diff --git a/Documentation/cgroup-v2.txt b/Documentation/cgroup-v2.txt index f01f831a3b11eda3db8236486d08355ea656cc45..cb9ea281ab72c362ff11a87c689ec1b398451f26 100644 --- a/Documentation/cgroup-v2.txt +++ b/Documentation/cgroup-v2.txt @@ -18,7 +18,9 @@ v1 is available under Documentation/cgroup-v1/. 1-2. What is cgroup? 2. Basic Operations 2-1. Mounting - 2-2. Organizing Processes + 2-2. Organizing Processes and Threads + 2-2-1. Processes + 2-2-2. Threads 2-3. [Un]populated Notification 2-4. Controlling Controllers 2-4-1. Enabling and Disabling @@ -167,8 +169,11 @@ cgroup v2 currently supports the following mount options. Delegation section for details. -Organizing Processes --------------------- +Organizing Processes and Threads +-------------------------------- + +Processes +~~~~~~~~~ Initially, only the root cgroup exists to which all processes belong. A child cgroup can be created by creating a sub-directory:: @@ -219,6 +224,104 @@ is removed subsequently, " (deleted)" is appended to the path:: 0::/test-cgroup/test-cgroup-nested (deleted) +Threads +~~~~~~~ + +cgroup v2 supports thread granularity for a subset of controllers to +support use cases requiring hierarchical resource distribution across +the threads of a group of processes. By default, all threads of a +process belong to the same cgroup, which also serves as the resource +domain to host resource consumptions which are not specific to a +process or thread. The thread mode allows threads to be spread across +a subtree while still maintaining the common resource domain for them. + +Controllers which support thread mode are called threaded controllers. +The ones which don't are called domain controllers. + +Marking a cgroup threaded makes it join the resource domain of its +parent as a threaded cgroup. The parent may be another threaded +cgroup whose resource domain is further up in the hierarchy. The root +of a threaded subtree, that is, the nearest ancestor which is not +threaded, is called threaded domain or thread root interchangeably and +serves as the resource domain for the entire subtree. + +Inside a threaded subtree, threads of a process can be put in +different cgroups and are not subject to the no internal process +constraint - threaded controllers can be enabled on non-leaf cgroups +whether they have threads in them or not. + +As the threaded domain cgroup hosts all the domain resource +consumptions of the subtree, it is considered to have internal +resource consumptions whether there are processes in it or not and +can't have populated child cgroups which aren't threaded. Because the +root cgroup is not subject to no internal process constraint, it can +serve both as a threaded domain and a parent to domain cgroups. + +The current operation mode or type of the cgroup is shown in the +"cgroup.type" file which indicates whether the cgroup is a normal +domain, a domain which is serving as the domain of a threaded subtree, +or a threaded cgroup. + +On creation, a cgroup is always a domain cgroup and can be made +threaded by writing "threaded" to the "cgroup.type" file. The +operation is single direction:: + + # echo threaded > cgroup.type + +Once threaded, the cgroup can't be made a domain again. To enable the +thread mode, the following conditions must be met. + +- As the cgroup will join the parent's resource domain. The parent + must either be a valid (threaded) domain or a threaded cgroup. + +- The cgroup must be empty. No enabled controllers, child cgroups or + processes. + +Topology-wise, a cgroup can be in an invalid state. Please consider +the following toplogy:: + + A (threaded domain) - B (threaded) - C (domain, just created) + +C is created as a domain but isn't connected to a parent which can +host child domains. C can't be used until it is turned into a +threaded cgroup. "cgroup.type" file will report "domain (invalid)" in +these cases. Operations which fail due to invalid topology use +EOPNOTSUPP as the errno. + +A domain cgroup is turned into a threaded domain when one of its child +cgroup becomes threaded or threaded controllers are enabled in the +"cgroup.subtree_control" file while there are processes in the cgroup. +A threaded domain reverts to a normal domain when the conditions +clear. + +When read, "cgroup.threads" contains the list of the thread IDs of all +threads in the cgroup. Except that the operations are per-thread +instead of per-process, "cgroup.threads" has the same format and +behaves the same way as "cgroup.procs". While "cgroup.threads" can be +written to in any cgroup, as it can only move threads inside the same +threaded domain, its operations are confined inside each threaded +subtree. + +The threaded domain cgroup serves as the resource domain for the whole +subtree, and, while the threads can be scattered across the subtree, +all the processes are considered to be in the threaded domain cgroup. +"cgroup.procs" in a threaded domain cgroup contains the PIDs of all +processes in the subtree and is not readable in the subtree proper. +However, "cgroup.procs" can be written to from anywhere in the subtree +to migrate all threads of the matching process to the cgroup. + +Only threaded controllers can be enabled in a threaded subtree. When +a threaded controller is enabled inside a threaded subtree, it only +accounts for and controls resource consumptions associated with the +threads in the cgroup and its descendants. All consumptions which +aren't tied to a specific thread belong to the threaded domain cgroup. + +Because a threaded subtree is exempt from no internal process +constraint, a threaded controller must be able to handle competition +between threads in a non-leaf cgroup and its child cgroups. Each +threaded controller defines how such competitions are handled. + + [Un]populated Notification -------------------------- @@ -302,15 +405,15 @@ disabled if one or more children have it enabled. No Internal Process Constraint ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Non-root cgroups can only distribute resources to their children when -they don't have any processes of their own. In other words, only -cgroups which don't contain any processes can have controllers enabled -in their "cgroup.subtree_control" files. +Non-root cgroups can distribute domain resources to their children +only when they don't have any processes of their own. In other words, +only domain cgroups which don't contain any processes can have domain +controllers enabled in their "cgroup.subtree_control" files. -This guarantees that, when a controller is looking at the part of the -hierarchy which has it enabled, processes are always only on the -leaves. This rules out situations where child cgroups compete against -internal processes of the parent. +This guarantees that, when a domain controller is looking at the part +of the hierarchy which has it enabled, processes are always only on +the leaves. This rules out situations where child cgroups compete +against internal processes of the parent. The root cgroup is exempt from this restriction. Root contains processes and anonymous resource consumption which can't be associated @@ -334,10 +437,10 @@ Model of Delegation ~~~~~~~~~~~~~~~~~~~ A cgroup can be delegated in two ways. First, to a less privileged -user by granting write access of the directory and its "cgroup.procs" -and "cgroup.subtree_control" files to the user. Second, if the -"nsdelegate" mount option is set, automatically to a cgroup namespace -on namespace creation. +user by granting write access of the directory and its "cgroup.procs", +"cgroup.threads" and "cgroup.subtree_control" files to the user. +Second, if the "nsdelegate" mount option is set, automatically to a +cgroup namespace on namespace creation. Because the resource control interface files in a given directory control the distribution of the parent's resources, the delegatee @@ -644,6 +747,29 @@ Core Interface Files All cgroup core files are prefixed with "cgroup." + cgroup.type + + A read-write single value file which exists on non-root + cgroups. + + When read, it indicates the current type of the cgroup, which + can be one of the following values. + + - "domain" : A normal valid domain cgroup. + + - "domain threaded" : A threaded domain cgroup which is + serving as the root of a threaded subtree. + + - "domain invalid" : A cgroup which is in an invalid state. + It can't be populated or have controllers enabled. It may + be allowed to become a threaded cgroup. + + - "threaded" : A threaded cgroup which is a member of a + threaded subtree. + + A cgroup can be turned into a threaded cgroup by writing + "threaded" to this file. + cgroup.procs A read-write new-line separated values file which exists on all cgroups. @@ -666,6 +792,35 @@ All cgroup core files are prefixed with "cgroup." When delegating a sub-hierarchy, write access to this file should be granted along with the containing directory. + In a threaded cgroup, reading this file fails with EOPNOTSUPP + as all the processes belong to the thread root. Writing is + supported and moves every thread of the process to the cgroup. + + cgroup.threads + A read-write new-line separated values file which exists on + all cgroups. + + When read, it lists the TIDs of all threads which belong to + the cgroup one-per-line. The TIDs are not ordered and the + same TID may show up more than once if the thread got moved to + another cgroup and then back or the TID got recycled while + reading. + + A TID can be written to migrate the thread associated with the + TID to the cgroup. The writer should match all of the + following conditions. + + - It must have write access to the "cgroup.threads" file. + + - The cgroup that the thread is currently in must be in the + same resource domain as the destination cgroup. + + - It must have write access to the "cgroup.procs" file of the + common ancestor of the source and destination cgroups. + + When delegating a sub-hierarchy, write access to this file + should be granted along with the containing directory. + cgroup.controllers A read-only space separated values file which exists on all cgroups. diff --git a/include/linux/cgroup-defs.h b/include/linux/cgroup-defs.h index 651c4363c85ed27a2d4199a6b76ba38a97d32c70..9d741959f218d92d345ae91f6790ccf43ddf6dca 100644 --- a/include/linux/cgroup-defs.h +++ b/include/linux/cgroup-defs.h @@ -521,6 +521,18 @@ struct cgroup_subsys { */ bool implicit_on_dfl:1; + /* + * If %true, the controller, supports threaded mode on the default + * hierarchy. In a threaded subtree, both process granularity and + * no-internal-process constraint are ignored and a threaded + * controllers should be able to handle that. + * + * Note that as an implicit controller is automatically enabled on + * all cgroups on the default hierarchy, it should also be + * threaded. implicit && !threaded is not supported. + */ + bool threaded:1; + /* * If %false, this subsystem is properly hierarchical - * configuration, resource accounting and restriction on a parent diff --git a/kernel/cgroup/cgroup-internal.h b/kernel/cgroup/cgroup-internal.h index 0e81c6109e91af5159602706ff3d2f6dae74bcef..f10eb19ddf04f95ca467a26909a8a298c76fab0a 100644 --- a/kernel/cgroup/cgroup-internal.h +++ b/kernel/cgroup/cgroup-internal.h @@ -170,7 +170,7 @@ struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, struct cgroup_root *root, unsigned long magic, struct cgroup_namespace *ns); -bool cgroup_may_migrate_to(struct cgroup *dst_cgrp); +int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp); void cgroup_migrate_finish(struct cgroup_mgctx *mgctx); void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx); diff --git a/kernel/cgroup/cgroup-v1.c b/kernel/cgroup/cgroup-v1.c index 167aaab04bf97cb2101e9ce14f6226d7c42140da..f0e8601b13cb5affeaeabdbcbe7b190e765156ea 100644 --- a/kernel/cgroup/cgroup-v1.c +++ b/kernel/cgroup/cgroup-v1.c @@ -99,8 +99,9 @@ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) if (cgroup_on_dfl(to)) return -EINVAL; - if (!cgroup_may_migrate_to(to)) - return -EBUSY; + ret = cgroup_migrate_vet_dst(to); + if (ret) + return ret; mutex_lock(&cgroup_mutex); diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c index a1d59af274a94195a28ebbf6ec1142b8d8cec619..c396e701c206ed292b933abbd65fcf2095a18d7a 100644 --- a/kernel/cgroup/cgroup.c +++ b/kernel/cgroup/cgroup.c @@ -162,6 +162,9 @@ static u16 cgrp_dfl_inhibit_ss_mask; /* some controllers are implicitly enabled on the default hierarchy */ static u16 cgrp_dfl_implicit_ss_mask; +/* some controllers can be threaded on the default hierarchy */ +static u16 cgrp_dfl_threaded_ss_mask; + /* The list of hierarchy roots */ LIST_HEAD(cgroup_roots); static int cgroup_root_count; @@ -335,14 +338,93 @@ static bool cgroup_is_threaded(struct cgroup *cgrp) return cgrp->dom_cgrp != cgrp; } +/* can @cgrp host both domain and threaded children? */ +static bool cgroup_is_mixable(struct cgroup *cgrp) +{ + /* + * Root isn't under domain level resource control exempting it from + * the no-internal-process constraint, so it can serve as a thread + * root and a parent of resource domains at the same time. + */ + return !cgroup_parent(cgrp); +} + +/* can @cgrp become a thread root? should always be true for a thread root */ +static bool cgroup_can_be_thread_root(struct cgroup *cgrp) +{ + /* mixables don't care */ + if (cgroup_is_mixable(cgrp)) + return true; + + /* domain roots can't be nested under threaded */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* can only have either domain or threaded children */ + if (cgrp->nr_populated_domain_children) + return false; + + /* and no domain controllers can be enabled */ + if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) + return false; + + return true; +} + +/* is @cgrp root of a threaded subtree? */ +static bool cgroup_is_thread_root(struct cgroup *cgrp) +{ + /* thread root should be a domain */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* a domain w/ threaded children is a thread root */ + if (cgrp->nr_threaded_children) + return true; + + /* + * A domain which has tasks and explicit threaded controllers + * enabled is a thread root. + */ + if (cgroup_has_tasks(cgrp) && + (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) + return true; + + return false; +} + +/* a domain which isn't connected to the root w/o brekage can't be used */ +static bool cgroup_is_valid_domain(struct cgroup *cgrp) +{ + /* the cgroup itself can be a thread root */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* but the ancestors can't be unless mixable */ + while ((cgrp = cgroup_parent(cgrp))) { + if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) + return false; + if (cgroup_is_threaded(cgrp)) + return false; + } + + return true; +} + /* subsystems visibly enabled on a cgroup */ static u16 cgroup_control(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); u16 root_ss_mask = cgrp->root->subsys_mask; - if (parent) - return parent->subtree_control; + if (parent) { + u16 ss_mask = parent->subtree_control; + + /* threaded cgroups can only have threaded controllers */ + if (cgroup_is_threaded(cgrp)) + ss_mask &= cgrp_dfl_threaded_ss_mask; + return ss_mask; + } if (cgroup_on_dfl(cgrp)) root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | @@ -355,8 +437,14 @@ static u16 cgroup_ss_mask(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); - if (parent) - return parent->subtree_ss_mask; + if (parent) { + u16 ss_mask = parent->subtree_ss_mask; + + /* threaded cgroups can only have threaded controllers */ + if (cgroup_is_threaded(cgrp)) + ss_mask &= cgrp_dfl_threaded_ss_mask; + return ss_mask; + } return cgrp->root->subsys_mask; } @@ -2237,17 +2325,40 @@ static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) } /** - * cgroup_may_migrate_to - verify whether a cgroup can be migration destination + * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination * @dst_cgrp: destination cgroup to test * - * On the default hierarchy, except for the root, subtree_control must be - * zero for migration destination cgroups with tasks so that child cgroups - * don't compete against tasks. + * On the default hierarchy, except for the mixable, (possible) thread root + * and threaded cgroups, subtree_control must be zero for migration + * destination cgroups with tasks so that child cgroups don't compete + * against tasks. */ -bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) +int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) { - return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || - !dst_cgrp->subtree_control; + /* v1 doesn't have any restriction */ + if (!cgroup_on_dfl(dst_cgrp)) + return 0; + + /* verify @dst_cgrp can host resources */ + if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) + return -EOPNOTSUPP; + + /* mixables don't care */ + if (cgroup_is_mixable(dst_cgrp)) + return 0; + + /* + * If @dst_cgrp is already or can become a thread root or is + * threaded, it doesn't matter. + */ + if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) + return 0; + + /* apply no-internal-process constraint */ + if (dst_cgrp->subtree_control) + return -EBUSY; + + return 0; } /** @@ -2452,8 +2563,9 @@ int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, struct task_struct *task; int ret; - if (!cgroup_may_migrate_to(dst_cgrp)) - return -EBUSY; + ret = cgroup_migrate_vet_dst(dst_cgrp); + if (ret) + return ret; /* look up all src csets */ spin_lock_irq(&css_set_lock); @@ -2881,6 +2993,46 @@ static void cgroup_finalize_control(struct cgroup *cgrp, int ret) cgroup_apply_control_disable(cgrp); } +static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) +{ + u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; + + /* if nothing is getting enabled, nothing to worry about */ + if (!enable) + return 0; + + /* can @cgrp host any resources? */ + if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) + return -EOPNOTSUPP; + + /* mixables don't care */ + if (cgroup_is_mixable(cgrp)) + return 0; + + if (domain_enable) { + /* can't enable domain controllers inside a thread subtree */ + if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) + return -EOPNOTSUPP; + } else { + /* + * Threaded controllers can handle internal competitions + * and are always allowed inside a (prospective) thread + * subtree. + */ + if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) + return 0; + } + + /* + * Controllers can't be enabled for a cgroup with tasks to avoid + * child cgroups competing against tasks. + */ + if (cgroup_has_tasks(cgrp)) + return -EBUSY; + + return 0; +} + /* change the enabled child controllers for a cgroup in the default hierarchy */ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, char *buf, size_t nbytes, @@ -2956,14 +3108,9 @@ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, goto out_unlock; } - /* - * Except for the root, subtree_control must be zero for a cgroup - * with tasks so that child cgroups don't compete against tasks. - */ - if (enable && cgroup_parent(cgrp) && cgroup_has_tasks(cgrp)) { - ret = -EBUSY; + ret = cgroup_vet_subtree_control_enable(cgrp, enable); + if (ret) goto out_unlock; - } /* save and update control masks and prepare csses */ cgroup_save_control(cgrp); @@ -2982,6 +3129,84 @@ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, return ret ?: nbytes; } +static int cgroup_enable_threaded(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup *dom_cgrp = parent->dom_cgrp; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + /* noop if already threaded */ + if (cgroup_is_threaded(cgrp)) + return 0; + + /* we're joining the parent's domain, ensure its validity */ + if (!cgroup_is_valid_domain(dom_cgrp) || + !cgroup_can_be_thread_root(dom_cgrp)) + return -EOPNOTSUPP; + + /* + * Allow enabling thread mode only on empty cgroups to avoid + * implicit migrations and recursive operations. + */ + if (cgroup_has_tasks(cgrp) || css_has_online_children(&cgrp->self)) + return -EBUSY; + + /* + * The following shouldn't cause actual migrations and should + * always succeed. + */ + cgroup_save_control(cgrp); + + cgrp->dom_cgrp = dom_cgrp; + ret = cgroup_apply_control(cgrp); + if (!ret) + parent->nr_threaded_children++; + else + cgrp->dom_cgrp = cgrp; + + cgroup_finalize_control(cgrp, ret); + return ret; +} + +static int cgroup_type_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + if (cgroup_is_threaded(cgrp)) + seq_puts(seq, "threaded\n"); + else if (!cgroup_is_valid_domain(cgrp)) + seq_puts(seq, "domain invalid\n"); + else if (cgroup_is_thread_root(cgrp)) + seq_puts(seq, "domain threaded\n"); + else + seq_puts(seq, "domain\n"); + + return 0; +} + +static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + int ret; + + /* only switching to threaded mode is supported */ + if (strcmp(strstrip(buf), "threaded")) + return -EINVAL; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + /* threaded can only be enabled */ + ret = cgroup_enable_threaded(cgrp); + + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; +} + static int cgroup_events_show(struct seq_file *seq, void *v) { seq_printf(seq, "populated %d\n", @@ -3867,12 +4092,12 @@ static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) return css_task_iter_next(it); } -static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) +static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, + unsigned int iter_flags) { struct kernfs_open_file *of = s->private; struct cgroup *cgrp = seq_css(s)->cgroup; struct css_task_iter *it = of->priv; - unsigned iter_flags = CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED; /* * When a seq_file is seeked, it's always traversed sequentially @@ -3895,6 +4120,23 @@ static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) return cgroup_procs_next(s, NULL, NULL); } +static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) +{ + struct cgroup *cgrp = seq_css(s)->cgroup; + + /* + * All processes of a threaded subtree belong to the domain cgroup + * of the subtree. Only threads can be distributed across the + * subtree. Reject reads on cgroup.procs in the subtree proper. + * They're always empty anyway. + */ + if (cgroup_is_threaded(cgrp)) + return ERR_PTR(-EOPNOTSUPP); + + return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | + CSS_TASK_ITER_THREADED); +} + static int cgroup_procs_show(struct seq_file *s, void *v) { seq_printf(s, "%d\n", task_pid_vnr(v)); @@ -3974,8 +4216,63 @@ static ssize_t cgroup_procs_write(struct kernfs_open_file *of, return ret ?: nbytes; } +static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) +{ + return __cgroup_procs_start(s, pos, 0); +} + +static ssize_t cgroup_threads_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *src_cgrp, *dst_cgrp; + struct task_struct *task; + ssize_t ret; + + buf = strstrip(buf); + + dst_cgrp = cgroup_kn_lock_live(of->kn, false); + if (!dst_cgrp) + return -ENODEV; + + task = cgroup_procs_write_start(buf, false); + ret = PTR_ERR_OR_ZERO(task); + if (ret) + goto out_unlock; + + /* find the source cgroup */ + spin_lock_irq(&css_set_lock); + src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); + spin_unlock_irq(&css_set_lock); + + /* thread migrations follow the cgroup.procs delegation rule */ + ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, + of->file->f_path.dentry->d_sb); + if (ret) + goto out_finish; + + /* and must be contained in the same domain */ + ret = -EOPNOTSUPP; + if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) + goto out_finish; + + ret = cgroup_attach_task(dst_cgrp, task, false); + +out_finish: + cgroup_procs_write_finish(task); +out_unlock: + cgroup_kn_unlock(of->kn); + + return ret ?: nbytes; +} + /* cgroup core interface files for the default hierarchy */ static struct cftype cgroup_base_files[] = { + { + .name = "cgroup.type", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_type_show, + .write = cgroup_type_write, + }, { .name = "cgroup.procs", .flags = CFTYPE_NS_DELEGATABLE, @@ -3986,6 +4283,14 @@ static struct cftype cgroup_base_files[] = { .seq_show = cgroup_procs_show, .write = cgroup_procs_write, }, + { + .name = "cgroup.threads", + .release = cgroup_procs_release, + .seq_start = cgroup_threads_start, + .seq_next = cgroup_procs_next, + .seq_show = cgroup_procs_show, + .write = cgroup_threads_write, + }, { .name = "cgroup.controllers", .seq_show = cgroup_controllers_show, @@ -4753,11 +5058,17 @@ int __init cgroup_init(void) cgrp_dfl_root.subsys_mask |= 1 << ss->id; + /* implicit controllers must be threaded too */ + WARN_ON(ss->implicit_on_dfl && !ss->threaded); + if (ss->implicit_on_dfl) cgrp_dfl_implicit_ss_mask |= 1 << ss->id; else if (!ss->dfl_cftypes) cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; + if (ss->threaded) + cgrp_dfl_threaded_ss_mask |= 1 << ss->id; + if (ss->dfl_cftypes == ss->legacy_cftypes) { WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); } else { diff --git a/kernel/cgroup/debug.c b/kernel/cgroup/debug.c index dac46af2278285e0abc546abfaacc26a2c52361b..787a242fa69d1addf568a4d678f7a89fc0fd295a 100644 --- a/kernel/cgroup/debug.c +++ b/kernel/cgroup/debug.c @@ -352,6 +352,7 @@ static int __init enable_cgroup_debug(char *str) { debug_cgrp_subsys.dfl_cftypes = debug_files; debug_cgrp_subsys.implicit_on_dfl = true; + debug_cgrp_subsys.threaded = true; return 1; } __setup("cgroup_debug", enable_cgroup_debug); diff --git a/kernel/cgroup/pids.c b/kernel/cgroup/pids.c index 2237201d66d5dacf1fe952a15d9acc54b1e90b50..9829c67ebc0ae0236af31913b2ce858b0a2c33b2 100644 --- a/kernel/cgroup/pids.c +++ b/kernel/cgroup/pids.c @@ -345,4 +345,5 @@ struct cgroup_subsys pids_cgrp_subsys = { .free = pids_free, .legacy_cftypes = pids_files, .dfl_cftypes = pids_files, + .threaded = true, }; diff --git a/kernel/events/core.c b/kernel/events/core.c index 1538df9b2b65d57ebc30b9d156acc2dcb71e7fea..ec78247da3100fb9d0590af1574d679292a145c5 100644 --- a/kernel/events/core.c +++ b/kernel/events/core.c @@ -11210,5 +11210,6 @@ struct cgroup_subsys perf_event_cgrp_subsys = { * controller is not mounted on a legacy hierarchy. */ .implicit_on_dfl = true, + .threaded = true, }; #endif /* CONFIG_CGROUP_PERF */