diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c index 44318823e5491cc10cdac23c8568776ea2fa85fd..b7a1b3c83a2b0664679eb3081686a803cd7ee777 100644 --- a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c +++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c @@ -115,23 +115,29 @@ static const struct gk20a_clk_pllg_params gk20a_pllg_params = { .min_pl = 1, .max_pl = 32, }; +struct gk20a_pll { + u32 m; + u32 n; + u32 pl; +}; + struct gk20a_clk { struct nvkm_clk base; const struct gk20a_clk_pllg_params *params; - u32 m, n, pl; + struct gk20a_pll pll; u32 parent_rate; }; static void -gk20a_pllg_read_mnp(struct gk20a_clk *clk) +gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll) { struct nvkm_device *device = clk->base.subdev.device; u32 val; val = nvkm_rd32(device, GPCPLL_COEFF); - clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); - clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); - clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); + pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); + pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); + pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); } static u32 @@ -140,8 +146,8 @@ gk20a_pllg_calc_rate(struct gk20a_clk *clk) u32 rate; u32 divider; - rate = clk->parent_rate * clk->n; - divider = clk->m * pl_to_div[clk->pl]; + rate = clk->parent_rate * clk->pll.n; + divider = clk->pll.m * pl_to_div[clk->pll.pl]; return rate / divider / 2; } @@ -256,16 +262,16 @@ gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate) "no best match for target @ %dMHz on gpc_pll", target_clk_f / KHZ); - clk->m = best_m; - clk->n = best_n; - clk->pl = best_pl; + clk->pll.m = best_m; + clk->pll.n = best_n; + clk->pll.pl = best_pl; target_freq = gk20a_pllg_calc_rate(clk); nvkm_debug(subdev, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", - target_freq / MHZ, clk->m, clk->n, clk->pl, - pl_to_div[clk->pl]); + target_freq / MHZ, clk->pll.m, clk->pll.n, clk->pll.pl, + pl_to_div[clk->pll.pl]); return 0; } @@ -352,25 +358,24 @@ _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide) struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; u32 val, cfg; - u32 m_old, pl_old, n_lo; + struct gk20a_pll old_pll; + u32 n_lo; /* get old coefficients */ - val = nvkm_rd32(device, GPCPLL_COEFF); - m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); - pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); + gk20a_pllg_read_mnp(clk, &old_pll); /* do NDIV slide if there is no change in M and PL */ cfg = nvkm_rd32(device, GPCPLL_CFG); - if (allow_slide && clk->m == m_old && clk->pl == pl_old && - (cfg & GPCPLL_CFG_ENABLE)) { - return gk20a_pllg_slide(clk, clk->n); + if (allow_slide && clk->pll.m == old_pll.m && + clk->pll.pl == old_pll.pl && (cfg & GPCPLL_CFG_ENABLE)) { + return gk20a_pllg_slide(clk, clk->pll.n); } /* slide down to NDIV_LO */ if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) { int ret; - n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco, + n_lo = DIV_ROUND_UP(old_pll.m * clk->params->min_vco, clk->parent_rate / KHZ); ret = gk20a_pllg_slide(clk, n_lo); @@ -400,13 +405,13 @@ _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide) gk20a_pllg_disable(clk); nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__, - clk->m, clk->n, clk->pl); + clk->pll.m, clk->pll.n, clk->pll.pl); - n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco, + n_lo = DIV_ROUND_UP(clk->pll.m * clk->params->min_vco, clk->parent_rate / KHZ); - val = clk->m << GPCPLL_COEFF_M_SHIFT; - val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT; - val |= clk->pl << GPCPLL_COEFF_P_SHIFT; + val = clk->pll.m << GPCPLL_COEFF_M_SHIFT; + val |= (allow_slide ? n_lo : clk->pll.n) << GPCPLL_COEFF_N_SHIFT; + val |= clk->pll.pl << GPCPLL_COEFF_P_SHIFT; nvkm_wr32(device, GPCPLL_COEFF, val); gk20a_pllg_enable(clk); @@ -441,7 +446,7 @@ _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide) } /* slide up to new NDIV */ - return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0; + return allow_slide ? gk20a_pllg_slide(clk, clk->pll.n) : 0; } static int @@ -563,7 +568,7 @@ gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src) case nv_clk_src_crystal: return device->crystal; case nv_clk_src_gpc: - gk20a_pllg_read_mnp(clk); + gk20a_pllg_read_mnp(clk, &clk->pll); return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV; default: nvkm_error(subdev, "invalid clock source %d\n", src); @@ -603,11 +608,11 @@ gk20a_clk_fini(struct nvkm_clk *base) /* slide to VCO min */ val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_ENABLE) { - u32 coef, m, n_lo; + struct gk20a_pll pll; + u32 n_lo; - coef = nvkm_rd32(device, GPCPLL_COEFF); - m = (coef >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); - n_lo = DIV_ROUND_UP(m * clk->params->min_vco, + gk20a_pllg_read_mnp(clk, &pll); + n_lo = DIV_ROUND_UP(pll.m * clk->params->min_vco, clk->parent_rate / KHZ); gk20a_pllg_slide(clk, n_lo); }