* ======== dbll_stream ========
* Contains dynamic_loader_stream
*/
struct dbll_stream {
struct dynamic_loader_stream dl_stream;
struct dbll_library_obj *lib;
};
/*
* ======== ldr_symbol ========
*/
struct ldr_symbol {
struct dynamic_loader_sym dl_symbol;
struct dbll_library_obj *lib;
};
/*
* ======== dbll_alloc ========
*/
struct dbll_alloc {
struct dynamic_loader_allocate dl_alloc;
struct dbll_library_obj *lib;
};
/*
* ======== dbll_init_obj ========
*/
struct dbll_init_obj {
struct dynamic_loader_initialize dl_init;
struct dbll_library_obj *lib;
};
/*
* ======== DBLL_Library ========
* A library handle is returned by DBLL_Open() and is passed to dbll_load()
* to load symbols/code/data, and to dbll_unload(), to remove the
* symbols/code/data loaded by dbll_load().
*/
/*
* ======== dbll_library_obj ========
*/
struct dbll_library_obj {
struct dbll_library_obj *next; /* Next library in target's list */
struct dbll_library_obj *prev; /* Previous in the list */
struct dbll_tar_obj *target_obj; /* target for this library */
/* Objects needed by dynamic loader */
struct dbll_stream stream;
struct ldr_symbol symbol;
struct dbll_alloc allocate;
struct dbll_init_obj init;
void *dload_mod_obj;
char *file_name; /* COFF file name */
void *fp; /* Opaque file handle */
u32 entry; /* Entry point */
void *desc; /* desc of DOFF file loaded */
u32 open_ref; /* Number of times opened */
u32 load_ref; /* Number of times loaded */
struct gh_t_hash_tab *sym_tab; /* Hash table of symbols */
u32 ul_pos;
};
/*
* ======== dbll_symbol ========
*/
struct dbll_symbol {
struct dbll_sym_val value;
char *name;
};
static void dof_close(struct dbll_library_obj *zl_lib);
static int dof_open(struct dbll_library_obj *zl_lib);
static s32 no_op(struct dynamic_loader_initialize *thisptr, void *bufr,
ldr_addr locn, struct ldr_section_info *info, unsigned bytsiz);
/*
* Functions called by dynamic loader
*
*/
/* dynamic_loader_stream */
static int dbll_read_buffer(struct dynamic_loader_stream *this, void *buffer,
unsigned bufsize);
static int dbll_set_file_posn(struct dynamic_loader_stream *this,
unsigned int pos);
/* dynamic_loader_sym */
static struct dynload_symbol *dbll_find_symbol(struct dynamic_loader_sym *this,
const char *name);
static struct dynload_symbol *dbll_add_to_symbol_table(struct dynamic_loader_sym
*this, const char *name,
unsigned moduleId);
static struct dynload_symbol *find_in_symbol_table(struct dynamic_loader_sym
*this, const char *name,
unsigned moduleid);
static void dbll_purge_symbol_table(struct dynamic_loader_sym *this,
unsigned moduleId);
static void *allocate(struct dynamic_loader_sym *this, unsigned memsize);
static void deallocate(struct dynamic_loader_sym *this, void *memPtr);
static void dbll_err_report(struct dynamic_loader_sym *this, const char *errstr,
va_list args);
/* dynamic_loader_allocate */
static int dbll_rmm_alloc(struct dynamic_loader_allocate *this,
struct ldr_section_info *info, unsigned align);
static void rmm_dealloc(struct dynamic_loader_allocate *this,
struct ldr_section_info *info);
/* dynamic_loader_initialize */
static int connect(struct dynamic_loader_initialize *this);
static int read_mem(struct dynamic_loader_initialize *this, void *buf,
ldr_addr addr, struct ldr_section_info *info,
unsigned nbytes);
static int write_mem(struct dynamic_loader_initialize *this, void *buf,
ldr_addr addr, struct ldr_section_info *info,
unsigned nbytes);
static int fill_mem(struct dynamic_loader_initialize *this, ldr_addr addr,
struct ldr_section_info *info, unsigned nbytes,
unsigned val);
static int execute(struct dynamic_loader_initialize *this, ldr_addr start);
static void release(struct dynamic_loader_initialize *this);
/* symbol table hash functions */
static u16 name_hash(void *name, u16 max_bucket);
static bool name_match(void *name, void *sp);
static void sym_delete(void *sp);
static u32 refs; /* module reference count */
/* Symbol Redefinition */
static int redefined_symbol;
static int gbl_search = 1;
/*
* ======== dbll_close ========
*/
void dbll_close(struct dbll_library_obj *zl_lib)
{
struct dbll_tar_obj *zl_target;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_lib);
DBC_REQUIRE(zl_lib->open_ref > 0);
zl_target = zl_lib->target_obj;
zl_lib->open_ref--;
if (zl_lib->open_ref == 0) {
/* Remove library from list */
if (zl_target->head == zl_lib)
zl_target->head = zl_lib->next;
if (zl_lib->prev)
(zl_lib->prev)->next = zl_lib->next;
if (zl_lib->next)
(zl_lib->next)->prev = zl_lib->prev;
/* Free DOF resources */
dof_close(zl_lib);
kfree(zl_lib->file_name);
/* remove symbols from symbol table */
if (zl_lib->sym_tab)
gh_delete(zl_lib->sym_tab);
/* remove the library object itself */
kfree(zl_lib);
zl_lib = NULL;
}
}
/*
* ======== dbll_create ========
*/
int dbll_create(struct dbll_tar_obj **target_obj,
struct dbll_attrs *pattrs)
{
struct dbll_tar_obj *pzl_target;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pattrs != NULL);
DBC_REQUIRE(target_obj != NULL);
/* Allocate DBL target object */
pzl_target = kzalloc(sizeof(struct dbll_tar_obj), GFP_KERNEL);
if (target_obj != NULL) {
if (pzl_target == NULL) {
*target_obj = NULL;
status = -ENOMEM;
} else {
pzl_target->attrs = *pattrs;
*target_obj = (struct dbll_tar_obj *)pzl_target;
}
DBC_ENSURE((DSP_SUCCEEDED(status) && *target_obj) ||
(DSP_FAILED(status) && *target_obj == NULL));
}
return status;
}
/*
* ======== dbll_delete ========
*/
void dbll_delete(struct dbll_tar_obj *target)
{
struct dbll_tar_obj *zl_target = (struct dbll_tar_obj *)target;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_target);
if (zl_target != NULL)
kfree(zl_target);
}
/*
* ======== dbll_exit ========
* Discontinue usage of DBL module.
*/
void dbll_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
if (refs == 0)
gh_exit();
DBC_ENSURE(refs >= 0);
}
/*
* ======== dbll_get_addr ========
* Get address of name in the specified library.
*/
bool dbll_get_addr(struct dbll_library_obj *zl_lib, char *name,
struct dbll_sym_val **ppSym)
{
struct dbll_symbol *sym;
bool status = false;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_lib);
DBC_REQUIRE(name != NULL);
DBC_REQUIRE(ppSym != NULL);
DBC_REQUIRE(zl_lib->sym_tab != NULL);
sym = (struct dbll_symbol *)gh_find(zl_lib->sym_tab, name);
if (sym != NULL) {
*ppSym = &sym->value;
status = true;
}
dev_dbg(bridge, "%s: lib: %p name: %s paddr: %p, status 0x%x\n",
__func__, zl_lib, name, ppSym, status);
return status;
}
/*
* ======== dbll_get_attrs ========
* Retrieve the attributes of the target.
*/
void dbll_get_attrs(struct dbll_tar_obj *target, struct dbll_attrs *pattrs)
{
struct dbll_tar_obj *zl_target = (struct dbll_tar_obj *)target;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_target);
DBC_REQUIRE(pattrs != NULL);
if ((pattrs != NULL) && (zl_target != NULL))
*pattrs = zl_target->attrs;
}
/*
* ======== dbll_get_c_addr ========
* Get address of a "C" name in the specified library.
*/
bool dbll_get_c_addr(struct dbll_library_obj *zl_lib, char *name,
struct dbll_sym_val **ppSym)
{
struct dbll_symbol *sym;
char cname[MAXEXPR + 1];
bool status = false;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_lib);
DBC_REQUIRE(ppSym != NULL);
DBC_REQUIRE(zl_lib->sym_tab != NULL);
DBC_REQUIRE(name != NULL);
cname[0] = '_';
strncpy(cname + 1, name, sizeof(cname) - 2);
cname[MAXEXPR] = '\0'; /* insure '\0' string termination */
/* Check for C name, if not found */
sym = (struct dbll_symbol *)gh_find(zl_lib->sym_tab, cname);
if (sym != NULL) {
*ppSym = &sym->value;
status = true;
}
return status;
}
/*
* ======== dbll_get_sect ========
* Get the base address and size (in bytes) of a COFF section.
*/
int dbll_get_sect(struct dbll_library_obj *lib, char *name, u32 *paddr,
u32 *psize)
{
u32 byte_size;
bool opened_doff = false;
const struct ldr_section_info *sect = NULL;
struct dbll_library_obj *zl_lib = (struct dbll_library_obj *)lib;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(name != NULL);
DBC_REQUIRE(paddr != NULL);
DBC_REQUIRE(psize != NULL);
DBC_REQUIRE(zl_lib);
/* If DOFF file is not open, we open it. */
if (zl_lib != NULL) {
if (zl_lib->fp == NULL) {
status = dof_open(zl_lib);
if (DSP_SUCCEEDED(status))
opened_doff = true;
} else {
(*(zl_lib->target_obj->attrs.fseek)) (zl_lib->fp,
zl_lib->ul_pos,
SEEK_SET);
}
} else {
status = -EFAULT;
}
if (DSP_SUCCEEDED(status)) {
byte_size = 1;
if (dload_get_section_info(zl_lib->desc, name, &sect)) {
*paddr = sect->load_addr;
*psize = sect->size * byte_size;
/* Make sure size is even for good swap */
if (*psize % 2)
(*psize)++;
/* Align size */
*psize = DOFF_ALIGN(*psize);
} else {
status = -ENXIO;
}
}
if (opened_doff) {
dof_close(zl_lib);
opened_doff = false;
}
dev_dbg(bridge, "%s: lib: %p name: %s paddr: %p psize: %p, "
"status 0x%x\n", __func__, lib, name, paddr, psize, status);
return status;
}
/*
* ======== dbll_init ========
*/
bool dbll_init(void)
{
DBC_REQUIRE(refs >= 0);
if (refs == 0)
gh_init();
refs++;
return true;
}
/*
* ======== dbll_load ========
*/
int dbll_load(struct dbll_library_obj *lib, dbll_flags flags,
struct dbll_attrs *attrs, u32 *pEntry)
{
struct dbll_library_obj *zl_lib = (struct dbll_library_obj *)lib;
struct dbll_tar_obj *dbzl;
bool got_symbols = true;
s32 err;
int status = 0;
bool opened_doff = false;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_lib);
DBC_REQUIRE(pEntry != NULL);
DBC_REQUIRE(attrs != NULL);
/*
* Load if not already loaded.
*/
if (zl_lib->load_ref == 0 || !(flags & DBLL_DYNAMIC)) {
dbzl = zl_lib->target_obj;
dbzl->attrs = *attrs;
/* Create a hash table for symbols if not already created */
if (zl_lib->sym_tab == NULL) {
got_symbols = false;
zl_lib->sym_tab = gh_create(MAXBUCKETS,
sizeof(struct dbll_symbol),
name_hash,
name_match, sym_delete);
if (zl_lib->sym_tab == NULL)
status = -ENOMEM;
}
/*
* Set up objects needed by the dynamic loader
*/
/* Stream */
zl_lib->stream.dl_stream.read_buffer = dbll_read_buffer;
zl_lib->stream.dl_stream.set_file_posn = dbll_set_file_posn;
zl_lib->stream.lib = zl_lib;
/* Symbol */
zl_lib->symbol.dl_symbol.find_matching_symbol =
dbll_find_symbol;
if (got_symbols) {
zl_lib->symbol.dl_symbol.add_to_symbol_table =
find_in_symbol_table;
} else {
zl_lib->symbol.dl_symbol.add_to_symbol_table =
dbll_add_to_symbol_table;
}
zl_lib->symbol.dl_symbol.purge_symbol_table =
dbll_purge_symbol_table;
zl_lib->symbol.dl_symbol.dload_allocate = allocate;
zl_lib->symbol.dl_symbol.dload_deallocate = deallocate;
zl_lib->symbol.dl_symbol.error_report = dbll_err_report;
zl_lib->symbol.lib = zl_lib;
/* Allocate */
zl_lib->allocate.dl_alloc.dload_allocate = dbll_rmm_alloc;
zl_lib->allocate.dl_alloc.dload_deallocate = rmm_dealloc;
zl_lib->allocate.lib = zl_lib;
/* Init */
zl_lib->init.dl_init.connect = connect;
zl_lib->init.dl_init.readmem = read_mem;
zl_lib->init.dl_init.writemem = write_mem;
zl_lib->init.dl_init.fillmem = fill_mem;
zl_lib->init.dl_init.execute = execute;
zl_lib->init.dl_init.release = release;
zl_lib->init.lib = zl_lib;
/* If COFF file is not open, we open it. */
if (zl_lib->fp == NULL) {
status = dof_open(zl_lib);
if (DSP_SUCCEEDED(status))
opened_doff = true;
}
if (DSP_SUCCEEDED(status)) {
zl_lib->ul_pos = (*(zl_lib->target_obj->attrs.ftell))
(zl_lib->fp);
/* Reset file cursor */
(*(zl_lib->target_obj->attrs.fseek)) (zl_lib->fp,
(long)0,
SEEK_SET);
symbols_reloaded = true;
/* The 5th argument, DLOAD_INITBSS, tells the DLL
* module to zero-init all BSS sections. In general,
* this is not necessary and also increases load time.
* We may want to make this configurable by the user */
err = dynamic_load_module(&zl_lib->stream.dl_stream,
&zl_lib->symbol.dl_symbol,
&zl_lib->allocate.dl_alloc,
&zl_lib->init.dl_init,
DLOAD_INITBSS,
&zl_lib->dload_mod_obj);
if (err != 0) {
status = -EILSEQ;
} else if (redefined_symbol) {
zl_lib->load_ref++;
dbll_unload(zl_lib, (struct dbll_attrs *)attrs);
redefined_symbol = false;
status = -EILSEQ;
} else {
*pEntry = zl_lib->entry;
}
}
}
if (DSP_SUCCEEDED(status))
zl_lib->load_ref++;
/* Clean up DOFF resources */
if (opened_doff)
dof_close(zl_lib);
DBC_ENSURE(DSP_FAILED(status) || zl_lib->load_ref > 0);
dev_dbg(bridge, "%s: lib: %p flags: 0x%x pEntry: %p, status 0x%x\n",
__func__, lib, flags, pEntry, status);
return status;
}
/*
* ======== dbll_load_sect ========
* Not supported for COFF.
*/
int dbll_load_sect(struct dbll_library_obj *zl_lib, char *sectName,
struct dbll_attrs *attrs)
{
DBC_REQUIRE(zl_lib);
return -ENOSYS;
}
/*
* ======== dbll_open ========
*/
int dbll_open(struct dbll_tar_obj *target, char *file, dbll_flags flags,
struct dbll_library_obj **pLib)
{
struct dbll_tar_obj *zl_target = (struct dbll_tar_obj *)target;
struct dbll_library_obj *zl_lib = NULL;
s32 err;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_target);
DBC_REQUIRE(zl_target->attrs.fopen != NULL);
DBC_REQUIRE(file != NULL);
DBC_REQUIRE(pLib != NULL);
zl_lib = zl_target->head;
while (zl_lib != NULL) {
if (strcmp(zl_lib->file_name, file) == 0) {
/* Library is already opened */
zl_lib->open_ref++;
break;
}
zl_lib = zl_lib->next;
}
if (zl_lib == NULL) {
/* Allocate DBL library object */
zl_lib = kzalloc(sizeof(struct dbll_library_obj), GFP_KERNEL);
if (zl_lib == NULL) {
status = -ENOMEM;
} else {
zl_lib->ul_pos = 0;
/* Increment ref count to allow close on failure
* later on */
zl_lib->open_ref++;
zl_lib->target_obj = zl_target;
/* Keep a copy of the file name */
zl_lib->file_name = kzalloc(strlen(file) + 1,
GFP_KERNEL);
if (zl_lib->file_name == NULL) {
status = -ENOMEM;
} else {
strncpy(zl_lib->file_name, file,
strlen(file) + 1);
}
zl_lib->sym_tab = NULL;
}
}
/*
* Set up objects needed by the dynamic loader
*/
if (DSP_FAILED(status))
goto func_cont;
/* Stream */
zl_lib->stream.dl_stream.read_buffer = dbll_read_buffer;
zl_lib->stream.dl_stream.set_file_posn = dbll_set_file_posn;
zl_lib->stream.lib = zl_lib;
/* Symbol */
zl_lib->symbol.dl_symbol.add_to_symbol_table = dbll_add_to_symbol_table;
zl_lib->symbol.dl_symbol.find_matching_symbol = dbll_find_symbol;
zl_lib->symbol.dl_symbol.purge_symbol_table = dbll_purge_symbol_table;
zl_lib->symbol.dl_symbol.dload_allocate = allocate;
zl_lib->symbol.dl_symbol.dload_deallocate = deallocate;
zl_lib->symbol.dl_symbol.error_report = dbll_err_report;
zl_lib->symbol.lib = zl_lib;
/* Allocate */
zl_lib->allocate.dl_alloc.dload_allocate = dbll_rmm_alloc;
zl_lib->allocate.dl_alloc.dload_deallocate = rmm_dealloc;
zl_lib->allocate.lib = zl_lib;
/* Init */
zl_lib->init.dl_init.connect = connect;
zl_lib->init.dl_init.readmem = read_mem;
zl_lib->init.dl_init.writemem = write_mem;
zl_lib->init.dl_init.fillmem = fill_mem;
zl_lib->init.dl_init.execute = execute;
zl_lib->init.dl_init.release = release;
zl_lib->init.lib = zl_lib;
if (DSP_SUCCEEDED(status) && zl_lib->fp == NULL)
status = dof_open(zl_lib);
zl_lib->ul_pos = (*(zl_lib->target_obj->attrs.ftell)) (zl_lib->fp);
(*(zl_lib->target_obj->attrs.fseek)) (zl_lib->fp, (long)0, SEEK_SET);
/* Create a hash table for symbols if flag is set */
if (zl_lib->sym_tab != NULL || !(flags & DBLL_SYMB))
goto func_cont;
zl_lib->sym_tab =
gh_create(MAXBUCKETS, sizeof(struct dbll_symbol), name_hash,
name_match, sym_delete);
if (zl_lib->sym_tab == NULL) {
status = -ENOMEM;
} else {
/* Do a fake load to get symbols - set write func to no_op */
zl_lib->init.dl_init.writemem = no_op;
err = dynamic_open_module(&zl_lib->stream.dl_stream,
&zl_lib->symbol.dl_symbol,
&zl_lib->allocate.dl_alloc,
&zl_lib->init.dl_init, 0,
&zl_lib->dload_mod_obj);
if (err != 0) {
status = -EILSEQ;
} else {
/* Now that we have the symbol table, we can unload */
err = dynamic_unload_module(zl_lib->dload_mod_obj,
&zl_lib->symbol.dl_symbol,
&zl_lib->allocate.dl_alloc,
&zl_lib->init.dl_init);
if (err != 0)
status = -EILSEQ;
zl_lib->dload_mod_obj = NULL;
}
}
func_cont:
if (DSP_SUCCEEDED(status)) {
if (zl_lib->open_ref == 1) {
/* First time opened - insert in list */
if (zl_target->head)
(zl_target->head)->prev = zl_lib;
zl_lib->prev = NULL;
zl_lib->next = zl_target->head;
zl_target->head = zl_lib;
}
*pLib = (struct dbll_library_obj *)zl_lib;
} else {
*pLib = NULL;
if (zl_lib != NULL)
dbll_close((struct dbll_library_obj *)zl_lib);
}
DBC_ENSURE((DSP_SUCCEEDED(status) && (zl_lib->open_ref > 0) && *pLib)
|| (DSP_FAILED(status) && *pLib == NULL));
dev_dbg(bridge, "%s: target: %p file: %s pLib: %p, status 0x%x\n",
__func__, target, file, pLib, status);
return status;
}
/*
* ======== dbll_read_sect ========
* Get the content of a COFF section.
*/
int dbll_read_sect(struct dbll_library_obj *lib, char *name,
char *pContent, u32 size)
{
struct dbll_library_obj *zl_lib = (struct dbll_library_obj *)lib;
bool opened_doff = false;
u32 byte_size; /* size of bytes */
u32 ul_sect_size; /* size of section */
const struct ldr_section_info *sect = NULL;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_lib);
DBC_REQUIRE(name != NULL);
DBC_REQUIRE(pContent != NULL);
DBC_REQUIRE(size != 0);
/* If DOFF file is not open, we open it. */
if (zl_lib != NULL) {
if (zl_lib->fp == NULL) {
status = dof_open(zl_lib);
if (DSP_SUCCEEDED(status))
opened_doff = true;
} else {
(*(zl_lib->target_obj->attrs.fseek)) (zl_lib->fp,
zl_lib->ul_pos,
SEEK_SET);
}
} else {
status = -EFAULT;
}
if (DSP_FAILED(status))
goto func_cont;
byte_size = 1;
if (!dload_get_section_info(zl_lib->desc, name, &sect)) {
status = -ENXIO;
goto func_cont;
}
/*
* Ensure the supplied buffer size is sufficient to store
* the section content to be read.
*/
ul_sect_size = sect->size * byte_size;
/* Make sure size is even for good swap */
if (ul_sect_size % 2)
ul_sect_size++;
/* Align size */
ul_sect_size = DOFF_ALIGN(ul_sect_size);
if (ul_sect_size > size) {
status = -EPERM;
} else {
if (!dload_get_section(zl_lib->desc, sect, pContent))
status = -EBADF;
}
func_cont:
if (opened_doff) {
dof_close(zl_lib);
opened_doff = false;
}
dev_dbg(bridge, "%s: lib: %p name: %s pContent: %p size: 0x%x, "
"status 0x%x\n", __func__, lib, name, pContent, size, status);
return status;
}
/*
* ======== dbll_set_attrs ========
* Set the attributes of the target.
*/
void dbll_set_attrs(struct dbll_tar_obj *target, struct dbll_attrs *pattrs)
{
struct dbll_tar_obj *zl_target = (struct dbll_tar_obj *)target;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_target);
DBC_REQUIRE(pattrs != NULL);
if ((pattrs != NULL) && (zl_target != NULL))
zl_target->attrs = *pattrs;
}
/*
* ======== dbll_unload ========
*/
void dbll_unload(struct dbll_library_obj *lib, struct dbll_attrs *attrs)
{
struct dbll_library_obj *zl_lib = (struct dbll_library_obj *)lib;
s32 err = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(zl_lib);
DBC_REQUIRE(zl_lib->load_ref > 0);
dev_dbg(bridge, "%s: lib: %p\n", __func__, lib);
zl_lib->load_ref--;
/* Unload only if reference count is 0 */
if (zl_lib->load_ref != 0)
goto func_end;
zl_lib->target_obj->attrs = *attrs;
if (zl_lib->dload_mod_obj) {
err = dynamic_unload_module(zl_lib->dload_mod_obj,
&zl_lib->symbol.dl_symbol,
&zl_lib->allocate.dl_alloc,
&zl_lib->init.dl_init);
if (err != 0)
dev_dbg(bridge, "%s: failed: 0x%x\n", __func__, err);
}
/* remove symbols from symbol table */
if (zl_lib->sym_tab != NULL) {
gh_delete(zl_lib->sym_tab);
zl_lib->sym_tab = NULL;
}
/* delete DOFF desc since it holds *lots* of host OS
* resources */
dof_close(zl_lib);
func_end:
DBC_ENSURE(zl_lib->load_ref >= 0);
}
/*
* ======== dbll_unload_sect ========
* Not supported for COFF.
*/
int dbll_unload_sect(struct dbll_library_obj *lib, char *sectName,
struct dbll_attrs *attrs)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(sectName != NULL);
return -ENOSYS;
}
/*
* ======== dof_close ========
*/
static void dof_close(struct dbll_library_obj *zl_lib)
{
if (zl_lib->desc) {
dload_module_close(zl_lib->desc);
zl_lib->desc = NULL;
}
/* close file */
if (zl_lib->fp) {
(zl_lib->target_obj->attrs.fclose) (zl_lib->fp);
zl_lib->fp = NULL;
}
}
/*
* ======== dof_open ========
*/
static int dof_open(struct dbll_library_obj *zl_lib)
{
void *open = *(zl_lib->target_obj->attrs.fopen);
int status = 0;
/* First open the file for the dynamic loader, then open COF */
zl_lib->fp =
(void *)((dbll_f_open_fxn) (open)) (zl_lib->file_name, "rb");
/* Open DOFF module */
if (zl_lib->fp && zl_lib->desc == NULL) {
(*(zl_lib->target_obj->attrs.fseek)) (zl_lib->fp, (long)0,
SEEK_SET);
zl_lib->desc =
dload_module_open(&zl_lib->stream.dl_stream,
&zl_lib->symbol.dl_symbol);
if (zl_lib->desc == NULL) {
(zl_lib->target_obj->attrs.fclose) (zl_lib->fp);
zl_lib->fp = NULL;
status = -EBADF;
}
} else {
status = -EBADF;
}
return status;
}
/*
* ======== name_hash ========
*/
static u16 name_hash(void *key, u16 max_bucket)
{
u16 ret;
u16 hash;
char *name = (char *)key;
DBC_REQUIRE(name != NULL);
hash = 0;
while (*name) {
hash <<= 1;
hash ^= *name++;
}
ret = hash % max_bucket;
return ret;
}
/*
* ======== name_match ========
*/
static bool name_match(void *key, void *value)
{
DBC_REQUIRE(key != NULL);
DBC_REQUIRE(value != NULL);
if ((key != NULL) && (value != NULL)) {
if (strcmp((char *)key, ((struct dbll_symbol *)value)->name) ==
0)
return true;
}
return false;
}
/*
* ======== no_op ========
*/
static int no_op(struct dynamic_loader_initialize *thisptr, void *bufr,
ldr_addr locn, struct ldr_section_info *info, unsigned bytsize)
{
return 1;
}
/*
* ======== sym_delete ========
*/
static void sym_delete(void *value)
{
struct dbll_symbol *sp = (struct dbll_symbol *)value;
kfree(sp->name);
}
/*
* Dynamic Loader Functions
*/
/* dynamic_loader_stream */
/*
* ======== dbll_read_buffer ========
*/
static int dbll_read_buffer(struct dynamic_loader_stream *this, void *buffer,
unsigned bufsize)
{
struct dbll_stream *pstream = (struct dbll_stream *)this;
struct dbll_library_obj *lib;
int bytes_read = 0;
DBC_REQUIRE(this != NULL);
lib = pstream->lib;
DBC_REQUIRE(lib);
if (lib != NULL) {
bytes_read =
(*(lib->target_obj->attrs.fread)) (buffer, 1, bufsize,
lib->fp);
}
return bytes_read;
}
/*
* ======== dbll_set_file_posn ========
*/
static int dbll_set_file_posn(struct dynamic_loader_stream *this,
unsigned int pos)
{
struct dbll_stream *pstream = (struct dbll_stream *)this;
struct dbll_library_obj *lib;
int status = 0; /* Success */
DBC_REQUIRE(this != NULL);
lib = pstream->lib;
DBC_REQUIRE(lib);
if (lib != NULL) {
status = (*(lib->target_obj->attrs.fseek)) (lib->fp, (long)pos,
SEEK_SET);
}
return status;
}
/* dynamic_loader_sym */
/*
* ======== dbll_find_symbol ========
*/
static struct dynload_symbol *dbll_find_symbol(struct dynamic_loader_sym *this,
const char *name)
{
struct dynload_symbol *ret_sym;
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
struct dbll_sym_val *dbll_sym = NULL;
bool status = false; /* Symbol not found yet */
DBC_REQUIRE(this != NULL);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
if (lib != NULL) {
if (lib->target_obj->attrs.sym_lookup) {
/* Check current lib + base lib + dep lib +
* persistent lib */
status = (*(lib->target_obj->attrs.sym_lookup))
(lib->target_obj->attrs.sym_handle,
lib->target_obj->attrs.sym_arg,
lib->target_obj->attrs.rmm_handle, name,
&dbll_sym);
} else {
/* Just check current lib for symbol */
status = dbll_get_addr((struct dbll_library_obj *)lib,
(char *)name, &dbll_sym);
if (!status) {
status =
dbll_get_c_addr((struct dbll_library_obj *)
lib, (char *)name,
&dbll_sym);
}
}
}
if (!status && gbl_search)
dev_dbg(bridge, "%s: Symbol not found: %s\n", __func__, name);
DBC_ASSERT((status && (dbll_sym != NULL))
|| (!status && (dbll_sym == NULL)));
ret_sym = (struct dynload_symbol *)dbll_sym;
return ret_sym;
}
/*
* ======== find_in_symbol_table ========
*/
static struct dynload_symbol *find_in_symbol_table(struct dynamic_loader_sym
*this, const char *name,
unsigned moduleid)
{
struct dynload_symbol *ret_sym;
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
struct dbll_symbol *sym;
DBC_REQUIRE(this != NULL);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
DBC_REQUIRE(lib->sym_tab != NULL);
sym = (struct dbll_symbol *)gh_find(lib->sym_tab, (char *)name);
ret_sym = (struct dynload_symbol *)&sym->value;
return ret_sym;
}
/*
* ======== dbll_add_to_symbol_table ========
*/
static struct dynload_symbol *dbll_add_to_symbol_table(struct dynamic_loader_sym
*this, const char *name,
unsigned moduleId)
{
struct dbll_symbol *sym_ptr = NULL;
struct dbll_symbol symbol;
struct dynload_symbol *dbll_sym = NULL;
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
struct dynload_symbol *ret;
DBC_REQUIRE(this != NULL);
DBC_REQUIRE(name);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
/* Check to see if symbol is already defined in symbol table */
if (!(lib->target_obj->attrs.base_image)) {
gbl_search = false;
dbll_sym = dbll_find_symbol(this, name);
gbl_search = true;
if (dbll_sym) {
redefined_symbol = true;
dev_dbg(bridge, "%s already defined in symbol table\n",
name);
return NULL;
}
}
/* Allocate string to copy symbol name */
symbol.name = kzalloc(strlen((char *const)name) + 1, GFP_KERNEL);
if (symbol.name == NULL)
return NULL;
if (symbol.name != NULL) {
/* Just copy name (value will be filled in by dynamic loader) */
strncpy(symbol.name, (char *const)name,
strlen((char *const)name) + 1);
/* Add symbol to symbol table */
sym_ptr =
(struct dbll_symbol *)gh_insert(lib->sym_tab, (void *)name,
(void *)&symbol);
if (sym_ptr == NULL)
kfree(symbol.name);
}
if (sym_ptr != NULL)
ret = (struct dynload_symbol *)&sym_ptr->value;
else
ret = NULL;
return ret;
}
/*
* ======== dbll_purge_symbol_table ========
*/
static void dbll_purge_symbol_table(struct dynamic_loader_sym *this,
unsigned moduleId)
{
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
DBC_REQUIRE(this != NULL);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
/* May not need to do anything */
}
/*
* ======== allocate ========
*/
static void *allocate(struct dynamic_loader_sym *this, unsigned memsize)
{
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
void *buf;
DBC_REQUIRE(this != NULL);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
buf = kzalloc(memsize, GFP_KERNEL);
return buf;
}
/*
* ======== deallocate ========
*/
static void deallocate(struct dynamic_loader_sym *this, void *memPtr)
{
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
DBC_REQUIRE(this != NULL);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
kfree(memPtr);
}
/*
* ======== dbll_err_report ========
*/
static void dbll_err_report(struct dynamic_loader_sym *this, const char *errstr,
va_list args)
{
struct ldr_symbol *ldr_sym = (struct ldr_symbol *)this;
struct dbll_library_obj *lib;
char temp_buf[MAXEXPR];
DBC_REQUIRE(this != NULL);
lib = ldr_sym->lib;
DBC_REQUIRE(lib);
vsnprintf((char *)temp_buf, MAXEXPR, (char *)errstr, args);
dev_dbg(bridge, "%s\n", temp_buf);
}
/* dynamic_loader_allocate */
/*
* ======== dbll_rmm_alloc ========
*/
static int dbll_rmm_alloc(struct dynamic_loader_allocate *this,
struct ldr_section_info *info, unsigned align)
{
struct dbll_alloc *dbll_alloc_obj = (struct dbll_alloc *)this;
struct dbll_library_obj *lib;
int status = 0;
u32 mem_sect_type;
struct rmm_addr rmm_addr_obj;
s32 ret = TRUE;
unsigned stype = DLOAD_SECTION_TYPE(info->type);
char *token = NULL;
char *sz_sec_last_token = NULL;
char *sz_last_token = NULL;
char *sz_sect_name = NULL;
char *psz_cur;
s32 token_len = 0;
s32 seg_id = -1;
s32 req = -1;
s32 count = 0;
u32 alloc_size = 0;
u32 run_addr_flag = 0;
DBC_REQUIRE(this != NULL);
lib = dbll_alloc_obj->lib;
DBC_REQUIRE(lib);
mem_sect_type =
(stype == DLOAD_TEXT) ? DBLL_CODE : (stype ==
DLOAD_BSS) ? DBLL_BSS :
DBLL_DATA;
/* Attempt to extract the segment ID and requirement information from
the name of the section */
DBC_REQUIRE(info->name);
token_len = strlen((char *)(info->name)) + 1;
sz_sect_name = kzalloc(token_len, GFP_KERNEL);
sz_last_token = kzalloc(token_len, GFP_KERNEL);
sz_sec_last_token = kzalloc(token_len, GFP_KERNEL);
if (sz_sect_name == NULL || sz_sec_last_token == NULL ||
sz_last_token == NULL) {
status = -ENOMEM;
goto func_cont;
}
strncpy(sz_sect_name, (char *)(info->name), token_len);
psz_cur = sz_sect_name;
while ((token = strsep(&psz_cur, ":")) && *token != '\0') {
strncpy(sz_sec_last_token, sz_last_token,
strlen(sz_last_token) + 1);
strncpy(sz_last_token, token, strlen(token) + 1);
token = strsep(&psz_cur, ":");
count++; /* optimizes processing */
}
/* If token is 0 or 1, and sz_sec_last_token is DYN_DARAM or DYN_SARAM,
or DYN_EXTERNAL, then mem granularity information is present
within the section name - only process if there are at least three
tokens within the section name (just a minor optimization) */
if (count >= 3)
strict_strtol(sz_last_token, 10, (long *)&req);
if ((req == 0) || (req == 1)) {
if (strcmp(sz_sec_last_token, "DYN_DARAM") == 0) {
seg_id = 0;
} else {
if (strcmp(sz_sec_last_token, "DYN_SARAM") == 0) {
seg_id = 1;
} else {
if (strcmp(sz_sec_last_token,
"DYN_EXTERNAL") == 0)
seg_id = 2;
}
}
}
func_cont:
kfree(sz_sect_name);
sz_sect_name = NULL;
kfree(sz_last_token);
sz_last_token = NULL;
kfree(sz_sec_last_token);
sz_sec_last_token = NULL;
if (mem_sect_type == DBLL_CODE)
alloc_size = info->size + GEM_L1P_PREFETCH_SIZE;
else
alloc_size = info->size;
if (info->load_addr != info->run_addr)
run_addr_flag = 1;
/* TODO - ideally, we can pass the alignment requirement also
* from here */
if (lib != NULL) {
status =
(lib->target_obj->attrs.alloc) (lib->target_obj->attrs.
rmm_handle, mem_sect_type,
alloc_size, align,
(u32 *) &rmm_addr_obj,
seg_id, req, FALSE);
}
if (DSP_FAILED(status)) {
ret = false;
} else {
/* RMM gives word address. Need to convert to byte address */
info->load_addr = rmm_addr_obj.addr * DSPWORDSIZE;
if (!run_addr_flag)
info->run_addr = info->load_addr;
info->context = (u32) rmm_addr_obj.segid;
dev_dbg(bridge, "%s: %s base = 0x%x len = 0x%x, "
"info->run_addr 0x%x, info->load_addr 0x%x\n",
__func__, info->name, info->load_addr / DSPWORDSIZE,
info->size / DSPWORDSIZE, info->run_addr,
info->load_addr);
}
return ret;
}
/*
* ======== rmm_dealloc ========
*/
static void rmm_dealloc(struct dynamic_loader_allocate *this,
struct ldr_section_info *info)
{
struct dbll_alloc *dbll_alloc_obj = (struct dbll_alloc *)this;
struct dbll_library_obj *lib;
u32 segid;
int status = 0;
unsigned stype = DLOAD_SECTION_TYPE(info->type);
u32 mem_sect_type;
u32 free_size = 0;
mem_sect_type =
(stype == DLOAD_TEXT) ? DBLL_CODE : (stype ==
DLOAD_BSS) ? DBLL_BSS :
DBLL_DATA;
DBC_REQUIRE(this != NULL);
lib = dbll_alloc_obj->lib;
DBC_REQUIRE(lib);
/* segid was set by alloc function */
segid = (u32) info->context;
if (mem_sect_type == DBLL_CODE)
free_size = info->size + GEM_L1P_PREFETCH_SIZE;
else
free_size = info->size;
if (lib != NULL) {
status =
(lib->target_obj->attrs.free) (lib->target_obj->attrs.
sym_handle, segid,
info->load_addr /
DSPWORDSIZE, free_size,
false);
}
}
/* dynamic_loader_initialize */
/*
* ======== connect ========
*/
static int connect(struct dynamic_loader_initialize *this)
{
return true;
}
/*
* ======== read_mem ========
* This function does not need to be implemented.
*/
static int read_mem(struct dynamic_loader_initialize *this, void *buf,
ldr_addr addr, struct ldr_section_info *info,
unsigned nbytes)
{
struct dbll_init_obj *init_obj = (struct dbll_init_obj *)this;
struct dbll_library_obj *lib;
int bytes_read = 0;
DBC_REQUIRE(this != NULL);
lib = init_obj->lib;
DBC_REQUIRE(lib);
/* Need bridge_brd_read function */
return bytes_read;
}
/*
* ======== write_mem ========
*/
static int write_mem(struct dynamic_loader_initialize *this, void *buf,
ldr_addr addr, struct ldr_section_info *info,
unsigned bytes)
{
struct dbll_init_obj *init_obj = (struct dbll_init_obj *)this;
struct dbll_library_obj *lib;
struct dbll_tar_obj *target_obj;
struct dbll_sect_info sect_info;
u32 mem_sect_type;
bool ret = true;
DBC_REQUIRE(this != NULL);
lib = init_obj->lib;
if (!lib)
return false;
target_obj = lib->target_obj;
mem_sect_type =
(DLOAD_SECTION_TYPE(info->type) ==
DLOAD_TEXT) ? DBLL_CODE : DBLL_DATA;
if (target_obj && target_obj->attrs.write) {
ret =
(*target_obj->attrs.write) (target_obj->attrs.input_params,
addr, buf, bytes,
mem_sect_type);
if (target_obj->attrs.log_write) {
sect_info.name = info->name;
sect_info.sect_run_addr = info->run_addr;
sect_info.sect_load_addr = info->load_addr;
sect_info.size = info->size;
sect_info.type = mem_sect_type;
/* Pass the information about what we've written to
* another module */
(*target_obj->attrs.log_write) (target_obj->attrs.
log_write_handle,
&sect_info, addr,
bytes);
}
}
return ret;
}
/*
* ======== fill_mem ========
* Fill bytes of memory at a given address with a given value by
* writing from a buffer containing the given value. Write in
* sets of MAXEXPR (128) bytes to avoid large stack buffer issues.
*/
static int fill_mem(struct dynamic_loader_initialize *this, ldr_addr addr,
struct ldr_section_info *info, unsigned bytes, unsigned val)
{
bool ret = true;
char *pbuf;
struct dbll_library_obj *lib;
struct dbll_init_obj *init_obj = (struct dbll_init_obj *)this;
DBC_REQUIRE(this != NULL);
lib = init_obj->lib;
pbuf = NULL;
/* Pass the NULL pointer to write_mem to get the start address of Shared
memory. This is a trick to just get the start address, there is no
writing taking place with this Writemem
*/
if ((lib->target_obj->attrs.write) != (dbll_write_fxn) no_op)
write_mem(this, &pbuf, addr, info, 0);
if (pbuf)
memset(pbuf, val, bytes);
return ret;
}
/*
* ======== execute ========
*/
static int execute(struct dynamic_loader_initialize *this, ldr_addr start)
{
struct dbll_init_obj *init_obj = (struct dbll_init_obj *)this;
struct dbll_library_obj *lib;
bool ret = true;
DBC_REQUIRE(this != NULL);
lib = init_obj->lib;
DBC_REQUIRE(lib);
/* Save entry point */
if (lib != NULL)
lib->entry = (u32) start;
return ret;
}
/*
* ======== release ========
*/
static void release(struct dynamic_loader_initialize *this)
{
}
/**
* find_symbol_context - Basic symbol context structure
* @address: Symbol Adress
* @offset_range: Offset range where the search for the DSP symbol
* started.
* @cur_best_offset: Best offset to start looking for the DSP symbol
* @sym_addr: Address of the DSP symbol
* @name: Symbol name
*
*/
struct find_symbol_context {
/* input */
u32 address;
u32 offset_range;
/* state */
u32 cur_best_offset;
/* output */
u32 sym_addr;
char name[120];
};
/**
* find_symbol_callback() - Validates symbol address and copies the symbol name
* to the user data.
* @elem: dsp library context
* @user_data: Find symbol context
*
*/
void find_symbol_callback(void *elem, void *user_data)
{
struct dbll_symbol *symbol = elem;
struct find_symbol_context *context = user_data;
u32 symbol_addr = symbol->value.value;
u32 offset = context->address - symbol_addr;
/*
* Address given should be greater than symbol address,
* symbol address should be within specified range
* and the offset should be better than previous one
*/
if (context->address >= symbol_addr && symbol_addr < (u32)-1 &&
offset < context->cur_best_offset) {
context->cur_best_offset = offset;
context->sym_addr = symbol_addr;
strncpy(context->name, symbol->name, sizeof(context->name));
}
return;
}
/**
* dbll_find_dsp_symbol() - This function retrieves the dsp symbol from the dsp binary.
* @zl_lib: DSP binary obj library pointer
* @address: Given address to find the dsp symbol
* @offset_range: offset range to look for dsp symbol
* @sym_addr_output: Symbol Output address
* @name_output: String with the dsp symbol
*
* This function retrieves the dsp symbol from the dsp binary.
*/
bool dbll_find_dsp_symbol(struct dbll_library_obj *zl_lib, u32 address,
u32 offset_range, u32 *sym_addr_output,
char *name_output)
{
bool status = false;
struct find_symbol_context context;
context.address = address;
context.offset_range = offset_range;
context.cur_best_offset = offset_range;
context.sym_addr = 0;
context.name[0] = '\0';
gh_iterate(zl_lib->sym_tab, find_symbol_callback, &context);
if (context.name[0]) {
status = true;
strcpy(name_output, context.name);
*sym_addr_output = context.sym_addr;
}
return status;
}
/*
* dev.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Implementation of Bridge Bridge driver device operations.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/ldr.h>
#include <dspbridge/list.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/cod.h>
#include <dspbridge/drv.h>
#include <dspbridge/proc.h>
#include <dspbridge/dmm.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/mgr.h>
#include <dspbridge/node.h>
/* ----------------------------------- Others */
#include <dspbridge/dspapi.h> /* DSP API version info. */
#include <dspbridge/chnl.h>
#include <dspbridge/io.h>
#include <dspbridge/msg.h>
#include <dspbridge/cmm.h>
/* ----------------------------------- This */
#include <dspbridge/dev.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define MAKEVERSION(major, minor) (major * 10 + minor)
#define BRD_API_VERSION MAKEVERSION(BRD_API_MAJOR_VERSION, \
BRD_API_MINOR_VERSION)
/* The Bridge device object: */
struct dev_object {
/* LST requires "link" to be first field! */
struct list_head link; /* Link to next dev_object. */
u8 dev_type; /* Device Type */
struct cfg_devnode *dev_node_obj; /* Platform specific dev id */
/* Bridge Context Handle */
struct bridge_dev_context *hbridge_context;
/* Function interface to Bridge driver. */
struct bridge_drv_interface bridge_interface;
struct brd_object *lock_owner; /* Client with exclusive access. */
struct cod_manager *cod_mgr; /* Code manager handle. */
struct chnl_mgr *hchnl_mgr; /* Channel manager. */
struct deh_mgr *hdeh_mgr; /* DEH manager. */
struct msg_mgr *hmsg_mgr; /* Message manager. */
struct io_mgr *hio_mgr; /* IO manager (CHNL, msg_ctrl) */
struct cmm_object *hcmm_mgr; /* SM memory manager. */
struct dmm_object *dmm_mgr; /* Dynamic memory manager. */
struct ldr_module *module_obj; /* Bridge Module handle. */
u32 word_size; /* DSP word size: quick access. */
struct drv_object *hdrv_obj; /* Driver Object */
struct lst_list *proc_list; /* List of Proceeosr attached to
* this device */
struct node_mgr *hnode_mgr;
};
/* ----------------------------------- Globals */
static u32 refs; /* Module reference count */
/* ----------------------------------- Function Prototypes */
static int fxn_not_implemented(int arg, ...);
static int init_cod_mgr(struct dev_object *dev_obj);
static void store_interface_fxns(struct bridge_drv_interface *drv_fxns,
OUT struct bridge_drv_interface *intf_fxns);
/*
* ======== dev_brd_write_fxn ========
* Purpose:
* Exported function to be used as the COD write function. This function
* is passed a handle to a DEV_hObject, then calls the
* device's bridge_brd_write() function.
*/
u32 dev_brd_write_fxn(void *pArb, u32 ulDspAddr, void *pHostBuf,
u32 ul_num_bytes, u32 nMemSpace)
{
struct dev_object *dev_obj = (struct dev_object *)pArb;
u32 ul_written = 0;
int status;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pHostBuf != NULL); /* Required of BrdWrite(). */
if (dev_obj) {
/* Require of BrdWrite() */
DBC_ASSERT(dev_obj->hbridge_context != NULL);
status = (*dev_obj->bridge_interface.pfn_brd_write) (
dev_obj->hbridge_context, pHostBuf,
ulDspAddr, ul_num_bytes, nMemSpace);
/* Special case of getting the address only */
if (ul_num_bytes == 0)
ul_num_bytes = 1;
if (DSP_SUCCEEDED(status))
ul_written = ul_num_bytes;
}
return ul_written;
}
/*
* ======== dev_create_device ========
* Purpose:
* Called by the operating system to load the PM Bridge Driver for a
* PM board (device).
*/
int dev_create_device(OUT struct dev_object **phDevObject,
IN CONST char *driver_file_name,
struct cfg_devnode *dev_node_obj)
{
struct cfg_hostres *host_res;
struct ldr_module *module_obj = NULL;
struct bridge_drv_interface *drv_fxns = NULL;
struct dev_object *dev_obj = NULL;
struct chnl_mgrattrs mgr_attrs;
struct io_attrs io_mgr_attrs;
u32 num_windows;
struct drv_object *hdrv_obj = NULL;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDevObject != NULL);
DBC_REQUIRE(driver_file_name != NULL);
status = drv_request_bridge_res_dsp((void *)&host_res);
if (DSP_FAILED(status)) {
dev_dbg(bridge, "%s: Failed to reserve bridge resources\n",
__func__);
goto leave;
}
/* Get the Bridge driver interface functions */
bridge_drv_entry(&drv_fxns, driver_file_name);
if (DSP_FAILED(cfg_get_object((u32 *) &hdrv_obj, REG_DRV_OBJECT))) {
/* don't propogate CFG errors from this PROC function */
status = -EPERM;
}
/* Create the device object, and pass a handle to the Bridge driver for
* storage. */
if (DSP_SUCCEEDED(status)) {
DBC_ASSERT(drv_fxns);
dev_obj = kzalloc(sizeof(struct dev_object), GFP_KERNEL);
if (dev_obj) {
/* Fill out the rest of the Dev Object structure: */
dev_obj->dev_node_obj = dev_node_obj;
dev_obj->module_obj = module_obj;
dev_obj->cod_mgr = NULL;
dev_obj->hchnl_mgr = NULL;
dev_obj->hdeh_mgr = NULL;
dev_obj->lock_owner = NULL;
dev_obj->word_size = DSPWORDSIZE;
dev_obj->hdrv_obj = hdrv_obj;
dev_obj->dev_type = DSP_UNIT;
/* Store this Bridge's interface functions, based on its
* version. */
store_interface_fxns(drv_fxns,
&dev_obj->bridge_interface);
/* Call fxn_dev_create() to get the Bridge's device
* context handle. */
status = (dev_obj->bridge_interface.pfn_dev_create)
(&dev_obj->hbridge_context, dev_obj,
host_res);
/* Assert bridge_dev_create()'s ensure clause: */
DBC_ASSERT(DSP_FAILED(status)
|| (dev_obj->hbridge_context != NULL));
} else {
status = -ENOMEM;
}
}
/* Attempt to create the COD manager for this device: */
if (DSP_SUCCEEDED(status))
status = init_cod_mgr(dev_obj);
/* Attempt to create the channel manager for this device: */
if (DSP_SUCCEEDED(status)) {
mgr_attrs.max_channels = CHNL_MAXCHANNELS;
io_mgr_attrs.birq = host_res->birq_registers;
io_mgr_attrs.irq_shared =
(host_res->birq_attrib & CFG_IRQSHARED);
io_mgr_attrs.word_size = DSPWORDSIZE;
mgr_attrs.word_size = DSPWORDSIZE;
num_windows = host_res->num_mem_windows;
if (num_windows) {
/* Assume last memory window is for CHNL */
io_mgr_attrs.shm_base = host_res->dw_mem_base[1] +
host_res->dw_offset_for_monitor;
io_mgr_attrs.usm_length =
host_res->dw_mem_length[1] -
host_res->dw_offset_for_monitor;
} else {
io_mgr_attrs.shm_base = 0;
io_mgr_attrs.usm_length = 0;
pr_err("%s: No memory reserved for shared structures\n",
__func__);
}
status = chnl_create(&dev_obj->hchnl_mgr, dev_obj, &mgr_attrs);
if (status == -ENOSYS) {
/* It's OK for a device not to have a channel
* manager: */
status = 0;
}
/* Create CMM mgr even if Msg Mgr not impl. */
status = cmm_create(&dev_obj->hcmm_mgr,
(struct dev_object *)dev_obj, NULL);
/* Only create IO manager if we have a channel manager */
if (DSP_SUCCEEDED(status) && dev_obj->hchnl_mgr) {
status = io_create(&dev_obj->hio_mgr, dev_obj,
&io_mgr_attrs);
}
/* Only create DEH manager if we have an IO manager */
if (DSP_SUCCEEDED(status)) {
/* Instantiate the DEH module */
status = (*dev_obj->bridge_interface.pfn_deh_create)
(&dev_obj->hdeh_mgr, dev_obj);
}
/* Create DMM mgr . */
status = dmm_create(&dev_obj->dmm_mgr,
(struct dev_object *)dev_obj, NULL);
}
/* Add the new DEV_Object to the global list: */
if (DSP_SUCCEEDED(status)) {
lst_init_elem(&dev_obj->link);
status = drv_insert_dev_object(hdrv_obj, dev_obj);
}
/* Create the Processor List */
if (DSP_SUCCEEDED(status)) {
dev_obj->proc_list = kzalloc(sizeof(struct lst_list),
GFP_KERNEL);
if (!(dev_obj->proc_list))
status = -EPERM;
else
INIT_LIST_HEAD(&dev_obj->proc_list->head);
}
leave:
/* If all went well, return a handle to the dev object;
* else, cleanup and return NULL in the OUT parameter. */
if (DSP_SUCCEEDED(status)) {
*phDevObject = dev_obj;
} else {
if (dev_obj) {
kfree(dev_obj->proc_list);
if (dev_obj->cod_mgr)
cod_delete(dev_obj->cod_mgr);
if (dev_obj->dmm_mgr)
dmm_destroy(dev_obj->dmm_mgr);
kfree(dev_obj);
}
*phDevObject = NULL;
}
DBC_ENSURE((DSP_SUCCEEDED(status) && *phDevObject) ||
(DSP_FAILED(status) && !*phDevObject));
return status;
}
/*
* ======== dev_create2 ========
* Purpose:
* After successful loading of the image from api_init_complete2
* (PROC Auto_Start) or proc_load this fxn is called. This creates
* the Node Manager and updates the DEV Object.
*/
int dev_create2(struct dev_object *hdev_obj)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdev_obj);
/* There can be only one Node Manager per DEV object */
DBC_ASSERT(!dev_obj->hnode_mgr);
status = node_create_mgr(&dev_obj->hnode_mgr, hdev_obj);
if (DSP_FAILED(status))
dev_obj->hnode_mgr = NULL;
DBC_ENSURE((DSP_SUCCEEDED(status) && dev_obj->hnode_mgr != NULL)
|| (DSP_FAILED(status) && dev_obj->hnode_mgr == NULL));
return status;
}
/*
* ======== dev_destroy2 ========
* Purpose:
* Destroys the Node manager for this device.
*/
int dev_destroy2(struct dev_object *hdev_obj)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdev_obj);
if (dev_obj->hnode_mgr) {
if (DSP_FAILED(node_delete_mgr(dev_obj->hnode_mgr)))
status = -EPERM;
else
dev_obj->hnode_mgr = NULL;
}
DBC_ENSURE((DSP_SUCCEEDED(status) && dev_obj->hnode_mgr == NULL) ||
DSP_FAILED(status));
return status;
}
/*
* ======== dev_destroy_device ========
* Purpose:
* Destroys the channel manager for this device, if any, calls
* bridge_dev_destroy(), and then attempts to unload the Bridge module.
*/
int dev_destroy_device(struct dev_object *hdev_obj)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
if (hdev_obj) {
if (dev_obj->cod_mgr) {
cod_delete(dev_obj->cod_mgr);
dev_obj->cod_mgr = NULL;
}
if (dev_obj->hnode_mgr) {
node_delete_mgr(dev_obj->hnode_mgr);
dev_obj->hnode_mgr = NULL;
}
/* Free the io, channel, and message managers for this board: */
if (dev_obj->hio_mgr) {
io_destroy(dev_obj->hio_mgr);
dev_obj->hio_mgr = NULL;
}
if (dev_obj->hchnl_mgr) {
chnl_destroy(dev_obj->hchnl_mgr);
dev_obj->hchnl_mgr = NULL;
}
if (dev_obj->hmsg_mgr) {
msg_delete(dev_obj->hmsg_mgr);
dev_obj->hmsg_mgr = NULL;
}
if (dev_obj->hdeh_mgr) {
/* Uninitialize DEH module. */
(*dev_obj->bridge_interface.pfn_deh_destroy)
(dev_obj->hdeh_mgr);
dev_obj->hdeh_mgr = NULL;
}
if (dev_obj->hcmm_mgr) {
cmm_destroy(dev_obj->hcmm_mgr, true);
dev_obj->hcmm_mgr = NULL;
}
if (dev_obj->dmm_mgr) {
dmm_destroy(dev_obj->dmm_mgr);
dev_obj->dmm_mgr = NULL;
}
/* Call the driver's bridge_dev_destroy() function: */
/* Require of DevDestroy */
if (dev_obj->hbridge_context) {
status = (*dev_obj->bridge_interface.pfn_dev_destroy)
(dev_obj->hbridge_context);
dev_obj->hbridge_context = NULL;
} else
status = -EPERM;
if (DSP_SUCCEEDED(status)) {
kfree(dev_obj->proc_list);
dev_obj->proc_list = NULL;
/* Remove this DEV_Object from the global list: */
drv_remove_dev_object(dev_obj->hdrv_obj, dev_obj);
/* Free The library * LDR_FreeModule
* (dev_obj->module_obj); */
/* Free this dev object: */
kfree(dev_obj);
dev_obj = NULL;
}
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== dev_get_chnl_mgr ========
* Purpose:
* Retrieve the handle to the channel manager handle created for this
* device.
*/
int dev_get_chnl_mgr(struct dev_object *hdev_obj,
OUT struct chnl_mgr **phMgr)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phMgr != NULL);
if (hdev_obj) {
*phMgr = dev_obj->hchnl_mgr;
} else {
*phMgr = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phMgr != NULL) &&
(*phMgr == NULL)));
return status;
}
/*
* ======== dev_get_cmm_mgr ========
* Purpose:
* Retrieve the handle to the shared memory manager created for this
* device.
*/
int dev_get_cmm_mgr(struct dev_object *hdev_obj,
OUT struct cmm_object **phMgr)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phMgr != NULL);
if (hdev_obj) {
*phMgr = dev_obj->hcmm_mgr;
} else {
*phMgr = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phMgr != NULL) &&
(*phMgr == NULL)));
return status;
}
/*
* ======== dev_get_dmm_mgr ========
* Purpose:
* Retrieve the handle to the dynamic memory manager created for this
* device.
*/
int dev_get_dmm_mgr(struct dev_object *hdev_obj,
OUT struct dmm_object **phMgr)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phMgr != NULL);
if (hdev_obj) {
*phMgr = dev_obj->dmm_mgr;
} else {
*phMgr = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phMgr != NULL) &&
(*phMgr == NULL)));
return status;
}
/*
* ======== dev_get_cod_mgr ========
* Purpose:
* Retrieve the COD manager create for this device.
*/
int dev_get_cod_mgr(struct dev_object *hdev_obj,
OUT struct cod_manager **phCodMgr)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phCodMgr != NULL);
if (hdev_obj) {
*phCodMgr = dev_obj->cod_mgr;
} else {
*phCodMgr = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phCodMgr != NULL) &&
(*phCodMgr == NULL)));
return status;
}
/*
* ========= dev_get_deh_mgr ========
*/
int dev_get_deh_mgr(struct dev_object *hdev_obj,
OUT struct deh_mgr **phDehMgr)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDehMgr != NULL);
DBC_REQUIRE(hdev_obj);
if (hdev_obj) {
*phDehMgr = hdev_obj->hdeh_mgr;
} else {
*phDehMgr = NULL;
status = -EFAULT;
}
return status;
}
/*
* ======== dev_get_dev_node ========
* Purpose:
* Retrieve the platform specific device ID for this device.
*/
int dev_get_dev_node(struct dev_object *hdev_obj,
OUT struct cfg_devnode **phDevNode)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDevNode != NULL);
if (hdev_obj) {
*phDevNode = dev_obj->dev_node_obj;
} else {
*phDevNode = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phDevNode != NULL) &&
(*phDevNode == NULL)));
return status;
}
/*
* ======== dev_get_first ========
* Purpose:
* Retrieve the first Device Object handle from an internal linked list
* DEV_OBJECTs maintained by DEV.
*/
struct dev_object *dev_get_first(void)
{
struct dev_object *dev_obj = NULL;
dev_obj = (struct dev_object *)drv_get_first_dev_object();
return dev_obj;
}
/*
* ======== dev_get_intf_fxns ========
* Purpose:
* Retrieve the Bridge interface function structure for the loaded driver.
* ppIntfFxns != NULL.
*/
int dev_get_intf_fxns(struct dev_object *hdev_obj,
OUT struct bridge_drv_interface **ppIntfFxns)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(ppIntfFxns != NULL);
if (hdev_obj) {
*ppIntfFxns = &dev_obj->bridge_interface;
} else {
*ppIntfFxns = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((ppIntfFxns != NULL) &&
(*ppIntfFxns == NULL)));
return status;
}
/*
* ========= dev_get_io_mgr ========
*/
int dev_get_io_mgr(struct dev_object *hdev_obj,
OUT struct io_mgr **phIOMgr)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phIOMgr != NULL);
DBC_REQUIRE(hdev_obj);
if (hdev_obj) {
*phIOMgr = hdev_obj->hio_mgr;
} else {
*phIOMgr = NULL;
status = -EFAULT;
}
return status;
}
/*
* ======== dev_get_next ========
* Purpose:
* Retrieve the next Device Object handle from an internal linked list
* of DEV_OBJECTs maintained by DEV, after having previously called
* dev_get_first() and zero or more dev_get_next
*/
struct dev_object *dev_get_next(struct dev_object *hdev_obj)
{
struct dev_object *next_dev_object = NULL;
if (hdev_obj) {
next_dev_object = (struct dev_object *)
drv_get_next_dev_object((u32) hdev_obj);
}
return next_dev_object;
}
/*
* ========= dev_get_msg_mgr ========
*/
void dev_get_msg_mgr(struct dev_object *hdev_obj, OUT struct msg_mgr **phMsgMgr)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phMsgMgr != NULL);
DBC_REQUIRE(hdev_obj);
*phMsgMgr = hdev_obj->hmsg_mgr;
}
/*
* ======== dev_get_node_manager ========
* Purpose:
* Retrieve the Node Manager Handle
*/
int dev_get_node_manager(struct dev_object *hdev_obj,
OUT struct node_mgr **phNodeMgr)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phNodeMgr != NULL);
if (hdev_obj) {
*phNodeMgr = dev_obj->hnode_mgr;
} else {
*phNodeMgr = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phNodeMgr != NULL) &&
(*phNodeMgr == NULL)));
return status;
}
/*
* ======== dev_get_symbol ========
*/
int dev_get_symbol(struct dev_object *hdev_obj,
IN CONST char *pstrSym, OUT u32 * pul_value)
{
int status = 0;
struct cod_manager *cod_mgr;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pstrSym != NULL && pul_value != NULL);
if (hdev_obj) {
status = dev_get_cod_mgr(hdev_obj, &cod_mgr);
if (cod_mgr)
status = cod_get_sym_value(cod_mgr, (char *)pstrSym,
pul_value);
else
status = -EFAULT;
}
return status;
}
/*
* ======== dev_get_bridge_context ========
* Purpose:
* Retrieve the Bridge Context handle, as returned by the
* bridge_dev_create fxn.
*/
int dev_get_bridge_context(struct dev_object *hdev_obj,
OUT struct bridge_dev_context **phbridge_context)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phbridge_context != NULL);
if (hdev_obj) {
*phbridge_context = dev_obj->hbridge_context;
} else {
*phbridge_context = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phbridge_context != NULL) &&
(*phbridge_context == NULL)));
return status;
}
/*
* ======== dev_exit ========
* Purpose:
* Decrement reference count, and free resources when reference count is
* 0.
*/
void dev_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
if (refs == 0) {
cmm_exit();
dmm_exit();
}
DBC_ENSURE(refs >= 0);
}
/*
* ======== dev_init ========
* Purpose:
* Initialize DEV's private state, keeping a reference count on each call.
*/
bool dev_init(void)
{
bool cmm_ret, dmm_ret, ret = true;
DBC_REQUIRE(refs >= 0);
if (refs == 0) {
cmm_ret = cmm_init();
dmm_ret = dmm_init();
ret = cmm_ret && dmm_ret;
if (!ret) {
if (cmm_ret)
cmm_exit();
if (dmm_ret)
dmm_exit();
}
}
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== dev_notify_clients ========
* Purpose:
* Notify all clients of this device of a change in device status.
*/
int dev_notify_clients(struct dev_object *hdev_obj, u32 ulStatus)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
void *proc_obj;
for (proc_obj = (void *)lst_first(dev_obj->proc_list);
proc_obj != NULL;
proc_obj = (void *)lst_next(dev_obj->proc_list,
(struct list_head *)proc_obj))
proc_notify_clients(proc_obj, (u32) ulStatus);
return status;
}
/*
* ======== dev_remove_device ========
*/
int dev_remove_device(struct cfg_devnode *dev_node_obj)
{
struct dev_object *hdev_obj; /* handle to device object */
int status = 0;
struct dev_object *dev_obj;
/* Retrieve the device object handle originaly stored with
* the dev_node: */
status = cfg_get_dev_object(dev_node_obj, (u32 *) &hdev_obj);
if (DSP_SUCCEEDED(status)) {
/* Remove the Processor List */
dev_obj = (struct dev_object *)hdev_obj;
/* Destroy the device object. */
status = dev_destroy_device(hdev_obj);
}
return status;
}
/*
* ======== dev_set_chnl_mgr ========
* Purpose:
* Set the channel manager for this device.
*/
int dev_set_chnl_mgr(struct dev_object *hdev_obj,
struct chnl_mgr *hmgr)
{
int status = 0;
struct dev_object *dev_obj = hdev_obj;
DBC_REQUIRE(refs > 0);
if (hdev_obj)
dev_obj->hchnl_mgr = hmgr;
else
status = -EFAULT;
DBC_ENSURE(DSP_FAILED(status) || (dev_obj->hchnl_mgr == hmgr));
return status;
}
/*
* ======== dev_set_msg_mgr ========
* Purpose:
* Set the message manager for this device.
*/
void dev_set_msg_mgr(struct dev_object *hdev_obj, struct msg_mgr *hmgr)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdev_obj);
hdev_obj->hmsg_mgr = hmgr;
}
/*
* ======== dev_start_device ========
* Purpose:
* Initializes the new device with the BRIDGE environment.
*/
int dev_start_device(struct cfg_devnode *dev_node_obj)
{
struct dev_object *hdev_obj = NULL; /* handle to 'Bridge Device */
/* Bridge driver filename */
char bridge_file_name[CFG_MAXSEARCHPATHLEN] = "UMA";
int status;
struct mgr_object *hmgr_obj = NULL;
DBC_REQUIRE(refs > 0);
/* Given all resources, create a device object. */
status = dev_create_device(&hdev_obj, bridge_file_name,
dev_node_obj);
if (DSP_SUCCEEDED(status)) {
/* Store away the hdev_obj with the DEVNODE */
status = cfg_set_dev_object(dev_node_obj, (u32) hdev_obj);
if (DSP_FAILED(status)) {
/* Clean up */
dev_destroy_device(hdev_obj);
hdev_obj = NULL;
}
}
if (DSP_SUCCEEDED(status)) {
/* Create the Manager Object */
status = mgr_create(&hmgr_obj, dev_node_obj);
}
if (DSP_FAILED(status)) {
if (hdev_obj)
dev_destroy_device(hdev_obj);
/* Ensure the device extension is NULL */
cfg_set_dev_object(dev_node_obj, 0L);
}
return status;
}
/*
* ======== fxn_not_implemented ========
* Purpose:
* Takes the place of a Bridge Null Function.
* Parameters:
* Multiple, optional.
* Returns:
* -ENOSYS: Always.
*/
static int fxn_not_implemented(int arg, ...)
{
return -ENOSYS;
}
/*
* ======== init_cod_mgr ========
* Purpose:
* Create a COD manager for this device.
* Parameters:
* dev_obj: Pointer to device object created with
* dev_create_device()
* Returns:
* 0: Success.
* -EFAULT: Invalid hdev_obj.
* Requires:
* Should only be called once by dev_create_device() for a given DevObject.
* Ensures:
*/
static int init_cod_mgr(struct dev_object *dev_obj)
{
int status = 0;
char *sz_dummy_file = "dummy";
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(!dev_obj || (dev_obj->cod_mgr == NULL));
status = cod_create(&dev_obj->cod_mgr, sz_dummy_file, NULL);
return status;
}
/*
* ======== dev_insert_proc_object ========
* Purpose:
* Insert a ProcObject into the list maintained by DEV.
* Parameters:
* p_proc_object: Ptr to ProcObject to insert.
* dev_obj: Ptr to Dev Object where the list is.
* pbAlreadyAttached: Ptr to return the bool
* Returns:
* 0: If successful.
* Requires:
* List Exists
* hdev_obj is Valid handle
* DEV Initialized
* pbAlreadyAttached != NULL
* proc_obj != 0
* Ensures:
* 0 and List is not Empty.
*/
int dev_insert_proc_object(struct dev_object *hdev_obj,
u32 proc_obj, OUT bool *pbAlreadyAttached)
{
int status = 0;
struct dev_object *dev_obj = (struct dev_object *)hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(dev_obj);
DBC_REQUIRE(proc_obj != 0);
DBC_REQUIRE(dev_obj->proc_list != NULL);
DBC_REQUIRE(pbAlreadyAttached != NULL);
if (!LST_IS_EMPTY(dev_obj->proc_list))
*pbAlreadyAttached = true;
/* Add DevObject to tail. */
lst_put_tail(dev_obj->proc_list, (struct list_head *)proc_obj);
DBC_ENSURE(DSP_SUCCEEDED(status) && !LST_IS_EMPTY(dev_obj->proc_list));
return status;
}
/*
* ======== dev_remove_proc_object ========
* Purpose:
* Search for and remove a Proc object from the given list maintained
* by the DEV
* Parameters:
* p_proc_object: Ptr to ProcObject to insert.
* dev_obj Ptr to Dev Object where the list is.
* Returns:
* 0: If successful.
* Requires:
* List exists and is not empty
* proc_obj != 0
* hdev_obj is a valid Dev handle.
* Ensures:
* Details:
* List will be deleted when the DEV is destroyed.
*/
int dev_remove_proc_object(struct dev_object *hdev_obj, u32 proc_obj)
{
int status = -EPERM;
struct list_head *cur_elem;
struct dev_object *dev_obj = (struct dev_object *)hdev_obj;
DBC_REQUIRE(dev_obj);
DBC_REQUIRE(proc_obj != 0);
DBC_REQUIRE(dev_obj->proc_list != NULL);
DBC_REQUIRE(!LST_IS_EMPTY(dev_obj->proc_list));
/* Search list for dev_obj: */
for (cur_elem = lst_first(dev_obj->proc_list); cur_elem != NULL;
cur_elem = lst_next(dev_obj->proc_list, cur_elem)) {
/* If found, remove it. */
if ((u32) cur_elem == proc_obj) {
lst_remove_elem(dev_obj->proc_list, cur_elem);
status = 0;
break;
}
}
return status;
}
int dev_get_dev_type(struct dev_object *hdevObject, u8 *dev_type)
{
int status = 0;
struct dev_object *dev_obj = (struct dev_object *)hdevObject;
*dev_type = dev_obj->dev_type;
return status;
}
/*
* ======== store_interface_fxns ========
* Purpose:
* Copy the Bridge's interface functions into the device object,
* ensuring that fxn_not_implemented() is set for:
*
* 1. All Bridge function pointers which are NULL; and
* 2. All function slots in the struct dev_object structure which have no
* corresponding slots in the the Bridge's interface, because the Bridge
* is of an *older* version.
* Parameters:
* intf_fxns: Interface fxn Structure of the Bridge's Dev Object.
* drv_fxns: Interface Fxns offered by the Bridge during DEV_Create().
* Returns:
* Requires:
* Input pointers are valid.
* Bridge driver is *not* written for a newer DSP API.
* Ensures:
* All function pointers in the dev object's fxn interface are not NULL.
*/
static void store_interface_fxns(struct bridge_drv_interface *drv_fxns,
OUT struct bridge_drv_interface *intf_fxns)
{
u32 bridge_version;
/* Local helper macro: */
#define STORE_FXN(cast, pfn) \
(intf_fxns->pfn = ((drv_fxns->pfn != NULL) ? drv_fxns->pfn : \
(cast)fxn_not_implemented))
DBC_REQUIRE(intf_fxns != NULL);
DBC_REQUIRE(drv_fxns != NULL);
DBC_REQUIRE(MAKEVERSION(drv_fxns->brd_api_major_version,
drv_fxns->brd_api_minor_version) <= BRD_API_VERSION);
bridge_version = MAKEVERSION(drv_fxns->brd_api_major_version,
drv_fxns->brd_api_minor_version);
intf_fxns->brd_api_major_version = drv_fxns->brd_api_major_version;
intf_fxns->brd_api_minor_version = drv_fxns->brd_api_minor_version;
/* Install functions up to DSP API version .80 (first alpha): */
if (bridge_version > 0) {
STORE_FXN(fxn_dev_create, pfn_dev_create);
STORE_FXN(fxn_dev_destroy, pfn_dev_destroy);
STORE_FXN(fxn_dev_ctrl, pfn_dev_cntrl);
STORE_FXN(fxn_brd_monitor, pfn_brd_monitor);
STORE_FXN(fxn_brd_start, pfn_brd_start);
STORE_FXN(fxn_brd_stop, pfn_brd_stop);
STORE_FXN(fxn_brd_status, pfn_brd_status);
STORE_FXN(fxn_brd_read, pfn_brd_read);
STORE_FXN(fxn_brd_write, pfn_brd_write);
STORE_FXN(fxn_brd_setstate, pfn_brd_set_state);
STORE_FXN(fxn_brd_memcopy, pfn_brd_mem_copy);
STORE_FXN(fxn_brd_memwrite, pfn_brd_mem_write);
STORE_FXN(fxn_brd_memmap, pfn_brd_mem_map);
STORE_FXN(fxn_brd_memunmap, pfn_brd_mem_un_map);
STORE_FXN(fxn_chnl_create, pfn_chnl_create);
STORE_FXN(fxn_chnl_destroy, pfn_chnl_destroy);
STORE_FXN(fxn_chnl_open, pfn_chnl_open);
STORE_FXN(fxn_chnl_close, pfn_chnl_close);
STORE_FXN(fxn_chnl_addioreq, pfn_chnl_add_io_req);
STORE_FXN(fxn_chnl_getioc, pfn_chnl_get_ioc);
STORE_FXN(fxn_chnl_cancelio, pfn_chnl_cancel_io);
STORE_FXN(fxn_chnl_flushio, pfn_chnl_flush_io);
STORE_FXN(fxn_chnl_getinfo, pfn_chnl_get_info);
STORE_FXN(fxn_chnl_getmgrinfo, pfn_chnl_get_mgr_info);
STORE_FXN(fxn_chnl_idle, pfn_chnl_idle);
STORE_FXN(fxn_chnl_registernotify, pfn_chnl_register_notify);
STORE_FXN(fxn_deh_create, pfn_deh_create);
STORE_FXN(fxn_deh_destroy, pfn_deh_destroy);
STORE_FXN(fxn_deh_notify, pfn_deh_notify);
STORE_FXN(fxn_deh_registernotify, pfn_deh_register_notify);
STORE_FXN(fxn_deh_getinfo, pfn_deh_get_info);
STORE_FXN(fxn_io_create, pfn_io_create);
STORE_FXN(fxn_io_destroy, pfn_io_destroy);
STORE_FXN(fxn_io_onloaded, pfn_io_on_loaded);
STORE_FXN(fxn_io_getprocload, pfn_io_get_proc_load);
STORE_FXN(fxn_msg_create, pfn_msg_create);
STORE_FXN(fxn_msg_createqueue, pfn_msg_create_queue);
STORE_FXN(fxn_msg_delete, pfn_msg_delete);
STORE_FXN(fxn_msg_deletequeue, pfn_msg_delete_queue);
STORE_FXN(fxn_msg_get, pfn_msg_get);
STORE_FXN(fxn_msg_put, pfn_msg_put);
STORE_FXN(fxn_msg_registernotify, pfn_msg_register_notify);
STORE_FXN(fxn_msg_setqueueid, pfn_msg_set_queue_id);
}
/* Add code for any additional functions in newerBridge versions here */
/* Ensure postcondition: */
DBC_ENSURE(intf_fxns->pfn_dev_create != NULL);
DBC_ENSURE(intf_fxns->pfn_dev_destroy != NULL);
DBC_ENSURE(intf_fxns->pfn_dev_cntrl != NULL);
DBC_ENSURE(intf_fxns->pfn_brd_monitor != NULL);
DBC_ENSURE(intf_fxns->pfn_brd_start != NULL);
DBC_ENSURE(intf_fxns->pfn_brd_stop != NULL);
DBC_ENSURE(intf_fxns->pfn_brd_status != NULL);
DBC_ENSURE(intf_fxns->pfn_brd_read != NULL);
DBC_ENSURE(intf_fxns->pfn_brd_write != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_create != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_destroy != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_open != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_close != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_add_io_req != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_get_ioc != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_cancel_io != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_flush_io != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_get_info != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_get_mgr_info != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_idle != NULL);
DBC_ENSURE(intf_fxns->pfn_chnl_register_notify != NULL);
DBC_ENSURE(intf_fxns->pfn_deh_create != NULL);
DBC_ENSURE(intf_fxns->pfn_deh_destroy != NULL);
DBC_ENSURE(intf_fxns->pfn_deh_notify != NULL);
DBC_ENSURE(intf_fxns->pfn_deh_register_notify != NULL);
DBC_ENSURE(intf_fxns->pfn_deh_get_info != NULL);
DBC_ENSURE(intf_fxns->pfn_io_create != NULL);
DBC_ENSURE(intf_fxns->pfn_io_destroy != NULL);
DBC_ENSURE(intf_fxns->pfn_io_on_loaded != NULL);
DBC_ENSURE(intf_fxns->pfn_io_get_proc_load != NULL);
DBC_ENSURE(intf_fxns->pfn_msg_set_queue_id != NULL);
#undef STORE_FXN
}
/*
* dmm.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* The Dynamic Memory Manager (DMM) module manages the DSP Virtual address
* space that can be directly mapped to any MPU buffer or memory region
*
* Notes:
* Region: Generic memory entitiy having a start address and a size
* Chunk: Reserved region
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/sync.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
#include <dspbridge/proc.h>
/* ----------------------------------- This */
#include <dspbridge/dmm.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define DMM_ADDR_VIRTUAL(a) \
(((struct map_page *)(a) - virtual_mapping_table) * PG_SIZE4K +\
dyn_mem_map_beg)
#define DMM_ADDR_TO_INDEX(a) (((a) - dyn_mem_map_beg) / PG_SIZE4K)
/* DMM Mgr */
struct dmm_object {
/* Dmm Lock is used to serialize access mem manager for
* multi-threads. */
spinlock_t dmm_lock; /* Lock to access dmm mgr */
};
/* ----------------------------------- Globals */
static u32 refs; /* module reference count */
struct map_page {
u32 region_size:15;
u32 mapped_size:15;
u32 reserved:1;
u32 mapped:1;
};
/* Create the free list */
static struct map_page *virtual_mapping_table;
static u32 free_region; /* The index of free region */
static u32 free_size;
static u32 dyn_mem_map_beg; /* The Beginning of dynamic memory mapping */
static u32 table_size; /* The size of virt and phys pages tables */
/* ----------------------------------- Function Prototypes */
static struct map_page *get_region(u32 addr);
static struct map_page *get_free_region(u32 aSize);
static struct map_page *get_mapped_region(u32 aAddr);
/* ======== dmm_create_tables ========
* Purpose:
* Create table to hold the information of physical address
* the buffer pages that is passed by the user, and the table
* to hold the information of the virtual memory that is reserved
* for DSP.
*/
int dmm_create_tables(struct dmm_object *dmm_mgr, u32 addr, u32 size)
{
struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
int status = 0;
status = dmm_delete_tables(dmm_obj);
if (DSP_SUCCEEDED(status)) {
dyn_mem_map_beg = addr;
table_size = PG_ALIGN_HIGH(size, PG_SIZE4K) / PG_SIZE4K;
/* Create the free list */
virtual_mapping_table = __vmalloc(table_size *
sizeof(struct map_page), GFP_KERNEL |
__GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
if (virtual_mapping_table == NULL)
status = -ENOMEM;
else {
/* On successful allocation,
* all entries are zero ('free') */
free_region = 0;
free_size = table_size * PG_SIZE4K;
virtual_mapping_table[0].region_size = table_size;
}
}
if (DSP_FAILED(status))
pr_err("%s: failure, status 0x%x\n", __func__, status);
return status;
}
/*
* ======== dmm_create ========
* Purpose:
* Create a dynamic memory manager object.
*/
int dmm_create(OUT struct dmm_object **phDmmMgr,
struct dev_object *hdev_obj,
IN CONST struct dmm_mgrattrs *pMgrAttrs)
{
struct dmm_object *dmm_obj = NULL;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDmmMgr != NULL);
*phDmmMgr = NULL;
/* create, zero, and tag a cmm mgr object */
dmm_obj = kzalloc(sizeof(struct dmm_object), GFP_KERNEL);
if (dmm_obj != NULL) {
spin_lock_init(&dmm_obj->dmm_lock);
*phDmmMgr = dmm_obj;
} else {
status = -ENOMEM;
}
return status;
}
/*
* ======== dmm_destroy ========
* Purpose:
* Release the communication memory manager resources.
*/
int dmm_destroy(struct dmm_object *dmm_mgr)
{
struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
int status = 0;
DBC_REQUIRE(refs > 0);
if (dmm_mgr) {
status = dmm_delete_tables(dmm_obj);
if (DSP_SUCCEEDED(status))
kfree(dmm_obj);
} else
status = -EFAULT;
return status;
}
/*
* ======== dmm_delete_tables ========
* Purpose:
* Delete DMM Tables.
*/
int dmm_delete_tables(struct dmm_object *dmm_mgr)
{
int status = 0;
DBC_REQUIRE(refs > 0);
/* Delete all DMM tables */
if (dmm_mgr)
vfree(virtual_mapping_table);
else
status = -EFAULT;
return status;
}
/*
* ======== dmm_exit ========
* Purpose:
* Discontinue usage of module; free resources when reference count
* reaches 0.
*/
void dmm_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
}
/*
* ======== dmm_get_handle ========
* Purpose:
* Return the dynamic memory manager object for this device.
* This is typically called from the client process.
*/
int dmm_get_handle(void *hprocessor, OUT struct dmm_object **phDmmMgr)
{
int status = 0;
struct dev_object *hdev_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDmmMgr != NULL);
if (hprocessor != NULL)
status = proc_get_dev_object(hprocessor, &hdev_obj);
else
hdev_obj = dev_get_first(); /* default */
if (DSP_SUCCEEDED(status))
status = dev_get_dmm_mgr(hdev_obj, phDmmMgr);
return status;
}
/*
* ======== dmm_init ========
* Purpose:
* Initializes private state of DMM module.
*/
bool dmm_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
virtual_mapping_table = NULL;
table_size = 0;
return ret;
}
/*
* ======== dmm_map_memory ========
* Purpose:
* Add a mapping block to the reserved chunk. DMM assumes that this block
* will be mapped in the DSP/IVA's address space. DMM returns an error if a
* mapping overlaps another one. This function stores the info that will be
* required later while unmapping the block.
*/
int dmm_map_memory(struct dmm_object *dmm_mgr, u32 addr, u32 size)
{
struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
struct map_page *chunk;
int status = 0;
spin_lock(&dmm_obj->dmm_lock);
/* Find the Reserved memory chunk containing the DSP block to
* be mapped */
chunk = (struct map_page *)get_region(addr);
if (chunk != NULL) {
/* Mark the region 'mapped', leave the 'reserved' info as-is */
chunk->mapped = true;
chunk->mapped_size = (size / PG_SIZE4K);
} else
status = -ENOENT;
spin_unlock(&dmm_obj->dmm_lock);
dev_dbg(bridge, "%s dmm_mgr %p, addr %x, size %x\n\tstatus %x, "
"chunk %p", __func__, dmm_mgr, addr, size, status, chunk);
return status;
}
/*
* ======== dmm_reserve_memory ========
* Purpose:
* Reserve a chunk of virtually contiguous DSP/IVA address space.
*/
int dmm_reserve_memory(struct dmm_object *dmm_mgr, u32 size,
u32 *prsv_addr)
{
int status = 0;
struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
struct map_page *node;
u32 rsv_addr = 0;
u32 rsv_size = 0;
spin_lock(&dmm_obj->dmm_lock);
/* Try to get a DSP chunk from the free list */
node = get_free_region(size);
if (node != NULL) {
/* DSP chunk of given size is available. */
rsv_addr = DMM_ADDR_VIRTUAL(node);
/* Calculate the number entries to use */
rsv_size = size / PG_SIZE4K;
if (rsv_size < node->region_size) {
/* Mark remainder of free region */
node[rsv_size].mapped = false;
node[rsv_size].reserved = false;
node[rsv_size].region_size =
node->region_size - rsv_size;
node[rsv_size].mapped_size = 0;
}
/* get_region will return first fit chunk. But we only use what
is requested. */
node->mapped = false;
node->reserved = true;
node->region_size = rsv_size;
node->mapped_size = 0;
/* Return the chunk's starting address */
*prsv_addr = rsv_addr;
} else
/*dSP chunk of given size is not available */
status = -ENOMEM;
spin_unlock(&dmm_obj->dmm_lock);
dev_dbg(bridge, "%s dmm_mgr %p, size %x, prsv_addr %p\n\tstatus %x, "
"rsv_addr %x, rsv_size %x\n", __func__, dmm_mgr, size,
prsv_addr, status, rsv_addr, rsv_size);
return status;
}
/*
* ======== dmm_un_map_memory ========
* Purpose:
* Remove the mapped block from the reserved chunk.
*/
int dmm_un_map_memory(struct dmm_object *dmm_mgr, u32 addr, u32 *psize)
{
struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
struct map_page *chunk;
int status = 0;
spin_lock(&dmm_obj->dmm_lock);
chunk = get_mapped_region(addr);
if (chunk == NULL)
status = -ENOENT;
if (DSP_SUCCEEDED(status)) {
/* Unmap the region */
*psize = chunk->mapped_size * PG_SIZE4K;
chunk->mapped = false;
chunk->mapped_size = 0;
}
spin_unlock(&dmm_obj->dmm_lock);
dev_dbg(bridge, "%s: dmm_mgr %p, addr %x, psize %p\n\tstatus %x, "
"chunk %p\n", __func__, dmm_mgr, addr, psize, status, chunk);
return status;
}
/*
* ======== dmm_un_reserve_memory ========
* Purpose:
* Free a chunk of reserved DSP/IVA address space.
*/
int dmm_un_reserve_memory(struct dmm_object *dmm_mgr, u32 rsv_addr)
{
struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
struct map_page *chunk;
u32 i;
int status = 0;
u32 chunk_size;
spin_lock(&dmm_obj->dmm_lock);
/* Find the chunk containing the reserved address */
chunk = get_mapped_region(rsv_addr);
if (chunk == NULL)
status = -ENOENT;
if (DSP_SUCCEEDED(status)) {
/* Free all the mapped pages for this reserved region */
i = 0;
while (i < chunk->region_size) {
if (chunk[i].mapped) {
/* Remove mapping from the page tables. */
chunk_size = chunk[i].mapped_size;
/* Clear the mapping flags */
chunk[i].mapped = false;
chunk[i].mapped_size = 0;
i += chunk_size;
} else
i++;
}
/* Clear the flags (mark the region 'free') */
chunk->reserved = false;
/* NOTE: We do NOT coalesce free regions here.
* Free regions are coalesced in get_region(), as it traverses
*the whole mapping table
*/
}
spin_unlock(&dmm_obj->dmm_lock);
dev_dbg(bridge, "%s: dmm_mgr %p, rsv_addr %x\n\tstatus %x chunk %p",
__func__, dmm_mgr, rsv_addr, status, chunk);
return status;
}
/*
* ======== get_region ========
* Purpose:
* Returns a region containing the specified memory region
*/
static struct map_page *get_region(u32 aAddr)
{
struct map_page *curr_region = NULL;
u32 i = 0;
if (virtual_mapping_table != NULL) {
/* find page mapped by this address */
i = DMM_ADDR_TO_INDEX(aAddr);
if (i < table_size)
curr_region = virtual_mapping_table + i;
}
dev_dbg(bridge, "%s: curr_region %p, free_region %d, free_size %d\n",
__func__, curr_region, free_region, free_size);
return curr_region;
}
/*
* ======== get_free_region ========
* Purpose:
* Returns the requested free region
*/
static struct map_page *get_free_region(u32 aSize)
{
struct map_page *curr_region = NULL;
u32 i = 0;
u32 region_size = 0;
u32 next_i = 0;
if (virtual_mapping_table == NULL)
return curr_region;
if (aSize > free_size) {
/* Find the largest free region
* (coalesce during the traversal) */
while (i < table_size) {
region_size = virtual_mapping_table[i].region_size;
next_i = i + region_size;
if (virtual_mapping_table[i].reserved == false) {
/* Coalesce, if possible */
if (next_i < table_size &&
virtual_mapping_table[next_i].reserved
== false) {
virtual_mapping_table[i].region_size +=
virtual_mapping_table
[next_i].region_size;
continue;
}
region_size *= PG_SIZE4K;
if (region_size > free_size) {
free_region = i;
free_size = region_size;
}
}
i = next_i;
}
}
if (aSize <= free_size) {
curr_region = virtual_mapping_table + free_region;
free_region += (aSize / PG_SIZE4K);
free_size -= aSize;
}
return curr_region;
}
/*
* ======== get_mapped_region ========
* Purpose:
* Returns the requestedmapped region
*/
static struct map_page *get_mapped_region(u32 aAddr)
{
u32 i = 0;
struct map_page *curr_region = NULL;
if (virtual_mapping_table == NULL)
return curr_region;
i = DMM_ADDR_TO_INDEX(aAddr);
if (i < table_size && (virtual_mapping_table[i].mapped ||
virtual_mapping_table[i].reserved))
curr_region = virtual_mapping_table + i;
return curr_region;
}
#ifdef DSP_DMM_DEBUG
u32 dmm_mem_map_dump(struct dmm_object *dmm_mgr)
{
struct map_page *curr_node = NULL;
u32 i;
u32 freemem = 0;
u32 bigsize = 0;
spin_lock(&dmm_mgr->dmm_lock);
if (virtual_mapping_table != NULL) {
for (i = 0; i < table_size; i +=
virtual_mapping_table[i].region_size) {
curr_node = virtual_mapping_table + i;
if (curr_node->reserved == TRUE) {
/*printk("RESERVED size = 0x%x, "
"Map size = 0x%x\n",
(curr_node->region_size * PG_SIZE4K),
(curr_node->mapped == false) ? 0 :
(curr_node->mapped_size * PG_SIZE4K));
*/
} else {
/* printk("UNRESERVED size = 0x%x\n",
(curr_node->region_size * PG_SIZE4K));
*/
freemem += (curr_node->region_size * PG_SIZE4K);
if (curr_node->region_size > bigsize)
bigsize = curr_node->region_size;
}
}
}
spin_unlock(&dmm_mgr->dmm_lock);
printk(KERN_INFO "Total DSP VA FREE memory = %d Mbytes\n",
freemem / (1024 * 1024));
printk(KERN_INFO "Total DSP VA USED memory= %d Mbytes \n",
(((table_size * PG_SIZE4K) - freemem)) / (1024 * 1024));
printk(KERN_INFO "DSP VA - Biggest FREE block = %d Mbytes \n\n",
(bigsize * PG_SIZE4K / (1024 * 1024)));
return 0;
}
#endif
/*
* dspapi.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Common DSP API functions, also includes the wrapper
* functions called directly by the DeviceIOControl interface.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/ntfy.h>
#include <dspbridge/services.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/chnl.h>
#include <dspbridge/dev.h>
#include <dspbridge/drv.h>
#include <dspbridge/proc.h>
#include <dspbridge/strm.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/disp.h>
#include <dspbridge/mgr.h>
#include <dspbridge/node.h>
#include <dspbridge/rmm.h>
/* ----------------------------------- Others */
#include <dspbridge/msg.h>
#include <dspbridge/cmm.h>
#include <dspbridge/io.h>
/* ----------------------------------- This */
#include <dspbridge/dspapi.h>
#include <dspbridge/dbdcd.h>
#include <dspbridge/resourcecleanup.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define MAX_TRACEBUFLEN 255
#define MAX_LOADARGS 16
#define MAX_NODES 64
#define MAX_STREAMS 16
#define MAX_BUFS 64
/* Used to get dspbridge ioctl table */
#define DB_GET_IOC_TABLE(cmd) (DB_GET_MODULE(cmd) >> DB_MODULE_SHIFT)
/* Device IOCtl function pointer */
struct api_cmd {
u32(*fxn) (union Trapped_Args *args, void *pr_ctxt);
u32 dw_index;
};
/* ----------------------------------- Globals */
static u32 api_c_refs;
/*
* Function tables.
* The order of these functions MUST be the same as the order of the command
* numbers defined in dspapi-ioctl.h This is how an IOCTL number in user mode
* turns into a function call in kernel mode.
*/
/* MGR wrapper functions */
static struct api_cmd mgr_cmd[] = {
{mgrwrap_enum_node_info}, /* MGR_ENUMNODE_INFO */
{mgrwrap_enum_proc_info}, /* MGR_ENUMPROC_INFO */
{mgrwrap_register_object}, /* MGR_REGISTEROBJECT */
{mgrwrap_unregister_object}, /* MGR_UNREGISTEROBJECT */
{mgrwrap_wait_for_bridge_events}, /* MGR_WAIT */
{mgrwrap_get_process_resources_info}, /* MGR_GET_PROC_RES */
};
/* PROC wrapper functions */
static struct api_cmd proc_cmd[] = {
{procwrap_attach}, /* PROC_ATTACH */
{procwrap_ctrl}, /* PROC_CTRL */
{procwrap_detach}, /* PROC_DETACH */
{procwrap_enum_node_info}, /* PROC_ENUMNODE */
{procwrap_enum_resources}, /* PROC_ENUMRESOURCES */
{procwrap_get_state}, /* PROC_GET_STATE */
{procwrap_get_trace}, /* PROC_GET_TRACE */
{procwrap_load}, /* PROC_LOAD */
{procwrap_register_notify}, /* PROC_REGISTERNOTIFY */
{procwrap_start}, /* PROC_START */
{procwrap_reserve_memory}, /* PROC_RSVMEM */
{procwrap_un_reserve_memory}, /* PROC_UNRSVMEM */
{procwrap_map}, /* PROC_MAPMEM */
{procwrap_un_map}, /* PROC_UNMAPMEM */
{procwrap_flush_memory}, /* PROC_FLUSHMEMORY */
{procwrap_stop}, /* PROC_STOP */
{procwrap_invalidate_memory}, /* PROC_INVALIDATEMEMORY */
{procwrap_begin_dma}, /* PROC_BEGINDMA */
{procwrap_end_dma}, /* PROC_ENDDMA */
};
/* NODE wrapper functions */
static struct api_cmd node_cmd[] = {
{nodewrap_allocate}, /* NODE_ALLOCATE */
{nodewrap_alloc_msg_buf}, /* NODE_ALLOCMSGBUF */
{nodewrap_change_priority}, /* NODE_CHANGEPRIORITY */
{nodewrap_connect}, /* NODE_CONNECT */
{nodewrap_create}, /* NODE_CREATE */
{nodewrap_delete}, /* NODE_DELETE */
{nodewrap_free_msg_buf}, /* NODE_FREEMSGBUF */
{nodewrap_get_attr}, /* NODE_GETATTR */
{nodewrap_get_message}, /* NODE_GETMESSAGE */
{nodewrap_pause}, /* NODE_PAUSE */
{nodewrap_put_message}, /* NODE_PUTMESSAGE */
{nodewrap_register_notify}, /* NODE_REGISTERNOTIFY */
{nodewrap_run}, /* NODE_RUN */
{nodewrap_terminate}, /* NODE_TERMINATE */
{nodewrap_get_uuid_props}, /* NODE_GETUUIDPROPS */
};
/* STRM wrapper functions */
static struct api_cmd strm_cmd[] = {
{strmwrap_allocate_buffer}, /* STRM_ALLOCATEBUFFER */
{strmwrap_close}, /* STRM_CLOSE */
{strmwrap_free_buffer}, /* STRM_FREEBUFFER */
{strmwrap_get_event_handle}, /* STRM_GETEVENTHANDLE */
{strmwrap_get_info}, /* STRM_GETINFO */
{strmwrap_idle}, /* STRM_IDLE */
{strmwrap_issue}, /* STRM_ISSUE */
{strmwrap_open}, /* STRM_OPEN */
{strmwrap_reclaim}, /* STRM_RECLAIM */
{strmwrap_register_notify}, /* STRM_REGISTERNOTIFY */
{strmwrap_select}, /* STRM_SELECT */
};
/* CMM wrapper functions */
static struct api_cmd cmm_cmd[] = {
{cmmwrap_calloc_buf}, /* CMM_ALLOCBUF */
{cmmwrap_free_buf}, /* CMM_FREEBUF */
{cmmwrap_get_handle}, /* CMM_GETHANDLE */
{cmmwrap_get_info}, /* CMM_GETINFO */
};
/* Array used to store ioctl table sizes. It can hold up to 8 entries */
static u8 size_cmd[] = {
ARRAY_SIZE(mgr_cmd),
ARRAY_SIZE(proc_cmd),
ARRAY_SIZE(node_cmd),
ARRAY_SIZE(strm_cmd),
ARRAY_SIZE(cmm_cmd),
};
static inline void _cp_fm_usr(void *to, const void __user * from,
int *err, unsigned long bytes)
{
if (DSP_FAILED(*err))
return;
if (unlikely(!from)) {
*err = -EFAULT;
return;
}
if (unlikely(copy_from_user(to, from, bytes)))
*err = -EFAULT;
}
#define CP_FM_USR(to, from, err, n) \
_cp_fm_usr(to, from, &(err), (n) * sizeof(*(to)))
static inline void _cp_to_usr(void __user *to, const void *from,
int *err, unsigned long bytes)
{
if (DSP_FAILED(*err))
return;
if (unlikely(!to)) {
*err = -EFAULT;
return;
}
if (unlikely(copy_to_user(to, from, bytes)))
*err = -EFAULT;
}
#define CP_TO_USR(to, from, err, n) \
_cp_to_usr(to, from, &(err), (n) * sizeof(*(from)))
/*
* ======== api_call_dev_ioctl ========
* Purpose:
* Call the (wrapper) function for the corresponding API IOCTL.
*/
inline int api_call_dev_ioctl(u32 cmd, union Trapped_Args *args,
u32 *result, void *pr_ctxt)
{
u32(*ioctl_cmd) (union Trapped_Args *args, void *pr_ctxt) = NULL;
int i;
if (_IOC_TYPE(cmd) != DB) {
pr_err("%s: Incompatible dspbridge ioctl number\n", __func__);
goto err;
}
if (DB_GET_IOC_TABLE(cmd) > ARRAY_SIZE(size_cmd)) {
pr_err("%s: undefined ioctl module\n", __func__);
goto err;
}
/* Check the size of the required cmd table */
i = DB_GET_IOC(cmd);
if (i > size_cmd[DB_GET_IOC_TABLE(cmd)]) {
pr_err("%s: requested ioctl %d out of bounds for table %d\n",
__func__, i, DB_GET_IOC_TABLE(cmd));
goto err;
}
switch (DB_GET_MODULE(cmd)) {
case DB_MGR:
ioctl_cmd = mgr_cmd[i].fxn;
break;
case DB_PROC:
ioctl_cmd = proc_cmd[i].fxn;
break;
case DB_NODE:
ioctl_cmd = node_cmd[i].fxn;
break;
case DB_STRM:
ioctl_cmd = strm_cmd[i].fxn;
break;
case DB_CMM:
ioctl_cmd = cmm_cmd[i].fxn;
break;
}
if (!ioctl_cmd) {
pr_err("%s: requested ioctl not defined\n", __func__);
goto err;
} else {
*result = (*ioctl_cmd) (args, pr_ctxt);
}
return 0;
err:
return -EINVAL;
}
/*
* ======== api_exit ========
*/
void api_exit(void)
{
DBC_REQUIRE(api_c_refs > 0);
api_c_refs--;
if (api_c_refs == 0) {
/* Release all modules initialized in api_init(). */
cod_exit();
dev_exit();
chnl_exit();
msg_exit();
io_exit();
strm_exit();
disp_exit();
node_exit();
proc_exit();
mgr_exit();
rmm_exit();
drv_exit();
}
DBC_ENSURE(api_c_refs >= 0);
}
/*
* ======== api_init ========
* Purpose:
* Module initialization used by Bridge API.
*/
bool api_init(void)
{
bool ret = true;
bool fdrv, fdev, fcod, fchnl, fmsg, fio;
bool fmgr, fproc, fnode, fdisp, fstrm, frmm;
if (api_c_refs == 0) {
/* initialize driver and other modules */
fdrv = drv_init();
fmgr = mgr_init();
fproc = proc_init();
fnode = node_init();
fdisp = disp_init();
fstrm = strm_init();
frmm = rmm_init();
fchnl = chnl_init();
fmsg = msg_mod_init();
fio = io_init();
fdev = dev_init();
fcod = cod_init();
ret = fdrv && fdev && fchnl && fcod && fmsg && fio;
ret = ret && fmgr && fproc && frmm;
if (!ret) {
if (fdrv)
drv_exit();
if (fmgr)
mgr_exit();
if (fstrm)
strm_exit();
if (fproc)
proc_exit();
if (fnode)
node_exit();
if (fdisp)
disp_exit();
if (fchnl)
chnl_exit();
if (fmsg)
msg_exit();
if (fio)
io_exit();
if (fdev)
dev_exit();
if (fcod)
cod_exit();
if (frmm)
rmm_exit();
}
}
if (ret)
api_c_refs++;
return ret;
}
/*
* ======== api_init_complete2 ========
* Purpose:
* Perform any required bridge initialization which cannot
* be performed in api_init() or dev_start_device() due
* to the fact that some services are not yet
* completely initialized.
* Parameters:
* Returns:
* 0: Allow this device to load
* -EPERM: Failure.
* Requires:
* Bridge API initialized.
* Ensures:
*/
int api_init_complete2(void)
{
int status = 0;
struct cfg_devnode *dev_node;
struct dev_object *hdev_obj;
u8 dev_type;
u32 tmp;
DBC_REQUIRE(api_c_refs > 0);
/* Walk the list of DevObjects, get each devnode, and attempting to
* autostart the board. Note that this requires COF loading, which
* requires KFILE. */
for (hdev_obj = dev_get_first(); hdev_obj != NULL;
hdev_obj = dev_get_next(hdev_obj)) {
if (DSP_FAILED(dev_get_dev_node(hdev_obj, &dev_node)))
continue;
if (DSP_FAILED(dev_get_dev_type(hdev_obj, &dev_type)))
continue;
if ((dev_type == DSP_UNIT) || (dev_type == IVA_UNIT))
if (cfg_get_auto_start(dev_node, &tmp) == 0
&& tmp)
proc_auto_start(dev_node, hdev_obj);
}
return status;
}
/* TODO: Remove deprecated and not implemented ioctl wrappers */
/*
* ======== mgrwrap_enum_node_info ========
*/
u32 mgrwrap_enum_node_info(union Trapped_Args *args, void *pr_ctxt)
{
u8 *pndb_props;
u32 num_nodes;
int status = 0;
u32 size = args->args_mgr_enumnode_info.undb_props_size;
if (size < sizeof(struct dsp_ndbprops))
return -EINVAL;
pndb_props = kmalloc(size, GFP_KERNEL);
if (pndb_props == NULL)
status = -ENOMEM;
if (DSP_SUCCEEDED(status)) {
status =
mgr_enum_node_info(args->args_mgr_enumnode_info.node_id,
(struct dsp_ndbprops *)pndb_props, size,
&num_nodes);
}
CP_TO_USR(args->args_mgr_enumnode_info.pndb_props, pndb_props, status,
size);
CP_TO_USR(args->args_mgr_enumnode_info.pu_num_nodes, &num_nodes, status,
1);
kfree(pndb_props);
return status;
}
/*
* ======== mgrwrap_enum_proc_info ========
*/
u32 mgrwrap_enum_proc_info(union Trapped_Args *args, void *pr_ctxt)
{
u8 *processor_info;
u8 num_procs;
int status = 0;
u32 size = args->args_mgr_enumproc_info.processor_info_size;
if (size < sizeof(struct dsp_processorinfo))
return -EINVAL;
processor_info = kmalloc(size, GFP_KERNEL);
if (processor_info == NULL)
status = -ENOMEM;
if (DSP_SUCCEEDED(status)) {
status =
mgr_enum_processor_info(args->args_mgr_enumproc_info.
processor_id,
(struct dsp_processorinfo *)
processor_info, size, &num_procs);
}
CP_TO_USR(args->args_mgr_enumproc_info.processor_info, processor_info,
status, size);
CP_TO_USR(args->args_mgr_enumproc_info.pu_num_procs, &num_procs,
status, 1);
kfree(processor_info);
return status;
}
#define WRAP_MAP2CALLER(x) x
/*
* ======== mgrwrap_register_object ========
*/
u32 mgrwrap_register_object(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
struct dsp_uuid uuid_obj;
u32 path_size = 0;
char *psz_path_name = NULL;
int status = 0;
CP_FM_USR(&uuid_obj, args->args_mgr_registerobject.uuid_obj, status, 1);
if (DSP_FAILED(status))
goto func_end;
/* path_size is increased by 1 to accommodate NULL */
path_size = strlen_user((char *)
args->args_mgr_registerobject.psz_path_name) +
1;
psz_path_name = kmalloc(path_size, GFP_KERNEL);
if (!psz_path_name)
goto func_end;
ret = strncpy_from_user(psz_path_name,
(char *)args->args_mgr_registerobject.
psz_path_name, path_size);
if (!ret) {
status = -EFAULT;
goto func_end;
}
if (args->args_mgr_registerobject.obj_type >= DSP_DCDMAXOBJTYPE)
return -EINVAL;
status = dcd_register_object(&uuid_obj,
args->args_mgr_registerobject.obj_type,
(char *)psz_path_name);
func_end:
kfree(psz_path_name);
return status;
}
/*
* ======== mgrwrap_unregister_object ========
*/
u32 mgrwrap_unregister_object(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_uuid uuid_obj;
CP_FM_USR(&uuid_obj, args->args_mgr_registerobject.uuid_obj, status, 1);
if (DSP_FAILED(status))
goto func_end;
status = dcd_unregister_object(&uuid_obj,
args->args_mgr_unregisterobject.
obj_type);
func_end:
return status;
}
/*
* ======== mgrwrap_wait_for_bridge_events ========
*/
u32 mgrwrap_wait_for_bridge_events(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0, real_status = 0;
struct dsp_notification *anotifications[MAX_EVENTS];
struct dsp_notification notifications[MAX_EVENTS];
u32 index, i;
u32 count = args->args_mgr_wait.count;
if (count > MAX_EVENTS)
status = -EINVAL;
/* get the array of pointers to user structures */
CP_FM_USR(anotifications, args->args_mgr_wait.anotifications,
status, count);
/* get the events */
for (i = 0; i < count; i++) {
CP_FM_USR(&notifications[i], anotifications[i], status, 1);
if (DSP_SUCCEEDED(status)) {
/* set the array of pointers to kernel structures */
anotifications[i] = &notifications[i];
}
}
if (DSP_SUCCEEDED(status)) {
real_status = mgr_wait_for_bridge_events(anotifications, count,
&index,
args->args_mgr_wait.
utimeout);
}
CP_TO_USR(args->args_mgr_wait.pu_index, &index, status, 1);
return real_status;
}
/*
* ======== MGRWRAP_GetProcessResourceInfo ========
*/
u32 __deprecated mgrwrap_get_process_resources_info(union Trapped_Args * args,
void *pr_ctxt)
{
pr_err("%s: deprecated dspbridge ioctl\n", __func__);
return 0;
}
/*
* ======== procwrap_attach ========
*/
u32 procwrap_attach(union Trapped_Args *args, void *pr_ctxt)
{
void *processor;
int status = 0;
struct dsp_processorattrin proc_attr_in, *attr_in = NULL;
/* Optional argument */
if (args->args_proc_attach.attr_in) {
CP_FM_USR(&proc_attr_in, args->args_proc_attach.attr_in, status,
1);
if (DSP_SUCCEEDED(status))
attr_in = &proc_attr_in;
else
goto func_end;
}
status = proc_attach(args->args_proc_attach.processor_id, attr_in,
&processor, pr_ctxt);
CP_TO_USR(args->args_proc_attach.ph_processor, &processor, status, 1);
func_end:
return status;
}
/*
* ======== procwrap_ctrl ========
*/
u32 procwrap_ctrl(union Trapped_Args *args, void *pr_ctxt)
{
u32 cb_data_size, __user * psize = (u32 __user *)
args->args_proc_ctrl.pargs;
u8 *pargs = NULL;
int status = 0;
if (psize) {
if (get_user(cb_data_size, psize)) {
status = -EPERM;
goto func_end;
}
cb_data_size += sizeof(u32);
pargs = kmalloc(cb_data_size, GFP_KERNEL);
if (pargs == NULL) {
status = -ENOMEM;
goto func_end;
}
CP_FM_USR(pargs, args->args_proc_ctrl.pargs, status,
cb_data_size);
}
if (DSP_SUCCEEDED(status)) {
status = proc_ctrl(args->args_proc_ctrl.hprocessor,
args->args_proc_ctrl.dw_cmd,
(struct dsp_cbdata *)pargs);
}
/* CP_TO_USR(args->args_proc_ctrl.pargs, pargs, status, 1); */
kfree(pargs);
func_end:
return status;
}
/*
* ======== procwrap_detach ========
*/
u32 __deprecated procwrap_detach(union Trapped_Args * args, void *pr_ctxt)
{
/* proc_detach called at bridge_release only */
pr_err("%s: deprecated dspbridge ioctl\n", __func__);
return 0;
}
/*
* ======== procwrap_enum_node_info ========
*/
u32 procwrap_enum_node_info(union Trapped_Args *args, void *pr_ctxt)
{
int status;
void *node_tab[MAX_NODES];
u32 num_nodes;
u32 alloc_cnt;
if (!args->args_proc_enumnode_info.node_tab_size)
return -EINVAL;
status = proc_enum_nodes(args->args_proc_enumnode_info.hprocessor,
node_tab,
args->args_proc_enumnode_info.node_tab_size,
&num_nodes, &alloc_cnt);
CP_TO_USR(args->args_proc_enumnode_info.node_tab, node_tab, status,
num_nodes);
CP_TO_USR(args->args_proc_enumnode_info.pu_num_nodes, &num_nodes,
status, 1);
CP_TO_USR(args->args_proc_enumnode_info.pu_allocated, &alloc_cnt,
status, 1);
return status;
}
u32 procwrap_end_dma(union Trapped_Args *args, void *pr_ctxt)
{
int status;
if (args->args_proc_dma.dir >= DMA_NONE)
return -EINVAL;
status = proc_end_dma(pr_ctxt,
args->args_proc_dma.pmpu_addr,
args->args_proc_dma.ul_size,
args->args_proc_dma.dir);
return status;
}
u32 procwrap_begin_dma(union Trapped_Args *args, void *pr_ctxt)
{
int status;
if (args->args_proc_dma.dir >= DMA_NONE)
return -EINVAL;
status = proc_begin_dma(pr_ctxt,
args->args_proc_dma.pmpu_addr,
args->args_proc_dma.ul_size,
args->args_proc_dma.dir);
return status;
}
/*
* ======== procwrap_flush_memory ========
*/
u32 procwrap_flush_memory(union Trapped_Args *args, void *pr_ctxt)
{
int status;
if (args->args_proc_flushmemory.ul_flags >
PROC_WRITEBACK_INVALIDATE_MEM)
return -EINVAL;
status = proc_flush_memory(pr_ctxt,
args->args_proc_flushmemory.pmpu_addr,
args->args_proc_flushmemory.ul_size,
args->args_proc_flushmemory.ul_flags);
return status;
}
/*
* ======== procwrap_invalidate_memory ========
*/
u32 procwrap_invalidate_memory(union Trapped_Args *args, void *pr_ctxt)
{
int status;
status =
proc_invalidate_memory(pr_ctxt,
args->args_proc_invalidatememory.pmpu_addr,
args->args_proc_invalidatememory.ul_size);
return status;
}
/*
* ======== procwrap_enum_resources ========
*/
u32 procwrap_enum_resources(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_resourceinfo resource_info;
if (args->args_proc_enumresources.resource_info_size <
sizeof(struct dsp_resourceinfo))
return -EINVAL;
status =
proc_get_resource_info(args->args_proc_enumresources.hprocessor,
args->args_proc_enumresources.resource_type,
&resource_info,
args->args_proc_enumresources.
resource_info_size);
CP_TO_USR(args->args_proc_enumresources.resource_info, &resource_info,
status, 1);
return status;
}
/*
* ======== procwrap_get_state ========
*/
u32 procwrap_get_state(union Trapped_Args *args, void *pr_ctxt)
{
int status;
struct dsp_processorstate proc_state;
if (args->args_proc_getstate.state_info_size <
sizeof(struct dsp_processorstate))
return -EINVAL;
status =
proc_get_state(args->args_proc_getstate.hprocessor, &proc_state,
args->args_proc_getstate.state_info_size);
CP_TO_USR(args->args_proc_getstate.proc_state_obj, &proc_state, status,
1);
return status;
}
/*
* ======== procwrap_get_trace ========
*/
u32 procwrap_get_trace(union Trapped_Args *args, void *pr_ctxt)
{
int status;
u8 *pbuf;
if (args->args_proc_gettrace.max_size > MAX_TRACEBUFLEN)
return -EINVAL;
pbuf = kzalloc(args->args_proc_gettrace.max_size, GFP_KERNEL);
if (pbuf != NULL) {
status = proc_get_trace(args->args_proc_gettrace.hprocessor,
pbuf,
args->args_proc_gettrace.max_size);
} else {
status = -ENOMEM;
}
CP_TO_USR(args->args_proc_gettrace.pbuf, pbuf, status,
args->args_proc_gettrace.max_size);
kfree(pbuf);
return status;
}
/*
* ======== procwrap_load ========
*/
u32 procwrap_load(union Trapped_Args *args, void *pr_ctxt)
{
s32 i, len;
int status = 0;
char *temp;
s32 count = args->args_proc_load.argc_index;
u8 **argv = NULL, **envp = NULL;
if (count <= 0 || count > MAX_LOADARGS) {
status = -EINVAL;
goto func_cont;
}
argv = kmalloc(count * sizeof(u8 *), GFP_KERNEL);
if (!argv) {
status = -ENOMEM;
goto func_cont;
}
CP_FM_USR(argv, args->args_proc_load.user_args, status, count);
if (DSP_FAILED(status)) {
kfree(argv);
argv = NULL;
goto func_cont;
}
for (i = 0; i < count; i++) {
if (argv[i]) {
/* User space pointer to argument */
temp = (char *)argv[i];
/* len is increased by 1 to accommodate NULL */
len = strlen_user((char *)temp) + 1;
/* Kernel space pointer to argument */
argv[i] = kmalloc(len, GFP_KERNEL);
if (argv[i]) {
CP_FM_USR(argv[i], temp, status, len);
if (DSP_FAILED(status)) {
kfree(argv[i]);
argv[i] = NULL;
goto func_cont;
}
} else {
status = -ENOMEM;
goto func_cont;
}
}
}
/* TODO: validate this */
if (args->args_proc_load.user_envp) {
/* number of elements in the envp array including NULL */
count = 0;
do {
get_user(temp, args->args_proc_load.user_envp + count);
count++;
} while (temp);
envp = kmalloc(count * sizeof(u8 *), GFP_KERNEL);
if (!envp) {
status = -ENOMEM;
goto func_cont;
}
CP_FM_USR(envp, args->args_proc_load.user_envp, status, count);
if (DSP_FAILED(status)) {
kfree(envp);
envp = NULL;
goto func_cont;
}
for (i = 0; envp[i]; i++) {
/* User space pointer to argument */
temp = (char *)envp[i];
/* len is increased by 1 to accommodate NULL */
len = strlen_user((char *)temp) + 1;
/* Kernel space pointer to argument */
envp[i] = kmalloc(len, GFP_KERNEL);
if (envp[i]) {
CP_FM_USR(envp[i], temp, status, len);
if (DSP_FAILED(status)) {
kfree(envp[i]);
envp[i] = NULL;
goto func_cont;
}
} else {
status = -ENOMEM;
goto func_cont;
}
}
}
if (DSP_SUCCEEDED(status)) {
status = proc_load(args->args_proc_load.hprocessor,
args->args_proc_load.argc_index,
(CONST char **)argv, (CONST char **)envp);
}
func_cont:
if (envp) {
i = 0;
while (envp[i])
kfree(envp[i++]);
kfree(envp);
}
if (argv) {
count = args->args_proc_load.argc_index;
for (i = 0; (i < count) && argv[i]; i++)
kfree(argv[i]);
kfree(argv);
}
return status;
}
/*
* ======== procwrap_map ========
*/
u32 procwrap_map(union Trapped_Args *args, void *pr_ctxt)
{
int status;
void *map_addr;
if (!args->args_proc_mapmem.ul_size)
return -EINVAL;
status = proc_map(args->args_proc_mapmem.hprocessor,
args->args_proc_mapmem.pmpu_addr,
args->args_proc_mapmem.ul_size,
args->args_proc_mapmem.req_addr, &map_addr,
args->args_proc_mapmem.ul_map_attr, pr_ctxt);
if (DSP_SUCCEEDED(status)) {
if (put_user(map_addr, args->args_proc_mapmem.pp_map_addr)) {
status = -EINVAL;
proc_un_map(args->args_proc_mapmem.hprocessor,
map_addr, pr_ctxt);
}
}
return status;
}
/*
* ======== procwrap_register_notify ========
*/
u32 procwrap_register_notify(union Trapped_Args *args, void *pr_ctxt)
{
int status;
struct dsp_notification notification;
/* Initialize the notification data structure */
notification.ps_name = NULL;
notification.handle = NULL;
status =
proc_register_notify(args->args_proc_register_notify.hprocessor,
args->args_proc_register_notify.event_mask,
args->args_proc_register_notify.notify_type,
&notification);
CP_TO_USR(args->args_proc_register_notify.hnotification, &notification,
status, 1);
return status;
}
/*
* ======== procwrap_reserve_memory ========
*/
u32 procwrap_reserve_memory(union Trapped_Args *args, void *pr_ctxt)
{
int status;
void *prsv_addr;
if ((args->args_proc_rsvmem.ul_size <= 0) ||
(args->args_proc_rsvmem.ul_size & (PG_SIZE4K - 1)) != 0)
return -EINVAL;
status = proc_reserve_memory(args->args_proc_rsvmem.hprocessor,
args->args_proc_rsvmem.ul_size, &prsv_addr,
pr_ctxt);
if (DSP_SUCCEEDED(status)) {
if (put_user(prsv_addr, args->args_proc_rsvmem.pp_rsv_addr)) {
status = -EINVAL;
proc_un_reserve_memory(args->args_proc_rsvmem.
hprocessor, prsv_addr, pr_ctxt);
}
}
return status;
}
/*
* ======== procwrap_start ========
*/
u32 procwrap_start(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = proc_start(args->args_proc_start.hprocessor);
return ret;
}
/*
* ======== procwrap_un_map ========
*/
u32 procwrap_un_map(union Trapped_Args *args, void *pr_ctxt)
{
int status;
status = proc_un_map(args->args_proc_unmapmem.hprocessor,
args->args_proc_unmapmem.map_addr, pr_ctxt);
return status;
}
/*
* ======== procwrap_un_reserve_memory ========
*/
u32 procwrap_un_reserve_memory(union Trapped_Args *args, void *pr_ctxt)
{
int status;
status = proc_un_reserve_memory(args->args_proc_unrsvmem.hprocessor,
args->args_proc_unrsvmem.prsv_addr,
pr_ctxt);
return status;
}
/*
* ======== procwrap_stop ========
*/
u32 procwrap_stop(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = proc_stop(args->args_proc_stop.hprocessor);
return ret;
}
/*
* ======== nodewrap_allocate ========
*/
u32 nodewrap_allocate(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_uuid node_uuid;
u32 cb_data_size = 0;
u32 __user *psize = (u32 __user *) args->args_node_allocate.pargs;
u8 *pargs = NULL;
struct dsp_nodeattrin proc_attr_in, *attr_in = NULL;
struct node_object *hnode;
/* Optional argument */
if (psize) {
if (get_user(cb_data_size, psize))
status = -EPERM;
cb_data_size += sizeof(u32);
if (DSP_SUCCEEDED(status)) {
pargs = kmalloc(cb_data_size, GFP_KERNEL);
if (pargs == NULL)
status = -ENOMEM;
}
CP_FM_USR(pargs, args->args_node_allocate.pargs, status,
cb_data_size);
}
CP_FM_USR(&node_uuid, args->args_node_allocate.node_id_ptr, status, 1);
if (DSP_FAILED(status))
goto func_cont;
/* Optional argument */
if (args->args_node_allocate.attr_in) {
CP_FM_USR(&proc_attr_in, args->args_node_allocate.attr_in,
status, 1);
if (DSP_SUCCEEDED(status))
attr_in = &proc_attr_in;
else
status = -ENOMEM;
}
if (DSP_SUCCEEDED(status)) {
status = node_allocate(args->args_node_allocate.hprocessor,
&node_uuid, (struct dsp_cbdata *)pargs,
attr_in, &hnode, pr_ctxt);
}
if (DSP_SUCCEEDED(status)) {
CP_TO_USR(args->args_node_allocate.ph_node, &hnode, status, 1);
if (DSP_FAILED(status)) {
status = -EFAULT;
node_delete(hnode, pr_ctxt);
}
}
func_cont:
kfree(pargs);
return status;
}
/*
* ======== nodewrap_alloc_msg_buf ========
*/
u32 nodewrap_alloc_msg_buf(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_bufferattr *pattr = NULL;
struct dsp_bufferattr attr;
u8 *pbuffer = NULL;
if (!args->args_node_allocmsgbuf.usize)
return -EINVAL;
if (args->args_node_allocmsgbuf.pattr) { /* Optional argument */
CP_FM_USR(&attr, args->args_node_allocmsgbuf.pattr, status, 1);
if (DSP_SUCCEEDED(status))
pattr = &attr;
}
/* IN OUT argument */
CP_FM_USR(&pbuffer, args->args_node_allocmsgbuf.pbuffer, status, 1);
if (DSP_SUCCEEDED(status)) {
status = node_alloc_msg_buf(args->args_node_allocmsgbuf.hnode,
args->args_node_allocmsgbuf.usize,
pattr, &pbuffer);
}
CP_TO_USR(args->args_node_allocmsgbuf.pbuffer, &pbuffer, status, 1);
return status;
}
/*
* ======== nodewrap_change_priority ========
*/
u32 nodewrap_change_priority(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = node_change_priority(args->args_node_changepriority.hnode,
args->args_node_changepriority.prio);
return ret;
}
/*
* ======== nodewrap_connect ========
*/
u32 nodewrap_connect(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_strmattr attrs;
struct dsp_strmattr *pattrs = NULL;
u32 cb_data_size;
u32 __user *psize = (u32 __user *) args->args_node_connect.conn_param;
u8 *pargs = NULL;
/* Optional argument */
if (psize) {
if (get_user(cb_data_size, psize))
status = -EPERM;
cb_data_size += sizeof(u32);
if (DSP_SUCCEEDED(status)) {
pargs = kmalloc(cb_data_size, GFP_KERNEL);
if (pargs == NULL) {
status = -ENOMEM;
goto func_cont;
}
}
CP_FM_USR(pargs, args->args_node_connect.conn_param, status,
cb_data_size);
if (DSP_FAILED(status))
goto func_cont;
}
if (args->args_node_connect.pattrs) { /* Optional argument */
CP_FM_USR(&attrs, args->args_node_connect.pattrs, status, 1);
if (DSP_SUCCEEDED(status))
pattrs = &attrs;
}
if (DSP_SUCCEEDED(status)) {
status = node_connect(args->args_node_connect.hnode,
args->args_node_connect.stream_id,
args->args_node_connect.other_node,
args->args_node_connect.other_stream,
pattrs, (struct dsp_cbdata *)pargs);
}
func_cont:
kfree(pargs);
return status;
}
/*
* ======== nodewrap_create ========
*/
u32 nodewrap_create(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = node_create(args->args_node_create.hnode);
return ret;
}
/*
* ======== nodewrap_delete ========
*/
u32 nodewrap_delete(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = node_delete(args->args_node_delete.hnode, pr_ctxt);
return ret;
}
/*
* ======== nodewrap_free_msg_buf ========
*/
u32 nodewrap_free_msg_buf(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_bufferattr *pattr = NULL;
struct dsp_bufferattr attr;
if (args->args_node_freemsgbuf.pattr) { /* Optional argument */
CP_FM_USR(&attr, args->args_node_freemsgbuf.pattr, status, 1);
if (DSP_SUCCEEDED(status))
pattr = &attr;
}
if (!args->args_node_freemsgbuf.pbuffer)
return -EFAULT;
if (DSP_SUCCEEDED(status)) {
status = node_free_msg_buf(args->args_node_freemsgbuf.hnode,
args->args_node_freemsgbuf.pbuffer,
pattr);
}
return status;
}
/*
* ======== nodewrap_get_attr ========
*/
u32 nodewrap_get_attr(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_nodeattr attr;
status = node_get_attr(args->args_node_getattr.hnode, &attr,
args->args_node_getattr.attr_size);
CP_TO_USR(args->args_node_getattr.pattr, &attr, status, 1);
return status;
}
/*
* ======== nodewrap_get_message ========
*/
u32 nodewrap_get_message(union Trapped_Args *args, void *pr_ctxt)
{
int status;
struct dsp_msg msg;
status = node_get_message(args->args_node_getmessage.hnode, &msg,
args->args_node_getmessage.utimeout);
CP_TO_USR(args->args_node_getmessage.message, &msg, status, 1);
return status;
}
/*
* ======== nodewrap_pause ========
*/
u32 nodewrap_pause(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = node_pause(args->args_node_pause.hnode);
return ret;
}
/*
* ======== nodewrap_put_message ========
*/
u32 nodewrap_put_message(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_msg msg;
CP_FM_USR(&msg, args->args_node_putmessage.message, status, 1);
if (DSP_SUCCEEDED(status)) {
status =
node_put_message(args->args_node_putmessage.hnode, &msg,
args->args_node_putmessage.utimeout);
}
return status;
}
/*
* ======== nodewrap_register_notify ========
*/
u32 nodewrap_register_notify(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_notification notification;
/* Initialize the notification data structure */
notification.ps_name = NULL;
notification.handle = NULL;
if (!args->args_proc_register_notify.event_mask)
CP_FM_USR(&notification,
args->args_proc_register_notify.hnotification,
status, 1);
status = node_register_notify(args->args_node_registernotify.hnode,
args->args_node_registernotify.event_mask,
args->args_node_registernotify.
notify_type, &notification);
CP_TO_USR(args->args_node_registernotify.hnotification, &notification,
status, 1);
return status;
}
/*
* ======== nodewrap_run ========
*/
u32 nodewrap_run(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = node_run(args->args_node_run.hnode);
return ret;
}
/*
* ======== nodewrap_terminate ========
*/
u32 nodewrap_terminate(union Trapped_Args *args, void *pr_ctxt)
{
int status;
int tempstatus;
status = node_terminate(args->args_node_terminate.hnode, &tempstatus);
CP_TO_USR(args->args_node_terminate.pstatus, &tempstatus, status, 1);
return status;
}
/*
* ======== nodewrap_get_uuid_props ========
*/
u32 nodewrap_get_uuid_props(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_uuid node_uuid;
struct dsp_ndbprops *pnode_props = NULL;
CP_FM_USR(&node_uuid, args->args_node_getuuidprops.node_id_ptr, status,
1);
if (DSP_FAILED(status))
goto func_cont;
pnode_props = kmalloc(sizeof(struct dsp_ndbprops), GFP_KERNEL);
if (pnode_props != NULL) {
status =
node_get_uuid_props(args->args_node_getuuidprops.hprocessor,
&node_uuid, pnode_props);
CP_TO_USR(args->args_node_getuuidprops.node_props, pnode_props,
status, 1);
} else
status = -ENOMEM;
func_cont:
kfree(pnode_props);
return status;
}
/*
* ======== strmwrap_allocate_buffer ========
*/
u32 strmwrap_allocate_buffer(union Trapped_Args *args, void *pr_ctxt)
{
int status;
u8 **ap_buffer = NULL;
u32 num_bufs = args->args_strm_allocatebuffer.num_bufs;
if (num_bufs > MAX_BUFS)
return -EINVAL;
ap_buffer = kmalloc((num_bufs * sizeof(u8 *)), GFP_KERNEL);
status = strm_allocate_buffer(args->args_strm_allocatebuffer.hstream,
args->args_strm_allocatebuffer.usize,
ap_buffer, num_bufs, pr_ctxt);
if (DSP_SUCCEEDED(status)) {
CP_TO_USR(args->args_strm_allocatebuffer.ap_buffer, ap_buffer,
status, num_bufs);
if (DSP_FAILED(status)) {
status = -EFAULT;
strm_free_buffer(args->args_strm_allocatebuffer.hstream,
ap_buffer, num_bufs, pr_ctxt);
}
}
kfree(ap_buffer);
return status;
}
/*
* ======== strmwrap_close ========
*/
u32 strmwrap_close(union Trapped_Args *args, void *pr_ctxt)
{
return strm_close(args->args_strm_close.hstream, pr_ctxt);
}
/*
* ======== strmwrap_free_buffer ========
*/
u32 strmwrap_free_buffer(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
u8 **ap_buffer = NULL;
u32 num_bufs = args->args_strm_freebuffer.num_bufs;
if (num_bufs > MAX_BUFS)
return -EINVAL;
ap_buffer = kmalloc((num_bufs * sizeof(u8 *)), GFP_KERNEL);
CP_FM_USR(ap_buffer, args->args_strm_freebuffer.ap_buffer, status,
num_bufs);
if (DSP_SUCCEEDED(status)) {
status = strm_free_buffer(args->args_strm_freebuffer.hstream,
ap_buffer, num_bufs, pr_ctxt);
}
CP_TO_USR(args->args_strm_freebuffer.ap_buffer, ap_buffer, status,
num_bufs);
kfree(ap_buffer);
return status;
}
/*
* ======== strmwrap_get_event_handle ========
*/
u32 __deprecated strmwrap_get_event_handle(union Trapped_Args * args,
void *pr_ctxt)
{
pr_err("%s: deprecated dspbridge ioctl\n", __func__);
return -ENOSYS;
}
/*
* ======== strmwrap_get_info ========
*/
u32 strmwrap_get_info(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct stream_info strm_info;
struct dsp_streaminfo user;
struct dsp_streaminfo *temp;
CP_FM_USR(&strm_info, args->args_strm_getinfo.stream_info, status, 1);
temp = strm_info.user_strm;
strm_info.user_strm = &user;
if (DSP_SUCCEEDED(status)) {
status = strm_get_info(args->args_strm_getinfo.hstream,
&strm_info,
args->args_strm_getinfo.
stream_info_size);
}
CP_TO_USR(temp, strm_info.user_strm, status, 1);
strm_info.user_strm = temp;
CP_TO_USR(args->args_strm_getinfo.stream_info, &strm_info, status, 1);
return status;
}
/*
* ======== strmwrap_idle ========
*/
u32 strmwrap_idle(union Trapped_Args *args, void *pr_ctxt)
{
u32 ret;
ret = strm_idle(args->args_strm_idle.hstream,
args->args_strm_idle.flush_flag);
return ret;
}
/*
* ======== strmwrap_issue ========
*/
u32 strmwrap_issue(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
if (!args->args_strm_issue.pbuffer)
return -EFAULT;
/* No need of doing CP_FM_USR for the user buffer (pbuffer)
as this is done in Bridge internal function bridge_chnl_add_io_req
in chnl_sm.c */
status = strm_issue(args->args_strm_issue.hstream,
args->args_strm_issue.pbuffer,
args->args_strm_issue.dw_bytes,
args->args_strm_issue.dw_buf_size,
args->args_strm_issue.dw_arg);
return status;
}
/*
* ======== strmwrap_open ========
*/
u32 strmwrap_open(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct strm_attr attr;
struct strm_object *strm_obj;
struct dsp_streamattrin strm_attr_in;
CP_FM_USR(&attr, args->args_strm_open.attr_in, status, 1);
if (attr.stream_attr_in != NULL) { /* Optional argument */
CP_FM_USR(&strm_attr_in, attr.stream_attr_in, status, 1);
if (DSP_SUCCEEDED(status)) {
attr.stream_attr_in = &strm_attr_in;
if (attr.stream_attr_in->strm_mode == STRMMODE_LDMA)
return -ENOSYS;
}
}
status = strm_open(args->args_strm_open.hnode,
args->args_strm_open.direction,
args->args_strm_open.index, &attr, &strm_obj,
pr_ctxt);
CP_TO_USR(args->args_strm_open.ph_stream, &strm_obj, status, 1);
return status;
}
/*
* ======== strmwrap_reclaim ========
*/
u32 strmwrap_reclaim(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
u8 *buf_ptr;
u32 ul_bytes;
u32 dw_arg;
u32 ul_buf_size;
status = strm_reclaim(args->args_strm_reclaim.hstream, &buf_ptr,
&ul_bytes, &ul_buf_size, &dw_arg);
CP_TO_USR(args->args_strm_reclaim.buf_ptr, &buf_ptr, status, 1);
CP_TO_USR(args->args_strm_reclaim.bytes, &ul_bytes, status, 1);
CP_TO_USR(args->args_strm_reclaim.pdw_arg, &dw_arg, status, 1);
if (args->args_strm_reclaim.buf_size_ptr != NULL) {
CP_TO_USR(args->args_strm_reclaim.buf_size_ptr, &ul_buf_size,
status, 1);
}
return status;
}
/*
* ======== strmwrap_register_notify ========
*/
u32 strmwrap_register_notify(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct dsp_notification notification;
/* Initialize the notification data structure */
notification.ps_name = NULL;
notification.handle = NULL;
status = strm_register_notify(args->args_strm_registernotify.hstream,
args->args_strm_registernotify.event_mask,
args->args_strm_registernotify.
notify_type, &notification);
CP_TO_USR(args->args_strm_registernotify.hnotification, &notification,
status, 1);
return status;
}
/*
* ======== strmwrap_select ========
*/
u32 strmwrap_select(union Trapped_Args *args, void *pr_ctxt)
{
u32 mask;
struct strm_object *strm_tab[MAX_STREAMS];
int status = 0;
if (args->args_strm_select.strm_num > MAX_STREAMS)
return -EINVAL;
CP_FM_USR(strm_tab, args->args_strm_select.stream_tab, status,
args->args_strm_select.strm_num);
if (DSP_SUCCEEDED(status)) {
status = strm_select(strm_tab, args->args_strm_select.strm_num,
&mask, args->args_strm_select.utimeout);
}
CP_TO_USR(args->args_strm_select.pmask, &mask, status, 1);
return status;
}
/* CMM */
/*
* ======== cmmwrap_calloc_buf ========
*/
u32 __deprecated cmmwrap_calloc_buf(union Trapped_Args * args, void *pr_ctxt)
{
/* This operation is done in kernel */
pr_err("%s: deprecated dspbridge ioctl\n", __func__);
return -ENOSYS;
}
/*
* ======== cmmwrap_free_buf ========
*/
u32 __deprecated cmmwrap_free_buf(union Trapped_Args * args, void *pr_ctxt)
{
/* This operation is done in kernel */
pr_err("%s: deprecated dspbridge ioctl\n", __func__);
return -ENOSYS;
}
/*
* ======== cmmwrap_get_handle ========
*/
u32 cmmwrap_get_handle(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct cmm_object *hcmm_mgr;
status = cmm_get_handle(args->args_cmm_gethandle.hprocessor, &hcmm_mgr);
CP_TO_USR(args->args_cmm_gethandle.ph_cmm_mgr, &hcmm_mgr, status, 1);
return status;
}
/*
* ======== cmmwrap_get_info ========
*/
u32 cmmwrap_get_info(union Trapped_Args *args, void *pr_ctxt)
{
int status = 0;
struct cmm_info cmm_info_obj;
status = cmm_get_info(args->args_cmm_getinfo.hcmm_mgr, &cmm_info_obj);
CP_TO_USR(args->args_cmm_getinfo.cmm_info_obj, &cmm_info_obj, status,
1);
return status;
}
/*
* io.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* IO manager interface: Manages IO between CHNL and msg_ctrl.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
/* ----------------------------------- This */
#include <ioobj.h>
#include <dspbridge/iodefs.h>
#include <dspbridge/io.h>
/* ----------------------------------- Globals */
static u32 refs;
/*
* ======== io_create ========
* Purpose:
* Create an IO manager object, responsible for managing IO between
* CHNL and msg_ctrl
*/
int io_create(OUT struct io_mgr **phIOMgr, struct dev_object *hdev_obj,
IN CONST struct io_attrs *pMgrAttrs)
{
struct bridge_drv_interface *intf_fxns;
struct io_mgr *hio_mgr = NULL;
struct io_mgr_ *pio_mgr = NULL;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phIOMgr != NULL);
DBC_REQUIRE(pMgrAttrs != NULL);
*phIOMgr = NULL;
/* A memory base of 0 implies no memory base: */
if ((pMgrAttrs->shm_base != 0) && (pMgrAttrs->usm_length == 0))
status = -EINVAL;
if (pMgrAttrs->word_size == 0)
status = -EINVAL;
if (DSP_SUCCEEDED(status)) {
dev_get_intf_fxns(hdev_obj, &intf_fxns);
/* Let Bridge channel module finish the create: */
status = (*intf_fxns->pfn_io_create) (&hio_mgr, hdev_obj,
pMgrAttrs);
if (DSP_SUCCEEDED(status)) {
pio_mgr = (struct io_mgr_ *)hio_mgr;
pio_mgr->intf_fxns = intf_fxns;
pio_mgr->hdev_obj = hdev_obj;
/* Return the new channel manager handle: */
*phIOMgr = hio_mgr;
}
}
return status;
}
/*
* ======== io_destroy ========
* Purpose:
* Delete IO manager.
*/
int io_destroy(struct io_mgr *hio_mgr)
{
struct bridge_drv_interface *intf_fxns;
struct io_mgr_ *pio_mgr = (struct io_mgr_ *)hio_mgr;
int status;
DBC_REQUIRE(refs > 0);
intf_fxns = pio_mgr->intf_fxns;
/* Let Bridge channel module destroy the io_mgr: */
status = (*intf_fxns->pfn_io_destroy) (hio_mgr);
return status;
}
/*
* ======== io_exit ========
* Purpose:
* Discontinue usage of the IO module.
*/
void io_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== io_init ========
* Purpose:
* Initialize the IO module's private state.
*/
bool io_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ioobj.h
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Structure subcomponents of channel class library IO objects which
* are exposed to DSP API from Bridge driver.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef IOOBJ_
#define IOOBJ_
#include <dspbridge/devdefs.h>
#include <dspbridge/dspdefs.h>
/*
* This struct is the first field in a io_mgr struct. Other, implementation
* specific fields follow this structure in memory.
*/
struct io_mgr_ {
/* These must be the first fields in a io_mgr struct: */
struct bridge_dev_context *hbridge_context; /* Bridge context. */
/* Function interface to Bridge driver. */
struct bridge_drv_interface *intf_fxns;
struct dev_object *hdev_obj; /* Device this board represents. */
};
#endif /* IOOBJ_ */
/*
* msg.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP/BIOS Bridge msg_ctrl Module.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- Bridge Driver */
#include <dspbridge/dspdefs.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
/* ----------------------------------- This */
#include <msgobj.h>
#include <dspbridge/msg.h>
/* ----------------------------------- Globals */
static u32 refs; /* module reference count */
/*
* ======== msg_create ========
* Purpose:
* Create an object to manage message queues. Only one of these objects
* can exist per device object.
*/
int msg_create(OUT struct msg_mgr **phMsgMgr,
struct dev_object *hdev_obj, msg_onexit msgCallback)
{
struct bridge_drv_interface *intf_fxns;
struct msg_mgr_ *msg_mgr_obj;
struct msg_mgr *hmsg_mgr;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phMsgMgr != NULL);
DBC_REQUIRE(msgCallback != NULL);
DBC_REQUIRE(hdev_obj != NULL);
*phMsgMgr = NULL;
dev_get_intf_fxns(hdev_obj, &intf_fxns);
/* Let Bridge message module finish the create: */
status =
(*intf_fxns->pfn_msg_create) (&hmsg_mgr, hdev_obj, msgCallback);
if (DSP_SUCCEEDED(status)) {
/* Fill in DSP API message module's fields of the msg_mgr
* structure */
msg_mgr_obj = (struct msg_mgr_ *)hmsg_mgr;
msg_mgr_obj->intf_fxns = intf_fxns;
/* Finally, return the new message manager handle: */
*phMsgMgr = hmsg_mgr;
} else {
status = -EPERM;
}
return status;
}
/*
* ======== msg_delete ========
* Purpose:
* Delete a msg_ctrl manager allocated in msg_create().
*/
void msg_delete(struct msg_mgr *hmsg_mgr)
{
struct msg_mgr_ *msg_mgr_obj = (struct msg_mgr_ *)hmsg_mgr;
struct bridge_drv_interface *intf_fxns;
DBC_REQUIRE(refs > 0);
if (msg_mgr_obj) {
intf_fxns = msg_mgr_obj->intf_fxns;
/* Let Bridge message module destroy the msg_mgr: */
(*intf_fxns->pfn_msg_delete) (hmsg_mgr);
} else {
dev_dbg(bridge, "%s: Error hmsg_mgr handle: %p\n",
__func__, hmsg_mgr);
}
}
/*
* ======== msg_exit ========
*/
void msg_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== msg_mod_init ========
*/
bool msg_mod_init(void)
{
DBC_REQUIRE(refs >= 0);
refs++;
DBC_ENSURE(refs >= 0);
return true;
}
/*
* msgobj.h
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Structure subcomponents of channel class library msg_ctrl objects which
* are exposed to DSP API from Bridge driver.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef MSGOBJ_
#define MSGOBJ_
#include <dspbridge/dspdefs.h>
#include <dspbridge/msgdefs.h>
/*
* This struct is the first field in a msg_mgr struct. Other, implementation
* specific fields follow this structure in memory.
*/
struct msg_mgr_ {
/* The first field must match that in _msg_sm.h */
/* Function interface to Bridge driver. */
struct bridge_drv_interface *intf_fxns;
};
#endif /* MSGOBJ_ */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册