提交 a0a5e348 编写于 作者: A Amerigo Wang 提交者: Jean Delvare

hwmon: Remove the deprecated adt7473 driver

adt7473 driver is obsoleted by adt7475 driver. And it is scheduled
to be removed in Feb 2010.
Signed-off-by: NWANG Cong <amwang@redhat.com>
Signed-off-by: NJean Delvare <khali@linux-fr.org>
上级 dc71afe5
......@@ -449,12 +449,6 @@ Who: Alok N Kataria <akataria@vmware.com>
----------------------------
What: adt7473 hardware monitoring driver
When: February 2010
Why: Obsoleted by the adt7475 driver.
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: Support for lcd_switch and display_get in asus-laptop driver
When: March 2010
Why: These two features use non-standard interfaces. There are the
......
Kernel driver adt7473
======================
Supported chips:
* Analog Devices ADT7473
Prefix: 'adt7473'
Addresses scanned: I2C 0x2C, 0x2D, 0x2E
Datasheet: Publicly available at the Analog Devices website
Author: Darrick J. Wong
This driver is depreacted, please use the adt7475 driver instead.
Description
-----------
This driver implements support for the Analog Devices ADT7473 chip family.
The ADT7473 uses the 2-wire interface compatible with the SMBUS 2.0
specification. Using an analog to digital converter it measures three (3)
temperatures and two (2) voltages. It has four (4) 16-bit counters for
measuring fan speed. There are three (3) PWM outputs that can be used
to control fan speed.
A sophisticated control system for the PWM outputs is designed into the
ADT7473 that allows fan speed to be adjusted automatically based on any of the
three temperature sensors. Each PWM output is individually adjustable and
programmable. Once configured, the ADT7473 will adjust the PWM outputs in
response to the measured temperatures without further host intervention.
This feature can also be disabled for manual control of the PWM's.
Each of the measured inputs (voltage, temperature, fan speed) has
corresponding high/low limit values. The ADT7473 will signal an ALARM if
any measured value exceeds either limit.
The ADT7473 samples all inputs continuously. The driver will not read
the registers more often than once every other second. Further,
configuration data is only read once per minute.
Special Features
----------------
The ADT7473 have a 10-bit ADC and can therefore measure temperatures
with 0.25 degC resolution. Temperature readings can be configured either
for twos complement format or "Offset 64" format, wherein 63 is subtracted
from the raw value to get the temperature value.
The Analog Devices datasheet is very detailed and describes a procedure for
determining an optimal configuration for the automatic PWM control.
Configuration Notes
-------------------
Besides standard interfaces driver adds the following:
* PWM Control
* pwm#_auto_point1_pwm and temp#_auto_point1_temp and
* pwm#_auto_point2_pwm and temp#_auto_point2_temp -
point1: Set the pwm speed at a lower temperature bound.
point2: Set the pwm speed at a higher temperature bound.
The ADT7473 will scale the pwm between the lower and higher pwm speed when
the temperature is between the two temperature boundaries. PWM values range
from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the
temperature sensor associated with the PWM control exceeds temp#_max.
Notes
-----
The NVIDIA binary driver presents an ADT7473 chip via an on-card i2c bus.
Unfortunately, they fail to set the i2c adapter class, so this driver may
fail to find the chip until the nvidia driver is patched.
......@@ -200,20 +200,6 @@ config SENSORS_ADT7470
This driver can also be built as a module. If so, the module
will be called adt7470.
config SENSORS_ADT7473
tristate "Analog Devices ADT7473 (DEPRECATED)"
depends on I2C && EXPERIMENTAL
select SENSORS_ADT7475
help
If you say yes here you get support for the Analog Devices
ADT7473 temperature monitoring chips.
This driver is deprecated, you should use the adt7475 driver
instead.
This driver can also be built as a module. If so, the module
will be called adt7473.
config SENSORS_ADT7475
tristate "Analog Devices ADT7473, ADT7475, ADT7476 and ADT7490"
depends on I2C && EXPERIMENTAL
......
......@@ -32,7 +32,6 @@ obj-$(CONFIG_SENSORS_ADS7828) += ads7828.o
obj-$(CONFIG_SENSORS_ADT7411) += adt7411.o
obj-$(CONFIG_SENSORS_ADT7462) += adt7462.o
obj-$(CONFIG_SENSORS_ADT7470) += adt7470.o
obj-$(CONFIG_SENSORS_ADT7473) += adt7473.o
obj-$(CONFIG_SENSORS_ADT7475) += adt7475.o
obj-$(CONFIG_SENSORS_APPLESMC) += applesmc.o
obj-$(CONFIG_SENSORS_AMS) += ams/
......
/*
* A hwmon driver for the Analog Devices ADT7473
* Copyright (C) 2007 IBM
*
* Author: Darrick J. Wong <djwong@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/log2.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2C, 0x2D, 0x2E, I2C_CLIENT_END };
/* ADT7473 registers */
#define ADT7473_REG_BASE_ADDR 0x20
#define ADT7473_REG_VOLT_BASE_ADDR 0x21
#define ADT7473_REG_VOLT_MIN_BASE_ADDR 0x46
#define ADT7473_REG_TEMP_BASE_ADDR 0x25
#define ADT7473_REG_TEMP_LIMITS_BASE_ADDR 0x4E
#define ADT7473_REG_TEMP_TMIN_BASE_ADDR 0x67
#define ADT7473_REG_TEMP_TMAX_BASE_ADDR 0x6A
#define ADT7473_REG_FAN_BASE_ADDR 0x28
#define ADT7473_REG_FAN_MIN_BASE_ADDR 0x54
#define ADT7473_REG_PWM_BASE_ADDR 0x30
#define ADT7473_REG_PWM_MIN_BASE_ADDR 0x64
#define ADT7473_REG_PWM_MAX_BASE_ADDR 0x38
#define ADT7473_REG_PWM_BHVR_BASE_ADDR 0x5C
#define ADT7473_PWM_BHVR_MASK 0xE0
#define ADT7473_PWM_BHVR_SHIFT 5
#define ADT7473_REG_CFG1 0x40
#define ADT7473_CFG1_START 0x01
#define ADT7473_CFG1_READY 0x04
#define ADT7473_REG_CFG2 0x73
#define ADT7473_REG_CFG3 0x78
#define ADT7473_REG_CFG4 0x7D
#define ADT7473_CFG4_MAX_DUTY_AT_OVT 0x08
#define ADT7473_REG_CFG5 0x7C
#define ADT7473_CFG5_TEMP_TWOS 0x01
#define ADT7473_CFG5_TEMP_OFFSET 0x02
#define ADT7473_REG_DEVICE 0x3D
#define ADT7473_VENDOR 0x41
#define ADT7473_REG_VENDOR 0x3E
#define ADT7473_DEVICE 0x73
#define ADT7473_REG_REVISION 0x3F
#define ADT7473_REV_68 0x68
#define ADT7473_REV_69 0x69
#define ADT7473_REG_ALARM1 0x41
#define ADT7473_VCCP_ALARM 0x02
#define ADT7473_VCC_ALARM 0x04
#define ADT7473_R1T_ALARM 0x10
#define ADT7473_LT_ALARM 0x20
#define ADT7473_R2T_ALARM 0x40
#define ADT7473_OOL 0x80
#define ADT7473_REG_ALARM2 0x42
#define ADT7473_OVT_ALARM 0x02
#define ADT7473_FAN1_ALARM 0x04
#define ADT7473_FAN2_ALARM 0x08
#define ADT7473_FAN3_ALARM 0x10
#define ADT7473_FAN4_ALARM 0x20
#define ADT7473_R1T_SHORT 0x40
#define ADT7473_R2T_SHORT 0x80
#define ALARM2(x) ((x) << 8)
#define ADT7473_VOLT_COUNT 2
#define ADT7473_REG_VOLT(x) (ADT7473_REG_VOLT_BASE_ADDR + (x))
#define ADT7473_REG_VOLT_MIN(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_VOLT_MAX(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + \
((x) * 2) + 1)
#define ADT7473_TEMP_COUNT 3
#define ADT7473_REG_TEMP(x) (ADT7473_REG_TEMP_BASE_ADDR + (x))
#define ADT7473_REG_TEMP_MIN(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_TEMP_MAX(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + \
((x) * 2) + 1)
#define ADT7473_REG_TEMP_TMIN(x) (ADT7473_REG_TEMP_TMIN_BASE_ADDR + (x))
#define ADT7473_REG_TEMP_TMAX(x) (ADT7473_REG_TEMP_TMAX_BASE_ADDR + (x))
#define ADT7473_FAN_COUNT 4
#define ADT7473_REG_FAN(x) (ADT7473_REG_FAN_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_FAN_MIN(x) (ADT7473_REG_FAN_MIN_BASE_ADDR + ((x) * 2))
#define ADT7473_PWM_COUNT 3
#define ADT7473_REG_PWM(x) (ADT7473_REG_PWM_BASE_ADDR + (x))
#define ADT7473_REG_PWM_MAX(x) (ADT7473_REG_PWM_MAX_BASE_ADDR + (x))
#define ADT7473_REG_PWM_MIN(x) (ADT7473_REG_PWM_MIN_BASE_ADDR + (x))
#define ADT7473_REG_PWM_BHVR(x) (ADT7473_REG_PWM_BHVR_BASE_ADDR + (x))
/* How often do we reread sensors values? (In jiffies) */
#define SENSOR_REFRESH_INTERVAL (2 * HZ)
/* How often do we reread sensor limit values? (In jiffies) */
#define LIMIT_REFRESH_INTERVAL (60 * HZ)
/* datasheet says to divide this number by the fan reading to get fan rpm */
#define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x))
#define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM
#define FAN_PERIOD_INVALID 65535
#define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID)
struct adt7473_data {
struct device *hwmon_dev;
struct attribute_group attrs;
struct mutex lock;
char sensors_valid;
char limits_valid;
unsigned long sensors_last_updated; /* In jiffies */
unsigned long limits_last_updated; /* In jiffies */
u8 volt[ADT7473_VOLT_COUNT];
s8 volt_min[ADT7473_VOLT_COUNT];
s8 volt_max[ADT7473_VOLT_COUNT];
s8 temp[ADT7473_TEMP_COUNT];
s8 temp_min[ADT7473_TEMP_COUNT];
s8 temp_max[ADT7473_TEMP_COUNT];
s8 temp_tmin[ADT7473_TEMP_COUNT];
/* This is called the !THERM limit in the datasheet */
s8 temp_tmax[ADT7473_TEMP_COUNT];
u16 fan[ADT7473_FAN_COUNT];
u16 fan_min[ADT7473_FAN_COUNT];
u8 pwm[ADT7473_PWM_COUNT];
u8 pwm_max[ADT7473_PWM_COUNT];
u8 pwm_min[ADT7473_PWM_COUNT];
u8 pwm_behavior[ADT7473_PWM_COUNT];
u8 temp_twos_complement;
u8 temp_offset;
u16 alarm;
u8 max_duty_at_overheat;
};
static int adt7473_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int adt7473_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int adt7473_remove(struct i2c_client *client);
static const struct i2c_device_id adt7473_id[] = {
{ "adt7473", 0 },
{ }
};
static struct i2c_driver adt7473_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adt7473",
},
.probe = adt7473_probe,
.remove = adt7473_remove,
.id_table = adt7473_id,
.detect = adt7473_detect,
.address_list = normal_i2c,
};
/*
* 16-bit registers on the ADT7473 are low-byte first. The data sheet says
* that the low byte must be read before the high byte.
*/
static inline int adt7473_read_word_data(struct i2c_client *client, u8 reg)
{
u16 foo;
foo = i2c_smbus_read_byte_data(client, reg);
foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8);
return foo;
}
static inline int adt7473_write_word_data(struct i2c_client *client, u8 reg,
u16 value)
{
return i2c_smbus_write_byte_data(client, reg, value & 0xFF)
&& i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
}
static void adt7473_init_client(struct i2c_client *client)
{
int reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG1);
if (!(reg & ADT7473_CFG1_READY)) {
dev_err(&client->dev, "Chip not ready.\n");
} else {
/* start monitoring */
i2c_smbus_write_byte_data(client, ADT7473_REG_CFG1,
reg | ADT7473_CFG1_START);
}
}
static struct adt7473_data *adt7473_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
unsigned long local_jiffies = jiffies;
u8 cfg;
int i;
mutex_lock(&data->lock);
if (time_before(local_jiffies, data->sensors_last_updated +
SENSOR_REFRESH_INTERVAL)
&& data->sensors_valid)
goto no_sensor_update;
for (i = 0; i < ADT7473_VOLT_COUNT; i++)
data->volt[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT(i));
/* Determine temperature encoding */
cfg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG5);
data->temp_twos_complement = (cfg & ADT7473_CFG5_TEMP_TWOS);
/*
* What does this do? it implies a variable temperature sensor
* offset, but the datasheet doesn't say anything about this bit
* and other parts of the datasheet imply that "offset64" mode
* means that you shift temp values by -64 if the above bit was set.
*/
data->temp_offset = (cfg & ADT7473_CFG5_TEMP_OFFSET);
for (i = 0; i < ADT7473_TEMP_COUNT; i++)
data->temp[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP(i));
for (i = 0; i < ADT7473_FAN_COUNT; i++)
data->fan[i] = adt7473_read_word_data(client,
ADT7473_REG_FAN(i));
for (i = 0; i < ADT7473_PWM_COUNT; i++)
data->pwm[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM(i));
data->alarm = i2c_smbus_read_byte_data(client, ADT7473_REG_ALARM1);
if (data->alarm & ADT7473_OOL)
data->alarm |= ALARM2(i2c_smbus_read_byte_data(client,
ADT7473_REG_ALARM2));
data->sensors_last_updated = local_jiffies;
data->sensors_valid = 1;
no_sensor_update:
if (time_before(local_jiffies, data->limits_last_updated +
LIMIT_REFRESH_INTERVAL)
&& data->limits_valid)
goto out;
for (i = 0; i < ADT7473_VOLT_COUNT; i++) {
data->volt_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT_MIN(i));
data->volt_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT_MAX(i));
}
for (i = 0; i < ADT7473_TEMP_COUNT; i++) {
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_MIN(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_MAX(i));
data->temp_tmin[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_TMIN(i));
data->temp_tmax[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_TMAX(i));
}
for (i = 0; i < ADT7473_FAN_COUNT; i++)
data->fan_min[i] = adt7473_read_word_data(client,
ADT7473_REG_FAN_MIN(i));
for (i = 0; i < ADT7473_PWM_COUNT; i++) {
data->pwm_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_MAX(i));
data->pwm_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_MIN(i));
data->pwm_behavior[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(i));
}
i = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4);
data->max_duty_at_overheat = !!(i & ADT7473_CFG4_MAX_DUTY_AT_OVT);
data->limits_last_updated = local_jiffies;
data->limits_valid = 1;
out:
mutex_unlock(&data->lock);
return data;
}
/*
* Conversions
*/
/* IN are scaled acording to built-in resistors */
static const int adt7473_scaling[] = { /* .001 Volts */
2250, 3300
};
#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
static int decode_volt(int volt_index, u8 raw)
{
return SCALE(raw, 192, adt7473_scaling[volt_index]);
}
static u8 encode_volt(int volt_index, int cooked)
{
int raw = SCALE(cooked, adt7473_scaling[volt_index], 192);
return SENSORS_LIMIT(raw, 0, 255);
}
static ssize_t show_volt_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt_min[attr->index]));
}
static ssize_t set_volt_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long volt;
if (strict_strtol(buf, 10, &volt))
return -EINVAL;
volt = encode_volt(attr->index, volt);
mutex_lock(&data->lock);
data->volt_min[attr->index] = volt;
i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MIN(attr->index),
volt);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt_max[attr->index]));
}
static ssize_t set_volt_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long volt;
if (strict_strtol(buf, 10, &volt))
return -EINVAL;
volt = encode_volt(attr->index, volt);
mutex_lock(&data->lock);
data->volt_max[attr->index] = volt;
i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MAX(attr->index),
volt);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt[attr->index]));
}
/*
* This chip can report temperature data either as a two's complement
* number in the range -128 to 127, or as an unsigned number that must
* be offset by 64.
*/
static int decode_temp(u8 twos_complement, u8 raw)
{
return twos_complement ? (s8)raw : raw - 64;
}
static u8 encode_temp(u8 twos_complement, int cooked)
{
u8 ret = twos_complement ? cooked & 0xFF : cooked + 64;
return SENSORS_LIMIT(ret, 0, 255);
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_min[attr->index]));
}
static ssize_t set_temp_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000);
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_max[attr->index]));
}
static ssize_t set_temp_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000);
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp[attr->index]));
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (FAN_DATA_VALID(data->fan_min[attr->index]))
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan_min[attr->index]));
else
return sprintf(buf, "0\n");
}
static ssize_t set_fan_min(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp) || !temp)
return -EINVAL;
temp = FAN_RPM_TO_PERIOD(temp);
temp = SENSORS_LIMIT(temp, 1, 65534);
mutex_lock(&data->lock);
data->fan_min[attr->index] = temp;
adt7473_write_word_data(client, ADT7473_REG_FAN_MIN(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_fan(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (FAN_DATA_VALID(data->fan[attr->index]))
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan[attr->index]));
else
return sprintf(buf, "0\n");
}
static ssize_t show_max_duty_at_crit(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->max_duty_at_overheat);
}
static ssize_t set_max_duty_at_crit(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
mutex_lock(&data->lock);
data->max_duty_at_overheat = !!temp;
reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4);
if (temp)
reg |= ADT7473_CFG4_MAX_DUTY_AT_OVT;
else
reg &= ~ADT7473_CFG4_MAX_DUTY_AT_OVT;
i2c_smbus_write_byte_data(client, ADT7473_REG_CFG4, reg);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm[attr->index]);
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = SENSORS_LIMIT(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_max[attr->index]);
}
static ssize_t set_pwm_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = SENSORS_LIMIT(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_min[attr->index]);
}
static ssize_t set_pwm_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = SENSORS_LIMIT(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_tmax(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_tmax[attr->index]));
}
static ssize_t set_temp_tmax(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000);
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_tmax[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_tmin(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_tmin[attr->index]));
}
static ssize_t set_temp_tmin(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
temp = DIV_ROUND_CLOSEST(temp, 1000);
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_tmin[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_enable(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
switch (data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT) {
case 3:
return sprintf(buf, "0\n");
case 7:
return sprintf(buf, "1\n");
default:
return sprintf(buf, "2\n");
}
}
static ssize_t set_pwm_enable(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
switch (temp) {
case 0:
temp = 3;
break;
case 1:
temp = 7;
break;
case 2:
/* Enter automatic mode with fans off */
temp = 4;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(attr->index));
reg = (temp << ADT7473_PWM_BHVR_SHIFT) |
(reg & ~ADT7473_PWM_BHVR_MASK);
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index),
reg);
data->pwm_behavior[attr->index] = reg;
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
int bhvr = data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT;
switch (bhvr) {
case 3:
case 4:
case 7:
return sprintf(buf, "0\n");
case 0:
case 1:
case 5:
case 6:
return sprintf(buf, "%d\n", bhvr + 1);
case 2:
return sprintf(buf, "4\n");
}
/* shouldn't ever get here */
BUG();
}
static ssize_t set_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
long temp;
if (strict_strtol(buf, 10, &temp))
return -EINVAL;
switch (temp) {
case 1:
case 2:
case 6:
case 7:
temp--;
break;
case 0:
temp = 4;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(attr->index));
reg = (temp << ADT7473_PWM_BHVR_SHIFT) |
(reg & ~ADT7473_PWM_BHVR_MASK);
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index),
reg);
data->pwm_behavior[attr->index] = reg;
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_alarm(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (data->alarm & attr->index)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 0);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 1);
static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 0);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 1);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_volt, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_volt, NULL, 1);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_VCCP_ALARM);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_VCC_ALARM);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 2);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 2);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_R1T_ALARM | ALARM2(ADT7473_R1T_SHORT));
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_LT_ALARM);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_R2T_ALARM | ALARM2(ADT7473_R2T_SHORT));
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 0);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 2);
static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 3);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN1_ALARM));
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN2_ALARM));
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN3_ALARM));
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN4_ALARM));
static SENSOR_DEVICE_ATTR(pwm_use_point2_pwm_at_crit, S_IWUSR | S_IRUGO,
show_max_duty_at_crit, set_max_duty_at_crit, 0);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 1);
static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 2);
static SENSOR_DEVICE_ATTR(temp1_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 2);
static SENSOR_DEVICE_ATTR(temp1_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 2);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 0);
static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 1);
static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 2);
static struct attribute *adt7473_attr[] =
{
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_pwm_use_point2_pwm_at_crit.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
NULL
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adt7473_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int vendor, device, revision;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
vendor = i2c_smbus_read_byte_data(client, ADT7473_REG_VENDOR);
if (vendor != ADT7473_VENDOR)
return -ENODEV;
device = i2c_smbus_read_byte_data(client, ADT7473_REG_DEVICE);
if (device != ADT7473_DEVICE)
return -ENODEV;
revision = i2c_smbus_read_byte_data(client, ADT7473_REG_REVISION);
if (revision != ADT7473_REV_68 && revision != ADT7473_REV_69)
return -ENODEV;
strlcpy(info->type, "adt7473", I2C_NAME_SIZE);
return 0;
}
static int adt7473_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adt7473_data *data;
int err;
data = kzalloc(sizeof(struct adt7473_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(client, data);
mutex_init(&data->lock);
dev_info(&client->dev, "%s chip found\n", client->name);
/* Initialize the ADT7473 chip */
adt7473_init_client(client);
/* Register sysfs hooks */
data->attrs.attrs = adt7473_attr;
err = sysfs_create_group(&client->dev.kobj, &data->attrs);
if (err)
goto exit_free;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&client->dev.kobj, &data->attrs);
exit_free:
kfree(data);
exit:
return err;
}
static int adt7473_remove(struct i2c_client *client)
{
struct adt7473_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &data->attrs);
kfree(data);
return 0;
}
static int __init adt7473_init(void)
{
pr_notice("The adt7473 driver is deprecated, please use the adt7475 "
"driver instead\n");
return i2c_add_driver(&adt7473_driver);
}
static void __exit adt7473_exit(void)
{
i2c_del_driver(&adt7473_driver);
}
MODULE_AUTHOR("Darrick J. Wong <djwong@us.ibm.com>");
MODULE_DESCRIPTION("ADT7473 driver");
MODULE_LICENSE("GPL");
module_init(adt7473_init);
module_exit(adt7473_exit);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册