提交 8ceee660 编写于 作者: B Ben Hutchings 提交者: Jeff Garzik

New driver "sfc" for Solarstorm SFC4000 controller.

The driver supports the 10Xpress PHY and XFP modules on our reference
designs SFE4001 and SFE4002 and the SMC models SMC10GPCIe-XFP and
SMC10GPCIe-10BT.
Signed-off-by: NBen Hutchings <bhutchings@solarflare.com>
Signed-off-by: NJeff Garzik <jgarzik@redhat.com>
上级 358c1295
...@@ -3522,6 +3522,13 @@ M: pfg@sgi.com ...@@ -3522,6 +3522,13 @@ M: pfg@sgi.com
L: linux-ia64@vger.kernel.org L: linux-ia64@vger.kernel.org
S: Supported S: Supported
SFC NETWORK DRIVER
P: Steve Hodgson
P: Ben Hutchings
P: Robert Stonehouse
M: linux-net-drivers@solarflare.com
S: Supported
SGI VISUAL WORKSTATION 320 AND 540 SGI VISUAL WORKSTATION 320 AND 540
P: Andrey Panin P: Andrey Panin
M: pazke@donpac.ru M: pazke@donpac.ru
......
...@@ -2592,6 +2592,7 @@ config BNX2X ...@@ -2592,6 +2592,7 @@ config BNX2X
To compile this driver as a module, choose M here: the module To compile this driver as a module, choose M here: the module
will be called bnx2x. This is recommended. will be called bnx2x. This is recommended.
source "drivers/net/sfc/Kconfig"
endif # NETDEV_10000 endif # NETDEV_10000
......
...@@ -252,3 +252,5 @@ obj-$(CONFIG_FS_ENET) += fs_enet/ ...@@ -252,3 +252,5 @@ obj-$(CONFIG_FS_ENET) += fs_enet/
obj-$(CONFIG_NETXEN_NIC) += netxen/ obj-$(CONFIG_NETXEN_NIC) += netxen/
obj-$(CONFIG_NIU) += niu.o obj-$(CONFIG_NIU) += niu.o
obj-$(CONFIG_VIRTIO_NET) += virtio_net.o obj-$(CONFIG_VIRTIO_NET) += virtio_net.o
obj-$(CONFIG_SFC) += sfc/
config SFC
tristate "Solarflare Solarstorm SFC4000 support"
depends on PCI && INET
select MII
select INET_LRO
select CRC32
help
This driver supports 10-gigabit Ethernet cards based on
the Solarflare Communications Solarstorm SFC4000 controller.
To compile this driver as a module, choose M here. The module
will be called sfc.
sfc-y += efx.o falcon.o tx.o rx.o falcon_xmac.o \
i2c-direct.o ethtool.o xfp_phy.o mdio_10g.o \
tenxpress.o boards.o sfe4001.o
obj-$(CONFIG_SFC) += sfc.o
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_BITFIELD_H
#define EFX_BITFIELD_H
/*
* Efx bitfield access
*
* Efx NICs make extensive use of bitfields up to 128 bits
* wide. Since there is no native 128-bit datatype on most systems,
* and since 64-bit datatypes are inefficient on 32-bit systems and
* vice versa, we wrap accesses in a way that uses the most efficient
* datatype.
*
* The NICs are PCI devices and therefore little-endian. Since most
* of the quantities that we deal with are DMAed to/from host memory,
* we define our datatypes (efx_oword_t, efx_qword_t and
* efx_dword_t) to be little-endian.
*/
/* Lowest bit numbers and widths */
#define EFX_DUMMY_FIELD_LBN 0
#define EFX_DUMMY_FIELD_WIDTH 0
#define EFX_DWORD_0_LBN 0
#define EFX_DWORD_0_WIDTH 32
#define EFX_DWORD_1_LBN 32
#define EFX_DWORD_1_WIDTH 32
#define EFX_DWORD_2_LBN 64
#define EFX_DWORD_2_WIDTH 32
#define EFX_DWORD_3_LBN 96
#define EFX_DWORD_3_WIDTH 32
/* Specified attribute (e.g. LBN) of the specified field */
#define EFX_VAL(field, attribute) field ## _ ## attribute
/* Low bit number of the specified field */
#define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
/* Bit width of the specified field */
#define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
/* High bit number of the specified field */
#define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
/* Mask equal in width to the specified field.
*
* For example, a field with width 5 would have a mask of 0x1f.
*
* The maximum width mask that can be generated is 64 bits.
*/
#define EFX_MASK64(field) \
(EFX_WIDTH(field) == 64 ? ~((u64) 0) : \
(((((u64) 1) << EFX_WIDTH(field))) - 1))
/* Mask equal in width to the specified field.
*
* For example, a field with width 5 would have a mask of 0x1f.
*
* The maximum width mask that can be generated is 32 bits. Use
* EFX_MASK64 for higher width fields.
*/
#define EFX_MASK32(field) \
(EFX_WIDTH(field) == 32 ? ~((u32) 0) : \
(((((u32) 1) << EFX_WIDTH(field))) - 1))
/* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
typedef union efx_dword {
__le32 u32[1];
} efx_dword_t;
/* A quadword (i.e. 8 byte) datatype - little-endian in HW */
typedef union efx_qword {
__le64 u64[1];
__le32 u32[2];
efx_dword_t dword[2];
} efx_qword_t;
/* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
typedef union efx_oword {
__le64 u64[2];
efx_qword_t qword[2];
__le32 u32[4];
efx_dword_t dword[4];
} efx_oword_t;
/* Format string and value expanders for printk */
#define EFX_DWORD_FMT "%08x"
#define EFX_QWORD_FMT "%08x:%08x"
#define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
#define EFX_DWORD_VAL(dword) \
((unsigned int) le32_to_cpu((dword).u32[0]))
#define EFX_QWORD_VAL(qword) \
((unsigned int) le32_to_cpu((qword).u32[1])), \
((unsigned int) le32_to_cpu((qword).u32[0]))
#define EFX_OWORD_VAL(oword) \
((unsigned int) le32_to_cpu((oword).u32[3])), \
((unsigned int) le32_to_cpu((oword).u32[2])), \
((unsigned int) le32_to_cpu((oword).u32[1])), \
((unsigned int) le32_to_cpu((oword).u32[0]))
/*
* Extract bit field portion [low,high) from the native-endian element
* which contains bits [min,max).
*
* For example, suppose "element" represents the high 32 bits of a
* 64-bit value, and we wish to extract the bits belonging to the bit
* field occupying bits 28-45 of this 64-bit value.
*
* Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
*
* ( element ) << 4
*
* The result will contain the relevant bits filled in in the range
* [0,high-low), with garbage in bits [high-low+1,...).
*/
#define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
(((low > max) || (high < min)) ? 0 : \
((low > min) ? \
((native_element) >> (low - min)) : \
((native_element) << (min - low))))
/*
* Extract bit field portion [low,high) from the 64-bit little-endian
* element which contains bits [min,max)
*/
#define EFX_EXTRACT64(element, min, max, low, high) \
EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
/*
* Extract bit field portion [low,high) from the 32-bit little-endian
* element which contains bits [min,max)
*/
#define EFX_EXTRACT32(element, min, max, low, high) \
EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
#define EFX_EXTRACT_OWORD64(oword, low, high) \
(EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
EFX_EXTRACT64((oword).u64[1], 64, 127, low, high))
#define EFX_EXTRACT_QWORD64(qword, low, high) \
EFX_EXTRACT64((qword).u64[0], 0, 63, low, high)
#define EFX_EXTRACT_OWORD32(oword, low, high) \
(EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
EFX_EXTRACT32((oword).u32[3], 96, 127, low, high))
#define EFX_EXTRACT_QWORD32(qword, low, high) \
(EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
EFX_EXTRACT32((qword).u32[1], 32, 63, low, high))
#define EFX_EXTRACT_DWORD(dword, low, high) \
EFX_EXTRACT32((dword).u32[0], 0, 31, low, high)
#define EFX_OWORD_FIELD64(oword, field) \
(EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK64(field))
#define EFX_QWORD_FIELD64(qword, field) \
(EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK64(field))
#define EFX_OWORD_FIELD32(oword, field) \
(EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK32(field))
#define EFX_QWORD_FIELD32(qword, field) \
(EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK32(field))
#define EFX_DWORD_FIELD(dword, field) \
(EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
& EFX_MASK32(field))
#define EFX_OWORD_IS_ZERO64(oword) \
(((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
#define EFX_QWORD_IS_ZERO64(qword) \
(((qword).u64[0]) == (__force __le64) 0)
#define EFX_OWORD_IS_ZERO32(oword) \
(((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
== (__force __le32) 0)
#define EFX_QWORD_IS_ZERO32(qword) \
(((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
#define EFX_DWORD_IS_ZERO(dword) \
(((dword).u32[0]) == (__force __le32) 0)
#define EFX_OWORD_IS_ALL_ONES64(oword) \
(((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
#define EFX_QWORD_IS_ALL_ONES64(qword) \
((qword).u64[0] == ~((__force __le64) 0))
#define EFX_OWORD_IS_ALL_ONES32(oword) \
(((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
== ~((__force __le32) 0))
#define EFX_QWORD_IS_ALL_ONES32(qword) \
(((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
#define EFX_DWORD_IS_ALL_ONES(dword) \
((dword).u32[0] == ~((__force __le32) 0))
#if BITS_PER_LONG == 64
#define EFX_OWORD_FIELD EFX_OWORD_FIELD64
#define EFX_QWORD_FIELD EFX_QWORD_FIELD64
#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
#else
#define EFX_OWORD_FIELD EFX_OWORD_FIELD32
#define EFX_QWORD_FIELD EFX_QWORD_FIELD32
#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
#endif
/*
* Construct bit field portion
*
* Creates the portion of the bit field [low,high) that lies within
* the range [min,max).
*/
#define EFX_INSERT_NATIVE64(min, max, low, high, value) \
(((low > max) || (high < min)) ? 0 : \
((low > min) ? \
(((u64) (value)) << (low - min)) : \
(((u64) (value)) >> (min - low))))
#define EFX_INSERT_NATIVE32(min, max, low, high, value) \
(((low > max) || (high < min)) ? 0 : \
((low > min) ? \
(((u32) (value)) << (low - min)) : \
(((u32) (value)) >> (min - low))))
#define EFX_INSERT_NATIVE(min, max, low, high, value) \
((((max - min) >= 32) || ((high - low) >= 32)) ? \
EFX_INSERT_NATIVE64(min, max, low, high, value) : \
EFX_INSERT_NATIVE32(min, max, low, high, value))
/*
* Construct bit field portion
*
* Creates the portion of the named bit field that lies within the
* range [min,max).
*/
#define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
EFX_HIGH_BIT(field), value)
/*
* Construct bit field
*
* Creates the portion of the named bit fields that lie within the
* range [min,max).
*/
#define EFX_INSERT_FIELDS_NATIVE(min, max, \
field1, value1, \
field2, value2, \
field3, value3, \
field4, value4, \
field5, value5, \
field6, value6, \
field7, value7, \
field8, value8, \
field9, value9, \
field10, value10) \
(EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
#define EFX_INSERT_FIELDS64(...) \
cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
#define EFX_INSERT_FIELDS32(...) \
cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
#define EFX_POPULATE_OWORD64(oword, ...) do { \
(oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
(oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_QWORD64(qword, ...) do { \
(qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_OWORD32(oword, ...) do { \
(oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
(oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
(oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
(oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_QWORD32(qword, ...) do { \
(qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
(qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
} while (0)
#define EFX_POPULATE_DWORD(dword, ...) do { \
(dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
} while (0)
#if BITS_PER_LONG == 64
#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
#else
#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
#endif
/* Populate an octword field with various numbers of arguments */
#define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
#define EFX_POPULATE_OWORD_9(oword, ...) \
EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_8(oword, ...) \
EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_7(oword, ...) \
EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_6(oword, ...) \
EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_5(oword, ...) \
EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_4(oword, ...) \
EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_3(oword, ...) \
EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_2(oword, ...) \
EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_OWORD_1(oword, ...) \
EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_ZERO_OWORD(oword) \
EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
#define EFX_SET_OWORD(oword) \
EFX_POPULATE_OWORD_4(oword, \
EFX_DWORD_0, 0xffffffff, \
EFX_DWORD_1, 0xffffffff, \
EFX_DWORD_2, 0xffffffff, \
EFX_DWORD_3, 0xffffffff)
/* Populate a quadword field with various numbers of arguments */
#define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
#define EFX_POPULATE_QWORD_9(qword, ...) \
EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_8(qword, ...) \
EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_7(qword, ...) \
EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_6(qword, ...) \
EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_5(qword, ...) \
EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_4(qword, ...) \
EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_3(qword, ...) \
EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_2(qword, ...) \
EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_QWORD_1(qword, ...) \
EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_ZERO_QWORD(qword) \
EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
#define EFX_SET_QWORD(qword) \
EFX_POPULATE_QWORD_2(qword, \
EFX_DWORD_0, 0xffffffff, \
EFX_DWORD_1, 0xffffffff)
/* Populate a dword field with various numbers of arguments */
#define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
#define EFX_POPULATE_DWORD_9(dword, ...) \
EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_8(dword, ...) \
EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_7(dword, ...) \
EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_6(dword, ...) \
EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_5(dword, ...) \
EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_4(dword, ...) \
EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_3(dword, ...) \
EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_2(dword, ...) \
EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_POPULATE_DWORD_1(dword, ...) \
EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
#define EFX_ZERO_DWORD(dword) \
EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
#define EFX_SET_DWORD(dword) \
EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
/*
* Modify a named field within an already-populated structure. Used
* for read-modify-write operations.
*
*/
#define EFX_INVERT_OWORD(oword) do { \
(oword).u64[0] = ~((oword).u64[0]); \
(oword).u64[1] = ~((oword).u64[1]); \
} while (0)
#define EFX_INSERT_FIELD64(...) \
cpu_to_le64(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
#define EFX_INSERT_FIELD32(...) \
cpu_to_le32(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
#define EFX_INPLACE_MASK64(min, max, field) \
EFX_INSERT_FIELD64(min, max, field, EFX_MASK64(field))
#define EFX_INPLACE_MASK32(min, max, field) \
EFX_INSERT_FIELD32(min, max, field, EFX_MASK32(field))
#define EFX_SET_OWORD_FIELD64(oword, field, value) do { \
(oword).u64[0] = (((oword).u64[0] \
& ~EFX_INPLACE_MASK64(0, 63, field)) \
| EFX_INSERT_FIELD64(0, 63, field, value)); \
(oword).u64[1] = (((oword).u64[1] \
& ~EFX_INPLACE_MASK64(64, 127, field)) \
| EFX_INSERT_FIELD64(64, 127, field, value)); \
} while (0)
#define EFX_SET_QWORD_FIELD64(qword, field, value) do { \
(qword).u64[0] = (((qword).u64[0] \
& ~EFX_INPLACE_MASK64(0, 63, field)) \
| EFX_INSERT_FIELD64(0, 63, field, value)); \
} while (0)
#define EFX_SET_OWORD_FIELD32(oword, field, value) do { \
(oword).u32[0] = (((oword).u32[0] \
& ~EFX_INPLACE_MASK32(0, 31, field)) \
| EFX_INSERT_FIELD32(0, 31, field, value)); \
(oword).u32[1] = (((oword).u32[1] \
& ~EFX_INPLACE_MASK32(32, 63, field)) \
| EFX_INSERT_FIELD32(32, 63, field, value)); \
(oword).u32[2] = (((oword).u32[2] \
& ~EFX_INPLACE_MASK32(64, 95, field)) \
| EFX_INSERT_FIELD32(64, 95, field, value)); \
(oword).u32[3] = (((oword).u32[3] \
& ~EFX_INPLACE_MASK32(96, 127, field)) \
| EFX_INSERT_FIELD32(96, 127, field, value)); \
} while (0)
#define EFX_SET_QWORD_FIELD32(qword, field, value) do { \
(qword).u32[0] = (((qword).u32[0] \
& ~EFX_INPLACE_MASK32(0, 31, field)) \
| EFX_INSERT_FIELD32(0, 31, field, value)); \
(qword).u32[1] = (((qword).u32[1] \
& ~EFX_INPLACE_MASK32(32, 63, field)) \
| EFX_INSERT_FIELD32(32, 63, field, value)); \
} while (0)
#define EFX_SET_DWORD_FIELD(dword, field, value) do { \
(dword).u32[0] = (((dword).u32[0] \
& ~EFX_INPLACE_MASK32(0, 31, field)) \
| EFX_INSERT_FIELD32(0, 31, field, value)); \
} while (0)
#if BITS_PER_LONG == 64
#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
#else
#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
#endif
#define EFX_SET_OWORD_FIELD_VER(efx, oword, field, value) do { \
if (FALCON_REV(efx) >= FALCON_REV_B0) { \
EFX_SET_OWORD_FIELD((oword), field##_B0, (value)); \
} else { \
EFX_SET_OWORD_FIELD((oword), field##_A1, (value)); \
} \
} while (0)
#define EFX_QWORD_FIELD_VER(efx, qword, field) \
(FALCON_REV(efx) >= FALCON_REV_B0 ? \
EFX_QWORD_FIELD((qword), field##_B0) : \
EFX_QWORD_FIELD((qword), field##_A1))
/* Used to avoid compiler warnings about shift range exceeding width
* of the data types when dma_addr_t is only 32 bits wide.
*/
#define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
#define EFX_DMA_TYPE_WIDTH(width) \
(((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
#define EFX_DMA_MAX_MASK ((DMA_ADDR_T_WIDTH == 64) ? \
~((u64) 0) : ~((u32) 0))
#define EFX_DMA_MASK(mask) ((mask) & EFX_DMA_MAX_MASK)
#endif /* EFX_BITFIELD_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "phy.h"
#include "boards.h"
#include "efx.h"
/* Macros for unpacking the board revision */
/* The revision info is in host byte order. */
#define BOARD_TYPE(_rev) (_rev >> 8)
#define BOARD_MAJOR(_rev) ((_rev >> 4) & 0xf)
#define BOARD_MINOR(_rev) (_rev & 0xf)
/* Blink support. If the PHY has no auto-blink mode so we hang it off a timer */
#define BLINK_INTERVAL (HZ/2)
static void blink_led_timer(unsigned long context)
{
struct efx_nic *efx = (struct efx_nic *)context;
struct efx_blinker *bl = &efx->board_info.blinker;
efx->board_info.set_fault_led(efx, bl->state);
bl->state = !bl->state;
if (bl->resubmit) {
bl->timer.expires = jiffies + BLINK_INTERVAL;
add_timer(&bl->timer);
}
}
static void board_blink(struct efx_nic *efx, int blink)
{
struct efx_blinker *blinker = &efx->board_info.blinker;
/* The rtnl mutex serialises all ethtool ioctls, so
* nothing special needs doing here. */
if (blink) {
blinker->resubmit = 1;
blinker->state = 0;
setup_timer(&blinker->timer, blink_led_timer,
(unsigned long)efx);
blinker->timer.expires = jiffies + BLINK_INTERVAL;
add_timer(&blinker->timer);
} else {
blinker->resubmit = 0;
if (blinker->timer.function)
del_timer_sync(&blinker->timer);
efx->board_info.set_fault_led(efx, 0);
}
}
/*****************************************************************************
* Support for the SFE4002
*
*/
/****************************************************************************/
/* LED allocations. Note that on rev A0 boards the schematic and the reality
* differ: red and green are swapped. Below is the fixed (A1) layout (there
* are only 3 A0 boards in existence, so no real reason to make this
* conditional).
*/
#define SFE4002_FAULT_LED (2) /* Red */
#define SFE4002_RX_LED (0) /* Green */
#define SFE4002_TX_LED (1) /* Amber */
static int sfe4002_init_leds(struct efx_nic *efx)
{
/* Set the TX and RX LEDs to reflect status and activity, and the
* fault LED off */
xfp_set_led(efx, SFE4002_TX_LED,
QUAKE_LED_TXLINK | QUAKE_LED_LINK_ACTSTAT);
xfp_set_led(efx, SFE4002_RX_LED,
QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACTSTAT);
xfp_set_led(efx, SFE4002_FAULT_LED, QUAKE_LED_OFF);
efx->board_info.blinker.led_num = SFE4002_FAULT_LED;
return 0;
}
static void sfe4002_fault_led(struct efx_nic *efx, int state)
{
xfp_set_led(efx, SFE4002_FAULT_LED, state ? QUAKE_LED_ON :
QUAKE_LED_OFF);
}
static int sfe4002_init(struct efx_nic *efx)
{
efx->board_info.init_leds = sfe4002_init_leds;
efx->board_info.set_fault_led = sfe4002_fault_led;
efx->board_info.blink = board_blink;
return 0;
}
/* This will get expanded as board-specific details get moved out of the
* PHY drivers. */
struct efx_board_data {
const char *ref_model;
const char *gen_type;
int (*init) (struct efx_nic *nic);
};
static int dummy_init(struct efx_nic *nic)
{
return 0;
}
static struct efx_board_data board_data[] = {
[EFX_BOARD_INVALID] =
{NULL, NULL, dummy_init},
[EFX_BOARD_SFE4001] =
{"SFE4001", "10GBASE-T adapter", sfe4001_poweron},
[EFX_BOARD_SFE4002] =
{"SFE4002", "XFP adapter", sfe4002_init},
};
int efx_set_board_info(struct efx_nic *efx, u16 revision_info)
{
int rc = 0;
struct efx_board_data *data;
if (BOARD_TYPE(revision_info) >= EFX_BOARD_MAX) {
EFX_ERR(efx, "squashing unknown board type %d\n",
BOARD_TYPE(revision_info));
revision_info = 0;
}
if (BOARD_TYPE(revision_info) == 0) {
efx->board_info.major = 0;
efx->board_info.minor = 0;
/* For early boards that don't have revision info. there is
* only 1 board for each PHY type, so we can work it out, with
* the exception of the PHY-less boards. */
switch (efx->phy_type) {
case PHY_TYPE_10XPRESS:
efx->board_info.type = EFX_BOARD_SFE4001;
break;
case PHY_TYPE_XFP:
efx->board_info.type = EFX_BOARD_SFE4002;
break;
default:
efx->board_info.type = 0;
break;
}
} else {
efx->board_info.type = BOARD_TYPE(revision_info);
efx->board_info.major = BOARD_MAJOR(revision_info);
efx->board_info.minor = BOARD_MINOR(revision_info);
}
data = &board_data[efx->board_info.type];
/* Report the board model number or generic type for recognisable
* boards. */
if (efx->board_info.type != 0)
EFX_INFO(efx, "board is %s rev %c%d\n",
(efx->pci_dev->subsystem_vendor == EFX_VENDID_SFC)
? data->ref_model : data->gen_type,
'A' + efx->board_info.major, efx->board_info.minor);
efx->board_info.init = data->init;
return rc;
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_BOARDS_H
#define EFX_BOARDS_H
/* Board IDs (must fit in 8 bits) */
enum efx_board_type {
EFX_BOARD_INVALID = 0,
EFX_BOARD_SFE4001 = 1, /* SFE4001 (10GBASE-T) */
EFX_BOARD_SFE4002 = 2,
/* Insert new types before here */
EFX_BOARD_MAX
};
extern int efx_set_board_info(struct efx_nic *efx, u16 revision_info);
extern int sfe4001_poweron(struct efx_nic *efx);
extern void sfe4001_poweroff(struct efx_nic *efx);
#endif
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include "net_driver.h"
#include "gmii.h"
#include "ethtool.h"
#include "tx.h"
#include "rx.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"
#include "workarounds.h"
#include "mac.h"
#define EFX_MAX_MTU (9 * 1024)
/* RX slow fill workqueue. If memory allocation fails in the fast path,
* a work item is pushed onto this work queue to retry the allocation later,
* to avoid the NIC being starved of RX buffers. Since this is a per cpu
* workqueue, there is nothing to be gained in making it per NIC
*/
static struct workqueue_struct *refill_workqueue;
/**************************************************************************
*
* Configurable values
*
*************************************************************************/
/*
* Enable large receive offload (LRO) aka soft segment reassembly (SSR)
*
* This sets the default for new devices. It can be controlled later
* using ethtool.
*/
static int lro = 1;
module_param(lro, int, 0644);
MODULE_PARM_DESC(lro, "Large receive offload acceleration");
/*
* Use separate channels for TX and RX events
*
* Set this to 1 to use separate channels for TX and RX. It allows us to
* apply a higher level of interrupt moderation to TX events.
*
* This is forced to 0 for MSI interrupt mode as the interrupt vector
* is not written
*/
static unsigned int separate_tx_and_rx_channels = 1;
/* This is the weight assigned to each of the (per-channel) virtual
* NAPI devices.
*/
static int napi_weight = 64;
/* This is the time (in jiffies) between invocations of the hardware
* monitor, which checks for known hardware bugs and resets the
* hardware and driver as necessary.
*/
unsigned int efx_monitor_interval = 1 * HZ;
/* This controls whether or not the hardware monitor will trigger a
* reset when it detects an error condition.
*/
static unsigned int monitor_reset = 1;
/* This controls whether or not the driver will initialise devices
* with invalid MAC addresses stored in the EEPROM or flash. If true,
* such devices will be initialised with a random locally-generated
* MAC address. This allows for loading the sfc_mtd driver to
* reprogram the flash, even if the flash contents (including the MAC
* address) have previously been erased.
*/
static unsigned int allow_bad_hwaddr;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* The default for RX should strike a balance between increasing the
* round-trip latency and reducing overhead.
*/
static unsigned int rx_irq_mod_usec = 60;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* This default is chosen to ensure that a 10G link does not go idle
* while a TX queue is stopped after it has become full. A queue is
* restarted when it drops below half full. The time this takes (assuming
* worst case 3 descriptors per packet and 1024 descriptors) is
* 512 / 3 * 1.2 = 205 usec.
*/
static unsigned int tx_irq_mod_usec = 150;
/* This is the first interrupt mode to try out of:
* 0 => MSI-X
* 1 => MSI
* 2 => legacy
*/
static unsigned int interrupt_mode;
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
* i.e. the number of CPUs among which we may distribute simultaneous
* interrupt handling.
*
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
* The default (0) means to assign an interrupt to each package (level II cache)
*/
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
/**************************************************************************
*
* Utility functions and prototypes
*
*************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);
#define EFX_ASSERT_RESET_SERIALISED(efx) \
do { \
if ((efx->state == STATE_RUNNING) || \
(efx->state == STATE_RESETTING)) \
ASSERT_RTNL(); \
} while (0)
/**************************************************************************
*
* Event queue processing
*
*************************************************************************/
/* Process channel's event queue
*
* This function is responsible for processing the event queue of a
* single channel. The caller must guarantee that this function will
* never be concurrently called more than once on the same channel,
* though different channels may be being processed concurrently.
*/
static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
{
int rxdmaqs;
struct efx_rx_queue *rx_queue;
if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
!channel->enabled))
return rx_quota;
rxdmaqs = falcon_process_eventq(channel, &rx_quota);
/* Deliver last RX packet. */
if (channel->rx_pkt) {
__efx_rx_packet(channel, channel->rx_pkt,
channel->rx_pkt_csummed);
channel->rx_pkt = NULL;
}
efx_flush_lro(channel);
efx_rx_strategy(channel);
/* Refill descriptor rings as necessary */
rx_queue = &channel->efx->rx_queue[0];
while (rxdmaqs) {
if (rxdmaqs & 0x01)
efx_fast_push_rx_descriptors(rx_queue);
rx_queue++;
rxdmaqs >>= 1;
}
return rx_quota;
}
/* Mark channel as finished processing
*
* Note that since we will not receive further interrupts for this
* channel before we finish processing and call the eventq_read_ack()
* method, there is no need to use the interrupt hold-off timers.
*/
static inline void efx_channel_processed(struct efx_channel *channel)
{
/* Write to EVQ_RPTR_REG. If a new event arrived in a race
* with finishing processing, a new interrupt will be raised.
*/
channel->work_pending = 0;
smp_wmb(); /* Ensure channel updated before any new interrupt. */
falcon_eventq_read_ack(channel);
}
/* NAPI poll handler
*
* NAPI guarantees serialisation of polls of the same device, which
* provides the guarantee required by efx_process_channel().
*/
static int efx_poll(struct napi_struct *napi, int budget)
{
struct efx_channel *channel =
container_of(napi, struct efx_channel, napi_str);
struct net_device *napi_dev = channel->napi_dev;
int unused;
int rx_packets;
EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
channel->channel, raw_smp_processor_id());
unused = efx_process_channel(channel, budget);
rx_packets = (budget - unused);
if (rx_packets < budget) {
/* There is no race here; although napi_disable() will
* only wait for netif_rx_complete(), this isn't a problem
* since efx_channel_processed() will have no effect if
* interrupts have already been disabled.
*/
netif_rx_complete(napi_dev, napi);
efx_channel_processed(channel);
}
return rx_packets;
}
/* Process the eventq of the specified channel immediately on this CPU
*
* Disable hardware generated interrupts, wait for any existing
* processing to finish, then directly poll (and ack ) the eventq.
* Finally reenable NAPI and interrupts.
*
* Since we are touching interrupts the caller should hold the suspend lock
*/
void efx_process_channel_now(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUG_ON(!channel->used_flags);
BUG_ON(!channel->enabled);
/* Disable interrupts and wait for ISRs to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
if (channel->has_interrupt && channel->irq)
synchronize_irq(channel->irq);
/* Wait for any NAPI processing to complete */
napi_disable(&channel->napi_str);
/* Poll the channel */
(void) efx_process_channel(channel, efx->type->evq_size);
/* Ack the eventq. This may cause an interrupt to be generated
* when they are reenabled */
efx_channel_processed(channel);
napi_enable(&channel->napi_str);
falcon_enable_interrupts(efx);
}
/* Create event queue
* Event queue memory allocations are done only once. If the channel
* is reset, the memory buffer will be reused; this guards against
* errors during channel reset and also simplifies interrupt handling.
*/
static int efx_probe_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
return falcon_probe_eventq(channel);
}
/* Prepare channel's event queue */
static int efx_init_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
channel->eventq_read_ptr = 0;
return falcon_init_eventq(channel);
}
static void efx_fini_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
falcon_fini_eventq(channel);
}
static void efx_remove_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
falcon_remove_eventq(channel);
}
/**************************************************************************
*
* Channel handling
*
*************************************************************************/
/* Setup per-NIC RX buffer parameters.
* Calculate the rx buffer allocation parameters required to support
* the current MTU, including padding for header alignment and overruns.
*/
static void efx_calc_rx_buffer_params(struct efx_nic *efx)
{
unsigned int order, len;
len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
efx->type->rx_buffer_padding);
/* Calculate page-order */
for (order = 0; ((1u << order) * PAGE_SIZE) < len; ++order)
;
efx->rx_buffer_len = len;
efx->rx_buffer_order = order;
}
static int efx_probe_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
rc = efx_probe_eventq(channel);
if (rc)
goto fail1;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_probe_tx_queue(tx_queue);
if (rc)
goto fail2;
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_probe_rx_queue(rx_queue);
if (rc)
goto fail3;
}
channel->n_rx_frm_trunc = 0;
return 0;
fail3:
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
fail2:
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
fail1:
return rc;
}
/* Channels are shutdown and reinitialised whilst the NIC is running
* to propagate configuration changes (mtu, checksum offload), or
* to clear hardware error conditions
*/
static int efx_init_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
struct efx_channel *channel;
int rc = 0;
efx_calc_rx_buffer_params(efx);
/* Initialise the channels */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
rc = efx_init_eventq(channel);
if (rc)
goto err;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_init_tx_queue(tx_queue);
if (rc)
goto err;
}
/* The rx buffer allocation strategy is MTU dependent */
efx_rx_strategy(channel);
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_init_rx_queue(rx_queue);
if (rc)
goto err;
}
WARN_ON(channel->rx_pkt != NULL);
efx_rx_strategy(channel);
}
return 0;
err:
EFX_ERR(efx, "failed to initialise channel %d\n",
channel ? channel->channel : -1);
efx_fini_channels(efx);
return rc;
}
/* This enables event queue processing and packet transmission.
*
* Note that this function is not allowed to fail, since that would
* introduce too much complexity into the suspend/resume path.
*/
static void efx_start_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
if (!(channel->efx->net_dev->flags & IFF_UP))
netif_napi_add(channel->napi_dev, &channel->napi_str,
efx_poll, napi_weight);
channel->work_pending = 0;
channel->enabled = 1;
smp_wmb(); /* ensure channel updated before first interrupt */
napi_enable(&channel->napi_str);
/* Load up RX descriptors */
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fast_push_rx_descriptors(rx_queue);
}
/* This disables event queue processing and packet transmission.
* This function does not guarantee that all queue processing
* (e.g. RX refill) is complete.
*/
static void efx_stop_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
if (!channel->enabled)
return;
EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
channel->enabled = 0;
napi_disable(&channel->napi_str);
/* Ensure that any worker threads have exited or will be no-ops */
efx_for_each_channel_rx_queue(rx_queue, channel) {
spin_lock_bh(&rx_queue->add_lock);
spin_unlock_bh(&rx_queue->add_lock);
}
}
static void efx_fini_channels(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->port_enabled);
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fini_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_fini_tx_queue(tx_queue);
}
/* Do the event queues last so that we can handle flush events
* for all DMA queues. */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
efx_fini_eventq(channel);
}
}
static void efx_remove_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
efx_remove_eventq(channel);
channel->used_flags = 0;
}
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}
/**************************************************************************
*
* Port handling
*
**************************************************************************/
/* This ensures that the kernel is kept informed (via
* netif_carrier_on/off) of the link status, and also maintains the
* link status's stop on the port's TX queue.
*/
static void efx_link_status_changed(struct efx_nic *efx)
{
int carrier_ok;
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
* that no events are triggered between unregister_netdev() and the
* driver unloading. A more general condition is that NETDEV_CHANGE
* can only be generated between NETDEV_UP and NETDEV_DOWN */
if (!netif_running(efx->net_dev))
return;
carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
if (efx->link_up != carrier_ok) {
efx->n_link_state_changes++;
if (efx->link_up)
netif_carrier_on(efx->net_dev);
else
netif_carrier_off(efx->net_dev);
}
/* Status message for kernel log */
if (efx->link_up) {
struct mii_if_info *gmii = &efx->mii;
unsigned adv, lpa;
/* NONE here means direct XAUI from the controller, with no
* MDIO-attached device we can query. */
if (efx->phy_type != PHY_TYPE_NONE) {
adv = gmii_advertised(gmii);
lpa = gmii_lpa(gmii);
} else {
lpa = GM_LPA_10000 | LPA_DUPLEX;
adv = lpa;
}
EFX_INFO(efx, "link up at %dMbps %s-duplex "
"(adv %04x lpa %04x) (MTU %d)%s\n",
(efx->link_options & GM_LPA_10000 ? 10000 :
(efx->link_options & GM_LPA_1000 ? 1000 :
(efx->link_options & GM_LPA_100 ? 100 :
10))),
(efx->link_options & GM_LPA_DUPLEX ?
"full" : "half"),
adv, lpa,
efx->net_dev->mtu,
(efx->promiscuous ? " [PROMISC]" : ""));
} else {
EFX_INFO(efx, "link down\n");
}
}
/* This call reinitialises the MAC to pick up new PHY settings. The
* caller must hold the mac_lock */
static void __efx_reconfigure_port(struct efx_nic *efx)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
raw_smp_processor_id());
falcon_reconfigure_xmac(efx);
/* Inform kernel of loss/gain of carrier */
efx_link_status_changed(efx);
}
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
* disabled. */
void efx_reconfigure_port(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
* we don't efx_reconfigure_port() if the port is disabled. Care is taken
* in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
static void efx_reconfigure_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
reconfigure_work);
mutex_lock(&efx->mac_lock);
if (efx->port_enabled)
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
static int efx_probe_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "create port\n");
/* Connect up MAC/PHY operations table and read MAC address */
rc = falcon_probe_port(efx);
if (rc)
goto err;
/* Sanity check MAC address */
if (is_valid_ether_addr(efx->mac_address)) {
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
} else {
DECLARE_MAC_BUF(mac);
EFX_ERR(efx, "invalid MAC address %s\n",
print_mac(mac, efx->mac_address));
if (!allow_bad_hwaddr) {
rc = -EINVAL;
goto err;
}
random_ether_addr(efx->net_dev->dev_addr);
EFX_INFO(efx, "using locally-generated MAC %s\n",
print_mac(mac, efx->net_dev->dev_addr));
}
return 0;
err:
efx_remove_port(efx);
return rc;
}
static int efx_init_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "init port\n");
/* Initialise the MAC and PHY */
rc = falcon_init_xmac(efx);
if (rc)
return rc;
efx->port_initialized = 1;
/* Reconfigure port to program MAC registers */
falcon_reconfigure_xmac(efx);
return 0;
}
/* Allow efx_reconfigure_port() to be scheduled, and close the window
* between efx_stop_port and efx_flush_all whereby a previously scheduled
* efx_reconfigure_port() may have been cancelled */
static void efx_start_port(struct efx_nic *efx)
{
EFX_LOG(efx, "start port\n");
BUG_ON(efx->port_enabled);
mutex_lock(&efx->mac_lock);
efx->port_enabled = 1;
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
* efx_set_multicast_list() from scheduling efx_reconfigure_work.
* efx_reconfigure_work can still be scheduled via NAPI processing
* until efx_flush_all() is called */
static void efx_stop_port(struct efx_nic *efx)
{
EFX_LOG(efx, "stop port\n");
mutex_lock(&efx->mac_lock);
efx->port_enabled = 0;
mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */
if (NET_DEV_REGISTERED(efx)) {
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_fini_port(struct efx_nic *efx)
{
EFX_LOG(efx, "shut down port\n");
if (!efx->port_initialized)
return;
falcon_fini_xmac(efx);
efx->port_initialized = 0;
efx->link_up = 0;
efx_link_status_changed(efx);
}
static void efx_remove_port(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying port\n");
falcon_remove_port(efx);
}
/**************************************************************************
*
* NIC handling
*
**************************************************************************/
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
struct pci_dev *pci_dev = efx->pci_dev;
dma_addr_t dma_mask = efx->type->max_dma_mask;
int rc;
EFX_LOG(efx, "initialising I/O\n");
rc = pci_enable_device(pci_dev);
if (rc) {
EFX_ERR(efx, "failed to enable PCI device\n");
goto fail1;
}
pci_set_master(pci_dev);
/* Set the PCI DMA mask. Try all possibilities from our
* genuine mask down to 32 bits, because some architectures
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
* masks event though they reject 46 bit masks.
*/
while (dma_mask > 0x7fffffffUL) {
if (pci_dma_supported(pci_dev, dma_mask) &&
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
break;
dma_mask >>= 1;
}
if (rc) {
EFX_ERR(efx, "could not find a suitable DMA mask\n");
goto fail2;
}
EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
if (rc) {
/* pci_set_consistent_dma_mask() is not *allowed* to
* fail with a mask that pci_set_dma_mask() accepted,
* but just in case...
*/
EFX_ERR(efx, "failed to set consistent DMA mask\n");
goto fail2;
}
efx->membase_phys = pci_resource_start(efx->pci_dev,
efx->type->mem_bar);
rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
if (rc) {
EFX_ERR(efx, "request for memory BAR failed\n");
rc = -EIO;
goto fail3;
}
efx->membase = ioremap_nocache(efx->membase_phys,
efx->type->mem_map_size);
if (!efx->membase) {
EFX_ERR(efx, "could not map memory BAR %d at %lx+%x\n",
efx->type->mem_bar, efx->membase_phys,
efx->type->mem_map_size);
rc = -ENOMEM;
goto fail4;
}
EFX_LOG(efx, "memory BAR %u at %lx+%x (virtual %p)\n",
efx->type->mem_bar, efx->membase_phys, efx->type->mem_map_size,
efx->membase);
return 0;
fail4:
release_mem_region(efx->membase_phys, efx->type->mem_map_size);
fail3:
efx->membase_phys = 0UL;
fail2:
pci_disable_device(efx->pci_dev);
fail1:
return rc;
}
static void efx_fini_io(struct efx_nic *efx)
{
EFX_LOG(efx, "shutting down I/O\n");
if (efx->membase) {
iounmap(efx->membase);
efx->membase = NULL;
}
if (efx->membase_phys) {
pci_release_region(efx->pci_dev, efx->type->mem_bar);
efx->membase_phys = 0UL;
}
pci_disable_device(efx->pci_dev);
}
/* Probe the number and type of interrupts we are able to obtain. */
static void efx_probe_interrupts(struct efx_nic *efx)
{
int max_channel = efx->type->phys_addr_channels - 1;
struct msix_entry xentries[EFX_MAX_CHANNELS];
int rc, i;
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus();
efx->rss_queues = min(efx->rss_queues, max_channel + 1);
efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
/* Request maximum number of MSI interrupts, and fill out
* the channel interrupt information the allowed allocation */
for (i = 0; i < efx->rss_queues; i++)
xentries[i].entry = i;
rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
if (rc > 0) {
EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
efx->rss_queues = rc;
rc = pci_enable_msix(efx->pci_dev, xentries,
efx->rss_queues);
}
if (rc == 0) {
for (i = 0; i < efx->rss_queues; i++) {
efx->channel[i].has_interrupt = 1;
efx->channel[i].irq = xentries[i].vector;
}
} else {
/* Fall back to single channel MSI */
efx->interrupt_mode = EFX_INT_MODE_MSI;
EFX_ERR(efx, "could not enable MSI-X\n");
}
}
/* Try single interrupt MSI */
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
efx->rss_queues = 1;
rc = pci_enable_msi(efx->pci_dev);
if (rc == 0) {
efx->channel[0].irq = efx->pci_dev->irq;
efx->channel[0].has_interrupt = 1;
} else {
EFX_ERR(efx, "could not enable MSI\n");
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
}
}
/* Assume legacy interrupts */
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
efx->rss_queues = 1;
/* Every channel is interruptible */
for (i = 0; i < EFX_MAX_CHANNELS; i++)
efx->channel[i].has_interrupt = 1;
efx->legacy_irq = efx->pci_dev->irq;
}
}
static void efx_remove_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
/* Remove MSI/MSI-X interrupts */
efx_for_each_channel_with_interrupt(channel, efx)
channel->irq = 0;
pci_disable_msi(efx->pci_dev);
pci_disable_msix(efx->pci_dev);
/* Remove legacy interrupt */
efx->legacy_irq = 0;
}
/* Select number of used resources
* Should be called after probe_interrupts()
*/
static void efx_select_used(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i;
/* TX queues. One per port per channel with TX capability
* (more than one per port won't work on Linux, due to out
* of order issues... but will be fine on Solaris)
*/
tx_queue = &efx->tx_queue[0];
/* Perform this for each channel with TX capabilities.
* At the moment, we only support a single TX queue
*/
tx_queue->used = 1;
if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
tx_queue->channel = &efx->channel[1];
else
tx_queue->channel = &efx->channel[0];
tx_queue->channel->used_flags |= EFX_USED_BY_TX;
tx_queue++;
/* RX queues. Each has a dedicated channel. */
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
if (i < efx->rss_queues) {
rx_queue->used = 1;
/* If we allow multiple RX queues per channel
* we need to decide that here
*/
rx_queue->channel = &efx->channel[rx_queue->queue];
rx_queue->channel->used_flags |= EFX_USED_BY_RX;
rx_queue++;
}
}
}
static int efx_probe_nic(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "creating NIC\n");
/* Carry out hardware-type specific initialisation */
rc = falcon_probe_nic(efx);
if (rc)
return rc;
/* Determine the number of channels and RX queues by trying to hook
* in MSI-X interrupts. */
efx_probe_interrupts(efx);
/* Determine number of RX queues and TX queues */
efx_select_used(efx);
/* Initialise the interrupt moderation settings */
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
return 0;
}
static void efx_remove_nic(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying NIC\n");
efx_remove_interrupts(efx);
falcon_remove_nic(efx);
}
/**************************************************************************
*
* NIC startup/shutdown
*
*************************************************************************/
static int efx_probe_all(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
/* Create NIC */
rc = efx_probe_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to create NIC\n");
goto fail1;
}
/* Create port */
rc = efx_probe_port(efx);
if (rc) {
EFX_ERR(efx, "failed to create port\n");
goto fail2;
}
/* Create channels */
efx_for_each_channel(channel, efx) {
rc = efx_probe_channel(channel);
if (rc) {
EFX_ERR(efx, "failed to create channel %d\n",
channel->channel);
goto fail3;
}
}
return 0;
fail3:
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
fail2:
efx_remove_nic(efx);
fail1:
return rc;
}
/* Called after previous invocation(s) of efx_stop_all, restarts the
* port, kernel transmit queue, NAPI processing and hardware interrupts,
* and ensures that the port is scheduled to be reconfigured.
* This function is safe to call multiple times when the NIC is in any
* state. */
static void efx_start_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* Check that it is appropriate to restart the interface. All
* of these flags are safe to read under just the rtnl lock */
if (efx->port_enabled)
return;
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
return;
if (NET_DEV_REGISTERED(efx) && !netif_running(efx->net_dev))
return;
/* Mark the port as enabled so port reconfigurations can start, then
* restart the transmit interface early so the watchdog timer stops */
efx_start_port(efx);
efx_wake_queue(efx);
efx_for_each_channel(channel, efx)
efx_start_channel(channel);
falcon_enable_interrupts(efx);
/* Start hardware monitor if we're in RUNNING */
if (efx->state == STATE_RUNNING)
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/* Flush all delayed work. Should only be called when no more delayed work
* will be scheduled. This doesn't flush pending online resets (efx_reset),
* since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
/* Make sure the hardware monitor is stopped */
cancel_delayed_work_sync(&efx->monitor_work);
/* Ensure that all RX slow refills are complete. */
efx_for_each_rx_queue(rx_queue, efx) {
cancel_delayed_work_sync(&rx_queue->work);
}
/* Stop scheduled port reconfigurations */
cancel_work_sync(&efx->reconfigure_work);
}
/* Quiesce hardware and software without bringing the link down.
* Safe to call multiple times, when the nic and interface is in any
* state. The caller is guaranteed to subsequently be in a position
* to modify any hardware and software state they see fit without
* taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* port_enabled can be read safely under the rtnl lock */
if (!efx->port_enabled)
return;
/* Disable interrupts and wait for ISR to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
efx_for_each_channel_with_interrupt(channel, efx)
if (channel->irq)
synchronize_irq(channel->irq);
/* Stop all NAPI processing and synchronous rx refills */
efx_for_each_channel(channel, efx)
efx_stop_channel(channel);
/* Stop all asynchronous port reconfigurations. Since all
* event processing has already been stopped, there is no
* window to loose phy events */
efx_stop_port(efx);
/* Flush reconfigure_work, refill_workqueue, monitor_work */
efx_flush_all(efx);
/* Isolate the MAC from the TX and RX engines, so that queue
* flushes will complete in a timely fashion. */
falcon_deconfigure_mac_wrapper(efx);
falcon_drain_tx_fifo(efx);
/* Stop the kernel transmit interface late, so the watchdog
* timer isn't ticking over the flush */
efx_stop_queue(efx);
if (NET_DEV_REGISTERED(efx)) {
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_remove_all(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
efx_remove_nic(efx);
}
/* A convinience function to safely flush all the queues */
int efx_flush_queues(struct efx_nic *efx)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
efx_stop_all(efx);
efx_fini_channels(efx);
rc = efx_init_channels(efx);
if (rc) {
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return rc;
}
efx_start_all(efx);
return 0;
}
/**************************************************************************
*
* Interrupt moderation
*
**************************************************************************/
/* Set interrupt moderation parameters */
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_ASSERT_RESET_SERIALISED(efx);
efx_for_each_tx_queue(tx_queue, efx)
tx_queue->channel->irq_moderation = tx_usecs;
efx_for_each_rx_queue(rx_queue, efx)
rx_queue->channel->irq_moderation = rx_usecs;
}
/**************************************************************************
*
* Hardware monitor
*
**************************************************************************/
/* Run periodically off the general workqueue. Serialised against
* efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
monitor_work.work);
int rc = 0;
EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
raw_smp_processor_id());
/* If the mac_lock is already held then it is likely a port
* reconfiguration is already in place, which will likely do
* most of the work of check_hw() anyway. */
if (!mutex_trylock(&efx->mac_lock)) {
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
return;
}
if (efx->port_enabled)
rc = falcon_check_xmac(efx);
mutex_unlock(&efx->mac_lock);
if (rc) {
if (monitor_reset) {
EFX_ERR(efx, "hardware monitor detected a fault: "
"triggering reset\n");
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
} else {
EFX_ERR(efx, "hardware monitor detected a fault, "
"skipping reset\n");
}
}
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/**************************************************************************
*
* ioctls
*
*************************************************************************/
/* Net device ioctl
* Context: process, rtnl_lock() held.
*/
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
struct efx_nic *efx = net_dev->priv;
EFX_ASSERT_RESET_SERIALISED(efx);
return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
}
/**************************************************************************
*
* NAPI interface
*
**************************************************************************/
static int efx_init_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
efx_for_each_channel(channel, efx) {
channel->napi_dev = efx->net_dev;
rc = efx_lro_init(&channel->lro_mgr, efx);
if (rc)
goto err;
}
return 0;
err:
efx_fini_napi(efx);
return rc;
}
static void efx_fini_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
efx_lro_fini(&channel->lro_mgr);
channel->napi_dev = NULL;
}
}
/**************************************************************************
*
* Kernel netpoll interface
*
*************************************************************************/
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Although in the common case interrupts will be disabled, this is not
* guaranteed. However, all our work happens inside the NAPI callback,
* so no locking is required.
*/
static void efx_netpoll(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct efx_channel *channel;
efx_for_each_channel_with_interrupt(channel, efx)
efx_schedule_channel(channel);
}
#endif
/**************************************************************************
*
* Kernel net device interface
*
*************************************************************************/
/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
EFX_ASSERT_RESET_SERIALISED(efx);
EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
efx_start_all(efx);
return 0;
}
/* Context: process, rtnl_lock() held.
* Note that the kernel will ignore our return code; this method
* should really be a void.
*/
static int efx_net_stop(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
int rc;
EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
/* Stop the device and flush all the channels */
efx_stop_all(efx);
efx_fini_channels(efx);
rc = efx_init_channels(efx);
if (rc)
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return 0;
}
/* Context: process, dev_base_lock held, non-blocking. */
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct net_device_stats *stats = &net_dev->stats;
if (!spin_trylock(&efx->stats_lock))
return stats;
if (efx->state == STATE_RUNNING) {
falcon_update_stats_xmac(efx);
falcon_update_nic_stats(efx);
}
spin_unlock(&efx->stats_lock);
stats->rx_packets = mac_stats->rx_packets;
stats->tx_packets = mac_stats->tx_packets;
stats->rx_bytes = mac_stats->rx_bytes;
stats->tx_bytes = mac_stats->tx_bytes;
stats->multicast = mac_stats->rx_multicast;
stats->collisions = mac_stats->tx_collision;
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
mac_stats->rx_length_error);
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
stats->rx_crc_errors = mac_stats->rx_bad;
stats->rx_frame_errors = mac_stats->rx_align_error;
stats->rx_fifo_errors = mac_stats->rx_overflow;
stats->rx_missed_errors = mac_stats->rx_missed;
stats->tx_window_errors = mac_stats->tx_late_collision;
stats->rx_errors = (stats->rx_length_errors +
stats->rx_over_errors +
stats->rx_crc_errors +
stats->rx_frame_errors +
stats->rx_fifo_errors +
stats->rx_missed_errors +
mac_stats->rx_symbol_error);
stats->tx_errors = (stats->tx_window_errors +
mac_stats->tx_bad);
return stats;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
atomic_read(&efx->netif_stop_count), efx->port_enabled,
monitor_reset ? "resetting channels" : "skipping reset");
if (monitor_reset)
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
}
/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
struct efx_nic *efx = net_dev->priv;
int rc = 0;
EFX_ASSERT_RESET_SERIALISED(efx);
if (new_mtu > EFX_MAX_MTU)
return -EINVAL;
efx_stop_all(efx);
EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
efx_fini_channels(efx);
net_dev->mtu = new_mtu;
rc = efx_init_channels(efx);
if (rc)
goto fail;
efx_start_all(efx);
return rc;
fail:
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return rc;
}
static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
struct efx_nic *efx = net_dev->priv;
struct sockaddr *addr = data;
char *new_addr = addr->sa_data;
EFX_ASSERT_RESET_SERIALISED(efx);
if (!is_valid_ether_addr(new_addr)) {
DECLARE_MAC_BUF(mac);
EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
print_mac(mac, new_addr));
return -EINVAL;
}
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
/* Reconfigure the MAC */
efx_reconfigure_port(efx);
return 0;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_set_multicast_list(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct dev_mc_list *mc_list = net_dev->mc_list;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
int promiscuous;
u32 crc;
int bit;
int i;
/* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
if (efx->promiscuous != promiscuous) {
efx->promiscuous = promiscuous;
/* Close the window between efx_stop_port() and efx_flush_all()
* by only queuing work when the port is enabled. */
if (efx->port_enabled)
queue_work(efx->workqueue, &efx->reconfigure_work);
}
/* Build multicast hash table */
if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
for (i = 0; i < net_dev->mc_count; i++) {
crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
set_bit_le(bit, mc_hash->byte);
mc_list = mc_list->next;
}
}
/* Create and activate new global multicast hash table */
falcon_set_multicast_hash(efx);
}
static int efx_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *net_dev = (struct net_device *)ptr;
if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
struct efx_nic *efx = net_dev->priv;
strcpy(efx->name, net_dev->name);
}
return NOTIFY_DONE;
}
static struct notifier_block efx_netdev_notifier = {
.notifier_call = efx_netdev_event,
};
static int efx_register_netdev(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
int rc;
net_dev->watchdog_timeo = 5 * HZ;
net_dev->irq = efx->pci_dev->irq;
net_dev->open = efx_net_open;
net_dev->stop = efx_net_stop;
net_dev->get_stats = efx_net_stats;
net_dev->tx_timeout = &efx_watchdog;
net_dev->hard_start_xmit = efx_hard_start_xmit;
net_dev->do_ioctl = efx_ioctl;
net_dev->change_mtu = efx_change_mtu;
net_dev->set_mac_address = efx_set_mac_address;
net_dev->set_multicast_list = efx_set_multicast_list;
#ifdef CONFIG_NET_POLL_CONTROLLER
net_dev->poll_controller = efx_netpoll;
#endif
SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
/* Always start with carrier off; PHY events will detect the link */
netif_carrier_off(efx->net_dev);
/* Clear MAC statistics */
falcon_update_stats_xmac(efx);
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
rc = register_netdev(net_dev);
if (rc) {
EFX_ERR(efx, "could not register net dev\n");
return rc;
}
strcpy(efx->name, net_dev->name);
return 0;
}
static void efx_unregister_netdev(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
if (!efx->net_dev)
return;
BUG_ON(efx->net_dev->priv != efx);
/* Free up any skbs still remaining. This has to happen before
* we try to unregister the netdev as running their destructors
* may be needed to get the device ref. count to 0. */
efx_for_each_tx_queue(tx_queue, efx)
efx_release_tx_buffers(tx_queue);
if (NET_DEV_REGISTERED(efx)) {
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
unregister_netdev(efx->net_dev);
}
}
/**************************************************************************
*
* Device reset and suspend
*
**************************************************************************/
/* The final hardware and software finalisation before reset. */
static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
rc = falcon_xmac_get_settings(efx, ecmd);
if (rc) {
EFX_ERR(efx, "could not back up PHY settings\n");
goto fail;
}
efx_fini_channels(efx);
return 0;
fail:
return rc;
}
/* The first part of software initialisation after a hardware reset
* This function does not handle serialisation with the kernel, it
* assumes the caller has done this */
static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int rc;
rc = efx_init_channels(efx);
if (rc)
goto fail1;
/* Restore MAC and PHY settings. */
rc = falcon_xmac_set_settings(efx, ecmd);
if (rc) {
EFX_ERR(efx, "could not restore PHY settings\n");
goto fail2;
}
return 0;
fail2:
efx_fini_channels(efx);
fail1:
return rc;
}
/* Reset the NIC as transparently as possible. Do not reset the PHY
* Note that the reset may fail, in which case the card will be left
* in a most-probably-unusable state.
*
* This function will sleep. You cannot reset from within an atomic
* state; use efx_schedule_reset() instead.
*
* Grabs the rtnl_lock.
*/
static int efx_reset(struct efx_nic *efx)
{
struct ethtool_cmd ecmd;
enum reset_type method = efx->reset_pending;
int rc;
/* Serialise with kernel interfaces */
rtnl_lock();
/* If we're not RUNNING then don't reset. Leave the reset_pending
* flag set so that efx_pci_probe_main will be retried */
if (efx->state != STATE_RUNNING) {
EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
goto unlock_rtnl;
}
efx->state = STATE_RESETTING;
EFX_INFO(efx, "resetting (%d)\n", method);
/* The net_dev->get_stats handler is quite slow, and will fail
* if a fetch is pending over reset. Serialise against it. */
spin_lock(&efx->stats_lock);
spin_unlock(&efx->stats_lock);
efx_stop_all(efx);
mutex_lock(&efx->mac_lock);
rc = efx_reset_down(efx, &ecmd);
if (rc)
goto fail1;
rc = falcon_reset_hw(efx, method);
if (rc) {
EFX_ERR(efx, "failed to reset hardware\n");
goto fail2;
}
/* Allow resets to be rescheduled. */
efx->reset_pending = RESET_TYPE_NONE;
/* Reinitialise bus-mastering, which may have been turned off before
* the reset was scheduled. This is still appropriate, even in the
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
* can respond to requests. */
pci_set_master(efx->pci_dev);
/* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
* case so the driver can talk to external SRAM */
rc = falcon_init_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail3;
}
/* Leave device stopped if necessary */
if (method == RESET_TYPE_DISABLE) {
/* Reinitialise the device anyway so the driver unload sequence
* can talk to the external SRAM */
(void) falcon_init_nic(efx);
rc = -EIO;
goto fail4;
}
rc = efx_reset_up(efx, &ecmd);
if (rc)
goto fail5;
mutex_unlock(&efx->mac_lock);
EFX_LOG(efx, "reset complete\n");
efx->state = STATE_RUNNING;
efx_start_all(efx);
unlock_rtnl:
rtnl_unlock();
return 0;
fail5:
fail4:
fail3:
fail2:
fail1:
EFX_ERR(efx, "has been disabled\n");
efx->state = STATE_DISABLED;
mutex_unlock(&efx->mac_lock);
rtnl_unlock();
efx_unregister_netdev(efx);
efx_fini_port(efx);
return rc;
}
/* The worker thread exists so that code that cannot sleep can
* schedule a reset for later.
*/
static void efx_reset_work(struct work_struct *data)
{
struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
efx_reset(nic);
}
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
enum reset_type method;
if (efx->reset_pending != RESET_TYPE_NONE) {
EFX_INFO(efx, "quenching already scheduled reset\n");
return;
}
switch (type) {
case RESET_TYPE_INVISIBLE:
case RESET_TYPE_ALL:
case RESET_TYPE_WORLD:
case RESET_TYPE_DISABLE:
method = type;
break;
case RESET_TYPE_RX_RECOVERY:
case RESET_TYPE_RX_DESC_FETCH:
case RESET_TYPE_TX_DESC_FETCH:
case RESET_TYPE_TX_SKIP:
method = RESET_TYPE_INVISIBLE;
break;
default:
method = RESET_TYPE_ALL;
break;
}
if (method != type)
EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
else
EFX_LOG(efx, "scheduling reset (%d)\n", method);
efx->reset_pending = method;
queue_work(efx->workqueue, &efx->reset_work);
}
/**************************************************************************
*
* List of NICs we support
*
**************************************************************************/
/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
.driver_data = (unsigned long) &falcon_a_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
.driver_data = (unsigned long) &falcon_b_nic_type},
{0} /* end of list */
};
/**************************************************************************
*
* Dummy PHY/MAC/Board operations
*
* Can be used where the MAC does not implement this operation
* Needed so all function pointers are valid and do not have to be tested
* before use
*
**************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
static struct efx_phy_operations efx_dummy_phy_operations = {
.init = efx_port_dummy_op_int,
.reconfigure = efx_port_dummy_op_void,
.check_hw = efx_port_dummy_op_int,
.fini = efx_port_dummy_op_void,
.clear_interrupt = efx_port_dummy_op_void,
.reset_xaui = efx_port_dummy_op_void,
};
/* Dummy board operations */
static int efx_nic_dummy_op_int(struct efx_nic *nic)
{
return 0;
}
static struct efx_board efx_dummy_board_info = {
.init = efx_nic_dummy_op_int,
.init_leds = efx_port_dummy_op_int,
.set_fault_led = efx_port_dummy_op_blink,
};
/**************************************************************************
*
* Data housekeeping
*
**************************************************************************/
/* This zeroes out and then fills in the invariants in a struct
* efx_nic (including all sub-structures).
*/
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
struct pci_dev *pci_dev, struct net_device *net_dev)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i, rc;
/* Initialise common structures */
memset(efx, 0, sizeof(*efx));
spin_lock_init(&efx->biu_lock);
spin_lock_init(&efx->phy_lock);
INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
efx->pci_dev = pci_dev;
efx->state = STATE_INIT;
efx->reset_pending = RESET_TYPE_NONE;
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
efx->board_info = efx_dummy_board_info;
efx->net_dev = net_dev;
efx->rx_checksum_enabled = 1;
spin_lock_init(&efx->netif_stop_lock);
spin_lock_init(&efx->stats_lock);
mutex_init(&efx->mac_lock);
efx->phy_op = &efx_dummy_phy_operations;
efx->mii.dev = net_dev;
INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
atomic_set(&efx->netif_stop_count, 1);
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
channel = &efx->channel[i];
channel->efx = efx;
channel->channel = i;
channel->evqnum = i;
channel->work_pending = 0;
}
for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
tx_queue = &efx->tx_queue[i];
tx_queue->efx = efx;
tx_queue->queue = i;
tx_queue->buffer = NULL;
tx_queue->channel = &efx->channel[0]; /* for safety */
}
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
rx_queue->efx = efx;
rx_queue->queue = i;
rx_queue->channel = &efx->channel[0]; /* for safety */
rx_queue->buffer = NULL;
spin_lock_init(&rx_queue->add_lock);
INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
}
efx->type = type;
/* Sanity-check NIC type */
EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
(efx->type->txd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
(efx->type->rxd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->evq_size &
(efx->type->evq_size - 1));
/* As close as we can get to guaranteeing that we don't overflow */
EFX_BUG_ON_PARANOID(efx->type->evq_size <
(efx->type->txd_ring_mask + 1 +
efx->type->rxd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
/* Higher numbered interrupt modes are less capable! */
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
interrupt_mode);
efx->workqueue = create_singlethread_workqueue("sfc_work");
if (!efx->workqueue) {
rc = -ENOMEM;
goto fail1;
}
return 0;
fail1:
return rc;
}
static void efx_fini_struct(struct efx_nic *efx)
{
if (efx->workqueue) {
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
}
}
/**************************************************************************
*
* PCI interface
*
**************************************************************************/
/* Main body of final NIC shutdown code
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove_main(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
/* Skip everything if we never obtained a valid membase */
if (!efx->membase)
return;
efx_fini_channels(efx);
efx_fini_port(efx);
/* Shutdown the board, then the NIC and board state */
falcon_fini_interrupt(efx);
efx_fini_napi(efx);
efx_remove_all(efx);
}
/* Final NIC shutdown
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove(struct pci_dev *pci_dev)
{
struct efx_nic *efx;
efx = pci_get_drvdata(pci_dev);
if (!efx)
return;
/* Mark the NIC as fini, then stop the interface */
rtnl_lock();
efx->state = STATE_FINI;
dev_close(efx->net_dev);
/* Allow any queued efx_resets() to complete */
rtnl_unlock();
if (efx->membase == NULL)
goto out;
efx_unregister_netdev(efx);
/* Wait for any scheduled resets to complete. No more will be
* scheduled from this point because efx_stop_all() has been
* called, we are no longer registered with driverlink, and
* the net_device's have been removed. */
flush_workqueue(efx->workqueue);
efx_pci_remove_main(efx);
out:
efx_fini_io(efx);
EFX_LOG(efx, "shutdown successful\n");
pci_set_drvdata(pci_dev, NULL);
efx_fini_struct(efx);
free_netdev(efx->net_dev);
};
/* Main body of NIC initialisation
* This is called at module load (or hotplug insertion, theoretically).
*/
static int efx_pci_probe_main(struct efx_nic *efx)
{
int rc;
/* Do start-of-day initialisation */
rc = efx_probe_all(efx);
if (rc)
goto fail1;
rc = efx_init_napi(efx);
if (rc)
goto fail2;
/* Initialise the board */
rc = efx->board_info.init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise board\n");
goto fail3;
}
rc = falcon_init_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail4;
}
rc = efx_init_port(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise port\n");
goto fail5;
}
rc = efx_init_channels(efx);
if (rc)
goto fail6;
rc = falcon_init_interrupt(efx);
if (rc)
goto fail7;
return 0;
fail7:
efx_fini_channels(efx);
fail6:
efx_fini_port(efx);
fail5:
fail4:
fail3:
efx_fini_napi(efx);
fail2:
efx_remove_all(efx);
fail1:
return rc;
}
/* NIC initialisation
*
* This is called at module load (or hotplug insertion,
* theoretically). It sets up PCI mappings, tests and resets the NIC,
* sets up and registers the network devices with the kernel and hooks
* the interrupt service routine. It does not prepare the device for
* transmission; this is left to the first time one of the network
* interfaces is brought up (i.e. efx_net_open).
*/
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *entry)
{
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
struct net_device *net_dev;
struct efx_nic *efx;
int i, rc;
/* Allocate and initialise a struct net_device and struct efx_nic */
net_dev = alloc_etherdev(sizeof(*efx));
if (!net_dev)
return -ENOMEM;
net_dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
if (lro)
net_dev->features |= NETIF_F_LRO;
efx = net_dev->priv;
pci_set_drvdata(pci_dev, efx);
rc = efx_init_struct(efx, type, pci_dev, net_dev);
if (rc)
goto fail1;
EFX_INFO(efx, "Solarflare Communications NIC detected\n");
/* Set up basic I/O (BAR mappings etc) */
rc = efx_init_io(efx);
if (rc)
goto fail2;
/* No serialisation is required with the reset path because
* we're in STATE_INIT. */
for (i = 0; i < 5; i++) {
rc = efx_pci_probe_main(efx);
if (rc == 0)
break;
/* Serialise against efx_reset(). No more resets will be
* scheduled since efx_stop_all() has been called, and we
* have not and never have been registered with either
* the rtnetlink or driverlink layers. */
cancel_work_sync(&efx->reset_work);
/* Retry if a recoverably reset event has been scheduled */
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
(efx->reset_pending != RESET_TYPE_ALL))
goto fail3;
efx->reset_pending = RESET_TYPE_NONE;
}
if (rc) {
EFX_ERR(efx, "Could not reset NIC\n");
goto fail4;
}
/* Switch to the running state before we expose the device to
* the OS. This is to ensure that the initial gathering of
* MAC stats succeeds. */
rtnl_lock();
efx->state = STATE_RUNNING;
rtnl_unlock();
rc = efx_register_netdev(efx);
if (rc)
goto fail5;
EFX_LOG(efx, "initialisation successful\n");
return 0;
fail5:
efx_pci_remove_main(efx);
fail4:
fail3:
efx_fini_io(efx);
fail2:
efx_fini_struct(efx);
fail1:
EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
free_netdev(net_dev);
return rc;
}
static struct pci_driver efx_pci_driver = {
.name = EFX_DRIVER_NAME,
.id_table = efx_pci_table,
.probe = efx_pci_probe,
.remove = efx_pci_remove,
};
/**************************************************************************
*
* Kernel module interface
*
*************************************************************************/
module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
static int __init efx_init_module(void)
{
int rc;
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
rc = register_netdevice_notifier(&efx_netdev_notifier);
if (rc)
goto err_notifier;
refill_workqueue = create_workqueue("sfc_refill");
if (!refill_workqueue) {
rc = -ENOMEM;
goto err_refill;
}
rc = pci_register_driver(&efx_pci_driver);
if (rc < 0)
goto err_pci;
return 0;
err_pci:
destroy_workqueue(refill_workqueue);
err_refill:
unregister_netdevice_notifier(&efx_netdev_notifier);
err_notifier:
return rc;
}
static void __exit efx_exit_module(void)
{
printk(KERN_INFO "Solarflare NET driver unloading\n");
pci_unregister_driver(&efx_pci_driver);
destroy_workqueue(refill_workqueue);
unregister_netdevice_notifier(&efx_netdev_notifier);
}
module_init(efx_init_module);
module_exit(efx_exit_module);
MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
"Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_EFX_H
#define EFX_EFX_H
#include "net_driver.h"
/* PCI IDs */
#define EFX_VENDID_SFC 0x1924
#define FALCON_A_P_DEVID 0x0703
#define FALCON_A_S_DEVID 0x6703
#define FALCON_B_P_DEVID 0x0710
/* TX */
extern int efx_xmit(struct efx_nic *efx,
struct efx_tx_queue *tx_queue, struct sk_buff *skb);
extern void efx_stop_queue(struct efx_nic *efx);
extern void efx_wake_queue(struct efx_nic *efx);
/* RX */
extern void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index);
extern void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
unsigned int len, int checksummed, int discard);
extern void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay);
/* Channels */
extern void efx_process_channel_now(struct efx_channel *channel);
extern int efx_flush_queues(struct efx_nic *efx);
/* Ports */
extern void efx_reconfigure_port(struct efx_nic *efx);
/* Global */
extern void efx_schedule_reset(struct efx_nic *efx, enum reset_type type);
extern void efx_suspend(struct efx_nic *efx);
extern void efx_resume(struct efx_nic *efx);
extern void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs,
int rx_usecs);
extern int efx_request_power(struct efx_nic *efx, int mw, const char *name);
extern void efx_hex_dump(const u8 *, unsigned int, const char *);
/* Dummy PHY ops for PHY drivers */
extern int efx_port_dummy_op_int(struct efx_nic *efx);
extern void efx_port_dummy_op_void(struct efx_nic *efx);
extern void efx_port_dummy_op_blink(struct efx_nic *efx, int blink);
extern unsigned int efx_monitor_interval;
static inline void efx_schedule_channel(struct efx_channel *channel)
{
EFX_TRACE(channel->efx, "channel %d scheduling NAPI poll on CPU%d\n",
channel->channel, raw_smp_processor_id());
channel->work_pending = 1;
netif_rx_schedule(channel->napi_dev, &channel->napi_str);
}
#endif /* EFX_EFX_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_ENUM_H
#define EFX_ENUM_H
/*****************************************************************************/
/**
* enum reset_type - reset types
*
* %RESET_TYPE_INVSIBLE, %RESET_TYPE_ALL, %RESET_TYPE_WORLD and
* %RESET_TYPE_DISABLE specify the method/scope of the reset. The
* other valuesspecify reasons, which efx_schedule_reset() will choose
* a method for.
*
* @RESET_TYPE_INVISIBLE: don't reset the PHYs or interrupts
* @RESET_TYPE_ALL: reset everything but PCI core blocks
* @RESET_TYPE_WORLD: reset everything, save & restore PCI config
* @RESET_TYPE_DISABLE: disable NIC
* @RESET_TYPE_MONITOR: reset due to hardware monitor
* @RESET_TYPE_INT_ERROR: reset due to internal error
* @RESET_TYPE_RX_RECOVERY: reset to recover from RX datapath errors
* @RESET_TYPE_RX_DESC_FETCH: pcie error during rx descriptor fetch
* @RESET_TYPE_TX_DESC_FETCH: pcie error during tx descriptor fetch
* @RESET_TYPE_TX_SKIP: hardware completed empty tx descriptors
*/
enum reset_type {
RESET_TYPE_NONE = -1,
RESET_TYPE_INVISIBLE = 0,
RESET_TYPE_ALL = 1,
RESET_TYPE_WORLD = 2,
RESET_TYPE_DISABLE = 3,
RESET_TYPE_MAX_METHOD,
RESET_TYPE_MONITOR,
RESET_TYPE_INT_ERROR,
RESET_TYPE_RX_RECOVERY,
RESET_TYPE_RX_DESC_FETCH,
RESET_TYPE_TX_DESC_FETCH,
RESET_TYPE_TX_SKIP,
RESET_TYPE_MAX,
};
#endif /* EFX_ENUM_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/rtnetlink.h>
#include "net_driver.h"
#include "efx.h"
#include "ethtool.h"
#include "falcon.h"
#include "gmii.h"
#include "mac.h"
static int efx_ethtool_set_tx_csum(struct net_device *net_dev, u32 enable);
struct ethtool_string {
char name[ETH_GSTRING_LEN];
};
struct efx_ethtool_stat {
const char *name;
enum {
EFX_ETHTOOL_STAT_SOURCE_mac_stats,
EFX_ETHTOOL_STAT_SOURCE_nic,
EFX_ETHTOOL_STAT_SOURCE_channel
} source;
unsigned offset;
u64(*get_stat) (void *field); /* Reader function */
};
/* Initialiser for a struct #efx_ethtool_stat with type-checking */
#define EFX_ETHTOOL_STAT(stat_name, source_name, field, field_type, \
get_stat_function) { \
.name = #stat_name, \
.source = EFX_ETHTOOL_STAT_SOURCE_##source_name, \
.offset = ((((field_type *) 0) == \
&((struct efx_##source_name *)0)->field) ? \
offsetof(struct efx_##source_name, field) : \
offsetof(struct efx_##source_name, field)), \
.get_stat = get_stat_function, \
}
static u64 efx_get_uint_stat(void *field)
{
return *(unsigned int *)field;
}
static u64 efx_get_ulong_stat(void *field)
{
return *(unsigned long *)field;
}
static u64 efx_get_u64_stat(void *field)
{
return *(u64 *) field;
}
static u64 efx_get_atomic_stat(void *field)
{
return atomic_read((atomic_t *) field);
}
#define EFX_ETHTOOL_ULONG_MAC_STAT(field) \
EFX_ETHTOOL_STAT(field, mac_stats, field, \
unsigned long, efx_get_ulong_stat)
#define EFX_ETHTOOL_U64_MAC_STAT(field) \
EFX_ETHTOOL_STAT(field, mac_stats, field, \
u64, efx_get_u64_stat)
#define EFX_ETHTOOL_UINT_NIC_STAT(name) \
EFX_ETHTOOL_STAT(name, nic, n_##name, \
unsigned int, efx_get_uint_stat)
#define EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(field) \
EFX_ETHTOOL_STAT(field, nic, field, \
atomic_t, efx_get_atomic_stat)
#define EFX_ETHTOOL_UINT_CHANNEL_STAT(field) \
EFX_ETHTOOL_STAT(field, channel, n_##field, \
unsigned int, efx_get_uint_stat)
static struct efx_ethtool_stat efx_ethtool_stats[] = {
EFX_ETHTOOL_U64_MAC_STAT(tx_bytes),
EFX_ETHTOOL_U64_MAC_STAT(tx_good_bytes),
EFX_ETHTOOL_U64_MAC_STAT(tx_bad_bytes),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_packets),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_bad),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_pause),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_control),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_unicast),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_multicast),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_broadcast),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_lt64),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_64),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_65_to_127),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_128_to_255),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_256_to_511),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_512_to_1023),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_1024_to_15xx),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_15xx_to_jumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_gtjumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_single_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_multiple_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_excessive_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_deferred),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_late_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_excessive_deferred),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_non_tcpudp),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_mac_src_error),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_ip_src_error),
EFX_ETHTOOL_U64_MAC_STAT(rx_bytes),
EFX_ETHTOOL_U64_MAC_STAT(rx_good_bytes),
EFX_ETHTOOL_U64_MAC_STAT(rx_bad_bytes),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_packets),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_good),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_pause),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_control),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_unicast),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_multicast),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_broadcast),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_lt64),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_64),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_65_to_127),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_128_to_255),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_256_to_511),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_512_to_1023),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_1024_to_15xx),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_15xx_to_jumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_gtjumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_lt64),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_64_to_15xx),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_15xx_to_jumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_gtjumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_overflow),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_missed),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_false_carrier),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_symbol_error),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_align_error),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_length_error),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_internal_error),
EFX_ETHTOOL_UINT_NIC_STAT(rx_nodesc_drop_cnt),
EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(rx_reset),
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tobe_disc),
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_ip_hdr_chksum_err),
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tcp_udp_chksum_err),
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_frm_trunc),
};
/* Number of ethtool statistics */
#define EFX_ETHTOOL_NUM_STATS ARRAY_SIZE(efx_ethtool_stats)
/**************************************************************************
*
* Ethtool operations
*
**************************************************************************
*/
/* Identify device by flashing LEDs */
static int efx_ethtool_phys_id(struct net_device *net_dev, u32 seconds)
{
struct efx_nic *efx = net_dev->priv;
efx->board_info.blink(efx, 1);
schedule_timeout_interruptible(seconds * HZ);
efx->board_info.blink(efx, 0);
return 0;
}
/* This must be called with rtnl_lock held. */
int efx_ethtool_get_settings(struct net_device *net_dev,
struct ethtool_cmd *ecmd)
{
struct efx_nic *efx = net_dev->priv;
int rc;
mutex_lock(&efx->mac_lock);
rc = falcon_xmac_get_settings(efx, ecmd);
mutex_unlock(&efx->mac_lock);
return rc;
}
/* This must be called with rtnl_lock held. */
int efx_ethtool_set_settings(struct net_device *net_dev,
struct ethtool_cmd *ecmd)
{
struct efx_nic *efx = net_dev->priv;
int rc;
mutex_lock(&efx->mac_lock);
rc = falcon_xmac_set_settings(efx, ecmd);
mutex_unlock(&efx->mac_lock);
if (!rc)
efx_reconfigure_port(efx);
return rc;
}
static void efx_ethtool_get_drvinfo(struct net_device *net_dev,
struct ethtool_drvinfo *info)
{
struct efx_nic *efx = net_dev->priv;
strlcpy(info->driver, EFX_DRIVER_NAME, sizeof(info->driver));
strlcpy(info->version, EFX_DRIVER_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(efx->pci_dev), sizeof(info->bus_info));
}
static int efx_ethtool_get_stats_count(struct net_device *net_dev)
{
return EFX_ETHTOOL_NUM_STATS;
}
static void efx_ethtool_get_strings(struct net_device *net_dev,
u32 string_set, u8 *strings)
{
struct ethtool_string *ethtool_strings =
(struct ethtool_string *)strings;
int i;
if (string_set == ETH_SS_STATS)
for (i = 0; i < EFX_ETHTOOL_NUM_STATS; i++)
strncpy(ethtool_strings[i].name,
efx_ethtool_stats[i].name,
sizeof(ethtool_strings[i].name));
}
static void efx_ethtool_get_stats(struct net_device *net_dev,
struct ethtool_stats *stats,
u64 *data)
{
struct efx_nic *efx = net_dev->priv;
struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct efx_ethtool_stat *stat;
struct efx_channel *channel;
int i;
EFX_BUG_ON_PARANOID(stats->n_stats != EFX_ETHTOOL_NUM_STATS);
/* Update MAC and NIC statistics */
net_dev->get_stats(net_dev);
/* Fill detailed statistics buffer */
for (i = 0; i < EFX_ETHTOOL_NUM_STATS; i++) {
stat = &efx_ethtool_stats[i];
switch (stat->source) {
case EFX_ETHTOOL_STAT_SOURCE_mac_stats:
data[i] = stat->get_stat((void *)mac_stats +
stat->offset);
break;
case EFX_ETHTOOL_STAT_SOURCE_nic:
data[i] = stat->get_stat((void *)efx + stat->offset);
break;
case EFX_ETHTOOL_STAT_SOURCE_channel:
data[i] = 0;
efx_for_each_channel(channel, efx)
data[i] += stat->get_stat((void *)channel +
stat->offset);
break;
}
}
}
static int efx_ethtool_set_tx_csum(struct net_device *net_dev, u32 enable)
{
struct efx_nic *efx = net_dev->priv;
int rc;
rc = ethtool_op_set_tx_csum(net_dev, enable);
if (rc)
return rc;
efx_flush_queues(efx);
return 0;
}
static int efx_ethtool_set_rx_csum(struct net_device *net_dev, u32 enable)
{
struct efx_nic *efx = net_dev->priv;
/* No way to stop the hardware doing the checks; we just
* ignore the result.
*/
efx->rx_checksum_enabled = (enable ? 1 : 0);
return 0;
}
static u32 efx_ethtool_get_rx_csum(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
return efx->rx_checksum_enabled;
}
/* Restart autonegotiation */
static int efx_ethtool_nway_reset(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
return mii_nway_restart(&efx->mii);
}
static u32 efx_ethtool_get_link(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
return efx->link_up;
}
static int efx_ethtool_get_coalesce(struct net_device *net_dev,
struct ethtool_coalesce *coalesce)
{
struct efx_nic *efx = net_dev->priv;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
struct efx_channel *channel;
memset(coalesce, 0, sizeof(*coalesce));
/* Find lowest IRQ moderation across all used TX queues */
coalesce->tx_coalesce_usecs_irq = ~((u32) 0);
efx_for_each_tx_queue(tx_queue, efx) {
channel = tx_queue->channel;
if (channel->irq_moderation < coalesce->tx_coalesce_usecs_irq) {
if (channel->used_flags != EFX_USED_BY_RX_TX)
coalesce->tx_coalesce_usecs_irq =
channel->irq_moderation;
else
coalesce->tx_coalesce_usecs_irq = 0;
}
}
/* Find lowest IRQ moderation across all used RX queues */
coalesce->rx_coalesce_usecs_irq = ~((u32) 0);
efx_for_each_rx_queue(rx_queue, efx) {
channel = rx_queue->channel;
if (channel->irq_moderation < coalesce->rx_coalesce_usecs_irq)
coalesce->rx_coalesce_usecs_irq =
channel->irq_moderation;
}
return 0;
}
/* Set coalescing parameters
* The difficulties occur for shared channels
*/
static int efx_ethtool_set_coalesce(struct net_device *net_dev,
struct ethtool_coalesce *coalesce)
{
struct efx_nic *efx = net_dev->priv;
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
unsigned tx_usecs, rx_usecs;
if (coalesce->use_adaptive_rx_coalesce ||
coalesce->use_adaptive_tx_coalesce)
return -EOPNOTSUPP;
if (coalesce->rx_coalesce_usecs || coalesce->tx_coalesce_usecs) {
EFX_ERR(efx, "invalid coalescing setting. "
"Only rx/tx_coalesce_usecs_irq are supported\n");
return -EOPNOTSUPP;
}
rx_usecs = coalesce->rx_coalesce_usecs_irq;
tx_usecs = coalesce->tx_coalesce_usecs_irq;
/* If the channel is shared only allow RX parameters to be set */
efx_for_each_tx_queue(tx_queue, efx) {
if ((tx_queue->channel->used_flags == EFX_USED_BY_RX_TX) &&
tx_usecs) {
EFX_ERR(efx, "Channel is shared. "
"Only RX coalescing may be set\n");
return -EOPNOTSUPP;
}
}
efx_init_irq_moderation(efx, tx_usecs, rx_usecs);
/* Reset channel to pick up new moderation value. Note that
* this may change the value of the irq_moderation field
* (e.g. to allow for hardware timer granularity).
*/
efx_for_each_channel(channel, efx)
falcon_set_int_moderation(channel);
return 0;
}
static int efx_ethtool_set_pauseparam(struct net_device *net_dev,
struct ethtool_pauseparam *pause)
{
struct efx_nic *efx = net_dev->priv;
enum efx_fc_type flow_control = efx->flow_control;
int rc;
flow_control &= ~(EFX_FC_RX | EFX_FC_TX | EFX_FC_AUTO);
flow_control |= pause->rx_pause ? EFX_FC_RX : 0;
flow_control |= pause->tx_pause ? EFX_FC_TX : 0;
flow_control |= pause->autoneg ? EFX_FC_AUTO : 0;
/* Try to push the pause parameters */
mutex_lock(&efx->mac_lock);
rc = falcon_xmac_set_pause(efx, flow_control);
mutex_unlock(&efx->mac_lock);
if (!rc)
efx_reconfigure_port(efx);
return rc;
}
static void efx_ethtool_get_pauseparam(struct net_device *net_dev,
struct ethtool_pauseparam *pause)
{
struct efx_nic *efx = net_dev->priv;
pause->rx_pause = (efx->flow_control & EFX_FC_RX) ? 1 : 0;
pause->tx_pause = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
pause->autoneg = (efx->flow_control & EFX_FC_AUTO) ? 1 : 0;
}
struct ethtool_ops efx_ethtool_ops = {
.get_settings = efx_ethtool_get_settings,
.set_settings = efx_ethtool_set_settings,
.get_drvinfo = efx_ethtool_get_drvinfo,
.nway_reset = efx_ethtool_nway_reset,
.get_link = efx_ethtool_get_link,
.get_coalesce = efx_ethtool_get_coalesce,
.set_coalesce = efx_ethtool_set_coalesce,
.get_pauseparam = efx_ethtool_get_pauseparam,
.set_pauseparam = efx_ethtool_set_pauseparam,
.get_rx_csum = efx_ethtool_get_rx_csum,
.set_rx_csum = efx_ethtool_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = efx_ethtool_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_flags = ethtool_op_get_flags,
.set_flags = ethtool_op_set_flags,
.get_strings = efx_ethtool_get_strings,
.phys_id = efx_ethtool_phys_id,
.get_stats_count = efx_ethtool_get_stats_count,
.get_ethtool_stats = efx_ethtool_get_stats,
};
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005 Fen Systems Ltd.
* Copyright 2006 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_ETHTOOL_H
#define EFX_ETHTOOL_H
#include "net_driver.h"
/*
* Ethtool support
*/
extern int efx_ethtool_get_settings(struct net_device *net_dev,
struct ethtool_cmd *ecmd);
extern int efx_ethtool_set_settings(struct net_device *net_dev,
struct ethtool_cmd *ecmd);
extern struct ethtool_ops efx_ethtool_ops;
#endif /* EFX_ETHTOOL_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "gmii.h"
#include "spi.h"
#include "falcon.h"
#include "falcon_hwdefs.h"
#include "falcon_io.h"
#include "mdio_10g.h"
#include "phy.h"
#include "boards.h"
#include "workarounds.h"
/* Falcon hardware control.
* Falcon is the internal codename for the SFC4000 controller that is
* present in SFE400X evaluation boards
*/
/**
* struct falcon_nic_data - Falcon NIC state
* @next_buffer_table: First available buffer table id
* @pci_dev2: The secondary PCI device if present
*/
struct falcon_nic_data {
unsigned next_buffer_table;
struct pci_dev *pci_dev2;
};
/**************************************************************************
*
* Configurable values
*
**************************************************************************
*/
static int disable_dma_stats;
/* This is set to 16 for a good reason. In summary, if larger than
* 16, the descriptor cache holds more than a default socket
* buffer's worth of packets (for UDP we can only have at most one
* socket buffer's worth outstanding). This combined with the fact
* that we only get 1 TX event per descriptor cache means the NIC
* goes idle.
*/
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 0
#define TX_DC_BASE 0x130000
#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 2
#define RX_DC_BASE 0x100000
/* RX FIFO XOFF watermark
*
* When the amount of the RX FIFO increases used increases past this
* watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
* This also has an effect on RX/TX arbitration
*/
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
/* RX FIFO XON watermark
*
* When the amount of the RX FIFO used decreases below this
* watermark send XON. Only used if TX flow control is enabled (ethtool -A)
* This also has an effect on RX/TX arbitration
*/
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
/* TX descriptor ring size - min 512 max 4k */
#define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
#define FALCON_TXD_RING_SIZE 1024
#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
/* RX descriptor ring size - min 512 max 4k */
#define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
#define FALCON_RXD_RING_SIZE 1024
#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
/* Event queue size - max 32k */
#define FALCON_EVQ_ORDER EVQ_SIZE_4K
#define FALCON_EVQ_SIZE 4096
#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
/* Max number of internal errors. After this resets will not be performed */
#define FALCON_MAX_INT_ERRORS 4
/* Maximum period that we wait for flush events. If the flush event
* doesn't arrive in this period of time then we check if the queue
* was disabled anyway. */
#define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
/**************************************************************************
*
* Falcon constants
*
**************************************************************************
*/
/* DMA address mask (up to 46-bit, avoiding compiler warnings)
*
* Note that it is possible to have a platform with 64-bit longs and
* 32-bit DMA addresses, or vice versa. EFX_DMA_MASK takes care of the
* platform DMA mask.
*/
#if BITS_PER_LONG == 64
#define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffUL)
#else
#define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffULL)
#endif
/* TX DMA length mask (13-bit) */
#define FALCON_TX_DMA_MASK (4096 - 1)
/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096
/* Dummy SRAM size code */
#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
/* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
#define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
#define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
#define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
#define PCI_EXP_LNKSTA_LNK_WID 0x3f0
#define PCI_EXP_LNKSTA_LNK_WID_LBN 4
#define FALCON_IS_DUAL_FUNC(efx) \
(FALCON_REV(efx) < FALCON_REV_B0)
/**************************************************************************
*
* Falcon hardware access
*
**************************************************************************/
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
unsigned int index)
{
return (((efx_qword_t *) (channel->eventq.addr)) + index);
}
/* See if an event is present
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int falcon_event_present(efx_qword_t *event)
{
return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}
/**************************************************************************
*
* I2C bus - this is a bit-bashing interface using GPIO pins
* Note that it uses the output enables to tristate the outputs
* SDA is the data pin and SCL is the clock
*
**************************************************************************
*/
static void falcon_setsdascl(struct efx_i2c_interface *i2c)
{
efx_oword_t reg;
falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, (i2c->scl ? 0 : 1));
EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, (i2c->sda ? 0 : 1));
falcon_write(i2c->efx, &reg, GPIO_CTL_REG_KER);
}
static int falcon_getsda(struct efx_i2c_interface *i2c)
{
efx_oword_t reg;
falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
return EFX_OWORD_FIELD(reg, GPIO3_IN);
}
static int falcon_getscl(struct efx_i2c_interface *i2c)
{
efx_oword_t reg;
falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
return EFX_DWORD_FIELD(reg, GPIO0_IN);
}
static struct efx_i2c_bit_operations falcon_i2c_bit_operations = {
.setsda = falcon_setsdascl,
.setscl = falcon_setsdascl,
.getsda = falcon_getsda,
.getscl = falcon_getscl,
.udelay = 100,
.mdelay = 10,
};
/**************************************************************************
*
* Falcon special buffer handling
* Special buffers are used for event queues and the TX and RX
* descriptor rings.
*
*************************************************************************/
/*
* Initialise a Falcon special buffer
*
* This will define a buffer (previously allocated via
* falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
* it to be used for event queues, descriptor rings etc.
*/
static int
falcon_init_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer)
{
efx_qword_t buf_desc;
int index;
dma_addr_t dma_addr;
int i;
EFX_BUG_ON_PARANOID(!buffer->addr);
/* Write buffer descriptors to NIC */
for (i = 0; i < buffer->entries; i++) {
index = buffer->index + i;
dma_addr = buffer->dma_addr + (i * 4096);
EFX_LOG(efx, "mapping special buffer %d at %llx\n",
index, (unsigned long long)dma_addr);
EFX_POPULATE_QWORD_4(buf_desc,
IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
BUF_ADR_REGION, 0,
BUF_ADR_FBUF, (dma_addr >> 12),
BUF_OWNER_ID_FBUF, 0);
falcon_write_sram(efx, &buf_desc, index);
}
return 0;
}
/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer)
{
efx_oword_t buf_tbl_upd;
unsigned int start = buffer->index;
unsigned int end = (buffer->index + buffer->entries - 1);
if (!buffer->entries)
return;
EFX_LOG(efx, "unmapping special buffers %d-%d\n",
buffer->index, buffer->index + buffer->entries - 1);
EFX_POPULATE_OWORD_4(buf_tbl_upd,
BUF_UPD_CMD, 0,
BUF_CLR_CMD, 1,
BUF_CLR_END_ID, end,
BUF_CLR_START_ID, start);
falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
}
/*
* Allocate a new Falcon special buffer
*
* This allocates memory for a new buffer, clears it and allocates a
* new buffer ID range. It does not write into Falcon's buffer table.
*
* This call will allocate 4KB buffers, since Falcon can't use 8KB
* buffers for event queues and descriptor rings.
*/
static int falcon_alloc_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer,
unsigned int len)
{
struct falcon_nic_data *nic_data = efx->nic_data;
len = ALIGN(len, FALCON_BUF_SIZE);
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
buffer->entries = len / FALCON_BUF_SIZE;
BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
/* All zeros is a potentially valid event so memset to 0xff */
memset(buffer->addr, 0xff, len);
/* Select new buffer ID */
buffer->index = nic_data->next_buffer_table;
nic_data->next_buffer_table += buffer->entries;
EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
"(virt %p phys %lx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(unsigned long long)buffer->dma_addr, len,
buffer->addr, virt_to_phys(buffer->addr));
return 0;
}
static void falcon_free_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer)
{
if (!buffer->addr)
return;
EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
"(virt %p phys %lx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(unsigned long long)buffer->dma_addr, buffer->len,
buffer->addr, virt_to_phys(buffer->addr));
pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
buffer->dma_addr);
buffer->addr = NULL;
buffer->entries = 0;
}
/**************************************************************************
*
* Falcon generic buffer handling
* These buffers are used for interrupt status and MAC stats
*
**************************************************************************/
static int falcon_alloc_buffer(struct efx_nic *efx,
struct efx_buffer *buffer, unsigned int len)
{
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
memset(buffer->addr, 0, len);
return 0;
}
static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
if (buffer->addr) {
pci_free_consistent(efx->pci_dev, buffer->len,
buffer->addr, buffer->dma_addr);
buffer->addr = NULL;
}
}
/**************************************************************************
*
* Falcon TX path
*
**************************************************************************/
/* Returns a pointer to the specified transmit descriptor in the TX
* descriptor queue belonging to the specified channel.
*/
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
unsigned int index)
{
return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
falcon_writel_page(tx_queue->efx, &reg,
TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
}
/* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and
* write a doorbell.
*/
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
efx_qword_t *txd;
unsigned write_ptr;
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
do {
write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
buffer = &tx_queue->buffer[write_ptr];
txd = falcon_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
EFX_POPULATE_QWORD_5(*txd,
TX_KER_PORT, 0,
TX_KER_CONT, buffer->continuation,
TX_KER_BYTE_CNT, buffer->len,
TX_KER_BUF_REGION, 0,
TX_KER_BUF_ADR, buffer->dma_addr);
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
falcon_notify_tx_desc(tx_queue);
}
/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
return falcon_alloc_special_buffer(efx, &tx_queue->txd,
FALCON_TXD_RING_SIZE *
sizeof(efx_qword_t));
}
int falcon_init_tx(struct efx_tx_queue *tx_queue)
{
efx_oword_t tx_desc_ptr;
struct efx_nic *efx = tx_queue->efx;
int rc;
/* Pin TX descriptor ring */
rc = falcon_init_special_buffer(efx, &tx_queue->txd);
if (rc)
return rc;
/* Push TX descriptor ring to card */
EFX_POPULATE_OWORD_10(tx_desc_ptr,
TX_DESCQ_EN, 1,
TX_ISCSI_DDIG_EN, 0,
TX_ISCSI_HDIG_EN, 0,
TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
TX_DESCQ_OWNER_ID, 0,
TX_DESCQ_LABEL, tx_queue->queue,
TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
TX_DESCQ_TYPE, 0,
TX_NON_IP_DROP_DIS_B0, 1);
if (FALCON_REV(efx) >= FALCON_REV_B0) {
int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM);
EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum);
EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum);
}
falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
if (FALCON_REV(efx) < FALCON_REV_B0) {
efx_oword_t reg;
BUG_ON(tx_queue->queue >= 128); /* HW limit */
falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
if (efx->net_dev->features & NETIF_F_IP_CSUM)
clear_bit_le(tx_queue->queue, (void *)&reg);
else
set_bit_le(tx_queue->queue, (void *)&reg);
falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
}
return 0;
}
static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
struct efx_channel *channel = &efx->channel[0];
efx_oword_t tx_flush_descq;
unsigned int read_ptr, i;
/* Post a flush command */
EFX_POPULATE_OWORD_2(tx_flush_descq,
TX_FLUSH_DESCQ_CMD, 1,
TX_FLUSH_DESCQ, tx_queue->queue);
falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
msleep(FALCON_FLUSH_TIMEOUT);
if (EFX_WORKAROUND_7803(efx))
return 0;
/* Look for a flush completed event */
read_ptr = channel->eventq_read_ptr;
for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
efx_qword_t *event = falcon_event(channel, read_ptr);
int ev_code, ev_sub_code, ev_queue;
if (!falcon_event_present(event))
break;
ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
(ev_queue == tx_queue->queue)) {
EFX_LOG(efx, "tx queue %d flush command succesful\n",
tx_queue->queue);
return 0;
}
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
}
if (EFX_WORKAROUND_11557(efx)) {
efx_oword_t reg;
int enabled;
falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
if (!enabled) {
EFX_LOG(efx, "tx queue %d disabled without a "
"flush event seen\n", tx_queue->queue);
return 0;
}
}
EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
return -ETIMEDOUT;
}
void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_desc_ptr;
/* Stop the hardware using the queue */
if (falcon_flush_tx_queue(tx_queue))
EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
/* Remove TX descriptor ring from card */
EFX_ZERO_OWORD(tx_desc_ptr);
falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
/* Unpin TX descriptor ring */
falcon_fini_special_buffer(efx, &tx_queue->txd);
}
/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}
/**************************************************************************
*
* Falcon RX path
*
**************************************************************************/
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}
/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
unsigned index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = falcon_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_3(*rxd,
RX_KER_BUF_SIZE,
rx_buf->len -
rx_queue->efx->type->rx_buffer_padding,
RX_KER_BUF_REGION, 0,
RX_KER_BUF_ADR, rx_buf->dma_addr);
}
/* This writes to the RX_DESC_WPTR register for the specified receive
* descriptor ring.
*/
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
efx_dword_t reg;
unsigned write_ptr;
while (rx_queue->notified_count != rx_queue->added_count) {
falcon_build_rx_desc(rx_queue,
rx_queue->notified_count &
FALCON_RXD_RING_MASK);
++rx_queue->notified_count;
}
wmb();
write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
falcon_writel_page(rx_queue->efx, &reg,
RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
}
int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
FALCON_RXD_RING_SIZE *
sizeof(efx_qword_t));
}
int falcon_init_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
int rc;
int is_b0 = FALCON_REV(efx) >= FALCON_REV_B0;
int iscsi_digest_en = is_b0;
EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
rx_queue->queue, rx_queue->rxd.index,
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
/* Pin RX descriptor ring */
rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
if (rc)
return rc;
/* Push RX descriptor ring to card */
EFX_POPULATE_OWORD_10(rx_desc_ptr,
RX_ISCSI_DDIG_EN, iscsi_digest_en,
RX_ISCSI_HDIG_EN, iscsi_digest_en,
RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
RX_DESCQ_OWNER_ID, 0,
RX_DESCQ_LABEL, rx_queue->queue,
RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
RX_DESCQ_TYPE, 0 /* kernel queue */ ,
/* For >=B0 this is scatter so disable */
RX_DESCQ_JUMBO, !is_b0,
RX_DESCQ_EN, 1);
falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
rx_queue->queue);
return 0;
}
static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_channel *channel = &efx->channel[0];
unsigned int read_ptr, i;
efx_oword_t rx_flush_descq;
/* Post a flush command */
EFX_POPULATE_OWORD_2(rx_flush_descq,
RX_FLUSH_DESCQ_CMD, 1,
RX_FLUSH_DESCQ, rx_queue->queue);
falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
msleep(FALCON_FLUSH_TIMEOUT);
if (EFX_WORKAROUND_7803(efx))
return 0;
/* Look for a flush completed event */
read_ptr = channel->eventq_read_ptr;
for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
efx_qword_t *event = falcon_event(channel, read_ptr);
int ev_code, ev_sub_code, ev_queue, ev_failed;
if (!falcon_event_present(event))
break;
ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
(ev_queue == rx_queue->queue)) {
if (ev_failed) {
EFX_INFO(efx, "rx queue %d flush command "
"failed\n", rx_queue->queue);
return -EAGAIN;
} else {
EFX_LOG(efx, "rx queue %d flush command "
"succesful\n", rx_queue->queue);
return 0;
}
}
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
}
if (EFX_WORKAROUND_11557(efx)) {
efx_oword_t reg;
int enabled;
falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
rx_queue->queue);
enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
if (!enabled) {
EFX_LOG(efx, "rx queue %d disabled without a "
"flush event seen\n", rx_queue->queue);
return 0;
}
}
EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
return -ETIMEDOUT;
}
void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
int i, rc;
/* Try and flush the rx queue. This may need to be repeated */
for (i = 0; i < 5; i++) {
rc = falcon_flush_rx_queue(rx_queue);
if (rc == -EAGAIN)
continue;
break;
}
if (rc)
EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
/* Remove RX descriptor ring from card */
EFX_ZERO_OWORD(rx_desc_ptr);
falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
rx_queue->queue);
/* Unpin RX descriptor ring */
falcon_fini_special_buffer(efx, &rx_queue->rxd);
}
/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}
/**************************************************************************
*
* Falcon event queue processing
* Event queues are processed by per-channel tasklets.
*
**************************************************************************/
/* Update a channel's event queue's read pointer (RPTR) register
*
* This writes the EVQ_RPTR_REG register for the specified channel's
* event queue.
*
* Note that EVQ_RPTR_REG contains the index of the "last read" event,
* whereas channel->eventq_read_ptr contains the index of the "next to
* read" event.
*/
void falcon_eventq_read_ack(struct efx_channel *channel)
{
efx_dword_t reg;
struct efx_nic *efx = channel->efx;
EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
channel->evqnum);
}
/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
efx_oword_t drv_ev_reg;
EFX_POPULATE_OWORD_2(drv_ev_reg,
DRV_EV_QID, channel->evqnum,
DRV_EV_DATA,
EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
}
/* Handle a transmit completion event
*
* Falcon batches TX completion events; the message we receive is of
* the form "complete all TX events up to this index".
*/
static inline void falcon_handle_tx_event(struct efx_channel *channel,
efx_qword_t *event)
{
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
struct efx_tx_queue *tx_queue;
struct efx_nic *efx = channel->efx;
if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
tx_queue = &efx->tx_queue[tx_ev_q_label];
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
} else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
/* Rewrite the FIFO write pointer */
tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
tx_queue = &efx->tx_queue[tx_ev_q_label];
if (NET_DEV_REGISTERED(efx))
netif_tx_lock(efx->net_dev);
falcon_notify_tx_desc(tx_queue);
if (NET_DEV_REGISTERED(efx))
netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
EFX_WORKAROUND_10727(efx)) {
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
} else {
EFX_ERR(efx, "channel %d unexpected TX event "
EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(*event));
}
}
/* Check received packet's destination MAC address. */
static int check_dest_mac(struct efx_rx_queue *rx_queue,
const efx_qword_t *event)
{
struct efx_rx_buffer *rx_buf;
struct efx_nic *efx = rx_queue->efx;
int rx_ev_desc_ptr;
struct ethhdr *eh;
if (efx->promiscuous)
return 1;
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
eh = (struct ethhdr *)rx_buf->data;
if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
return 0;
return 1;
}
/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
const efx_qword_t *event,
unsigned *rx_ev_pkt_ok,
int *discard, int byte_count)
{
struct efx_nic *efx = rx_queue->efx;
unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
int snap, non_ip;
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
RX_EV_BUF_OWNER_ID_ERR);
rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
RX_EV_IP_HDR_CHKSUM_ERR);
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
RX_EV_TCP_UDP_CHKSUM_ERR);
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
rx_ev_drib_nib = ((FALCON_REV(efx) >= FALCON_REV_B0) ?
0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
/* Every error apart from tobe_disc and pause_frm */
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
(rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
/* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
* length field of an LLC frame, which sets TOBE_DISC. We could set
* PASS_LEN_ERR, but we want the MAC to filter out short frames (to
* protect the RX block).
*
* bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
* bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
* LLC can't encapsulate IP, so by definition
* these packets are NON_IP.
*
* Unicast mismatch will also cause TOBE_DISC, so the driver needs
* to check this.
*/
if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
/* If all the other flags are zero then we can state the
* entire packet is ok, which will flag to the kernel not
* to recalculate checksums.
*/
if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
*rx_ev_pkt_ok = 1;
rx_ev_tobe_disc = 0;
/* TOBE_DISC is set for unicast mismatch. But given that
* we can't trust TOBE_DISC here, we must validate the dest
* MAC address ourselves.
*/
if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
rx_ev_tobe_disc = 1;
}
/* Count errors that are not in MAC stats. */
if (rx_ev_frm_trunc)
++rx_queue->channel->n_rx_frm_trunc;
else if (rx_ev_tobe_disc)
++rx_queue->channel->n_rx_tobe_disc;
else if (rx_ev_ip_hdr_chksum_err)
++rx_queue->channel->n_rx_ip_hdr_chksum_err;
else if (rx_ev_tcp_udp_chksum_err)
++rx_queue->channel->n_rx_tcp_udp_chksum_err;
if (rx_ev_ip_frag_err)
++rx_queue->channel->n_rx_ip_frag_err;
/* The frame must be discarded if any of these are true. */
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
rx_ev_tobe_disc | rx_ev_pause_frm);
/* TOBE_DISC is expected on unicast mismatches; don't print out an
* error message. FRM_TRUNC indicates RXDP dropped the packet due
* to a FIFO overflow.
*/
#ifdef EFX_ENABLE_DEBUG
if (rx_ev_other_err) {
EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
rx_queue->queue, EFX_QWORD_VAL(*event),
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
rx_ev_ip_hdr_chksum_err ?
" [IP_HDR_CHKSUM_ERR]" : "",
rx_ev_tcp_udp_chksum_err ?
" [TCP_UDP_CHKSUM_ERR]" : "",
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
rx_ev_pause_frm ? " [PAUSE]" : "",
snap ? " [SNAP/LLC]" : "");
}
#endif
if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
efx->phy_type == PHY_TYPE_10XPRESS))
tenxpress_crc_err(efx);
}
/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
unsigned index)
{
struct efx_nic *efx = rx_queue->efx;
unsigned expected, dropped;
expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
FALCON_RXD_RING_MASK);
EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
dropped, index, expected);
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}
/* Handle a packet received event
*
* Falcon silicon gives a "discard" flag if it's a unicast packet with the
* wrong destination address
* Also "is multicast" and "matches multicast filter" flags can be used to
* discard non-matching multicast packets.
*/
static inline int falcon_handle_rx_event(struct efx_channel *channel,
const efx_qword_t *event)
{
unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned expected_ptr;
int discard = 0, checksummed;
struct efx_rx_queue *rx_queue;
struct efx_nic *efx = channel->efx;
/* Basic packet information */
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
rx_queue = &efx->rx_queue[rx_ev_q_label];
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
return rx_ev_q_label;
}
if (likely(rx_ev_pkt_ok)) {
/* If packet is marked as OK and packet type is TCP/IPv4 or
* UDP/IPv4, then we can rely on the hardware checksum.
*/
checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
} else {
falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
&discard, rx_ev_byte_cnt);
checksummed = 0;
}
/* Detect multicast packets that didn't match the filter */
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
if (rx_ev_mcast_pkt) {
unsigned int rx_ev_mcast_hash_match =
EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
if (unlikely(!rx_ev_mcast_hash_match))
discard = 1;
}
/* Handle received packet */
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
checksummed, discard);
return rx_ev_q_label;
}
/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int is_phy_event = 0, handled = 0;
/* Check for interrupt on either port. Some boards have a
* single PHY wired to the interrupt line for port 1. */
if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
EFX_QWORD_FIELD(*event, XG_PHY_INTR))
is_phy_event = 1;
if ((FALCON_REV(efx) >= FALCON_REV_B0) &&
EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
is_phy_event = 1;
if (is_phy_event) {
efx->phy_op->clear_interrupt(efx);
queue_work(efx->workqueue, &efx->reconfigure_work);
handled = 1;
}
if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
EFX_ERR(efx, "channel %d seen global RX_RESET "
"event. Resetting.\n", channel->channel);
atomic_inc(&efx->rx_reset);
efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
handled = 1;
}
if (!handled)
EFX_ERR(efx, "channel %d unknown global event "
EFX_QWORD_FMT "\n", channel->channel,
EFX_QWORD_VAL(*event));
}
static void falcon_handle_driver_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned int ev_sub_code;
unsigned int ev_sub_data;
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
switch (ev_sub_code) {
case TX_DESCQ_FLS_DONE_EV_DECODE:
EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
channel->channel, ev_sub_data);
break;
case RX_DESCQ_FLS_DONE_EV_DECODE:
EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
channel->channel, ev_sub_data);
break;
case EVQ_INIT_DONE_EV_DECODE:
EFX_LOG(efx, "channel %d EVQ %d initialised\n",
channel->channel, ev_sub_data);
break;
case SRM_UPD_DONE_EV_DECODE:
EFX_TRACE(efx, "channel %d SRAM update done\n",
channel->channel);
break;
case WAKE_UP_EV_DECODE:
EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
channel->channel, ev_sub_data);
break;
case TIMER_EV_DECODE:
EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
channel->channel, ev_sub_data);
break;
case RX_RECOVERY_EV_DECODE:
EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
"Resetting.\n", channel->channel);
efx_schedule_reset(efx,
EFX_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY :
RESET_TYPE_DISABLE);
break;
case RX_DSC_ERROR_EV_DECODE:
EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
break;
case TX_DSC_ERROR_EV_DECODE:
EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
break;
default:
EFX_TRACE(efx, "channel %d unknown driver event code %d "
"data %04x\n", channel->channel, ev_sub_code,
ev_sub_data);
break;
}
}
int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
{
unsigned int read_ptr;
efx_qword_t event, *p_event;
int ev_code;
int rxq;
int rxdmaqs = 0;
read_ptr = channel->eventq_read_ptr;
do {
p_event = falcon_event(channel, read_ptr);
event = *p_event;
if (!falcon_event_present(&event))
/* End of events */
break;
EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(event));
/* Clear this event by marking it all ones */
EFX_SET_QWORD(*p_event);
ev_code = EFX_QWORD_FIELD(event, EV_CODE);
switch (ev_code) {
case RX_IP_EV_DECODE:
rxq = falcon_handle_rx_event(channel, &event);
rxdmaqs |= (1 << rxq);
(*rx_quota)--;
break;
case TX_IP_EV_DECODE:
falcon_handle_tx_event(channel, &event);
break;
case DRV_GEN_EV_DECODE:
channel->eventq_magic
= EFX_QWORD_FIELD(event, EVQ_MAGIC);
EFX_LOG(channel->efx, "channel %d received generated "
"event "EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(event));
break;
case GLOBAL_EV_DECODE:
falcon_handle_global_event(channel, &event);
break;
case DRIVER_EV_DECODE:
falcon_handle_driver_event(channel, &event);
break;
default:
EFX_ERR(channel->efx, "channel %d unknown event type %d"
" (data " EFX_QWORD_FMT ")\n", channel->channel,
ev_code, EFX_QWORD_VAL(event));
}
/* Increment read pointer */
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
} while (*rx_quota);
channel->eventq_read_ptr = read_ptr;
return rxdmaqs;
}
void falcon_set_int_moderation(struct efx_channel *channel)
{
efx_dword_t timer_cmd;
struct efx_nic *efx = channel->efx;
/* Set timer register */
if (channel->irq_moderation) {
/* Round to resolution supported by hardware. The value we
* program is based at 0. So actual interrupt moderation
* achieved is ((x + 1) * res).
*/
unsigned int res = 5;
channel->irq_moderation -= (channel->irq_moderation % res);
if (channel->irq_moderation < res)
channel->irq_moderation = res;
EFX_POPULATE_DWORD_2(timer_cmd,
TIMER_MODE, TIMER_MODE_INT_HLDOFF,
TIMER_VAL,
(channel->irq_moderation / res) - 1);
} else {
EFX_POPULATE_DWORD_2(timer_cmd,
TIMER_MODE, TIMER_MODE_DIS,
TIMER_VAL, 0);
}
falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
channel->evqnum);
}
/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned int evq_size;
evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
}
int falcon_init_eventq(struct efx_channel *channel)
{
efx_oword_t evq_ptr;
struct efx_nic *efx = channel->efx;
int rc;
EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
channel->channel, channel->eventq.index,
channel->eventq.index + channel->eventq.entries - 1);
/* Pin event queue buffer */
rc = falcon_init_special_buffer(efx, &channel->eventq);
if (rc)
return rc;
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.addr, 0xff, channel->eventq.len);
/* Push event queue to card */
EFX_POPULATE_OWORD_3(evq_ptr,
EVQ_EN, 1,
EVQ_SIZE, FALCON_EVQ_ORDER,
EVQ_BUF_BASE_ID, channel->eventq.index);
falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
channel->evqnum);
falcon_set_int_moderation(channel);
return 0;
}
void falcon_fini_eventq(struct efx_channel *channel)
{
efx_oword_t eventq_ptr;
struct efx_nic *efx = channel->efx;
/* Remove event queue from card */
EFX_ZERO_OWORD(eventq_ptr);
falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
channel->evqnum);
/* Unpin event queue */
falcon_fini_special_buffer(efx, &channel->eventq);
}
/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
falcon_free_special_buffer(channel->efx, &channel->eventq);
}
/* Generates a test event on the event queue. A subsequent call to
* process_eventq() should pick up the event and place the value of
* "magic" into channel->eventq_magic;
*/
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
efx_qword_t test_event;
EFX_POPULATE_QWORD_2(test_event,
EV_CODE, DRV_GEN_EV_DECODE,
EVQ_MAGIC, magic);
falcon_generate_event(channel, &test_event);
}
/**************************************************************************
*
* Falcon hardware interrupts
* The hardware interrupt handler does very little work; all the event
* queue processing is carried out by per-channel tasklets.
*
**************************************************************************/
/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
int force)
{
efx_oword_t int_en_reg_ker;
EFX_POPULATE_OWORD_2(int_en_reg_ker,
KER_INT_KER, force,
DRV_INT_EN_KER, enabled);
falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
}
void falcon_enable_interrupts(struct efx_nic *efx)
{
efx_oword_t int_adr_reg_ker;
struct efx_channel *channel;
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
/* Program address */
EFX_POPULATE_OWORD_2(int_adr_reg_ker,
NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
INT_ADR_KER, efx->irq_status.dma_addr);
falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
/* Enable interrupts */
falcon_interrupts(efx, 1, 0);
/* Force processing of all the channels to get the EVQ RPTRs up to
date */
efx_for_each_channel_with_interrupt(channel, efx)
efx_schedule_channel(channel);
}
void falcon_disable_interrupts(struct efx_nic *efx)
{
/* Disable interrupts */
falcon_interrupts(efx, 0, 0);
}
/* Generate a Falcon test interrupt
* Interrupt must already have been enabled, otherwise nasty things
* may happen.
*/
void falcon_generate_interrupt(struct efx_nic *efx)
{
falcon_interrupts(efx, 1, 1);
}
/* Acknowledge a legacy interrupt from Falcon
*
* This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
*
* Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
* BIU. Interrupt acknowledge is read sensitive so must write instead
* (then read to ensure the BIU collector is flushed)
*
* NB most hardware supports MSI interrupts
*/
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
efx_dword_t reg;
EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
}
/* Process a fatal interrupt
* Disable bus mastering ASAP and schedule a reset
*/
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
efx_oword_t fatal_intr;
int error, mem_perr;
static int n_int_errors;
falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
EFX_OWORD_VAL(fatal_intr),
error ? "disabling bus mastering" : "no recognised error");
if (error == 0)
goto out;
/* If this is a memory parity error dump which blocks are offending */
mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
if (mem_perr) {
efx_oword_t reg;
falcon_read(efx, &reg, MEM_STAT_REG_KER);
EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
}
/* Disable DMA bus mastering on both devices */
pci_disable_device(efx->pci_dev);
if (FALCON_IS_DUAL_FUNC(efx))
pci_disable_device(nic_data->pci_dev2);
if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
} else {
EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
"NIC will be disabled\n");
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
out:
return IRQ_HANDLED;
}
/* Handle a legacy interrupt from Falcon
* Acknowledges the interrupt and schedule event queue processing.
*/
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
struct efx_nic *efx = (struct efx_nic *)dev_id;
efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
int syserr;
/* Read the ISR which also ACKs the interrupts */
falcon_readl(efx, &reg, INT_ISR0_B0);
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
if (unlikely(syserr))
return falcon_fatal_interrupt(efx);
if (queues == 0)
return IRQ_NONE;
efx->last_irq_cpu = raw_smp_processor_id();
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
/* Schedule processing of any interrupting queues */
channel = &efx->channel[0];
while (queues) {
if (queues & 0x01)
efx_schedule_channel(channel);
channel++;
queues >>= 1;
}
return IRQ_HANDLED;
}
static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
struct efx_nic *efx = (struct efx_nic *)dev_id;
efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
struct efx_channel *channel;
int syserr;
int queues;
/* Check to see if this is our interrupt. If it isn't, we
* exit without having touched the hardware.
*/
if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
raw_smp_processor_id());
return IRQ_NONE;
}
efx->last_irq_cpu = raw_smp_processor_id();
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
if (unlikely(syserr))
return falcon_fatal_interrupt(efx);
/* Determine interrupting queues, clear interrupt status
* register and acknowledge the device interrupt.
*/
BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
EFX_ZERO_OWORD(*int_ker);
wmb(); /* Ensure the vector is cleared before interrupt ack */
falcon_irq_ack_a1(efx);
/* Schedule processing of any interrupting queues */
channel = &efx->channel[0];
while (queues) {
if (queues & 0x01)
efx_schedule_channel(channel);
channel++;
queues >>= 1;
}
return IRQ_HANDLED;
}
/* Handle an MSI interrupt from Falcon
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
struct efx_channel *channel = (struct efx_channel *)dev_id;
struct efx_nic *efx = channel->efx;
efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
int syserr;
efx->last_irq_cpu = raw_smp_processor_id();
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
if (unlikely(syserr))
return falcon_fatal_interrupt(efx);
/* Schedule processing of the channel */
efx_schedule_channel(channel);
return IRQ_HANDLED;
}
/* Setup RSS indirection table.
* This maps from the hash value of the packet to RXQ
*/
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
int i = 0;
unsigned long offset;
efx_dword_t dword;
if (FALCON_REV(efx) < FALCON_REV_B0)
return;
for (offset = RX_RSS_INDIR_TBL_B0;
offset < RX_RSS_INDIR_TBL_B0 + 0x800;
offset += 0x10) {
EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
i % efx->rss_queues);
falcon_writel(efx, &dword, offset);
i++;
}
}
/* Hook interrupt handler(s)
* Try MSI and then legacy interrupts.
*/
int falcon_init_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
if (!EFX_INT_MODE_USE_MSI(efx)) {
irq_handler_t handler;
if (FALCON_REV(efx) >= FALCON_REV_B0)
handler = falcon_legacy_interrupt_b0;
else
handler = falcon_legacy_interrupt_a1;
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
efx->name, efx);
if (rc) {
EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
efx->pci_dev->irq);
goto fail1;
}
return 0;
}
/* Hook MSI or MSI-X interrupt */
efx_for_each_channel_with_interrupt(channel, efx) {
rc = request_irq(channel->irq, falcon_msi_interrupt,
IRQF_PROBE_SHARED, /* Not shared */
efx->name, channel);
if (rc) {
EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
goto fail2;
}
}
return 0;
fail2:
efx_for_each_channel_with_interrupt(channel, efx)
free_irq(channel->irq, channel);
fail1:
return rc;
}
void falcon_fini_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_oword_t reg;
/* Disable MSI/MSI-X interrupts */
efx_for_each_channel_with_interrupt(channel, efx)
if (channel->irq)
free_irq(channel->irq, channel);
/* ACK legacy interrupt */
if (FALCON_REV(efx) >= FALCON_REV_B0)
falcon_read(efx, &reg, INT_ISR0_B0);
else
falcon_irq_ack_a1(efx);
/* Disable legacy interrupt */
if (efx->legacy_irq)
free_irq(efx->legacy_irq, efx);
}
/**************************************************************************
*
* EEPROM/flash
*
**************************************************************************
*/
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
efx_oword_t reg;
int cmd_en, timer_active;
int count;
count = 0;
do {
falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
if (!cmd_en && !timer_active)
return 0;
udelay(10);
} while (++count < 10000); /* wait upto 100msec */
EFX_ERR(efx, "timed out waiting for SPI\n");
return -ETIMEDOUT;
}
static int
falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
unsigned int address, unsigned int addr_len,
void *data, unsigned int len)
{
efx_oword_t reg;
int rc;
BUG_ON(len > FALCON_SPI_MAX_LEN);
/* Check SPI not currently being accessed */
rc = falcon_spi_wait(efx);
if (rc)
return rc;
/* Program address register */
EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
/* Issue read command */
EFX_POPULATE_OWORD_7(reg,
EE_SPI_HCMD_CMD_EN, 1,
EE_SPI_HCMD_SF_SEL, device_id,
EE_SPI_HCMD_DABCNT, len,
EE_SPI_HCMD_READ, EE_SPI_READ,
EE_SPI_HCMD_DUBCNT, 0,
EE_SPI_HCMD_ADBCNT, addr_len,
EE_SPI_HCMD_ENC, command);
falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
/* Wait for read to complete */
rc = falcon_spi_wait(efx);
if (rc)
return rc;
/* Read data */
falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
memcpy(data, &reg, len);
return 0;
}
/**************************************************************************
*
* MAC wrapper
*
**************************************************************************
*/
void falcon_drain_tx_fifo(struct efx_nic *efx)
{
efx_oword_t temp;
int count;
if (FALCON_REV(efx) < FALCON_REV_B0)
return;
falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
/* There is no point in draining more than once */
if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
return;
/* MAC stats will fail whilst the TX fifo is draining. Serialise
* the drain sequence with the statistics fetch */
spin_lock(&efx->stats_lock);
EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
/* Reset the MAC and EM block. */
falcon_read(efx, &temp, GLB_CTL_REG_KER);
EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
falcon_write(efx, &temp, GLB_CTL_REG_KER);
count = 0;
while (1) {
falcon_read(efx, &temp, GLB_CTL_REG_KER);
if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
!EFX_OWORD_FIELD(temp, RST_XGRX) &&
!EFX_OWORD_FIELD(temp, RST_EM)) {
EFX_LOG(efx, "Completed MAC reset after %d loops\n",
count);
break;
}
if (count > 20) {
EFX_ERR(efx, "MAC reset failed\n");
break;
}
count++;
udelay(10);
}
spin_unlock(&efx->stats_lock);
/* If we've reset the EM block and the link is up, then
* we'll have to kick the XAUI link so the PHY can recover */
if (efx->link_up && EFX_WORKAROUND_5147(efx))
falcon_reset_xaui(efx);
}
void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
efx_oword_t temp;
if (FALCON_REV(efx) < FALCON_REV_B0)
return;
/* Isolate the MAC -> RX */
falcon_read(efx, &temp, RX_CFG_REG_KER);
EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
falcon_write(efx, &temp, RX_CFG_REG_KER);
if (!efx->link_up)
falcon_drain_tx_fifo(efx);
}
void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
efx_oword_t reg;
int link_speed;
unsigned int tx_fc;
if (efx->link_options & GM_LPA_10000)
link_speed = 0x3;
else if (efx->link_options & GM_LPA_1000)
link_speed = 0x2;
else if (efx->link_options & GM_LPA_100)
link_speed = 0x1;
else
link_speed = 0x0;
/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
* as advertised. Disable to ensure packets are not
* indefinitely held and TX queue can be flushed at any point
* while the link is down. */
EFX_POPULATE_OWORD_5(reg,
MAC_XOFF_VAL, 0xffff /* max pause time */,
MAC_BCAD_ACPT, 1,
MAC_UC_PROM, efx->promiscuous,
MAC_LINK_STATUS, 1, /* always set */
MAC_SPEED, link_speed);
/* On B0, MAC backpressure can be disabled and packets get
* discarded. */
if (FALCON_REV(efx) >= FALCON_REV_B0) {
EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
!efx->link_up);
}
falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
/* Restore the multicast hash registers. */
falcon_set_multicast_hash(efx);
/* Transmission of pause frames when RX crosses the threshold is
* covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
* Action on receipt of pause frames is controller by XM_DIS_FCNTL */
tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
falcon_read(efx, &reg, RX_CFG_REG_KER);
EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
/* Unisolate the MAC -> RX */
if (FALCON_REV(efx) >= FALCON_REV_B0)
EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
falcon_write(efx, &reg, RX_CFG_REG_KER);
}
int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
{
efx_oword_t reg;
u32 *dma_done;
int i;
if (disable_dma_stats)
return 0;
/* Statistics fetch will fail if the MAC is in TX drain */
if (FALCON_REV(efx) >= FALCON_REV_B0) {
efx_oword_t temp;
falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
return 0;
}
dma_done = (efx->stats_buffer.addr + done_offset);
*dma_done = FALCON_STATS_NOT_DONE;
wmb(); /* ensure done flag is clear */
/* Initiate DMA transfer of stats */
EFX_POPULATE_OWORD_2(reg,
MAC_STAT_DMA_CMD, 1,
MAC_STAT_DMA_ADR,
efx->stats_buffer.dma_addr);
falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
/* Wait for transfer to complete */
for (i = 0; i < 400; i++) {
if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
return 0;
udelay(10);
}
EFX_ERR(efx, "timed out waiting for statistics\n");
return -ETIMEDOUT;
}
/**************************************************************************
*
* PHY access via GMII
*
**************************************************************************
*/
/* Use the top bit of the MII PHY id to indicate the PHY type
* (1G/10G), with the remaining bits as the actual PHY id.
*
* This allows us to avoid leaking information from the mii_if_info
* structure into other data structures.
*/
#define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
#define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
#define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
#define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
#define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
/* Packing the clause 45 port and device fields into a single value */
#define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
#define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
#define MD_DEV_ADR_COMP_LBN 0
#define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
efx_dword_t md_stat;
int count;
for (count = 0; count < 1000; count++) { /* wait upto 10ms */
falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
EFX_ERR(efx, "error from GMII access "
EFX_DWORD_FMT"\n",
EFX_DWORD_VAL(md_stat));
return -EIO;
}
return 0;
}
udelay(10);
}
EFX_ERR(efx, "timed out waiting for GMII\n");
return -ETIMEDOUT;
}
/* Writes a GMII register of a PHY connected to Falcon using MDIO. */
static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
int addr, int value)
{
struct efx_nic *efx = (struct efx_nic *)net_dev->priv;
unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
efx_oword_t reg;
/* The 'generic' prt/dev packing in mdio_10g.h is conveniently
* chosen so that the only current user, Falcon, can take the
* packed value and use them directly.
* Fail to build if this assumption is broken.
*/
BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
if (phy_id2 == PHY_ADDR_INVALID)
return;
/* See falcon_mdio_read for an explanation. */
if (!(phy_id & FALCON_PHY_ID_10G)) {
int mmd = ffs(efx->phy_op->mmds) - 1;
EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
phy_id2 = mdio_clause45_pack(phy_id2, mmd)
& FALCON_PHY_ID_ID_MASK;
}
EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
addr, value);
spin_lock_bh(&efx->phy_lock);
/* Check MII not currently being accessed */
if (falcon_gmii_wait(efx) != 0)
goto out;
/* Write the address/ID register */
EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
falcon_write(efx, &reg, MD_ID_REG_KER);
/* Write data */
EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
falcon_write(efx, &reg, MD_TXD_REG_KER);
EFX_POPULATE_OWORD_2(reg,
MD_WRC, 1,
MD_GC, 0);
falcon_write(efx, &reg, MD_CS_REG_KER);
/* Wait for data to be written */
if (falcon_gmii_wait(efx) != 0) {
/* Abort the write operation */
EFX_POPULATE_OWORD_2(reg,
MD_WRC, 0,
MD_GC, 1);
falcon_write(efx, &reg, MD_CS_REG_KER);
udelay(10);
}
out:
spin_unlock_bh(&efx->phy_lock);
}
/* Reads a GMII register from a PHY connected to Falcon. If no value
* could be read, -1 will be returned. */
static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
{
struct efx_nic *efx = (struct efx_nic *)net_dev->priv;
unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
efx_oword_t reg;
int value = -1;
if (phy_addr == PHY_ADDR_INVALID)
return -1;
/* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
* but the generic Linux code does not make any distinction or have
* any state for this.
* We spot the case where someone tried to talk 22 to a 45 PHY and
* redirect the request to the lowest numbered MMD as a clause45
* request. This is enough to allow simple queries like id and link
* state to succeed. TODO: We may need to do more in future.
*/
if (!(phy_id & FALCON_PHY_ID_10G)) {
int mmd = ffs(efx->phy_op->mmds) - 1;
EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
phy_addr = mdio_clause45_pack(phy_addr, mmd)
& FALCON_PHY_ID_ID_MASK;
}
spin_lock_bh(&efx->phy_lock);
/* Check MII not currently being accessed */
if (falcon_gmii_wait(efx) != 0)
goto out;
EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
falcon_write(efx, &reg, MD_ID_REG_KER);
/* Request data to be read */
EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
falcon_write(efx, &reg, MD_CS_REG_KER);
/* Wait for data to become available */
value = falcon_gmii_wait(efx);
if (value == 0) {
falcon_read(efx, &reg, MD_RXD_REG_KER);
value = EFX_OWORD_FIELD(reg, MD_RXD);
EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
phy_id, addr, value);
} else {
/* Abort the read operation */
EFX_POPULATE_OWORD_2(reg,
MD_RIC, 0,
MD_GC, 1);
falcon_write(efx, &reg, MD_CS_REG_KER);
EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
"error %d\n", phy_id, addr, value);
}
out:
spin_unlock_bh(&efx->phy_lock);
return value;
}
static void falcon_init_mdio(struct mii_if_info *gmii)
{
gmii->mdio_read = falcon_mdio_read;
gmii->mdio_write = falcon_mdio_write;
gmii->phy_id_mask = FALCON_PHY_ID_MASK;
gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
}
static int falcon_probe_phy(struct efx_nic *efx)
{
switch (efx->phy_type) {
case PHY_TYPE_10XPRESS:
efx->phy_op = &falcon_tenxpress_phy_ops;
break;
case PHY_TYPE_XFP:
efx->phy_op = &falcon_xfp_phy_ops;
break;
default:
EFX_ERR(efx, "Unknown PHY type %d\n",
efx->phy_type);
return -1;
}
return 0;
}
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
int rc;
/* Hook in PHY operations table */
rc = falcon_probe_phy(efx);
if (rc)
return rc;
/* Set up GMII structure for PHY */
efx->mii.supports_gmii = 1;
falcon_init_mdio(&efx->mii);
/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
if (FALCON_REV(efx) >= FALCON_REV_B0)
efx->flow_control = EFX_FC_RX | EFX_FC_TX;
else
efx->flow_control = EFX_FC_RX;
/* Allocate buffer for stats */
rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
FALCON_MAC_STATS_SIZE);
if (rc)
return rc;
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
(unsigned long long)efx->stats_buffer.dma_addr,
efx->stats_buffer.addr,
virt_to_phys(efx->stats_buffer.addr));
return 0;
}
void falcon_remove_port(struct efx_nic *efx)
{
falcon_free_buffer(efx, &efx->stats_buffer);
}
/**************************************************************************
*
* Multicast filtering
*
**************************************************************************
*/
void falcon_set_multicast_hash(struct efx_nic *efx)
{
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
/* Broadcast packets go through the multicast hash filter.
* ether_crc_le() of the broadcast address is 0xbe2612ff
* so we always add bit 0xff to the mask.
*/
set_bit_le(0xff, mc_hash->byte);
falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
}
/**************************************************************************
*
* Device reset
*
**************************************************************************
*/
/* Resets NIC to known state. This routine must be called in process
* context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t glb_ctl_reg_ker;
int rc;
EFX_LOG(efx, "performing hardware reset (%d)\n", method);
/* Initiate device reset */
if (method == RESET_TYPE_WORLD) {
rc = pci_save_state(efx->pci_dev);
if (rc) {
EFX_ERR(efx, "failed to backup PCI state of primary "
"function prior to hardware reset\n");
goto fail1;
}
if (FALCON_IS_DUAL_FUNC(efx)) {
rc = pci_save_state(nic_data->pci_dev2);
if (rc) {
EFX_ERR(efx, "failed to backup PCI state of "
"secondary function prior to "
"hardware reset\n");
goto fail2;
}
}
EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
EXT_PHY_RST_DUR, 0x7,
SWRST, 1);
} else {
int reset_phy = (method == RESET_TYPE_INVISIBLE ?
EXCLUDE_FROM_RESET : 0);
EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
EXT_PHY_RST_CTL, reset_phy,
PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
EE_RST_CTL, EXCLUDE_FROM_RESET,
EXT_PHY_RST_DUR, 0x7 /* 10ms */,
SWRST, 1);
}
falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
EFX_LOG(efx, "waiting for hardware reset\n");
schedule_timeout_uninterruptible(HZ / 20);
/* Restore PCI configuration if needed */
if (method == RESET_TYPE_WORLD) {
if (FALCON_IS_DUAL_FUNC(efx)) {
rc = pci_restore_state(nic_data->pci_dev2);
if (rc) {
EFX_ERR(efx, "failed to restore PCI config for "
"the secondary function\n");
goto fail3;
}
}
rc = pci_restore_state(efx->pci_dev);
if (rc) {
EFX_ERR(efx, "failed to restore PCI config for the "
"primary function\n");
goto fail4;
}
EFX_LOG(efx, "successfully restored PCI config\n");
}
/* Assert that reset complete */
falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
rc = -ETIMEDOUT;
EFX_ERR(efx, "timed out waiting for hardware reset\n");
goto fail5;
}
EFX_LOG(efx, "hardware reset complete\n");
return 0;
/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
return rc;
}
/* Zeroes out the SRAM contents. This routine must be called in
* process context and is allowed to sleep.
*/
static int falcon_reset_sram(struct efx_nic *efx)
{
efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
int count;
/* Set the SRAM wake/sleep GPIO appropriately. */
falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
/* Initiate SRAM reset */
EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
SRAM_OOB_BT_INIT_EN, 1,
SRM_NUM_BANKS_AND_BANK_SIZE, 0);
falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
/* Wait for SRAM reset to complete */
count = 0;
do {
EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
/* SRAM reset is slow; expect around 16ms */
schedule_timeout_uninterruptible(HZ / 50);
/* Check for reset complete */
falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
EFX_LOG(efx, "SRAM reset complete\n");
return 0;
}
} while (++count < 20); /* wait upto 0.4 sec */
EFX_ERR(efx, "timed out waiting for SRAM reset\n");
return -ETIMEDOUT;
}
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
struct falcon_nvconfig *nvconfig;
efx_oword_t nic_stat;
int device_id;
unsigned addr_len;
size_t offset, len;
int magic_num, struct_ver, board_rev;
int rc;
/* Find the boot device. */
falcon_read(efx, &nic_stat, NIC_STAT_REG);
if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
device_id = EE_SPI_FLASH;
addr_len = 3;
} else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
device_id = EE_SPI_EEPROM;
addr_len = 2;
} else {
return -ENODEV;
}
nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
/* Read the whole configuration structure into memory. */
for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
len = min(sizeof(*nvconfig) - offset,
(size_t) FALCON_SPI_MAX_LEN);
rc = falcon_spi_read(efx, device_id, SPI_READ,
NVCONFIG_BASE + offset, addr_len,
(char *)nvconfig + offset, len);
if (rc)
goto out;
}
/* Read the MAC addresses */
memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
/* Read the board configuration. */
magic_num = le16_to_cpu(nvconfig->board_magic_num);
struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
"therefore using defaults\n", magic_num, struct_ver);
efx->phy_type = PHY_TYPE_NONE;
efx->mii.phy_id = PHY_ADDR_INVALID;
board_rev = 0;
} else {
struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
efx->phy_type = v2->port0_phy_type;
efx->mii.phy_id = v2->port0_phy_addr;
board_rev = le16_to_cpu(v2->board_revision);
}
EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
efx_set_board_info(efx, board_rev);
out:
kfree(nvconfig);
return rc;
}
/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
* count, port speed). Set workaround and feature flags accordingly.
*/
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
efx_oword_t altera_build;
falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
EFX_ERR(efx, "Falcon FPGA not supported\n");
return -ENODEV;
}
switch (FALCON_REV(efx)) {
case FALCON_REV_A0:
case 0xff:
EFX_ERR(efx, "Falcon rev A0 not supported\n");
return -ENODEV;
case FALCON_REV_A1:{
efx_oword_t nic_stat;
falcon_read(efx, &nic_stat, NIC_STAT_REG);
if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
return -ENODEV;
}
if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
EFX_ERR(efx, "1G mode not supported\n");
return -ENODEV;
}
break;
}
case FALCON_REV_B0:
break;
default:
EFX_ERR(efx, "Unknown Falcon rev %d\n", FALCON_REV(efx));
return -ENODEV;
}
return 0;
}
int falcon_probe_nic(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data;
int rc;
/* Initialise I2C interface state */
efx->i2c.efx = efx;
efx->i2c.op = &falcon_i2c_bit_operations;
efx->i2c.sda = 1;
efx->i2c.scl = 1;
/* Allocate storage for hardware specific data */
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
efx->nic_data = (void *) nic_data;
/* Determine number of ports etc. */
rc = falcon_probe_nic_variant(efx);
if (rc)
goto fail1;
/* Probe secondary function if expected */
if (FALCON_IS_DUAL_FUNC(efx)) {
struct pci_dev *dev = pci_dev_get(efx->pci_dev);
while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
dev))) {
if (dev->bus == efx->pci_dev->bus &&
dev->devfn == efx->pci_dev->devfn + 1) {
nic_data->pci_dev2 = dev;
break;
}
}
if (!nic_data->pci_dev2) {
EFX_ERR(efx, "failed to find secondary function\n");
rc = -ENODEV;
goto fail2;
}
}
/* Now we can reset the NIC */
rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
if (rc) {
EFX_ERR(efx, "failed to reset NIC\n");
goto fail3;
}
/* Allocate memory for INT_KER */
rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
if (rc)
goto fail4;
BUG_ON(efx->irq_status.dma_addr & 0x0f);
EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
(unsigned long long)efx->irq_status.dma_addr,
efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
/* Read in the non-volatile configuration */
rc = falcon_probe_nvconfig(efx);
if (rc)
goto fail5;
return 0;
fail5:
falcon_free_buffer(efx, &efx->irq_status);
fail4:
/* fall-thru */
fail3:
if (nic_data->pci_dev2) {
pci_dev_put(nic_data->pci_dev2);
nic_data->pci_dev2 = NULL;
}
fail2:
/* fall-thru */
fail1:
kfree(efx->nic_data);
return rc;
}
/* This call performs hardware-specific global initialisation, such as
* defining the descriptor cache sizes and number of RSS channels.
* It does not set up any buffers, descriptor rings or event queues.
*/
int falcon_init_nic(struct efx_nic *efx)
{
struct falcon_nic_data *data;
efx_oword_t temp;
unsigned thresh;
int rc;
data = (struct falcon_nic_data *)efx->nic_data;
/* Set up the address region register. This is only needed
* for the B0 FPGA, but since we are just pushing in the
* reset defaults this may as well be unconditional. */
EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
ADR_REGION1, (1 << 16),
ADR_REGION2, (2 << 16),
ADR_REGION3, (3 << 16));
falcon_write(efx, &temp, ADR_REGION_REG_KER);
/* Use on-chip SRAM */
falcon_read(efx, &temp, NIC_STAT_REG);
EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
falcon_write(efx, &temp, NIC_STAT_REG);
/* Set buffer table mode */
EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
rc = falcon_reset_sram(efx);
if (rc)
return rc;
/* Set positions of descriptor caches in SRAM. */
EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
/* Set TX descriptor cache size. */
BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
/* Set RX descriptor cache size. Set low watermark to size-8, as
* this allows most efficient prefetching.
*/
BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
/* Clear the parity enables on the TX data fifos as
* they produce false parity errors because of timing issues
*/
if (EFX_WORKAROUND_5129(efx)) {
falcon_read(efx, &temp, SPARE_REG_KER);
EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
falcon_write(efx, &temp, SPARE_REG_KER);
}
/* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by
* falcon_interrupts()).
*
* Note: All other fatal interrupts are enabled
*/
EFX_POPULATE_OWORD_3(temp,
ILL_ADR_INT_KER_EN, 1,
RBUF_OWN_INT_KER_EN, 1,
TBUF_OWN_INT_KER_EN, 1);
EFX_INVERT_OWORD(temp);
falcon_write(efx, &temp, FATAL_INTR_REG_KER);
/* Set number of RSS queues for receive path. */
falcon_read(efx, &temp, RX_FILTER_CTL_REG);
if (FALCON_REV(efx) >= FALCON_REV_B0)
EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
else
EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
if (EFX_WORKAROUND_7244(efx)) {
EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
}
falcon_write(efx, &temp, RX_FILTER_CTL_REG);
falcon_setup_rss_indir_table(efx);
/* Setup RX. Wait for descriptor is broken and must
* be disabled. RXDP recovery shouldn't be needed, but is.
*/
falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
if (EFX_WORKAROUND_5583(efx))
EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
*/
falcon_read(efx, &temp, TX_CFG2_REG_KER);
EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
/* Squash TX of packets of 16 bytes or less */
if (FALCON_REV(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
falcon_write(efx, &temp, TX_CFG2_REG_KER);
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
* descriptors (which is bad).
*/
falcon_read(efx, &temp, TX_CFG_REG_KER);
EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
falcon_write(efx, &temp, TX_CFG_REG_KER);
/* RX config */
falcon_read(efx, &temp, RX_CFG_REG_KER);
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
if (EFX_WORKAROUND_7575(efx))
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
(3 * 4096) / 32);
if (FALCON_REV(efx) >= FALCON_REV_B0)
EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
/* RX FIFO flow control thresholds */
thresh = ((rx_xon_thresh_bytes >= 0) ?
rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
thresh = ((rx_xoff_thresh_bytes >= 0) ?
rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
/* RX control FIFO thresholds [32 entries] */
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
falcon_write(efx, &temp, RX_CFG_REG_KER);
/* Set destination of both TX and RX Flush events */
if (FALCON_REV(efx) >= FALCON_REV_B0) {
EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
falcon_write(efx, &temp, DP_CTRL_REG);
}
return 0;
}
void falcon_remove_nic(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
falcon_free_buffer(efx, &efx->irq_status);
(void) falcon_reset_hw(efx, RESET_TYPE_ALL);
/* Release the second function after the reset */
if (nic_data->pci_dev2) {
pci_dev_put(nic_data->pci_dev2);
nic_data->pci_dev2 = NULL;
}
/* Tear down the private nic state */
kfree(efx->nic_data);
efx->nic_data = NULL;
}
void falcon_update_nic_stats(struct efx_nic *efx)
{
efx_oword_t cnt;
falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
}
/**************************************************************************
*
* Revision-dependent attributes used by efx.c
*
**************************************************************************
*/
struct efx_nic_type falcon_a_nic_type = {
.mem_bar = 2,
.mem_map_size = 0x20000,
.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
.buf_tbl_base = BUF_TBL_KER_A1,
.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
.txd_ring_mask = FALCON_TXD_RING_MASK,
.rxd_ring_mask = FALCON_RXD_RING_MASK,
.evq_size = FALCON_EVQ_SIZE,
.max_dma_mask = FALCON_DMA_MASK,
.tx_dma_mask = FALCON_TX_DMA_MASK,
.bug5391_mask = 0xf,
.rx_xoff_thresh = 2048,
.rx_xon_thresh = 512,
.rx_buffer_padding = 0x24,
.max_interrupt_mode = EFX_INT_MODE_MSI,
.phys_addr_channels = 4,
};
struct efx_nic_type falcon_b_nic_type = {
.mem_bar = 2,
/* Map everything up to and including the RSS indirection
* table. Don't map MSI-X table, MSI-X PBA since Linux
* requires that they not be mapped. */
.mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
.buf_tbl_base = BUF_TBL_KER_B0,
.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
.txd_ring_mask = FALCON_TXD_RING_MASK,
.rxd_ring_mask = FALCON_RXD_RING_MASK,
.evq_size = FALCON_EVQ_SIZE,
.max_dma_mask = FALCON_DMA_MASK,
.tx_dma_mask = FALCON_TX_DMA_MASK,
.bug5391_mask = 0,
.rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
.rx_xon_thresh = 27648, /* ~3*max MTU */
.rx_buffer_padding = 0,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
* interrupt handler only supports 32
* channels */
};
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_FALCON_H
#define EFX_FALCON_H
#include "net_driver.h"
/*
* Falcon hardware control
*/
enum falcon_revision {
FALCON_REV_A0 = 0,
FALCON_REV_A1 = 1,
FALCON_REV_B0 = 2,
};
#define FALCON_REV(efx) ((efx)->pci_dev->revision)
extern struct efx_nic_type falcon_a_nic_type;
extern struct efx_nic_type falcon_b_nic_type;
/**************************************************************************
*
* Externs
*
**************************************************************************
*/
/* TX data path */
extern int falcon_probe_tx(struct efx_tx_queue *tx_queue);
extern int falcon_init_tx(struct efx_tx_queue *tx_queue);
extern void falcon_fini_tx(struct efx_tx_queue *tx_queue);
extern void falcon_remove_tx(struct efx_tx_queue *tx_queue);
extern void falcon_push_buffers(struct efx_tx_queue *tx_queue);
/* RX data path */
extern int falcon_probe_rx(struct efx_rx_queue *rx_queue);
extern int falcon_init_rx(struct efx_rx_queue *rx_queue);
extern void falcon_fini_rx(struct efx_rx_queue *rx_queue);
extern void falcon_remove_rx(struct efx_rx_queue *rx_queue);
extern void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue);
/* Event data path */
extern int falcon_probe_eventq(struct efx_channel *channel);
extern int falcon_init_eventq(struct efx_channel *channel);
extern void falcon_fini_eventq(struct efx_channel *channel);
extern void falcon_remove_eventq(struct efx_channel *channel);
extern int falcon_process_eventq(struct efx_channel *channel, int *rx_quota);
extern void falcon_eventq_read_ack(struct efx_channel *channel);
/* Ports */
extern int falcon_probe_port(struct efx_nic *efx);
extern void falcon_remove_port(struct efx_nic *efx);
/* MAC/PHY */
extern int falcon_xaui_link_ok(struct efx_nic *efx);
extern int falcon_dma_stats(struct efx_nic *efx,
unsigned int done_offset);
extern void falcon_drain_tx_fifo(struct efx_nic *efx);
extern void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
/* Interrupts and test events */
extern int falcon_init_interrupt(struct efx_nic *efx);
extern void falcon_enable_interrupts(struct efx_nic *efx);
extern void falcon_generate_test_event(struct efx_channel *channel,
unsigned int magic);
extern void falcon_generate_interrupt(struct efx_nic *efx);
extern void falcon_set_int_moderation(struct efx_channel *channel);
extern void falcon_disable_interrupts(struct efx_nic *efx);
extern void falcon_fini_interrupt(struct efx_nic *efx);
/* Global Resources */
extern int falcon_probe_nic(struct efx_nic *efx);
extern int falcon_probe_resources(struct efx_nic *efx);
extern int falcon_init_nic(struct efx_nic *efx);
extern int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
extern void falcon_remove_resources(struct efx_nic *efx);
extern void falcon_remove_nic(struct efx_nic *efx);
extern void falcon_update_nic_stats(struct efx_nic *efx);
extern void falcon_set_multicast_hash(struct efx_nic *efx);
extern int falcon_reset_xaui(struct efx_nic *efx);
/**************************************************************************
*
* Falcon MAC stats
*
**************************************************************************
*/
#define FALCON_STAT_OFFSET(falcon_stat) EFX_VAL(falcon_stat, offset)
#define FALCON_STAT_WIDTH(falcon_stat) EFX_VAL(falcon_stat, WIDTH)
/* Retrieve statistic from statistics block */
#define FALCON_STAT(efx, falcon_stat, efx_stat) do { \
if (FALCON_STAT_WIDTH(falcon_stat) == 16) \
(efx)->mac_stats.efx_stat += le16_to_cpu( \
*((__force __le16 *) \
(efx->stats_buffer.addr + \
FALCON_STAT_OFFSET(falcon_stat)))); \
else if (FALCON_STAT_WIDTH(falcon_stat) == 32) \
(efx)->mac_stats.efx_stat += le32_to_cpu( \
*((__force __le32 *) \
(efx->stats_buffer.addr + \
FALCON_STAT_OFFSET(falcon_stat)))); \
else \
(efx)->mac_stats.efx_stat += le64_to_cpu( \
*((__force __le64 *) \
(efx->stats_buffer.addr + \
FALCON_STAT_OFFSET(falcon_stat)))); \
} while (0)
#define FALCON_MAC_STATS_SIZE 0x100
#define MAC_DATA_LBN 0
#define MAC_DATA_WIDTH 32
extern void falcon_generate_event(struct efx_channel *channel,
efx_qword_t *event);
#endif /* EFX_FALCON_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_FALCON_HWDEFS_H
#define EFX_FALCON_HWDEFS_H
/*
* Falcon hardware value definitions.
* Falcon is the internal codename for the SFC4000 controller that is
* present in SFE400X evaluation boards
*/
/**************************************************************************
*
* Falcon registers
*
**************************************************************************
*/
/* Address region register */
#define ADR_REGION_REG_KER 0x00
#define ADR_REGION0_LBN 0
#define ADR_REGION0_WIDTH 18
#define ADR_REGION1_LBN 32
#define ADR_REGION1_WIDTH 18
#define ADR_REGION2_LBN 64
#define ADR_REGION2_WIDTH 18
#define ADR_REGION3_LBN 96
#define ADR_REGION3_WIDTH 18
/* Interrupt enable register */
#define INT_EN_REG_KER 0x0010
#define KER_INT_KER_LBN 3
#define KER_INT_KER_WIDTH 1
#define DRV_INT_EN_KER_LBN 0
#define DRV_INT_EN_KER_WIDTH 1
/* Interrupt status address register */
#define INT_ADR_REG_KER 0x0030
#define NORM_INT_VEC_DIS_KER_LBN 64
#define NORM_INT_VEC_DIS_KER_WIDTH 1
#define INT_ADR_KER_LBN 0
#define INT_ADR_KER_WIDTH EFX_DMA_TYPE_WIDTH(64) /* not 46 for this one */
/* Interrupt status register (B0 only) */
#define INT_ISR0_B0 0x90
#define INT_ISR1_B0 0xA0
/* Interrupt acknowledge register (A0/A1 only) */
#define INT_ACK_REG_KER_A1 0x0050
#define INT_ACK_DUMMY_DATA_LBN 0
#define INT_ACK_DUMMY_DATA_WIDTH 32
/* Interrupt acknowledge work-around register (A0/A1 only )*/
#define WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 0x0070
/* SPI host command register */
#define EE_SPI_HCMD_REG_KER 0x0100
#define EE_SPI_HCMD_CMD_EN_LBN 31
#define EE_SPI_HCMD_CMD_EN_WIDTH 1
#define EE_WR_TIMER_ACTIVE_LBN 28
#define EE_WR_TIMER_ACTIVE_WIDTH 1
#define EE_SPI_HCMD_SF_SEL_LBN 24
#define EE_SPI_HCMD_SF_SEL_WIDTH 1
#define EE_SPI_EEPROM 0
#define EE_SPI_FLASH 1
#define EE_SPI_HCMD_DABCNT_LBN 16
#define EE_SPI_HCMD_DABCNT_WIDTH 5
#define EE_SPI_HCMD_READ_LBN 15
#define EE_SPI_HCMD_READ_WIDTH 1
#define EE_SPI_READ 1
#define EE_SPI_WRITE 0
#define EE_SPI_HCMD_DUBCNT_LBN 12
#define EE_SPI_HCMD_DUBCNT_WIDTH 2
#define EE_SPI_HCMD_ADBCNT_LBN 8
#define EE_SPI_HCMD_ADBCNT_WIDTH 2
#define EE_SPI_HCMD_ENC_LBN 0
#define EE_SPI_HCMD_ENC_WIDTH 8
/* SPI host address register */
#define EE_SPI_HADR_REG_KER 0x0110
#define EE_SPI_HADR_ADR_LBN 0
#define EE_SPI_HADR_ADR_WIDTH 24
/* SPI host data register */
#define EE_SPI_HDATA_REG_KER 0x0120
/* PCIE CORE ACCESS REG */
#define PCIE_CORE_ADDR_PCIE_DEVICE_CTRL_STAT 0x68
#define PCIE_CORE_ADDR_PCIE_LINK_CTRL_STAT 0x70
#define PCIE_CORE_ADDR_ACK_RPL_TIMER 0x700
#define PCIE_CORE_ADDR_ACK_FREQ 0x70C
/* NIC status register */
#define NIC_STAT_REG 0x0200
#define ONCHIP_SRAM_LBN 16
#define ONCHIP_SRAM_WIDTH 1
#define SF_PRST_LBN 9
#define SF_PRST_WIDTH 1
#define EE_PRST_LBN 8
#define EE_PRST_WIDTH 1
/* See pic_mode_t for decoding of this field */
/* These bit definitions are extrapolated from the list of numerical
* values for STRAP_PINS.
*/
#define STRAP_10G_LBN 2
#define STRAP_10G_WIDTH 1
#define STRAP_PCIE_LBN 0
#define STRAP_PCIE_WIDTH 1
/* GPIO control register */
#define GPIO_CTL_REG_KER 0x0210
#define GPIO_OUTPUTS_LBN (16)
#define GPIO_OUTPUTS_WIDTH (4)
#define GPIO_INPUTS_LBN (8)
#define GPIO_DIRECTION_LBN (24)
#define GPIO_DIRECTION_WIDTH (4)
#define GPIO_DIRECTION_OUT (1)
#define GPIO_SRAM_SLEEP (1 << 1)
#define GPIO3_OEN_LBN (GPIO_DIRECTION_LBN + 3)
#define GPIO3_OEN_WIDTH 1
#define GPIO2_OEN_LBN (GPIO_DIRECTION_LBN + 2)
#define GPIO2_OEN_WIDTH 1
#define GPIO1_OEN_LBN (GPIO_DIRECTION_LBN + 1)
#define GPIO1_OEN_WIDTH 1
#define GPIO0_OEN_LBN (GPIO_DIRECTION_LBN + 0)
#define GPIO0_OEN_WIDTH 1
#define GPIO3_OUT_LBN (GPIO_OUTPUTS_LBN + 3)
#define GPIO3_OUT_WIDTH 1
#define GPIO2_OUT_LBN (GPIO_OUTPUTS_LBN + 2)
#define GPIO2_OUT_WIDTH 1
#define GPIO1_OUT_LBN (GPIO_OUTPUTS_LBN + 1)
#define GPIO1_OUT_WIDTH 1
#define GPIO0_OUT_LBN (GPIO_OUTPUTS_LBN + 0)
#define GPIO0_OUT_WIDTH 1
#define GPIO3_IN_LBN (GPIO_INPUTS_LBN + 3)
#define GPIO3_IN_WIDTH 1
#define GPIO2_IN_WIDTH 1
#define GPIO1_IN_WIDTH 1
#define GPIO0_IN_LBN (GPIO_INPUTS_LBN + 0)
#define GPIO0_IN_WIDTH 1
/* Global control register */
#define GLB_CTL_REG_KER 0x0220
#define EXT_PHY_RST_CTL_LBN 63
#define EXT_PHY_RST_CTL_WIDTH 1
#define PCIE_SD_RST_CTL_LBN 61
#define PCIE_SD_RST_CTL_WIDTH 1
#define PCIE_NSTCK_RST_CTL_LBN 58
#define PCIE_NSTCK_RST_CTL_WIDTH 1
#define PCIE_CORE_RST_CTL_LBN 57
#define PCIE_CORE_RST_CTL_WIDTH 1
#define EE_RST_CTL_LBN 49
#define EE_RST_CTL_WIDTH 1
#define RST_XGRX_LBN 24
#define RST_XGRX_WIDTH 1
#define RST_XGTX_LBN 23
#define RST_XGTX_WIDTH 1
#define RST_EM_LBN 22
#define RST_EM_WIDTH 1
#define EXT_PHY_RST_DUR_LBN 1
#define EXT_PHY_RST_DUR_WIDTH 3
#define SWRST_LBN 0
#define SWRST_WIDTH 1
#define INCLUDE_IN_RESET 0
#define EXCLUDE_FROM_RESET 1
/* Fatal interrupt register */
#define FATAL_INTR_REG_KER 0x0230
#define RBUF_OWN_INT_KER_EN_LBN 39
#define RBUF_OWN_INT_KER_EN_WIDTH 1
#define TBUF_OWN_INT_KER_EN_LBN 38
#define TBUF_OWN_INT_KER_EN_WIDTH 1
#define ILL_ADR_INT_KER_EN_LBN 33
#define ILL_ADR_INT_KER_EN_WIDTH 1
#define MEM_PERR_INT_KER_LBN 8
#define MEM_PERR_INT_KER_WIDTH 1
#define INT_KER_ERROR_LBN 0
#define INT_KER_ERROR_WIDTH 12
#define DP_CTRL_REG 0x250
#define FLS_EVQ_ID_LBN 0
#define FLS_EVQ_ID_WIDTH 11
#define MEM_STAT_REG_KER 0x260
/* Debug probe register */
#define DEBUG_BLK_SEL_MISC 7
#define DEBUG_BLK_SEL_SERDES 6
#define DEBUG_BLK_SEL_EM 5
#define DEBUG_BLK_SEL_SR 4
#define DEBUG_BLK_SEL_EV 3
#define DEBUG_BLK_SEL_RX 2
#define DEBUG_BLK_SEL_TX 1
#define DEBUG_BLK_SEL_BIU 0
/* FPGA build version */
#define ALTERA_BUILD_REG_KER 0x0300
#define VER_ALL_LBN 0
#define VER_ALL_WIDTH 32
/* Spare EEPROM bits register (flash 0x390) */
#define SPARE_REG_KER 0x310
#define MEM_PERR_EN_TX_DATA_LBN 72
#define MEM_PERR_EN_TX_DATA_WIDTH 2
/* Timer table for kernel access */
#define TIMER_CMD_REG_KER 0x420
#define TIMER_MODE_LBN 12
#define TIMER_MODE_WIDTH 2
#define TIMER_MODE_DIS 0
#define TIMER_MODE_INT_HLDOFF 2
#define TIMER_VAL_LBN 0
#define TIMER_VAL_WIDTH 12
/* Driver generated event register */
#define DRV_EV_REG_KER 0x440
#define DRV_EV_QID_LBN 64
#define DRV_EV_QID_WIDTH 12
#define DRV_EV_DATA_LBN 0
#define DRV_EV_DATA_WIDTH 64
/* Buffer table configuration register */
#define BUF_TBL_CFG_REG_KER 0x600
#define BUF_TBL_MODE_LBN 3
#define BUF_TBL_MODE_WIDTH 1
#define BUF_TBL_MODE_HALF 0
#define BUF_TBL_MODE_FULL 1
/* SRAM receive descriptor cache configuration register */
#define SRM_RX_DC_CFG_REG_KER 0x610
#define SRM_RX_DC_BASE_ADR_LBN 0
#define SRM_RX_DC_BASE_ADR_WIDTH 21
/* SRAM transmit descriptor cache configuration register */
#define SRM_TX_DC_CFG_REG_KER 0x620
#define SRM_TX_DC_BASE_ADR_LBN 0
#define SRM_TX_DC_BASE_ADR_WIDTH 21
/* SRAM configuration register */
#define SRM_CFG_REG_KER 0x630
#define SRAM_OOB_BT_INIT_EN_LBN 3
#define SRAM_OOB_BT_INIT_EN_WIDTH 1
#define SRM_NUM_BANKS_AND_BANK_SIZE_LBN 0
#define SRM_NUM_BANKS_AND_BANK_SIZE_WIDTH 3
#define SRM_NB_BSZ_1BANKS_2M 0
#define SRM_NB_BSZ_1BANKS_4M 1
#define SRM_NB_BSZ_1BANKS_8M 2
#define SRM_NB_BSZ_DEFAULT 3 /* char driver will set the default */
#define SRM_NB_BSZ_2BANKS_4M 4
#define SRM_NB_BSZ_2BANKS_8M 5
#define SRM_NB_BSZ_2BANKS_16M 6
#define SRM_NB_BSZ_RESERVED 7
/* Special buffer table update register */
#define BUF_TBL_UPD_REG_KER 0x0650
#define BUF_UPD_CMD_LBN 63
#define BUF_UPD_CMD_WIDTH 1
#define BUF_CLR_CMD_LBN 62
#define BUF_CLR_CMD_WIDTH 1
#define BUF_CLR_END_ID_LBN 32
#define BUF_CLR_END_ID_WIDTH 20
#define BUF_CLR_START_ID_LBN 0
#define BUF_CLR_START_ID_WIDTH 20
/* Receive configuration register */
#define RX_CFG_REG_KER 0x800
/* B0 */
#define RX_INGR_EN_B0_LBN 47
#define RX_INGR_EN_B0_WIDTH 1
#define RX_DESC_PUSH_EN_B0_LBN 43
#define RX_DESC_PUSH_EN_B0_WIDTH 1
#define RX_XON_TX_TH_B0_LBN 33
#define RX_XON_TX_TH_B0_WIDTH 5
#define RX_XOFF_TX_TH_B0_LBN 28
#define RX_XOFF_TX_TH_B0_WIDTH 5
#define RX_USR_BUF_SIZE_B0_LBN 19
#define RX_USR_BUF_SIZE_B0_WIDTH 9
#define RX_XON_MAC_TH_B0_LBN 10
#define RX_XON_MAC_TH_B0_WIDTH 9
#define RX_XOFF_MAC_TH_B0_LBN 1
#define RX_XOFF_MAC_TH_B0_WIDTH 9
#define RX_XOFF_MAC_EN_B0_LBN 0
#define RX_XOFF_MAC_EN_B0_WIDTH 1
/* A1 */
#define RX_DESC_PUSH_EN_A1_LBN 35
#define RX_DESC_PUSH_EN_A1_WIDTH 1
#define RX_XON_TX_TH_A1_LBN 25
#define RX_XON_TX_TH_A1_WIDTH 5
#define RX_XOFF_TX_TH_A1_LBN 20
#define RX_XOFF_TX_TH_A1_WIDTH 5
#define RX_USR_BUF_SIZE_A1_LBN 11
#define RX_USR_BUF_SIZE_A1_WIDTH 9
#define RX_XON_MAC_TH_A1_LBN 6
#define RX_XON_MAC_TH_A1_WIDTH 5
#define RX_XOFF_MAC_TH_A1_LBN 1
#define RX_XOFF_MAC_TH_A1_WIDTH 5
#define RX_XOFF_MAC_EN_A1_LBN 0
#define RX_XOFF_MAC_EN_A1_WIDTH 1
/* Receive filter control register */
#define RX_FILTER_CTL_REG 0x810
#define UDP_FULL_SRCH_LIMIT_LBN 32
#define UDP_FULL_SRCH_LIMIT_WIDTH 8
#define NUM_KER_LBN 24
#define NUM_KER_WIDTH 2
#define UDP_WILD_SRCH_LIMIT_LBN 16
#define UDP_WILD_SRCH_LIMIT_WIDTH 8
#define TCP_WILD_SRCH_LIMIT_LBN 8
#define TCP_WILD_SRCH_LIMIT_WIDTH 8
#define TCP_FULL_SRCH_LIMIT_LBN 0
#define TCP_FULL_SRCH_LIMIT_WIDTH 8
/* RX queue flush register */
#define RX_FLUSH_DESCQ_REG_KER 0x0820
#define RX_FLUSH_DESCQ_CMD_LBN 24
#define RX_FLUSH_DESCQ_CMD_WIDTH 1
#define RX_FLUSH_DESCQ_LBN 0
#define RX_FLUSH_DESCQ_WIDTH 12
/* Receive descriptor update register */
#define RX_DESC_UPD_REG_KER_DWORD (0x830 + 12)
#define RX_DESC_WPTR_DWORD_LBN 0
#define RX_DESC_WPTR_DWORD_WIDTH 12
/* Receive descriptor cache configuration register */
#define RX_DC_CFG_REG_KER 0x840
#define RX_DC_SIZE_LBN 0
#define RX_DC_SIZE_WIDTH 2
#define RX_DC_PF_WM_REG_KER 0x850
#define RX_DC_PF_LWM_LBN 0
#define RX_DC_PF_LWM_WIDTH 6
/* RX no descriptor drop counter */
#define RX_NODESC_DROP_REG_KER 0x880
#define RX_NODESC_DROP_CNT_LBN 0
#define RX_NODESC_DROP_CNT_WIDTH 16
/* RX black magic register */
#define RX_SELF_RST_REG_KER 0x890
#define RX_ISCSI_DIS_LBN 17
#define RX_ISCSI_DIS_WIDTH 1
#define RX_NODESC_WAIT_DIS_LBN 9
#define RX_NODESC_WAIT_DIS_WIDTH 1
#define RX_RECOVERY_EN_LBN 8
#define RX_RECOVERY_EN_WIDTH 1
/* TX queue flush register */
#define TX_FLUSH_DESCQ_REG_KER 0x0a00
#define TX_FLUSH_DESCQ_CMD_LBN 12
#define TX_FLUSH_DESCQ_CMD_WIDTH 1
#define TX_FLUSH_DESCQ_LBN 0
#define TX_FLUSH_DESCQ_WIDTH 12
/* Transmit descriptor update register */
#define TX_DESC_UPD_REG_KER_DWORD (0xa10 + 12)
#define TX_DESC_WPTR_DWORD_LBN 0
#define TX_DESC_WPTR_DWORD_WIDTH 12
/* Transmit descriptor cache configuration register */
#define TX_DC_CFG_REG_KER 0xa20
#define TX_DC_SIZE_LBN 0
#define TX_DC_SIZE_WIDTH 2
/* Transmit checksum configuration register (A0/A1 only) */
#define TX_CHKSM_CFG_REG_KER_A1 0xa30
/* Transmit configuration register */
#define TX_CFG_REG_KER 0xa50
#define TX_NO_EOP_DISC_EN_LBN 5
#define TX_NO_EOP_DISC_EN_WIDTH 1
/* Transmit configuration register 2 */
#define TX_CFG2_REG_KER 0xa80
#define TX_CSR_PUSH_EN_LBN 89
#define TX_CSR_PUSH_EN_WIDTH 1
#define TX_RX_SPACER_LBN 64
#define TX_RX_SPACER_WIDTH 8
#define TX_SW_EV_EN_LBN 59
#define TX_SW_EV_EN_WIDTH 1
#define TX_RX_SPACER_EN_LBN 57
#define TX_RX_SPACER_EN_WIDTH 1
#define TX_PREF_THRESHOLD_LBN 19
#define TX_PREF_THRESHOLD_WIDTH 2
#define TX_ONE_PKT_PER_Q_LBN 18
#define TX_ONE_PKT_PER_Q_WIDTH 1
#define TX_DIS_NON_IP_EV_LBN 17
#define TX_DIS_NON_IP_EV_WIDTH 1
#define TX_FLUSH_MIN_LEN_EN_B0_LBN 7
#define TX_FLUSH_MIN_LEN_EN_B0_WIDTH 1
/* PHY management transmit data register */
#define MD_TXD_REG_KER 0xc00
#define MD_TXD_LBN 0
#define MD_TXD_WIDTH 16
/* PHY management receive data register */
#define MD_RXD_REG_KER 0xc10
#define MD_RXD_LBN 0
#define MD_RXD_WIDTH 16
/* PHY management configuration & status register */
#define MD_CS_REG_KER 0xc20
#define MD_GC_LBN 4
#define MD_GC_WIDTH 1
#define MD_RIC_LBN 2
#define MD_RIC_WIDTH 1
#define MD_RDC_LBN 1
#define MD_RDC_WIDTH 1
#define MD_WRC_LBN 0
#define MD_WRC_WIDTH 1
/* PHY management PHY address register */
#define MD_PHY_ADR_REG_KER 0xc30
#define MD_PHY_ADR_LBN 0
#define MD_PHY_ADR_WIDTH 16
/* PHY management ID register */
#define MD_ID_REG_KER 0xc40
#define MD_PRT_ADR_LBN 11
#define MD_PRT_ADR_WIDTH 5
#define MD_DEV_ADR_LBN 6
#define MD_DEV_ADR_WIDTH 5
/* Used for writing both at once */
#define MD_PRT_DEV_ADR_LBN 6
#define MD_PRT_DEV_ADR_WIDTH 10
/* PHY management status & mask register (DWORD read only) */
#define MD_STAT_REG_KER 0xc50
#define MD_BSERR_LBN 2
#define MD_BSERR_WIDTH 1
#define MD_LNFL_LBN 1
#define MD_LNFL_WIDTH 1
#define MD_BSY_LBN 0
#define MD_BSY_WIDTH 1
/* Port 0 and 1 MAC stats registers */
#define MAC0_STAT_DMA_REG_KER 0xc60
#define MAC_STAT_DMA_CMD_LBN 48
#define MAC_STAT_DMA_CMD_WIDTH 1
#define MAC_STAT_DMA_ADR_LBN 0
#define MAC_STAT_DMA_ADR_WIDTH EFX_DMA_TYPE_WIDTH(46)
/* Port 0 and 1 MAC control registers */
#define MAC0_CTRL_REG_KER 0xc80
#define MAC_XOFF_VAL_LBN 16
#define MAC_XOFF_VAL_WIDTH 16
#define TXFIFO_DRAIN_EN_B0_LBN 7
#define TXFIFO_DRAIN_EN_B0_WIDTH 1
#define MAC_BCAD_ACPT_LBN 4
#define MAC_BCAD_ACPT_WIDTH 1
#define MAC_UC_PROM_LBN 3
#define MAC_UC_PROM_WIDTH 1
#define MAC_LINK_STATUS_LBN 2
#define MAC_LINK_STATUS_WIDTH 1
#define MAC_SPEED_LBN 0
#define MAC_SPEED_WIDTH 2
/* 10G XAUI XGXS default values */
#define XX_TXDRV_DEQ_DEFAULT 0xe /* deq=.6 */
#define XX_TXDRV_DTX_DEFAULT 0x5 /* 1.25 */
#define XX_SD_CTL_DRV_DEFAULT 0 /* 20mA */
/* Multicast address hash table */
#define MAC_MCAST_HASH_REG0_KER 0xca0
#define MAC_MCAST_HASH_REG1_KER 0xcb0
/* GMAC registers */
#define FALCON_GMAC_REGBANK 0xe00
#define FALCON_GMAC_REGBANK_SIZE 0x200
#define FALCON_GMAC_REG_SIZE 0x10
/* XMAC registers */
#define FALCON_XMAC_REGBANK 0x1200
#define FALCON_XMAC_REGBANK_SIZE 0x200
#define FALCON_XMAC_REG_SIZE 0x10
/* XGMAC address register low */
#define XM_ADR_LO_REG_MAC 0x00
#define XM_ADR_3_LBN 24
#define XM_ADR_3_WIDTH 8
#define XM_ADR_2_LBN 16
#define XM_ADR_2_WIDTH 8
#define XM_ADR_1_LBN 8
#define XM_ADR_1_WIDTH 8
#define XM_ADR_0_LBN 0
#define XM_ADR_0_WIDTH 8
/* XGMAC address register high */
#define XM_ADR_HI_REG_MAC 0x01
#define XM_ADR_5_LBN 8
#define XM_ADR_5_WIDTH 8
#define XM_ADR_4_LBN 0
#define XM_ADR_4_WIDTH 8
/* XGMAC global configuration */
#define XM_GLB_CFG_REG_MAC 0x02
#define XM_RX_STAT_EN_LBN 11
#define XM_RX_STAT_EN_WIDTH 1
#define XM_TX_STAT_EN_LBN 10
#define XM_TX_STAT_EN_WIDTH 1
#define XM_RX_JUMBO_MODE_LBN 6
#define XM_RX_JUMBO_MODE_WIDTH 1
#define XM_INTCLR_MODE_LBN 3
#define XM_INTCLR_MODE_WIDTH 1
#define XM_CORE_RST_LBN 0
#define XM_CORE_RST_WIDTH 1
/* XGMAC transmit configuration */
#define XM_TX_CFG_REG_MAC 0x03
#define XM_IPG_LBN 16
#define XM_IPG_WIDTH 4
#define XM_FCNTL_LBN 10
#define XM_FCNTL_WIDTH 1
#define XM_TXCRC_LBN 8
#define XM_TXCRC_WIDTH 1
#define XM_AUTO_PAD_LBN 5
#define XM_AUTO_PAD_WIDTH 1
#define XM_TX_PRMBL_LBN 2
#define XM_TX_PRMBL_WIDTH 1
#define XM_TXEN_LBN 1
#define XM_TXEN_WIDTH 1
/* XGMAC receive configuration */
#define XM_RX_CFG_REG_MAC 0x04
#define XM_PASS_CRC_ERR_LBN 25
#define XM_PASS_CRC_ERR_WIDTH 1
#define XM_ACPT_ALL_MCAST_LBN 11
#define XM_ACPT_ALL_MCAST_WIDTH 1
#define XM_ACPT_ALL_UCAST_LBN 9
#define XM_ACPT_ALL_UCAST_WIDTH 1
#define XM_AUTO_DEPAD_LBN 8
#define XM_AUTO_DEPAD_WIDTH 1
#define XM_RXEN_LBN 1
#define XM_RXEN_WIDTH 1
/* XGMAC management interrupt mask register */
#define XM_MGT_INT_MSK_REG_MAC_B0 0x5
#define XM_MSK_PRMBLE_ERR_LBN 2
#define XM_MSK_PRMBLE_ERR_WIDTH 1
#define XM_MSK_RMTFLT_LBN 1
#define XM_MSK_RMTFLT_WIDTH 1
#define XM_MSK_LCLFLT_LBN 0
#define XM_MSK_LCLFLT_WIDTH 1
/* XGMAC flow control register */
#define XM_FC_REG_MAC 0x7
#define XM_PAUSE_TIME_LBN 16
#define XM_PAUSE_TIME_WIDTH 16
#define XM_DIS_FCNTL_LBN 0
#define XM_DIS_FCNTL_WIDTH 1
/* XGMAC pause time count register */
#define XM_PAUSE_TIME_REG_MAC 0x9
/* XGMAC transmit parameter register */
#define XM_TX_PARAM_REG_MAC 0x0d
#define XM_TX_JUMBO_MODE_LBN 31
#define XM_TX_JUMBO_MODE_WIDTH 1
#define XM_MAX_TX_FRM_SIZE_LBN 16
#define XM_MAX_TX_FRM_SIZE_WIDTH 14
/* XGMAC receive parameter register */
#define XM_RX_PARAM_REG_MAC 0x0e
#define XM_MAX_RX_FRM_SIZE_LBN 0
#define XM_MAX_RX_FRM_SIZE_WIDTH 14
/* XGMAC management interrupt status register */
#define XM_MGT_INT_REG_MAC_B0 0x0f
#define XM_PRMBLE_ERR 2
#define XM_PRMBLE_WIDTH 1
#define XM_RMTFLT_LBN 1
#define XM_RMTFLT_WIDTH 1
#define XM_LCLFLT_LBN 0
#define XM_LCLFLT_WIDTH 1
/* XGXS/XAUI powerdown/reset register */
#define XX_PWR_RST_REG_MAC 0x10
#define XX_PWRDND_EN_LBN 15
#define XX_PWRDND_EN_WIDTH 1
#define XX_PWRDNC_EN_LBN 14
#define XX_PWRDNC_EN_WIDTH 1
#define XX_PWRDNB_EN_LBN 13
#define XX_PWRDNB_EN_WIDTH 1
#define XX_PWRDNA_EN_LBN 12
#define XX_PWRDNA_EN_WIDTH 1
#define XX_RSTPLLCD_EN_LBN 9
#define XX_RSTPLLCD_EN_WIDTH 1
#define XX_RSTPLLAB_EN_LBN 8
#define XX_RSTPLLAB_EN_WIDTH 1
#define XX_RESETD_EN_LBN 7
#define XX_RESETD_EN_WIDTH 1
#define XX_RESETC_EN_LBN 6
#define XX_RESETC_EN_WIDTH 1
#define XX_RESETB_EN_LBN 5
#define XX_RESETB_EN_WIDTH 1
#define XX_RESETA_EN_LBN 4
#define XX_RESETA_EN_WIDTH 1
#define XX_RSTXGXSRX_EN_LBN 2
#define XX_RSTXGXSRX_EN_WIDTH 1
#define XX_RSTXGXSTX_EN_LBN 1
#define XX_RSTXGXSTX_EN_WIDTH 1
#define XX_RST_XX_EN_LBN 0
#define XX_RST_XX_EN_WIDTH 1
/* XGXS/XAUI powerdown/reset control register */
#define XX_SD_CTL_REG_MAC 0x11
#define XX_HIDRVD_LBN 15
#define XX_HIDRVD_WIDTH 1
#define XX_LODRVD_LBN 14
#define XX_LODRVD_WIDTH 1
#define XX_HIDRVC_LBN 13
#define XX_HIDRVC_WIDTH 1
#define XX_LODRVC_LBN 12
#define XX_LODRVC_WIDTH 1
#define XX_HIDRVB_LBN 11
#define XX_HIDRVB_WIDTH 1
#define XX_LODRVB_LBN 10
#define XX_LODRVB_WIDTH 1
#define XX_HIDRVA_LBN 9
#define XX_HIDRVA_WIDTH 1
#define XX_LODRVA_LBN 8
#define XX_LODRVA_WIDTH 1
#define XX_TXDRV_CTL_REG_MAC 0x12
#define XX_DEQD_LBN 28
#define XX_DEQD_WIDTH 4
#define XX_DEQC_LBN 24
#define XX_DEQC_WIDTH 4
#define XX_DEQB_LBN 20
#define XX_DEQB_WIDTH 4
#define XX_DEQA_LBN 16
#define XX_DEQA_WIDTH 4
#define XX_DTXD_LBN 12
#define XX_DTXD_WIDTH 4
#define XX_DTXC_LBN 8
#define XX_DTXC_WIDTH 4
#define XX_DTXB_LBN 4
#define XX_DTXB_WIDTH 4
#define XX_DTXA_LBN 0
#define XX_DTXA_WIDTH 4
/* XAUI XGXS core status register */
#define XX_FORCE_SIG_DECODE_FORCED 0xff
#define XX_CORE_STAT_REG_MAC 0x16
#define XX_ALIGN_DONE_LBN 20
#define XX_ALIGN_DONE_WIDTH 1
#define XX_SYNC_STAT_LBN 16
#define XX_SYNC_STAT_WIDTH 4
#define XX_SYNC_STAT_DECODE_SYNCED 0xf
#define XX_COMMA_DET_LBN 12
#define XX_COMMA_DET_WIDTH 4
#define XX_COMMA_DET_DECODE_DETECTED 0xf
#define XX_COMMA_DET_RESET 0xf
#define XX_CHARERR_LBN 4
#define XX_CHARERR_WIDTH 4
#define XX_CHARERR_RESET 0xf
#define XX_DISPERR_LBN 0
#define XX_DISPERR_WIDTH 4
#define XX_DISPERR_RESET 0xf
/* Receive filter table */
#define RX_FILTER_TBL0 0xF00000
/* Receive descriptor pointer table */
#define RX_DESC_PTR_TBL_KER_A1 0x11800
#define RX_DESC_PTR_TBL_KER_B0 0xF40000
#define RX_DESC_PTR_TBL_KER_P0 0x900
#define RX_ISCSI_DDIG_EN_LBN 88
#define RX_ISCSI_DDIG_EN_WIDTH 1
#define RX_ISCSI_HDIG_EN_LBN 87
#define RX_ISCSI_HDIG_EN_WIDTH 1
#define RX_DESCQ_BUF_BASE_ID_LBN 36
#define RX_DESCQ_BUF_BASE_ID_WIDTH 20
#define RX_DESCQ_EVQ_ID_LBN 24
#define RX_DESCQ_EVQ_ID_WIDTH 12
#define RX_DESCQ_OWNER_ID_LBN 10
#define RX_DESCQ_OWNER_ID_WIDTH 14
#define RX_DESCQ_LABEL_LBN 5
#define RX_DESCQ_LABEL_WIDTH 5
#define RX_DESCQ_SIZE_LBN 3
#define RX_DESCQ_SIZE_WIDTH 2
#define RX_DESCQ_SIZE_4K 3
#define RX_DESCQ_SIZE_2K 2
#define RX_DESCQ_SIZE_1K 1
#define RX_DESCQ_SIZE_512 0
#define RX_DESCQ_TYPE_LBN 2
#define RX_DESCQ_TYPE_WIDTH 1
#define RX_DESCQ_JUMBO_LBN 1
#define RX_DESCQ_JUMBO_WIDTH 1
#define RX_DESCQ_EN_LBN 0
#define RX_DESCQ_EN_WIDTH 1
/* Transmit descriptor pointer table */
#define TX_DESC_PTR_TBL_KER_A1 0x11900
#define TX_DESC_PTR_TBL_KER_B0 0xF50000
#define TX_DESC_PTR_TBL_KER_P0 0xa40
#define TX_NON_IP_DROP_DIS_B0_LBN 91
#define TX_NON_IP_DROP_DIS_B0_WIDTH 1
#define TX_IP_CHKSM_DIS_B0_LBN 90
#define TX_IP_CHKSM_DIS_B0_WIDTH 1
#define TX_TCP_CHKSM_DIS_B0_LBN 89
#define TX_TCP_CHKSM_DIS_B0_WIDTH 1
#define TX_DESCQ_EN_LBN 88
#define TX_DESCQ_EN_WIDTH 1
#define TX_ISCSI_DDIG_EN_LBN 87
#define TX_ISCSI_DDIG_EN_WIDTH 1
#define TX_ISCSI_HDIG_EN_LBN 86
#define TX_ISCSI_HDIG_EN_WIDTH 1
#define TX_DESCQ_BUF_BASE_ID_LBN 36
#define TX_DESCQ_BUF_BASE_ID_WIDTH 20
#define TX_DESCQ_EVQ_ID_LBN 24
#define TX_DESCQ_EVQ_ID_WIDTH 12
#define TX_DESCQ_OWNER_ID_LBN 10
#define TX_DESCQ_OWNER_ID_WIDTH 14
#define TX_DESCQ_LABEL_LBN 5
#define TX_DESCQ_LABEL_WIDTH 5
#define TX_DESCQ_SIZE_LBN 3
#define TX_DESCQ_SIZE_WIDTH 2
#define TX_DESCQ_SIZE_4K 3
#define TX_DESCQ_SIZE_2K 2
#define TX_DESCQ_SIZE_1K 1
#define TX_DESCQ_SIZE_512 0
#define TX_DESCQ_TYPE_LBN 1
#define TX_DESCQ_TYPE_WIDTH 2
/* Event queue pointer */
#define EVQ_PTR_TBL_KER_A1 0x11a00
#define EVQ_PTR_TBL_KER_B0 0xf60000
#define EVQ_PTR_TBL_KER_P0 0x500
#define EVQ_EN_LBN 23
#define EVQ_EN_WIDTH 1
#define EVQ_SIZE_LBN 20
#define EVQ_SIZE_WIDTH 3
#define EVQ_SIZE_32K 6
#define EVQ_SIZE_16K 5
#define EVQ_SIZE_8K 4
#define EVQ_SIZE_4K 3
#define EVQ_SIZE_2K 2
#define EVQ_SIZE_1K 1
#define EVQ_SIZE_512 0
#define EVQ_BUF_BASE_ID_LBN 0
#define EVQ_BUF_BASE_ID_WIDTH 20
/* Event queue read pointer */
#define EVQ_RPTR_REG_KER_A1 0x11b00
#define EVQ_RPTR_REG_KER_B0 0xfa0000
#define EVQ_RPTR_REG_KER_DWORD (EVQ_RPTR_REG_KER + 0)
#define EVQ_RPTR_DWORD_LBN 0
#define EVQ_RPTR_DWORD_WIDTH 14
/* RSS indirection table */
#define RX_RSS_INDIR_TBL_B0 0xFB0000
#define RX_RSS_INDIR_ENT_B0_LBN 0
#define RX_RSS_INDIR_ENT_B0_WIDTH 6
/* Special buffer descriptors (full-mode) */
#define BUF_FULL_TBL_KER_A1 0x8000
#define BUF_FULL_TBL_KER_B0 0x800000
#define IP_DAT_BUF_SIZE_LBN 50
#define IP_DAT_BUF_SIZE_WIDTH 1
#define IP_DAT_BUF_SIZE_8K 1
#define IP_DAT_BUF_SIZE_4K 0
#define BUF_ADR_REGION_LBN 48
#define BUF_ADR_REGION_WIDTH 2
#define BUF_ADR_FBUF_LBN 14
#define BUF_ADR_FBUF_WIDTH 34
#define BUF_OWNER_ID_FBUF_LBN 0
#define BUF_OWNER_ID_FBUF_WIDTH 14
/* Transmit descriptor */
#define TX_KER_PORT_LBN 63
#define TX_KER_PORT_WIDTH 1
#define TX_KER_CONT_LBN 62
#define TX_KER_CONT_WIDTH 1
#define TX_KER_BYTE_CNT_LBN 48
#define TX_KER_BYTE_CNT_WIDTH 14
#define TX_KER_BUF_REGION_LBN 46
#define TX_KER_BUF_REGION_WIDTH 2
#define TX_KER_BUF_REGION0_DECODE 0
#define TX_KER_BUF_REGION1_DECODE 1
#define TX_KER_BUF_REGION2_DECODE 2
#define TX_KER_BUF_REGION3_DECODE 3
#define TX_KER_BUF_ADR_LBN 0
#define TX_KER_BUF_ADR_WIDTH EFX_DMA_TYPE_WIDTH(46)
/* Receive descriptor */
#define RX_KER_BUF_SIZE_LBN 48
#define RX_KER_BUF_SIZE_WIDTH 14
#define RX_KER_BUF_REGION_LBN 46
#define RX_KER_BUF_REGION_WIDTH 2
#define RX_KER_BUF_REGION0_DECODE 0
#define RX_KER_BUF_REGION1_DECODE 1
#define RX_KER_BUF_REGION2_DECODE 2
#define RX_KER_BUF_REGION3_DECODE 3
#define RX_KER_BUF_ADR_LBN 0
#define RX_KER_BUF_ADR_WIDTH EFX_DMA_TYPE_WIDTH(46)
/**************************************************************************
*
* Falcon events
*
**************************************************************************
*/
/* Event queue entries */
#define EV_CODE_LBN 60
#define EV_CODE_WIDTH 4
#define RX_IP_EV_DECODE 0
#define TX_IP_EV_DECODE 2
#define DRIVER_EV_DECODE 5
#define GLOBAL_EV_DECODE 6
#define DRV_GEN_EV_DECODE 7
#define WHOLE_EVENT_LBN 0
#define WHOLE_EVENT_WIDTH 64
/* Receive events */
#define RX_EV_PKT_OK_LBN 56
#define RX_EV_PKT_OK_WIDTH 1
#define RX_EV_PAUSE_FRM_ERR_LBN 55
#define RX_EV_PAUSE_FRM_ERR_WIDTH 1
#define RX_EV_BUF_OWNER_ID_ERR_LBN 54
#define RX_EV_BUF_OWNER_ID_ERR_WIDTH 1
#define RX_EV_IF_FRAG_ERR_LBN 53
#define RX_EV_IF_FRAG_ERR_WIDTH 1
#define RX_EV_IP_HDR_CHKSUM_ERR_LBN 52
#define RX_EV_IP_HDR_CHKSUM_ERR_WIDTH 1
#define RX_EV_TCP_UDP_CHKSUM_ERR_LBN 51
#define RX_EV_TCP_UDP_CHKSUM_ERR_WIDTH 1
#define RX_EV_ETH_CRC_ERR_LBN 50
#define RX_EV_ETH_CRC_ERR_WIDTH 1
#define RX_EV_FRM_TRUNC_LBN 49
#define RX_EV_FRM_TRUNC_WIDTH 1
#define RX_EV_DRIB_NIB_LBN 48
#define RX_EV_DRIB_NIB_WIDTH 1
#define RX_EV_TOBE_DISC_LBN 47
#define RX_EV_TOBE_DISC_WIDTH 1
#define RX_EV_PKT_TYPE_LBN 44
#define RX_EV_PKT_TYPE_WIDTH 3
#define RX_EV_PKT_TYPE_ETH_DECODE 0
#define RX_EV_PKT_TYPE_LLC_DECODE 1
#define RX_EV_PKT_TYPE_JUMBO_DECODE 2
#define RX_EV_PKT_TYPE_VLAN_DECODE 3
#define RX_EV_PKT_TYPE_VLAN_LLC_DECODE 4
#define RX_EV_PKT_TYPE_VLAN_JUMBO_DECODE 5
#define RX_EV_HDR_TYPE_LBN 42
#define RX_EV_HDR_TYPE_WIDTH 2
#define RX_EV_HDR_TYPE_TCP_IPV4_DECODE 0
#define RX_EV_HDR_TYPE_UDP_IPV4_DECODE 1
#define RX_EV_HDR_TYPE_OTHER_IP_DECODE 2
#define RX_EV_HDR_TYPE_NON_IP_DECODE 3
#define RX_EV_HDR_TYPE_HAS_CHECKSUMS(hdr_type) \
((hdr_type) <= RX_EV_HDR_TYPE_UDP_IPV4_DECODE)
#define RX_EV_MCAST_HASH_MATCH_LBN 40
#define RX_EV_MCAST_HASH_MATCH_WIDTH 1
#define RX_EV_MCAST_PKT_LBN 39
#define RX_EV_MCAST_PKT_WIDTH 1
#define RX_EV_Q_LABEL_LBN 32
#define RX_EV_Q_LABEL_WIDTH 5
#define RX_EV_JUMBO_CONT_LBN 31
#define RX_EV_JUMBO_CONT_WIDTH 1
#define RX_EV_BYTE_CNT_LBN 16
#define RX_EV_BYTE_CNT_WIDTH 14
#define RX_EV_SOP_LBN 15
#define RX_EV_SOP_WIDTH 1
#define RX_EV_DESC_PTR_LBN 0
#define RX_EV_DESC_PTR_WIDTH 12
/* Transmit events */
#define TX_EV_PKT_ERR_LBN 38
#define TX_EV_PKT_ERR_WIDTH 1
#define TX_EV_Q_LABEL_LBN 32
#define TX_EV_Q_LABEL_WIDTH 5
#define TX_EV_WQ_FF_FULL_LBN 15
#define TX_EV_WQ_FF_FULL_WIDTH 1
#define TX_EV_COMP_LBN 12
#define TX_EV_COMP_WIDTH 1
#define TX_EV_DESC_PTR_LBN 0
#define TX_EV_DESC_PTR_WIDTH 12
/* Driver events */
#define DRIVER_EV_SUB_CODE_LBN 56
#define DRIVER_EV_SUB_CODE_WIDTH 4
#define DRIVER_EV_SUB_DATA_LBN 0
#define DRIVER_EV_SUB_DATA_WIDTH 14
#define TX_DESCQ_FLS_DONE_EV_DECODE 0
#define RX_DESCQ_FLS_DONE_EV_DECODE 1
#define EVQ_INIT_DONE_EV_DECODE 2
#define EVQ_NOT_EN_EV_DECODE 3
#define RX_DESCQ_FLSFF_OVFL_EV_DECODE 4
#define SRM_UPD_DONE_EV_DECODE 5
#define WAKE_UP_EV_DECODE 6
#define TX_PKT_NON_TCP_UDP_DECODE 9
#define TIMER_EV_DECODE 10
#define RX_RECOVERY_EV_DECODE 11
#define RX_DSC_ERROR_EV_DECODE 14
#define TX_DSC_ERROR_EV_DECODE 15
#define DRIVER_EV_TX_DESCQ_ID_LBN 0
#define DRIVER_EV_TX_DESCQ_ID_WIDTH 12
#define DRIVER_EV_RX_FLUSH_FAIL_LBN 12
#define DRIVER_EV_RX_FLUSH_FAIL_WIDTH 1
#define DRIVER_EV_RX_DESCQ_ID_LBN 0
#define DRIVER_EV_RX_DESCQ_ID_WIDTH 12
#define SRM_CLR_EV_DECODE 0
#define SRM_UPD_EV_DECODE 1
#define SRM_ILLCLR_EV_DECODE 2
/* Global events */
#define RX_RECOVERY_B0_LBN 12
#define RX_RECOVERY_B0_WIDTH 1
#define XG_MNT_INTR_B0_LBN 11
#define XG_MNT_INTR_B0_WIDTH 1
#define RX_RECOVERY_A1_LBN 11
#define RX_RECOVERY_A1_WIDTH 1
#define XG_PHY_INTR_LBN 9
#define XG_PHY_INTR_WIDTH 1
#define G_PHY1_INTR_LBN 8
#define G_PHY1_INTR_WIDTH 1
#define G_PHY0_INTR_LBN 7
#define G_PHY0_INTR_WIDTH 1
/* Driver-generated test events */
#define EVQ_MAGIC_LBN 0
#define EVQ_MAGIC_WIDTH 32
/**************************************************************************
*
* Falcon MAC stats
*
**************************************************************************
*
*/
#define GRxGoodOct_offset 0x0
#define GRxBadOct_offset 0x8
#define GRxMissPkt_offset 0x10
#define GRxFalseCRS_offset 0x14
#define GRxPausePkt_offset 0x18
#define GRxBadPkt_offset 0x1C
#define GRxUcastPkt_offset 0x20
#define GRxMcastPkt_offset 0x24
#define GRxBcastPkt_offset 0x28
#define GRxGoodLt64Pkt_offset 0x2C
#define GRxBadLt64Pkt_offset 0x30
#define GRx64Pkt_offset 0x34
#define GRx65to127Pkt_offset 0x38
#define GRx128to255Pkt_offset 0x3C
#define GRx256to511Pkt_offset 0x40
#define GRx512to1023Pkt_offset 0x44
#define GRx1024to15xxPkt_offset 0x48
#define GRx15xxtoJumboPkt_offset 0x4C
#define GRxGtJumboPkt_offset 0x50
#define GRxFcsErr64to15xxPkt_offset 0x54
#define GRxFcsErr15xxtoJumboPkt_offset 0x58
#define GRxFcsErrGtJumboPkt_offset 0x5C
#define GTxGoodBadOct_offset 0x80
#define GTxGoodOct_offset 0x88
#define GTxSglColPkt_offset 0x90
#define GTxMultColPkt_offset 0x94
#define GTxExColPkt_offset 0x98
#define GTxDefPkt_offset 0x9C
#define GTxLateCol_offset 0xA0
#define GTxExDefPkt_offset 0xA4
#define GTxPausePkt_offset 0xA8
#define GTxBadPkt_offset 0xAC
#define GTxUcastPkt_offset 0xB0
#define GTxMcastPkt_offset 0xB4
#define GTxBcastPkt_offset 0xB8
#define GTxLt64Pkt_offset 0xBC
#define GTx64Pkt_offset 0xC0
#define GTx65to127Pkt_offset 0xC4
#define GTx128to255Pkt_offset 0xC8
#define GTx256to511Pkt_offset 0xCC
#define GTx512to1023Pkt_offset 0xD0
#define GTx1024to15xxPkt_offset 0xD4
#define GTx15xxtoJumboPkt_offset 0xD8
#define GTxGtJumboPkt_offset 0xDC
#define GTxNonTcpUdpPkt_offset 0xE0
#define GTxMacSrcErrPkt_offset 0xE4
#define GTxIpSrcErrPkt_offset 0xE8
#define GDmaDone_offset 0xEC
#define XgRxOctets_offset 0x0
#define XgRxOctets_WIDTH 48
#define XgRxOctetsOK_offset 0x8
#define XgRxOctetsOK_WIDTH 48
#define XgRxPkts_offset 0x10
#define XgRxPkts_WIDTH 32
#define XgRxPktsOK_offset 0x14
#define XgRxPktsOK_WIDTH 32
#define XgRxBroadcastPkts_offset 0x18
#define XgRxBroadcastPkts_WIDTH 32
#define XgRxMulticastPkts_offset 0x1C
#define XgRxMulticastPkts_WIDTH 32
#define XgRxUnicastPkts_offset 0x20
#define XgRxUnicastPkts_WIDTH 32
#define XgRxUndersizePkts_offset 0x24
#define XgRxUndersizePkts_WIDTH 32
#define XgRxOversizePkts_offset 0x28
#define XgRxOversizePkts_WIDTH 32
#define XgRxJabberPkts_offset 0x2C
#define XgRxJabberPkts_WIDTH 32
#define XgRxUndersizeFCSerrorPkts_offset 0x30
#define XgRxUndersizeFCSerrorPkts_WIDTH 32
#define XgRxDropEvents_offset 0x34
#define XgRxDropEvents_WIDTH 32
#define XgRxFCSerrorPkts_offset 0x38
#define XgRxFCSerrorPkts_WIDTH 32
#define XgRxAlignError_offset 0x3C
#define XgRxAlignError_WIDTH 32
#define XgRxSymbolError_offset 0x40
#define XgRxSymbolError_WIDTH 32
#define XgRxInternalMACError_offset 0x44
#define XgRxInternalMACError_WIDTH 32
#define XgRxControlPkts_offset 0x48
#define XgRxControlPkts_WIDTH 32
#define XgRxPausePkts_offset 0x4C
#define XgRxPausePkts_WIDTH 32
#define XgRxPkts64Octets_offset 0x50
#define XgRxPkts64Octets_WIDTH 32
#define XgRxPkts65to127Octets_offset 0x54
#define XgRxPkts65to127Octets_WIDTH 32
#define XgRxPkts128to255Octets_offset 0x58
#define XgRxPkts128to255Octets_WIDTH 32
#define XgRxPkts256to511Octets_offset 0x5C
#define XgRxPkts256to511Octets_WIDTH 32
#define XgRxPkts512to1023Octets_offset 0x60
#define XgRxPkts512to1023Octets_WIDTH 32
#define XgRxPkts1024to15xxOctets_offset 0x64
#define XgRxPkts1024to15xxOctets_WIDTH 32
#define XgRxPkts15xxtoMaxOctets_offset 0x68
#define XgRxPkts15xxtoMaxOctets_WIDTH 32
#define XgRxLengthError_offset 0x6C
#define XgRxLengthError_WIDTH 32
#define XgTxPkts_offset 0x80
#define XgTxPkts_WIDTH 32
#define XgTxOctets_offset 0x88
#define XgTxOctets_WIDTH 48
#define XgTxMulticastPkts_offset 0x90
#define XgTxMulticastPkts_WIDTH 32
#define XgTxBroadcastPkts_offset 0x94
#define XgTxBroadcastPkts_WIDTH 32
#define XgTxUnicastPkts_offset 0x98
#define XgTxUnicastPkts_WIDTH 32
#define XgTxControlPkts_offset 0x9C
#define XgTxControlPkts_WIDTH 32
#define XgTxPausePkts_offset 0xA0
#define XgTxPausePkts_WIDTH 32
#define XgTxPkts64Octets_offset 0xA4
#define XgTxPkts64Octets_WIDTH 32
#define XgTxPkts65to127Octets_offset 0xA8
#define XgTxPkts65to127Octets_WIDTH 32
#define XgTxPkts128to255Octets_offset 0xAC
#define XgTxPkts128to255Octets_WIDTH 32
#define XgTxPkts256to511Octets_offset 0xB0
#define XgTxPkts256to511Octets_WIDTH 32
#define XgTxPkts512to1023Octets_offset 0xB4
#define XgTxPkts512to1023Octets_WIDTH 32
#define XgTxPkts1024to15xxOctets_offset 0xB8
#define XgTxPkts1024to15xxOctets_WIDTH 32
#define XgTxPkts1519toMaxOctets_offset 0xBC
#define XgTxPkts1519toMaxOctets_WIDTH 32
#define XgTxUndersizePkts_offset 0xC0
#define XgTxUndersizePkts_WIDTH 32
#define XgTxOversizePkts_offset 0xC4
#define XgTxOversizePkts_WIDTH 32
#define XgTxNonTcpUdpPkt_offset 0xC8
#define XgTxNonTcpUdpPkt_WIDTH 16
#define XgTxMacSrcErrPkt_offset 0xCC
#define XgTxMacSrcErrPkt_WIDTH 16
#define XgTxIpSrcErrPkt_offset 0xD0
#define XgTxIpSrcErrPkt_WIDTH 16
#define XgDmaDone_offset 0xD4
#define FALCON_STATS_NOT_DONE 0x00000000
#define FALCON_STATS_DONE 0xffffffff
/* Interrupt status register bits */
#define FATAL_INT_LBN 64
#define FATAL_INT_WIDTH 1
#define INT_EVQS_LBN 40
#define INT_EVQS_WIDTH 4
/**************************************************************************
*
* Falcon non-volatile configuration
*
**************************************************************************
*/
/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
struct falcon_nvconfig_board_v2 {
__le16 nports;
u8 port0_phy_addr;
u8 port0_phy_type;
u8 port1_phy_addr;
u8 port1_phy_type;
__le16 asic_sub_revision;
__le16 board_revision;
} __attribute__ ((packed));
#define NVCONFIG_BASE 0x300
#define NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
struct falcon_nvconfig {
efx_oword_t ee_vpd_cfg_reg; /* 0x300 */
u8 mac_address[2][8]; /* 0x310 */
efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */
efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
efx_oword_t hw_init_reg; /* 0x350 */
efx_oword_t nic_stat_reg; /* 0x360 */
efx_oword_t glb_ctl_reg; /* 0x370 */
efx_oword_t srm_cfg_reg; /* 0x380 */
efx_oword_t spare_reg; /* 0x390 */
__le16 board_magic_num; /* 0x3A0 */
__le16 board_struct_ver;
__le16 board_checksum;
struct falcon_nvconfig_board_v2 board_v2;
} __attribute__ ((packed));
#endif /* EFX_FALCON_HWDEFS_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_FALCON_IO_H
#define EFX_FALCON_IO_H
#include <linux/io.h>
#include <linux/spinlock.h>
#include "net_driver.h"
/**************************************************************************
*
* Falcon hardware access
*
**************************************************************************
*
* Notes on locking strategy:
*
* Most Falcon registers require 16-byte (or 8-byte, for SRAM
* registers) atomic writes which necessitates locking.
* Under normal operation few writes to the Falcon BAR are made and these
* registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special
* cased to allow 4-byte (hence lockless) accesses.
*
* It *is* safe to write to these 4-byte registers in the middle of an
* access to an 8-byte or 16-byte register. We therefore use a
* spinlock to protect accesses to the larger registers, but no locks
* for the 4-byte registers.
*
* A write barrier is needed to ensure that DW3 is written after DW0/1/2
* due to the way the 16byte registers are "collected" in the Falcon BIU
*
* We also lock when carrying out reads, to ensure consistency of the
* data (made possible since the BIU reads all 128 bits into a cache).
* Reads are very rare, so this isn't a significant performance
* impact. (Most data transferred from NIC to host is DMAed directly
* into host memory).
*
* I/O BAR access uses locks for both reads and writes (but is only provided
* for testing purposes).
*/
/* Special buffer descriptors (Falcon SRAM) */
#define BUF_TBL_KER_A1 0x18000
#define BUF_TBL_KER_B0 0x800000
#if BITS_PER_LONG == 64
#define FALCON_USE_QWORD_IO 1
#endif
#define _falcon_writeq(efx, value, reg) \
__raw_writeq((__force u64) (value), (efx)->membase + (reg))
#define _falcon_writel(efx, value, reg) \
__raw_writel((__force u32) (value), (efx)->membase + (reg))
#define _falcon_readq(efx, reg) \
((__force __le64) __raw_readq((efx)->membase + (reg)))
#define _falcon_readl(efx, reg) \
((__force __le32) __raw_readl((efx)->membase + (reg)))
/* Writes to a normal 16-byte Falcon register, locking as appropriate. */
static inline void falcon_write(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg)
{
unsigned long flags;
EFX_REGDUMP(efx, "writing register %x with " EFX_OWORD_FMT "\n", reg,
EFX_OWORD_VAL(*value));
spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef FALCON_USE_QWORD_IO
_falcon_writeq(efx, value->u64[0], reg + 0);
wmb();
_falcon_writeq(efx, value->u64[1], reg + 8);
#else
_falcon_writel(efx, value->u32[0], reg + 0);
_falcon_writel(efx, value->u32[1], reg + 4);
_falcon_writel(efx, value->u32[2], reg + 8);
wmb();
_falcon_writel(efx, value->u32[3], reg + 12);
#endif
mmiowb();
spin_unlock_irqrestore(&efx->biu_lock, flags);
}
/* Writes to an 8-byte Falcon SRAM register, locking as appropriate. */
static inline void falcon_write_sram(struct efx_nic *efx, efx_qword_t *value,
unsigned int index)
{
unsigned int reg = efx->type->buf_tbl_base + (index * sizeof(*value));
unsigned long flags;
EFX_REGDUMP(efx, "writing SRAM register %x with " EFX_QWORD_FMT "\n",
reg, EFX_QWORD_VAL(*value));
spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef FALCON_USE_QWORD_IO
_falcon_writeq(efx, value->u64[0], reg + 0);
#else
_falcon_writel(efx, value->u32[0], reg + 0);
wmb();
_falcon_writel(efx, value->u32[1], reg + 4);
#endif
mmiowb();
spin_unlock_irqrestore(&efx->biu_lock, flags);
}
/* Write dword to Falcon register that allows partial writes
*
* Some Falcon registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
* TX_DESC_UPD_REG) can be written to as a single dword. This allows
* for lockless writes.
*/
static inline void falcon_writel(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg)
{
EFX_REGDUMP(efx, "writing partial register %x with "EFX_DWORD_FMT"\n",
reg, EFX_DWORD_VAL(*value));
/* No lock required */
_falcon_writel(efx, value->u32[0], reg);
}
/* Read from a Falcon register
*
* This reads an entire 16-byte Falcon register in one go, locking as
* appropriate. It is essential to read the first dword first, as this
* prompts Falcon to load the current value into the shadow register.
*/
static inline void falcon_read(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg)
{
unsigned long flags;
spin_lock_irqsave(&efx->biu_lock, flags);
value->u32[0] = _falcon_readl(efx, reg + 0);
rmb();
value->u32[1] = _falcon_readl(efx, reg + 4);
value->u32[2] = _falcon_readl(efx, reg + 8);
value->u32[3] = _falcon_readl(efx, reg + 12);
spin_unlock_irqrestore(&efx->biu_lock, flags);
EFX_REGDUMP(efx, "read from register %x, got " EFX_OWORD_FMT "\n", reg,
EFX_OWORD_VAL(*value));
}
/* This reads an 8-byte Falcon SRAM entry in one go. */
static inline void falcon_read_sram(struct efx_nic *efx, efx_qword_t *value,
unsigned int index)
{
unsigned int reg = efx->type->buf_tbl_base + (index * sizeof(*value));
unsigned long flags;
spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef FALCON_USE_QWORD_IO
value->u64[0] = _falcon_readq(efx, reg + 0);
#else
value->u32[0] = _falcon_readl(efx, reg + 0);
rmb();
value->u32[1] = _falcon_readl(efx, reg + 4);
#endif
spin_unlock_irqrestore(&efx->biu_lock, flags);
EFX_REGDUMP(efx, "read from SRAM register %x, got "EFX_QWORD_FMT"\n",
reg, EFX_QWORD_VAL(*value));
}
/* Read dword from Falcon register that allows partial writes (sic) */
static inline void falcon_readl(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg)
{
value->u32[0] = _falcon_readl(efx, reg);
EFX_REGDUMP(efx, "read from register %x, got "EFX_DWORD_FMT"\n",
reg, EFX_DWORD_VAL(*value));
}
/* Write to a register forming part of a table */
static inline void falcon_write_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index)
{
falcon_write(efx, value, reg + index * sizeof(efx_oword_t));
}
/* Read to a register forming part of a table */
static inline void falcon_read_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index)
{
falcon_read(efx, value, reg + index * sizeof(efx_oword_t));
}
/* Write to a dword register forming part of a table */
static inline void falcon_writel_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index)
{
falcon_writel(efx, value, reg + index * sizeof(efx_oword_t));
}
/* Page-mapped register block size */
#define FALCON_PAGE_BLOCK_SIZE 0x2000
/* Calculate offset to page-mapped register block */
#define FALCON_PAGED_REG(page, reg) \
((page) * FALCON_PAGE_BLOCK_SIZE + (reg))
/* As for falcon_write(), but for a page-mapped register. */
static inline void falcon_write_page(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int page)
{
falcon_write(efx, value, FALCON_PAGED_REG(page, reg));
}
/* As for falcon_writel(), but for a page-mapped register. */
static inline void falcon_writel_page(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int page)
{
falcon_writel(efx, value, FALCON_PAGED_REG(page, reg));
}
/* Write dword to Falcon page-mapped register with an extra lock.
*
* As for falcon_writel_page(), but for a register that suffers from
* SFC bug 3181. Take out a lock so the BIU collector cannot be
* confused. */
static inline void falcon_writel_page_locked(struct efx_nic *efx,
efx_dword_t *value,
unsigned int reg,
unsigned int page)
{
unsigned long flags;
spin_lock_irqsave(&efx->biu_lock, flags);
falcon_writel(efx, value, FALCON_PAGED_REG(page, reg));
spin_unlock_irqrestore(&efx->biu_lock, flags);
}
#endif /* EFX_FALCON_IO_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/delay.h>
#include "net_driver.h"
#include "efx.h"
#include "falcon.h"
#include "falcon_hwdefs.h"
#include "falcon_io.h"
#include "mac.h"
#include "gmii.h"
#include "mdio_10g.h"
#include "phy.h"
#include "boards.h"
#include "workarounds.h"
/**************************************************************************
*
* MAC register access
*
**************************************************************************/
/* Offset of an XMAC register within Falcon */
#define FALCON_XMAC_REG(mac_reg) \
(FALCON_XMAC_REGBANK + ((mac_reg) * FALCON_XMAC_REG_SIZE))
void falcon_xmac_writel(struct efx_nic *efx,
efx_dword_t *value, unsigned int mac_reg)
{
efx_oword_t temp;
EFX_POPULATE_OWORD_1(temp, MAC_DATA, EFX_DWORD_FIELD(*value, MAC_DATA));
falcon_write(efx, &temp, FALCON_XMAC_REG(mac_reg));
}
void falcon_xmac_readl(struct efx_nic *efx,
efx_dword_t *value, unsigned int mac_reg)
{
efx_oword_t temp;
falcon_read(efx, &temp, FALCON_XMAC_REG(mac_reg));
EFX_POPULATE_DWORD_1(*value, MAC_DATA, EFX_OWORD_FIELD(temp, MAC_DATA));
}
/**************************************************************************
*
* MAC operations
*
*************************************************************************/
static int falcon_reset_xmac(struct efx_nic *efx)
{
efx_dword_t reg;
int count;
EFX_POPULATE_DWORD_1(reg, XM_CORE_RST, 1);
falcon_xmac_writel(efx, &reg, XM_GLB_CFG_REG_MAC);
for (count = 0; count < 10000; count++) { /* wait upto 100ms */
falcon_xmac_readl(efx, &reg, XM_GLB_CFG_REG_MAC);
if (EFX_DWORD_FIELD(reg, XM_CORE_RST) == 0)
return 0;
udelay(10);
}
EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
return -ETIMEDOUT;
}
/* Configure the XAUI driver that is an output from Falcon */
static void falcon_setup_xaui(struct efx_nic *efx)
{
efx_dword_t sdctl, txdrv;
/* Move the XAUI into low power, unless there is no PHY, in
* which case the XAUI will have to drive a cable. */
if (efx->phy_type == PHY_TYPE_NONE)
return;
falcon_xmac_readl(efx, &sdctl, XX_SD_CTL_REG_MAC);
EFX_SET_DWORD_FIELD(sdctl, XX_HIDRVD, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_LODRVD, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_HIDRVC, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_LODRVC, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_HIDRVB, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_LODRVB, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_HIDRVA, XX_SD_CTL_DRV_DEFAULT);
EFX_SET_DWORD_FIELD(sdctl, XX_LODRVA, XX_SD_CTL_DRV_DEFAULT);
falcon_xmac_writel(efx, &sdctl, XX_SD_CTL_REG_MAC);
EFX_POPULATE_DWORD_8(txdrv,
XX_DEQD, XX_TXDRV_DEQ_DEFAULT,
XX_DEQC, XX_TXDRV_DEQ_DEFAULT,
XX_DEQB, XX_TXDRV_DEQ_DEFAULT,
XX_DEQA, XX_TXDRV_DEQ_DEFAULT,
XX_DTXD, XX_TXDRV_DTX_DEFAULT,
XX_DTXC, XX_TXDRV_DTX_DEFAULT,
XX_DTXB, XX_TXDRV_DTX_DEFAULT,
XX_DTXA, XX_TXDRV_DTX_DEFAULT);
falcon_xmac_writel(efx, &txdrv, XX_TXDRV_CTL_REG_MAC);
}
static void falcon_hold_xaui_in_rst(struct efx_nic *efx)
{
efx_dword_t reg;
EFX_ZERO_DWORD(reg);
EFX_SET_DWORD_FIELD(reg, XX_PWRDNA_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_PWRDNB_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_PWRDNC_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_PWRDND_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RSTPLLAB_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RSTPLLCD_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RESETA_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RESETB_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RESETC_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RESETD_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RSTXGXSRX_EN, 1);
EFX_SET_DWORD_FIELD(reg, XX_RSTXGXSTX_EN, 1);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
}
static int _falcon_reset_xaui_a(struct efx_nic *efx)
{
efx_dword_t reg;
falcon_hold_xaui_in_rst(efx);
falcon_xmac_readl(efx, &reg, XX_PWR_RST_REG_MAC);
/* Follow the RAMBUS XAUI data reset sequencing
* Channels A and B first: power down, reset PLL, reset, clear
*/
EFX_SET_DWORD_FIELD(reg, XX_PWRDNA_EN, 0);
EFX_SET_DWORD_FIELD(reg, XX_PWRDNB_EN, 0);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
EFX_SET_DWORD_FIELD(reg, XX_RSTPLLAB_EN, 0);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
EFX_SET_DWORD_FIELD(reg, XX_RESETA_EN, 0);
EFX_SET_DWORD_FIELD(reg, XX_RESETB_EN, 0);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
/* Channels C and D: power down, reset PLL, reset, clear */
EFX_SET_DWORD_FIELD(reg, XX_PWRDNC_EN, 0);
EFX_SET_DWORD_FIELD(reg, XX_PWRDND_EN, 0);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
EFX_SET_DWORD_FIELD(reg, XX_RSTPLLCD_EN, 0);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
EFX_SET_DWORD_FIELD(reg, XX_RESETC_EN, 0);
EFX_SET_DWORD_FIELD(reg, XX_RESETD_EN, 0);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
/* Setup XAUI */
falcon_setup_xaui(efx);
udelay(10);
/* Take XGXS out of reset */
EFX_ZERO_DWORD(reg);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
return 0;
}
static int _falcon_reset_xaui_b(struct efx_nic *efx)
{
efx_dword_t reg;
int count;
EFX_POPULATE_DWORD_1(reg, XX_RST_XX_EN, 1);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
/* Give some time for the link to establish */
for (count = 0; count < 1000; count++) { /* wait upto 10ms */
falcon_xmac_readl(efx, &reg, XX_PWR_RST_REG_MAC);
if (EFX_DWORD_FIELD(reg, XX_RST_XX_EN) == 0) {
falcon_setup_xaui(efx);
return 0;
}
udelay(10);
}
EFX_ERR(efx, "timed out waiting for XAUI/XGXS reset\n");
return -ETIMEDOUT;
}
int falcon_reset_xaui(struct efx_nic *efx)
{
int rc;
if (EFX_WORKAROUND_9388(efx)) {
falcon_hold_xaui_in_rst(efx);
efx->phy_op->reset_xaui(efx);
rc = _falcon_reset_xaui_a(efx);
} else {
rc = _falcon_reset_xaui_b(efx);
}
return rc;
}
static int falcon_xgmii_status(struct efx_nic *efx)
{
efx_dword_t reg;
if (FALCON_REV(efx) < FALCON_REV_B0)
return 1;
/* The ISR latches, so clear it and re-read */
falcon_xmac_readl(efx, &reg, XM_MGT_INT_REG_MAC_B0);
falcon_xmac_readl(efx, &reg, XM_MGT_INT_REG_MAC_B0);
if (EFX_DWORD_FIELD(reg, XM_LCLFLT) ||
EFX_DWORD_FIELD(reg, XM_RMTFLT)) {
EFX_INFO(efx, "MGT_INT: "EFX_DWORD_FMT"\n", EFX_DWORD_VAL(reg));
return 0;
}
return 1;
}
static void falcon_mask_status_intr(struct efx_nic *efx, int enable)
{
efx_dword_t reg;
if (FALCON_REV(efx) < FALCON_REV_B0)
return;
/* Flush the ISR */
if (enable)
falcon_xmac_readl(efx, &reg, XM_MGT_INT_REG_MAC_B0);
EFX_POPULATE_DWORD_2(reg,
XM_MSK_RMTFLT, !enable,
XM_MSK_LCLFLT, !enable);
falcon_xmac_writel(efx, &reg, XM_MGT_INT_MSK_REG_MAC_B0);
}
int falcon_init_xmac(struct efx_nic *efx)
{
int rc;
/* Initialize the PHY first so the clock is around */
rc = efx->phy_op->init(efx);
if (rc)
goto fail1;
rc = falcon_reset_xaui(efx);
if (rc)
goto fail2;
/* Wait again. Give the PHY and MAC time to come back */
schedule_timeout_uninterruptible(HZ / 10);
rc = falcon_reset_xmac(efx);
if (rc)
goto fail2;
falcon_mask_status_intr(efx, 1);
return 0;
fail2:
efx->phy_op->fini(efx);
fail1:
return rc;
}
int falcon_xaui_link_ok(struct efx_nic *efx)
{
efx_dword_t reg;
int align_done, sync_status, link_ok = 0;
/* Read link status */
falcon_xmac_readl(efx, &reg, XX_CORE_STAT_REG_MAC);
align_done = EFX_DWORD_FIELD(reg, XX_ALIGN_DONE);
sync_status = EFX_DWORD_FIELD(reg, XX_SYNC_STAT);
if (align_done && (sync_status == XX_SYNC_STAT_DECODE_SYNCED))
link_ok = 1;
/* Clear link status ready for next read */
EFX_SET_DWORD_FIELD(reg, XX_COMMA_DET, XX_COMMA_DET_RESET);
EFX_SET_DWORD_FIELD(reg, XX_CHARERR, XX_CHARERR_RESET);
EFX_SET_DWORD_FIELD(reg, XX_DISPERR, XX_DISPERR_RESET);
falcon_xmac_writel(efx, &reg, XX_CORE_STAT_REG_MAC);
/* If the link is up, then check the phy side of the xaui link
* (error conditions from the wire side propoagate back through
* the phy to the xaui side). */
if (efx->link_up && link_ok) {
int has_phyxs = efx->phy_op->mmds & (1 << MDIO_MMD_PHYXS);
if (has_phyxs)
link_ok = mdio_clause45_phyxgxs_lane_sync(efx);
}
/* If the PHY and XAUI links are up, then check the mac's xgmii
* fault state */
if (efx->link_up && link_ok)
link_ok = falcon_xgmii_status(efx);
return link_ok;
}
static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
{
unsigned int max_frame_len;
efx_dword_t reg;
int rx_fc = (efx->flow_control & EFX_FC_RX) ? 1 : 0;
/* Configure MAC - cut-thru mode is hard wired on */
EFX_POPULATE_DWORD_3(reg,
XM_RX_JUMBO_MODE, 1,
XM_TX_STAT_EN, 1,
XM_RX_STAT_EN, 1);
falcon_xmac_writel(efx, &reg, XM_GLB_CFG_REG_MAC);
/* Configure TX */
EFX_POPULATE_DWORD_6(reg,
XM_TXEN, 1,
XM_TX_PRMBL, 1,
XM_AUTO_PAD, 1,
XM_TXCRC, 1,
XM_FCNTL, 1,
XM_IPG, 0x3);
falcon_xmac_writel(efx, &reg, XM_TX_CFG_REG_MAC);
/* Configure RX */
EFX_POPULATE_DWORD_5(reg,
XM_RXEN, 1,
XM_AUTO_DEPAD, 0,
XM_ACPT_ALL_MCAST, 1,
XM_ACPT_ALL_UCAST, efx->promiscuous,
XM_PASS_CRC_ERR, 1);
falcon_xmac_writel(efx, &reg, XM_RX_CFG_REG_MAC);
/* Set frame length */
max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
EFX_POPULATE_DWORD_1(reg, XM_MAX_RX_FRM_SIZE, max_frame_len);
falcon_xmac_writel(efx, &reg, XM_RX_PARAM_REG_MAC);
EFX_POPULATE_DWORD_2(reg,
XM_MAX_TX_FRM_SIZE, max_frame_len,
XM_TX_JUMBO_MODE, 1);
falcon_xmac_writel(efx, &reg, XM_TX_PARAM_REG_MAC);
EFX_POPULATE_DWORD_2(reg,
XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
XM_DIS_FCNTL, rx_fc ? 0 : 1);
falcon_xmac_writel(efx, &reg, XM_FC_REG_MAC);
/* Set MAC address */
EFX_POPULATE_DWORD_4(reg,
XM_ADR_0, efx->net_dev->dev_addr[0],
XM_ADR_1, efx->net_dev->dev_addr[1],
XM_ADR_2, efx->net_dev->dev_addr[2],
XM_ADR_3, efx->net_dev->dev_addr[3]);
falcon_xmac_writel(efx, &reg, XM_ADR_LO_REG_MAC);
EFX_POPULATE_DWORD_2(reg,
XM_ADR_4, efx->net_dev->dev_addr[4],
XM_ADR_5, efx->net_dev->dev_addr[5]);
falcon_xmac_writel(efx, &reg, XM_ADR_HI_REG_MAC);
}
/* Try and bring the Falcon side of the Falcon-Phy XAUI link fails
* to come back up. Bash it until it comes back up */
static int falcon_check_xaui_link_up(struct efx_nic *efx)
{
int max_tries, tries;
tries = EFX_WORKAROUND_5147(efx) ? 5 : 1;
max_tries = tries;
if (efx->phy_type == PHY_TYPE_NONE)
return 0;
while (tries) {
if (falcon_xaui_link_ok(efx))
return 1;
EFX_LOG(efx, "%s Clobbering XAUI (%d tries left).\n",
__func__, tries);
(void) falcon_reset_xaui(efx);
udelay(200);
tries--;
}
EFX_ERR(efx, "Failed to bring XAUI link back up in %d tries!\n",
max_tries);
return 0;
}
void falcon_reconfigure_xmac(struct efx_nic *efx)
{
int xaui_link_ok;
falcon_mask_status_intr(efx, 0);
falcon_deconfigure_mac_wrapper(efx);
efx->phy_op->reconfigure(efx);
falcon_reconfigure_xmac_core(efx);
falcon_reconfigure_mac_wrapper(efx);
/* Ensure XAUI link is up */
xaui_link_ok = falcon_check_xaui_link_up(efx);
if (xaui_link_ok && efx->link_up)
falcon_mask_status_intr(efx, 1);
}
void falcon_fini_xmac(struct efx_nic *efx)
{
/* Isolate the MAC - PHY */
falcon_deconfigure_mac_wrapper(efx);
/* Potentially power down the PHY */
efx->phy_op->fini(efx);
}
void falcon_update_stats_xmac(struct efx_nic *efx)
{
struct efx_mac_stats *mac_stats = &efx->mac_stats;
int rc;
rc = falcon_dma_stats(efx, XgDmaDone_offset);
if (rc)
return;
/* Update MAC stats from DMAed values */
FALCON_STAT(efx, XgRxOctets, rx_bytes);
FALCON_STAT(efx, XgRxOctetsOK, rx_good_bytes);
FALCON_STAT(efx, XgRxPkts, rx_packets);
FALCON_STAT(efx, XgRxPktsOK, rx_good);
FALCON_STAT(efx, XgRxBroadcastPkts, rx_broadcast);
FALCON_STAT(efx, XgRxMulticastPkts, rx_multicast);
FALCON_STAT(efx, XgRxUnicastPkts, rx_unicast);
FALCON_STAT(efx, XgRxUndersizePkts, rx_lt64);
FALCON_STAT(efx, XgRxOversizePkts, rx_gtjumbo);
FALCON_STAT(efx, XgRxJabberPkts, rx_bad_gtjumbo);
FALCON_STAT(efx, XgRxUndersizeFCSerrorPkts, rx_bad_lt64);
FALCON_STAT(efx, XgRxDropEvents, rx_overflow);
FALCON_STAT(efx, XgRxFCSerrorPkts, rx_bad);
FALCON_STAT(efx, XgRxAlignError, rx_align_error);
FALCON_STAT(efx, XgRxSymbolError, rx_symbol_error);
FALCON_STAT(efx, XgRxInternalMACError, rx_internal_error);
FALCON_STAT(efx, XgRxControlPkts, rx_control);
FALCON_STAT(efx, XgRxPausePkts, rx_pause);
FALCON_STAT(efx, XgRxPkts64Octets, rx_64);
FALCON_STAT(efx, XgRxPkts65to127Octets, rx_65_to_127);
FALCON_STAT(efx, XgRxPkts128to255Octets, rx_128_to_255);
FALCON_STAT(efx, XgRxPkts256to511Octets, rx_256_to_511);
FALCON_STAT(efx, XgRxPkts512to1023Octets, rx_512_to_1023);
FALCON_STAT(efx, XgRxPkts1024to15xxOctets, rx_1024_to_15xx);
FALCON_STAT(efx, XgRxPkts15xxtoMaxOctets, rx_15xx_to_jumbo);
FALCON_STAT(efx, XgRxLengthError, rx_length_error);
FALCON_STAT(efx, XgTxPkts, tx_packets);
FALCON_STAT(efx, XgTxOctets, tx_bytes);
FALCON_STAT(efx, XgTxMulticastPkts, tx_multicast);
FALCON_STAT(efx, XgTxBroadcastPkts, tx_broadcast);
FALCON_STAT(efx, XgTxUnicastPkts, tx_unicast);
FALCON_STAT(efx, XgTxControlPkts, tx_control);
FALCON_STAT(efx, XgTxPausePkts, tx_pause);
FALCON_STAT(efx, XgTxPkts64Octets, tx_64);
FALCON_STAT(efx, XgTxPkts65to127Octets, tx_65_to_127);
FALCON_STAT(efx, XgTxPkts128to255Octets, tx_128_to_255);
FALCON_STAT(efx, XgTxPkts256to511Octets, tx_256_to_511);
FALCON_STAT(efx, XgTxPkts512to1023Octets, tx_512_to_1023);
FALCON_STAT(efx, XgTxPkts1024to15xxOctets, tx_1024_to_15xx);
FALCON_STAT(efx, XgTxPkts1519toMaxOctets, tx_15xx_to_jumbo);
FALCON_STAT(efx, XgTxUndersizePkts, tx_lt64);
FALCON_STAT(efx, XgTxOversizePkts, tx_gtjumbo);
FALCON_STAT(efx, XgTxNonTcpUdpPkt, tx_non_tcpudp);
FALCON_STAT(efx, XgTxMacSrcErrPkt, tx_mac_src_error);
FALCON_STAT(efx, XgTxIpSrcErrPkt, tx_ip_src_error);
/* Update derived statistics */
mac_stats->tx_good_bytes =
(mac_stats->tx_bytes - mac_stats->tx_bad_bytes);
mac_stats->rx_bad_bytes =
(mac_stats->rx_bytes - mac_stats->rx_good_bytes);
}
#define EFX_XAUI_RETRAIN_MAX 8
int falcon_check_xmac(struct efx_nic *efx)
{
unsigned xaui_link_ok;
int rc;
falcon_mask_status_intr(efx, 0);
xaui_link_ok = falcon_xaui_link_ok(efx);
if (EFX_WORKAROUND_5147(efx) && !xaui_link_ok)
(void) falcon_reset_xaui(efx);
/* Call the PHY check_hw routine */
rc = efx->phy_op->check_hw(efx);
/* Unmask interrupt if everything was (and still is) ok */
if (xaui_link_ok && efx->link_up)
falcon_mask_status_intr(efx, 1);
return rc;
}
/* Simulate a PHY event */
void falcon_xmac_sim_phy_event(struct efx_nic *efx)
{
efx_qword_t phy_event;
EFX_POPULATE_QWORD_2(phy_event,
EV_CODE, GLOBAL_EV_DECODE,
XG_PHY_INTR, 1);
falcon_generate_event(&efx->channel[0], &phy_event);
}
int falcon_xmac_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
mdio_clause45_get_settings(efx, ecmd);
ecmd->transceiver = XCVR_INTERNAL;
ecmd->phy_address = efx->mii.phy_id;
ecmd->autoneg = AUTONEG_DISABLE;
ecmd->duplex = DUPLEX_FULL;
return 0;
}
int falcon_xmac_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
if (ecmd->transceiver != XCVR_INTERNAL)
return -EINVAL;
if (ecmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (ecmd->duplex != DUPLEX_FULL)
return -EINVAL;
return mdio_clause45_set_settings(efx, ecmd);
}
int falcon_xmac_set_pause(struct efx_nic *efx, enum efx_fc_type flow_control)
{
int reset;
if (flow_control & EFX_FC_AUTO) {
EFX_LOG(efx, "10G does not support flow control "
"autonegotiation\n");
return -EINVAL;
}
if ((flow_control & EFX_FC_TX) && !(flow_control & EFX_FC_RX))
return -EINVAL;
/* TX flow control may automatically turn itself off if the
* link partner (intermittently) stops responding to pause
* frames. There isn't any indication that this has happened,
* so the best we do is leave it up to the user to spot this
* and fix it be cycling transmit flow control on this end. */
reset = ((flow_control & EFX_FC_TX) &&
!(efx->flow_control & EFX_FC_TX));
if (EFX_WORKAROUND_11482(efx) && reset) {
if (FALCON_REV(efx) >= FALCON_REV_B0) {
/* Recover by resetting the EM block */
if (efx->link_up)
falcon_drain_tx_fifo(efx);
} else {
/* Schedule a reset to recover */
efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
}
}
efx->flow_control = flow_control;
return 0;
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_GMII_H
#define EFX_GMII_H
/*
* GMII interface
*/
#include <linux/mii.h>
/* GMII registers, excluding registers already defined as MII
* registers in mii.h
*/
#define GMII_IER 0x12 /* Interrupt enable register */
#define GMII_ISR 0x13 /* Interrupt status register */
/* Interrupt enable register */
#define IER_ANEG_ERR 0x8000 /* Bit 15 - autonegotiation error */
#define IER_SPEED_CHG 0x4000 /* Bit 14 - speed changed */
#define IER_DUPLEX_CHG 0x2000 /* Bit 13 - duplex changed */
#define IER_PAGE_RCVD 0x1000 /* Bit 12 - page received */
#define IER_ANEG_DONE 0x0800 /* Bit 11 - autonegotiation complete */
#define IER_LINK_CHG 0x0400 /* Bit 10 - link status changed */
#define IER_SYM_ERR 0x0200 /* Bit 9 - symbol error */
#define IER_FALSE_CARRIER 0x0100 /* Bit 8 - false carrier */
#define IER_FIFO_ERR 0x0080 /* Bit 7 - FIFO over/underflow */
#define IER_MDIX_CHG 0x0040 /* Bit 6 - MDI crossover changed */
#define IER_DOWNSHIFT 0x0020 /* Bit 5 - downshift */
#define IER_ENERGY 0x0010 /* Bit 4 - energy detect */
#define IER_DTE_POWER 0x0004 /* Bit 2 - DTE power detect */
#define IER_POLARITY_CHG 0x0002 /* Bit 1 - polarity changed */
#define IER_JABBER 0x0001 /* Bit 0 - jabber */
/* Interrupt status register */
#define ISR_ANEG_ERR 0x8000 /* Bit 15 - autonegotiation error */
#define ISR_SPEED_CHG 0x4000 /* Bit 14 - speed changed */
#define ISR_DUPLEX_CHG 0x2000 /* Bit 13 - duplex changed */
#define ISR_PAGE_RCVD 0x1000 /* Bit 12 - page received */
#define ISR_ANEG_DONE 0x0800 /* Bit 11 - autonegotiation complete */
#define ISR_LINK_CHG 0x0400 /* Bit 10 - link status changed */
#define ISR_SYM_ERR 0x0200 /* Bit 9 - symbol error */
#define ISR_FALSE_CARRIER 0x0100 /* Bit 8 - false carrier */
#define ISR_FIFO_ERR 0x0080 /* Bit 7 - FIFO over/underflow */
#define ISR_MDIX_CHG 0x0040 /* Bit 6 - MDI crossover changed */
#define ISR_DOWNSHIFT 0x0020 /* Bit 5 - downshift */
#define ISR_ENERGY 0x0010 /* Bit 4 - energy detect */
#define ISR_DTE_POWER 0x0004 /* Bit 2 - DTE power detect */
#define ISR_POLARITY_CHG 0x0002 /* Bit 1 - polarity changed */
#define ISR_JABBER 0x0001 /* Bit 0 - jabber */
/* Logically extended advertisement register */
#define GM_ADVERTISE_SLCT ADVERTISE_SLCT
#define GM_ADVERTISE_CSMA ADVERTISE_CSMA
#define GM_ADVERTISE_10HALF ADVERTISE_10HALF
#define GM_ADVERTISE_1000XFULL ADVERTISE_1000XFULL
#define GM_ADVERTISE_10FULL ADVERTISE_10FULL
#define GM_ADVERTISE_1000XHALF ADVERTISE_1000XHALF
#define GM_ADVERTISE_100HALF ADVERTISE_100HALF
#define GM_ADVERTISE_1000XPAUSE ADVERTISE_1000XPAUSE
#define GM_ADVERTISE_100FULL ADVERTISE_100FULL
#define GM_ADVERTISE_1000XPSE_ASYM ADVERTISE_1000XPSE_ASYM
#define GM_ADVERTISE_100BASE4 ADVERTISE_100BASE4
#define GM_ADVERTISE_PAUSE_CAP ADVERTISE_PAUSE_CAP
#define GM_ADVERTISE_PAUSE_ASYM ADVERTISE_PAUSE_ASYM
#define GM_ADVERTISE_RESV ADVERTISE_RESV
#define GM_ADVERTISE_RFAULT ADVERTISE_RFAULT
#define GM_ADVERTISE_LPACK ADVERTISE_LPACK
#define GM_ADVERTISE_NPAGE ADVERTISE_NPAGE
#define GM_ADVERTISE_1000FULL (ADVERTISE_1000FULL << 8)
#define GM_ADVERTISE_1000HALF (ADVERTISE_1000HALF << 8)
#define GM_ADVERTISE_1000 (GM_ADVERTISE_1000FULL | \
GM_ADVERTISE_1000HALF)
#define GM_ADVERTISE_FULL (GM_ADVERTISE_1000FULL | \
ADVERTISE_FULL)
#define GM_ADVERTISE_ALL (GM_ADVERTISE_1000FULL | \
GM_ADVERTISE_1000HALF | \
ADVERTISE_ALL)
/* Logically extended link partner ability register */
#define GM_LPA_SLCT LPA_SLCT
#define GM_LPA_10HALF LPA_10HALF
#define GM_LPA_1000XFULL LPA_1000XFULL
#define GM_LPA_10FULL LPA_10FULL
#define GM_LPA_1000XHALF LPA_1000XHALF
#define GM_LPA_100HALF LPA_100HALF
#define GM_LPA_1000XPAUSE LPA_1000XPAUSE
#define GM_LPA_100FULL LPA_100FULL
#define GM_LPA_1000XPAUSE_ASYM LPA_1000XPAUSE_ASYM
#define GM_LPA_100BASE4 LPA_100BASE4
#define GM_LPA_PAUSE_CAP LPA_PAUSE_CAP
#define GM_LPA_PAUSE_ASYM LPA_PAUSE_ASYM
#define GM_LPA_RESV LPA_RESV
#define GM_LPA_RFAULT LPA_RFAULT
#define GM_LPA_LPACK LPA_LPACK
#define GM_LPA_NPAGE LPA_NPAGE
#define GM_LPA_1000FULL (LPA_1000FULL << 6)
#define GM_LPA_1000HALF (LPA_1000HALF << 6)
#define GM_LPA_10000FULL 0x00040000
#define GM_LPA_10000HALF 0x00080000
#define GM_LPA_DUPLEX (GM_LPA_1000FULL | GM_LPA_10000FULL \
| LPA_DUPLEX)
#define GM_LPA_10 (LPA_10FULL | LPA_10HALF)
#define GM_LPA_100 LPA_100
#define GM_LPA_1000 (GM_LPA_1000FULL | GM_LPA_1000HALF)
#define GM_LPA_10000 (GM_LPA_10000FULL | GM_LPA_10000HALF)
/* Retrieve GMII autonegotiation advertised abilities
*
* The MII advertisment register (MII_ADVERTISE) is logically extended
* to include advertisement bits ADVERTISE_1000FULL and
* ADVERTISE_1000HALF from MII_CTRL1000. The result can be tested
* against the GM_ADVERTISE_xxx constants.
*/
static inline unsigned int gmii_advertised(struct mii_if_info *gmii)
{
unsigned int advertise;
unsigned int ctrl1000;
advertise = gmii->mdio_read(gmii->dev, gmii->phy_id, MII_ADVERTISE);
ctrl1000 = gmii->mdio_read(gmii->dev, gmii->phy_id, MII_CTRL1000);
return (((ctrl1000 << 8) & GM_ADVERTISE_1000) | advertise);
}
/* Retrieve GMII autonegotiation link partner abilities
*
* The MII link partner ability register (MII_LPA) is logically
* extended by adding bits LPA_1000HALF and LPA_1000FULL from
* MII_STAT1000. The result can be tested against the GM_LPA_xxx
* constants.
*/
static inline unsigned int gmii_lpa(struct mii_if_info *gmii)
{
unsigned int lpa;
unsigned int stat1000;
lpa = gmii->mdio_read(gmii->dev, gmii->phy_id, MII_LPA);
stat1000 = gmii->mdio_read(gmii->dev, gmii->phy_id, MII_STAT1000);
return (((stat1000 << 6) & GM_LPA_1000) | lpa);
}
/* Calculate GMII autonegotiated link technology
*
* "negotiated" should be the result of gmii_advertised() logically
* ANDed with the result of gmii_lpa().
*
* "tech" will be negotiated with the unused bits masked out. For
* example, if both ends of the link are capable of both
* GM_LPA_1000FULL and GM_LPA_100FULL, GM_LPA_100FULL will be masked
* out.
*/
static inline unsigned int gmii_nway_result(unsigned int negotiated)
{
unsigned int other_bits;
/* Mask out the speed and duplexity bits */
other_bits = negotiated & ~(GM_LPA_10 | GM_LPA_100 | GM_LPA_1000);
if (negotiated & GM_LPA_1000FULL)
return (other_bits | GM_LPA_1000FULL);
else if (negotiated & GM_LPA_1000HALF)
return (other_bits | GM_LPA_1000HALF);
else
return (other_bits | mii_nway_result(negotiated));
}
/* Calculate GMII non-autonegotiated link technology
*
* This provides an equivalent to gmii_nway_result for the case when
* autonegotiation is disabled.
*/
static inline unsigned int gmii_forced_result(unsigned int bmcr)
{
unsigned int result;
int full_duplex;
full_duplex = bmcr & BMCR_FULLDPLX;
if (bmcr & BMCR_SPEED1000)
result = full_duplex ? GM_LPA_1000FULL : GM_LPA_1000HALF;
else if (bmcr & BMCR_SPEED100)
result = full_duplex ? GM_LPA_100FULL : GM_LPA_100HALF;
else
result = full_duplex ? GM_LPA_10FULL : GM_LPA_10HALF;
return result;
}
#endif /* EFX_GMII_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/delay.h>
#include "net_driver.h"
#include "i2c-direct.h"
/*
* I2C data (SDA) and clock (SCL) line read/writes with appropriate
* delays.
*/
static inline void setsda(struct efx_i2c_interface *i2c, int state)
{
udelay(i2c->op->udelay);
i2c->sda = state;
i2c->op->setsda(i2c);
udelay(i2c->op->udelay);
}
static inline void setscl(struct efx_i2c_interface *i2c, int state)
{
udelay(i2c->op->udelay);
i2c->scl = state;
i2c->op->setscl(i2c);
udelay(i2c->op->udelay);
}
static inline int getsda(struct efx_i2c_interface *i2c)
{
int sda;
udelay(i2c->op->udelay);
sda = i2c->op->getsda(i2c);
udelay(i2c->op->udelay);
return sda;
}
static inline int getscl(struct efx_i2c_interface *i2c)
{
int scl;
udelay(i2c->op->udelay);
scl = i2c->op->getscl(i2c);
udelay(i2c->op->udelay);
return scl;
}
/*
* I2C low-level protocol operations
*
*/
static inline void i2c_release(struct efx_i2c_interface *i2c)
{
EFX_WARN_ON_PARANOID(!i2c->scl);
EFX_WARN_ON_PARANOID(!i2c->sda);
/* Devices may time out if operations do not end */
setscl(i2c, 1);
setsda(i2c, 1);
EFX_BUG_ON_PARANOID(getsda(i2c) != 1);
EFX_BUG_ON_PARANOID(getscl(i2c) != 1);
}
static inline void i2c_start(struct efx_i2c_interface *i2c)
{
/* We may be restarting immediately after a {send,recv}_bit,
* so SCL will not necessarily already be high.
*/
EFX_WARN_ON_PARANOID(!i2c->sda);
setscl(i2c, 1);
setsda(i2c, 0);
setscl(i2c, 0);
setsda(i2c, 1);
}
static inline void i2c_send_bit(struct efx_i2c_interface *i2c, int bit)
{
EFX_WARN_ON_PARANOID(i2c->scl != 0);
setsda(i2c, bit);
setscl(i2c, 1);
setscl(i2c, 0);
setsda(i2c, 1);
}
static inline int i2c_recv_bit(struct efx_i2c_interface *i2c)
{
int bit;
EFX_WARN_ON_PARANOID(i2c->scl != 0);
EFX_WARN_ON_PARANOID(!i2c->sda);
setscl(i2c, 1);
bit = getsda(i2c);
setscl(i2c, 0);
return bit;
}
static inline void i2c_stop(struct efx_i2c_interface *i2c)
{
EFX_WARN_ON_PARANOID(i2c->scl != 0);
setsda(i2c, 0);
setscl(i2c, 1);
setsda(i2c, 1);
}
/*
* I2C mid-level protocol operations
*
*/
/* Sends a byte via the I2C bus and checks for an acknowledgement from
* the slave device.
*/
static int i2c_send_byte(struct efx_i2c_interface *i2c, u8 byte)
{
int i;
/* Send byte */
for (i = 0; i < 8; i++) {
i2c_send_bit(i2c, !!(byte & 0x80));
byte <<= 1;
}
/* Check for acknowledgement from slave */
return (i2c_recv_bit(i2c) == 0 ? 0 : -EIO);
}
/* Receives a byte via the I2C bus and sends ACK/NACK to the slave device. */
static u8 i2c_recv_byte(struct efx_i2c_interface *i2c, int ack)
{
u8 value = 0;
int i;
/* Receive byte */
for (i = 0; i < 8; i++)
value = (value << 1) | i2c_recv_bit(i2c);
/* Send ACK/NACK */
i2c_send_bit(i2c, (ack ? 0 : 1));
return value;
}
/* Calculate command byte for a read operation */
static inline u8 i2c_read_cmd(u8 device_id)
{
return ((device_id << 1) | 1);
}
/* Calculate command byte for a write operation */
static inline u8 i2c_write_cmd(u8 device_id)
{
return ((device_id << 1) | 0);
}
int efx_i2c_check_presence(struct efx_i2c_interface *i2c, u8 device_id)
{
int rc;
/* If someone is driving the bus low we just give up. */
if (getsda(i2c) == 0 || getscl(i2c) == 0) {
EFX_ERR(i2c->efx, "%s someone is holding the I2C bus low."
" Giving up.\n", __func__);
return -EFAULT;
}
/* Pretend to initiate a device write */
i2c_start(i2c);
rc = i2c_send_byte(i2c, i2c_write_cmd(device_id));
if (rc)
goto out;
out:
i2c_stop(i2c);
i2c_release(i2c);
return rc;
}
/* This performs a fast read of one or more consecutive bytes from an
* I2C device. Not all devices support consecutive reads of more than
* one byte; for these devices use efx_i2c_read() instead.
*/
int efx_i2c_fast_read(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, u8 *data, unsigned int len)
{
int i;
int rc;
EFX_WARN_ON_PARANOID(getsda(i2c) != 1);
EFX_WARN_ON_PARANOID(getscl(i2c) != 1);
EFX_WARN_ON_PARANOID(data == NULL);
EFX_WARN_ON_PARANOID(len < 1);
/* Select device and starting offset */
i2c_start(i2c);
rc = i2c_send_byte(i2c, i2c_write_cmd(device_id));
if (rc)
goto out;
rc = i2c_send_byte(i2c, offset);
if (rc)
goto out;
/* Read data from device */
i2c_start(i2c);
rc = i2c_send_byte(i2c, i2c_read_cmd(device_id));
if (rc)
goto out;
for (i = 0; i < (len - 1); i++)
/* Read and acknowledge all but the last byte */
data[i] = i2c_recv_byte(i2c, 1);
/* Read last byte with no acknowledgement */
data[i] = i2c_recv_byte(i2c, 0);
out:
i2c_stop(i2c);
i2c_release(i2c);
return rc;
}
/* This performs a fast write of one or more consecutive bytes to an
* I2C device. Not all devices support consecutive writes of more
* than one byte; for these devices use efx_i2c_write() instead.
*/
int efx_i2c_fast_write(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset,
const u8 *data, unsigned int len)
{
int i;
int rc;
EFX_WARN_ON_PARANOID(getsda(i2c) != 1);
EFX_WARN_ON_PARANOID(getscl(i2c) != 1);
EFX_WARN_ON_PARANOID(len < 1);
/* Select device and starting offset */
i2c_start(i2c);
rc = i2c_send_byte(i2c, i2c_write_cmd(device_id));
if (rc)
goto out;
rc = i2c_send_byte(i2c, offset);
if (rc)
goto out;
/* Write data to device */
for (i = 0; i < len; i++) {
rc = i2c_send_byte(i2c, data[i]);
if (rc)
goto out;
}
out:
i2c_stop(i2c);
i2c_release(i2c);
return rc;
}
/* I2C byte-by-byte read */
int efx_i2c_read(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, u8 *data, unsigned int len)
{
int rc;
/* i2c_fast_read with length 1 is a single byte read */
for (; len > 0; offset++, data++, len--) {
rc = efx_i2c_fast_read(i2c, device_id, offset, data, 1);
if (rc)
return rc;
}
return 0;
}
/* I2C byte-by-byte write */
int efx_i2c_write(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, const u8 *data, unsigned int len)
{
int rc;
/* i2c_fast_write with length 1 is a single byte write */
for (; len > 0; offset++, data++, len--) {
rc = efx_i2c_fast_write(i2c, device_id, offset, data, 1);
if (rc)
return rc;
mdelay(i2c->op->mdelay);
}
return 0;
}
/* This is just a slightly neater wrapper round efx_i2c_fast_write
* in the case where the target doesn't take an offset
*/
int efx_i2c_send_bytes(struct efx_i2c_interface *i2c,
u8 device_id, const u8 *data, unsigned int len)
{
return efx_i2c_fast_write(i2c, device_id, data[0], data + 1, len - 1);
}
/* I2C receiving of bytes - does not send an offset byte */
int efx_i2c_recv_bytes(struct efx_i2c_interface *i2c, u8 device_id,
u8 *bytes, unsigned int len)
{
int i;
int rc;
EFX_WARN_ON_PARANOID(getsda(i2c) != 1);
EFX_WARN_ON_PARANOID(getscl(i2c) != 1);
EFX_WARN_ON_PARANOID(len < 1);
/* Select device */
i2c_start(i2c);
/* Read data from device */
rc = i2c_send_byte(i2c, i2c_read_cmd(device_id));
if (rc)
goto out;
for (i = 0; i < (len - 1); i++)
/* Read and acknowledge all but the last byte */
bytes[i] = i2c_recv_byte(i2c, 1);
/* Read last byte with no acknowledgement */
bytes[i] = i2c_recv_byte(i2c, 0);
out:
i2c_stop(i2c);
i2c_release(i2c);
return rc;
}
/* SMBus and some I2C devices will time out if the I2C clock is
* held low for too long. This is most likely to happen in virtualised
* systems (when the entire domain is descheduled) but could in
* principle happen due to preemption on any busy system (and given the
* potential length of an I2C operation turning preemption off is not
* a sensible option). The following functions deal with the failure by
* retrying up to a fixed number of times.
*/
#define I2C_MAX_RETRIES (10)
/* The timeout problem will result in -EIO. If the wrapped function
* returns any other error, pass this up and do not retry. */
#define RETRY_WRAPPER(_f) \
int retries = I2C_MAX_RETRIES; \
int rc; \
while (retries) { \
rc = _f; \
if (rc != -EIO) \
return rc; \
retries--; \
} \
return rc; \
int efx_i2c_check_presence_retry(struct efx_i2c_interface *i2c, u8 device_id)
{
RETRY_WRAPPER(efx_i2c_check_presence(i2c, device_id))
}
int efx_i2c_read_retry(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, u8 *data, unsigned int len)
{
RETRY_WRAPPER(efx_i2c_read(i2c, device_id, offset, data, len))
}
int efx_i2c_write_retry(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, const u8 *data, unsigned int len)
{
RETRY_WRAPPER(efx_i2c_write(i2c, device_id, offset, data, len))
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005 Fen Systems Ltd.
* Copyright 2006 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_I2C_DIRECT_H
#define EFX_I2C_DIRECT_H
#include "net_driver.h"
/*
* Direct control of an I2C bus
*/
struct efx_i2c_interface;
/**
* struct efx_i2c_bit_operations - I2C bus direct control methods
*
* I2C bus direct control methods.
*
* @setsda: Set state of SDA line
* @setscl: Set state of SCL line
* @getsda: Get state of SDA line
* @getscl: Get state of SCL line
* @udelay: Delay between each bit operation
* @mdelay: Delay between each byte write
*/
struct efx_i2c_bit_operations {
void (*setsda) (struct efx_i2c_interface *i2c);
void (*setscl) (struct efx_i2c_interface *i2c);
int (*getsda) (struct efx_i2c_interface *i2c);
int (*getscl) (struct efx_i2c_interface *i2c);
unsigned int udelay;
unsigned int mdelay;
};
/**
* struct efx_i2c_interface - an I2C interface
*
* An I2C interface.
*
* @efx: Attached Efx NIC
* @op: I2C bus control methods
* @sda: Current output state of SDA line
* @scl: Current output state of SCL line
*/
struct efx_i2c_interface {
struct efx_nic *efx;
struct efx_i2c_bit_operations *op;
unsigned int sda:1;
unsigned int scl:1;
};
extern int efx_i2c_check_presence(struct efx_i2c_interface *i2c, u8 device_id);
extern int efx_i2c_fast_read(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset,
u8 *data, unsigned int len);
extern int efx_i2c_fast_write(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset,
const u8 *data, unsigned int len);
extern int efx_i2c_read(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, u8 *data, unsigned int len);
extern int efx_i2c_write(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset,
const u8 *data, unsigned int len);
extern int efx_i2c_send_bytes(struct efx_i2c_interface *i2c, u8 device_id,
const u8 *bytes, unsigned int len);
extern int efx_i2c_recv_bytes(struct efx_i2c_interface *i2c, u8 device_id,
u8 *bytes, unsigned int len);
/* Versions of the API that retry on failure. */
extern int efx_i2c_check_presence_retry(struct efx_i2c_interface *i2c,
u8 device_id);
extern int efx_i2c_read_retry(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset, u8 *data, unsigned int len);
extern int efx_i2c_write_retry(struct efx_i2c_interface *i2c,
u8 device_id, u8 offset,
const u8 *data, unsigned int len);
#endif /* EFX_I2C_DIRECT_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_MAC_H
#define EFX_MAC_H
#include "net_driver.h"
extern void falcon_xmac_writel(struct efx_nic *efx,
efx_dword_t *value, unsigned int mac_reg);
extern void falcon_xmac_readl(struct efx_nic *efx,
efx_dword_t *value, unsigned int mac_reg);
extern int falcon_init_xmac(struct efx_nic *efx);
extern void falcon_reconfigure_xmac(struct efx_nic *efx);
extern void falcon_update_stats_xmac(struct efx_nic *efx);
extern void falcon_fini_xmac(struct efx_nic *efx);
extern int falcon_check_xmac(struct efx_nic *efx);
extern void falcon_xmac_sim_phy_event(struct efx_nic *efx);
extern int falcon_xmac_get_settings(struct efx_nic *efx,
struct ethtool_cmd *ecmd);
extern int falcon_xmac_set_settings(struct efx_nic *efx,
struct ethtool_cmd *ecmd);
extern int falcon_xmac_set_pause(struct efx_nic *efx,
enum efx_fc_type pause_params);
#endif
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/*
* Useful functions for working with MDIO clause 45 PHYs
*/
#include <linux/types.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#include "net_driver.h"
#include "mdio_10g.h"
#include "boards.h"
int mdio_clause45_reset_mmd(struct efx_nic *port, int mmd,
int spins, int spintime)
{
u32 ctrl;
int phy_id = port->mii.phy_id;
/* Catch callers passing values in the wrong units (or just silly) */
EFX_BUG_ON_PARANOID(spins * spintime >= 5000);
mdio_clause45_write(port, phy_id, mmd, MDIO_MMDREG_CTRL1,
(1 << MDIO_MMDREG_CTRL1_RESET_LBN));
/* Wait for the reset bit to clear. */
do {
msleep(spintime);
ctrl = mdio_clause45_read(port, phy_id, mmd, MDIO_MMDREG_CTRL1);
spins--;
} while (spins && (ctrl & (1 << MDIO_MMDREG_CTRL1_RESET_LBN)));
return spins ? spins : -ETIMEDOUT;
}
static int mdio_clause45_check_mmd(struct efx_nic *efx, int mmd,
int fault_fatal)
{
int status;
int phy_id = efx->mii.phy_id;
/* Read MMD STATUS2 to check it is responding. */
status = mdio_clause45_read(efx, phy_id, mmd, MDIO_MMDREG_STAT2);
if (((status >> MDIO_MMDREG_STAT2_PRESENT_LBN) &
((1 << MDIO_MMDREG_STAT2_PRESENT_WIDTH) - 1)) !=
MDIO_MMDREG_STAT2_PRESENT_VAL) {
EFX_ERR(efx, "PHY MMD %d not responding.\n", mmd);
return -EIO;
}
/* Read MMD STATUS 1 to check for fault. */
status = mdio_clause45_read(efx, phy_id, mmd, MDIO_MMDREG_STAT1);
if ((status & (1 << MDIO_MMDREG_STAT1_FAULT_LBN)) != 0) {
if (fault_fatal) {
EFX_ERR(efx, "PHY MMD %d reporting fatal"
" fault: status %x\n", mmd, status);
return -EIO;
} else {
EFX_LOG(efx, "PHY MMD %d reporting status"
" %x (expected)\n", mmd, status);
}
}
return 0;
}
/* This ought to be ridiculous overkill. We expect it to fail rarely */
#define MDIO45_RESET_TIME 1000 /* ms */
#define MDIO45_RESET_ITERS 100
int mdio_clause45_wait_reset_mmds(struct efx_nic *efx,
unsigned int mmd_mask)
{
const int spintime = MDIO45_RESET_TIME / MDIO45_RESET_ITERS;
int tries = MDIO45_RESET_ITERS;
int rc = 0;
int in_reset;
while (tries) {
int mask = mmd_mask;
int mmd = 0;
int stat;
in_reset = 0;
while (mask) {
if (mask & 1) {
stat = mdio_clause45_read(efx,
efx->mii.phy_id,
mmd,
MDIO_MMDREG_CTRL1);
if (stat < 0) {
EFX_ERR(efx, "failed to read status of"
" MMD %d\n", mmd);
return -EIO;
}
if (stat & (1 << MDIO_MMDREG_CTRL1_RESET_LBN))
in_reset |= (1 << mmd);
}
mask = mask >> 1;
mmd++;
}
if (!in_reset)
break;
tries--;
msleep(spintime);
}
if (in_reset != 0) {
EFX_ERR(efx, "not all MMDs came out of reset in time."
" MMDs still in reset: %x\n", in_reset);
rc = -ETIMEDOUT;
}
return rc;
}
int mdio_clause45_check_mmds(struct efx_nic *efx,
unsigned int mmd_mask, unsigned int fatal_mask)
{
int devices, mmd = 0;
int probe_mmd;
/* Historically we have probed the PHYXS to find out what devices are
* present,but that doesn't work so well if the PHYXS isn't expected
* to exist, if so just find the first item in the list supplied. */
probe_mmd = (mmd_mask & MDIO_MMDREG_DEVS0_PHYXS) ? MDIO_MMD_PHYXS :
__ffs(mmd_mask);
devices = mdio_clause45_read(efx, efx->mii.phy_id,
probe_mmd, MDIO_MMDREG_DEVS0);
/* Check all the expected MMDs are present */
if (devices < 0) {
EFX_ERR(efx, "failed to read devices present\n");
return -EIO;
}
if ((devices & mmd_mask) != mmd_mask) {
EFX_ERR(efx, "required MMDs not present: got %x, "
"wanted %x\n", devices, mmd_mask);
return -ENODEV;
}
EFX_TRACE(efx, "Devices present: %x\n", devices);
/* Check all required MMDs are responding and happy. */
while (mmd_mask) {
if (mmd_mask & 1) {
int fault_fatal = fatal_mask & 1;
if (mdio_clause45_check_mmd(efx, mmd, fault_fatal))
return -EIO;
}
mmd_mask = mmd_mask >> 1;
fatal_mask = fatal_mask >> 1;
mmd++;
}
return 0;
}
int mdio_clause45_links_ok(struct efx_nic *efx, unsigned int mmd_mask)
{
int phy_id = efx->mii.phy_id;
int status;
int ok = 1;
int mmd = 0;
int good;
while (mmd_mask) {
if (mmd_mask & 1) {
/* Double reads because link state is latched, and a
* read moves the current state into the register */
status = mdio_clause45_read(efx, phy_id,
mmd, MDIO_MMDREG_STAT1);
status = mdio_clause45_read(efx, phy_id,
mmd, MDIO_MMDREG_STAT1);
good = status & (1 << MDIO_MMDREG_STAT1_LINK_LBN);
ok = ok && good;
}
mmd_mask = (mmd_mask >> 1);
mmd++;
}
return ok;
}
/**
* mdio_clause45_get_settings - Read (some of) the PHY settings over MDIO.
* @efx: Efx NIC
* @ecmd: Buffer for settings
*
* On return the 'port', 'speed', 'supported' and 'advertising' fields of
* ecmd have been filled out based on the PMA type.
*/
void mdio_clause45_get_settings(struct efx_nic *efx,
struct ethtool_cmd *ecmd)
{
int pma_type;
/* If no PMA is present we are presumably talking something XAUI-ish
* like CX4. Which we report as FIBRE (see below) */
if ((efx->phy_op->mmds & DEV_PRESENT_BIT(MDIO_MMD_PMAPMD)) == 0) {
ecmd->speed = SPEED_10000;
ecmd->port = PORT_FIBRE;
ecmd->supported = SUPPORTED_FIBRE;
ecmd->advertising = ADVERTISED_FIBRE;
return;
}
pma_type = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD, MDIO_MMDREG_CTRL2);
pma_type &= MDIO_PMAPMD_CTRL2_TYPE_MASK;
switch (pma_type) {
/* We represent CX4 as fibre in the absence of anything
better. */
case MDIO_PMAPMD_CTRL2_10G_CX4:
ecmd->speed = SPEED_10000;
ecmd->port = PORT_FIBRE;
ecmd->supported = SUPPORTED_FIBRE;
ecmd->advertising = ADVERTISED_FIBRE;
break;
/* 10G Base-T */
case MDIO_PMAPMD_CTRL2_10G_BT:
ecmd->speed = SPEED_10000;
ecmd->port = PORT_TP;
ecmd->supported = SUPPORTED_TP | SUPPORTED_10000baseT_Full;
ecmd->advertising = (ADVERTISED_FIBRE
| ADVERTISED_10000baseT_Full);
break;
case MDIO_PMAPMD_CTRL2_1G_BT:
ecmd->speed = SPEED_1000;
ecmd->port = PORT_TP;
ecmd->supported = SUPPORTED_TP | SUPPORTED_1000baseT_Full;
ecmd->advertising = (ADVERTISED_FIBRE
| ADVERTISED_1000baseT_Full);
break;
case MDIO_PMAPMD_CTRL2_100_BT:
ecmd->speed = SPEED_100;
ecmd->port = PORT_TP;
ecmd->supported = SUPPORTED_TP | SUPPORTED_100baseT_Full;
ecmd->advertising = (ADVERTISED_FIBRE
| ADVERTISED_100baseT_Full);
break;
case MDIO_PMAPMD_CTRL2_10_BT:
ecmd->speed = SPEED_10;
ecmd->port = PORT_TP;
ecmd->supported = SUPPORTED_TP | SUPPORTED_10baseT_Full;
ecmd->advertising = ADVERTISED_FIBRE | ADVERTISED_10baseT_Full;
break;
/* All the other defined modes are flavours of
* 10G optical */
default:
ecmd->speed = SPEED_10000;
ecmd->port = PORT_FIBRE;
ecmd->supported = SUPPORTED_FIBRE;
ecmd->advertising = ADVERTISED_FIBRE;
break;
}
}
/**
* mdio_clause45_set_settings - Set (some of) the PHY settings over MDIO.
* @efx: Efx NIC
* @ecmd: New settings
*
* Currently this just enforces that we are _not_ changing the
* 'port', 'speed', 'supported' or 'advertising' settings as these
* cannot be changed on any currently supported PHY.
*/
int mdio_clause45_set_settings(struct efx_nic *efx,
struct ethtool_cmd *ecmd)
{
struct ethtool_cmd tmpcmd;
mdio_clause45_get_settings(efx, &tmpcmd);
/* None of the current PHYs support more than one mode
* of operation (and only 10GBT ever will), so keep things
* simple for now */
if ((ecmd->speed == tmpcmd.speed) && (ecmd->port == tmpcmd.port) &&
(ecmd->supported == tmpcmd.supported) &&
(ecmd->advertising == tmpcmd.advertising))
return 0;
return -EOPNOTSUPP;
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_MDIO_10G_H
#define EFX_MDIO_10G_H
/*
* Definitions needed for doing 10G MDIO as specified in clause 45
* MDIO, which do not appear in Linux yet. Also some helper functions.
*/
#include "efx.h"
#include "boards.h"
/* Numbering of the MDIO Manageable Devices (MMDs) */
/* Physical Medium Attachment/ Physical Medium Dependent sublayer */
#define MDIO_MMD_PMAPMD (1)
/* WAN Interface Sublayer */
#define MDIO_MMD_WIS (2)
/* Physical Coding Sublayer */
#define MDIO_MMD_PCS (3)
/* PHY Extender Sublayer */
#define MDIO_MMD_PHYXS (4)
/* Extender Sublayer */
#define MDIO_MMD_DTEXS (5)
/* Transmission convergence */
#define MDIO_MMD_TC (6)
/* Auto negotiation */
#define MDIO_MMD_AN (7)
/* Generic register locations */
#define MDIO_MMDREG_CTRL1 (0)
#define MDIO_MMDREG_STAT1 (1)
#define MDIO_MMDREG_IDHI (2)
#define MDIO_MMDREG_IDLOW (3)
#define MDIO_MMDREG_SPEED (4)
#define MDIO_MMDREG_DEVS0 (5)
#define MDIO_MMDREG_DEVS1 (6)
#define MDIO_MMDREG_CTRL2 (7)
#define MDIO_MMDREG_STAT2 (8)
/* Bits in MMDREG_CTRL1 */
/* Reset */
#define MDIO_MMDREG_CTRL1_RESET_LBN (15)
#define MDIO_MMDREG_CTRL1_RESET_WIDTH (1)
/* Bits in MMDREG_STAT1 */
#define MDIO_MMDREG_STAT1_FAULT_LBN (7)
#define MDIO_MMDREG_STAT1_FAULT_WIDTH (1)
/* Link state */
#define MDIO_MMDREG_STAT1_LINK_LBN (2)
#define MDIO_MMDREG_STAT1_LINK_WIDTH (1)
/* Bits in ID reg */
#define MDIO_ID_REV(_id32) (_id32 & 0xf)
#define MDIO_ID_MODEL(_id32) ((_id32 >> 4) & 0x3f)
#define MDIO_ID_OUI(_id32) (_id32 >> 10)
/* Bits in MMDREG_DEVS0. Someone thoughtfully layed things out
* so the 'bit present' bit number of an MMD is the number of
* that MMD */
#define DEV_PRESENT_BIT(_b) (1 << _b)
#define MDIO_MMDREG_DEVS0_PHYXS DEV_PRESENT_BIT(MDIO_MMD_PHYXS)
#define MDIO_MMDREG_DEVS0_PCS DEV_PRESENT_BIT(MDIO_MMD_PCS)
#define MDIO_MMDREG_DEVS0_PMAPMD DEV_PRESENT_BIT(MDIO_MMD_PMAPMD)
/* Bits in MMDREG_STAT2 */
#define MDIO_MMDREG_STAT2_PRESENT_VAL (2)
#define MDIO_MMDREG_STAT2_PRESENT_LBN (14)
#define MDIO_MMDREG_STAT2_PRESENT_WIDTH (2)
/* PMA type (4 bits) */
#define MDIO_PMAPMD_CTRL2_10G_CX4 (0x0)
#define MDIO_PMAPMD_CTRL2_10G_EW (0x1)
#define MDIO_PMAPMD_CTRL2_10G_LW (0x2)
#define MDIO_PMAPMD_CTRL2_10G_SW (0x3)
#define MDIO_PMAPMD_CTRL2_10G_LX4 (0x4)
#define MDIO_PMAPMD_CTRL2_10G_ER (0x5)
#define MDIO_PMAPMD_CTRL2_10G_LR (0x6)
#define MDIO_PMAPMD_CTRL2_10G_SR (0x7)
/* Reserved */
#define MDIO_PMAPMD_CTRL2_10G_BT (0x9)
/* Reserved */
/* Reserved */
#define MDIO_PMAPMD_CTRL2_1G_BT (0xc)
/* Reserved */
#define MDIO_PMAPMD_CTRL2_100_BT (0xe)
#define MDIO_PMAPMD_CTRL2_10_BT (0xf)
#define MDIO_PMAPMD_CTRL2_TYPE_MASK (0xf)
/* /\* PHY XGXS lane state *\/ */
#define MDIO_PHYXS_LANE_STATE (0x18)
#define MDIO_PHYXS_LANE_ALIGNED_LBN (12)
/* AN registers */
#define MDIO_AN_STATUS (1)
#define MDIO_AN_STATUS_XNP_LBN (7)
#define MDIO_AN_STATUS_PAGE_LBN (6)
#define MDIO_AN_STATUS_AN_DONE_LBN (5)
#define MDIO_AN_STATUS_LP_AN_CAP_LBN (0)
#define MDIO_AN_10GBT_STATUS (33)
#define MDIO_AN_10GBT_STATUS_MS_FLT_LBN (15) /* MASTER/SLAVE config fault */
#define MDIO_AN_10GBT_STATUS_MS_LBN (14) /* MASTER/SLAVE config */
#define MDIO_AN_10GBT_STATUS_LOC_OK_LBN (13) /* Local OK */
#define MDIO_AN_10GBT_STATUS_REM_OK_LBN (12) /* Remote OK */
#define MDIO_AN_10GBT_STATUS_LP_10G_LBN (11) /* Link partner is 10GBT capable */
#define MDIO_AN_10GBT_STATUS_LP_LTA_LBN (10) /* LP loop timing ability */
#define MDIO_AN_10GBT_STATUS_LP_TRR_LBN (9) /* LP Training Reset Request */
/* Packing of the prt and dev arguments of clause 45 style MDIO into a
* single int so they can be passed into the mdio_read/write functions
* that currently exist. Note that as Falcon is the only current user,
* the packed form is chosen to match what Falcon needs to write into
* a register. This is checked at compile-time so do not change it. If
* your target chip needs things layed out differently you will need
* to unpack the arguments in your chip-specific mdio functions.
*/
/* These are defined by the standard. */
#define MDIO45_PRT_ID_WIDTH (5)
#define MDIO45_DEV_ID_WIDTH (5)
/* The prt ID is just packed in immediately to the left of the dev ID */
#define MDIO45_PRT_DEV_WIDTH (MDIO45_PRT_ID_WIDTH + MDIO45_DEV_ID_WIDTH)
#define MDIO45_PRT_ID_MASK ((1 << MDIO45_PRT_DEV_WIDTH) - 1)
/* This is the prt + dev extended by 1 bit to hold the 'is clause 45' flag. */
#define MDIO45_XPRT_ID_WIDTH (MDIO45_PRT_DEV_WIDTH + 1)
#define MDIO45_XPRT_ID_MASK ((1 << MDIO45_XPRT_ID_WIDTH) - 1)
#define MDIO45_XPRT_ID_IS10G (1 << (MDIO45_XPRT_ID_WIDTH - 1))
#define MDIO45_PRT_ID_COMP_LBN MDIO45_DEV_ID_WIDTH
#define MDIO45_PRT_ID_COMP_WIDTH MDIO45_PRT_ID_WIDTH
#define MDIO45_DEV_ID_COMP_LBN 0
#define MDIO45_DEV_ID_COMP_WIDTH MDIO45_DEV_ID_WIDTH
/* Compose port and device into a phy_id */
static inline int mdio_clause45_pack(u8 prt, u8 dev)
{
efx_dword_t phy_id;
EFX_POPULATE_DWORD_2(phy_id, MDIO45_PRT_ID_COMP, prt,
MDIO45_DEV_ID_COMP, dev);
return MDIO45_XPRT_ID_IS10G | EFX_DWORD_VAL(phy_id);
}
static inline void mdio_clause45_unpack(u32 val, u8 *prt, u8 *dev)
{
efx_dword_t phy_id;
EFX_POPULATE_DWORD_1(phy_id, EFX_DWORD_0, val);
*prt = EFX_DWORD_FIELD(phy_id, MDIO45_PRT_ID_COMP);
*dev = EFX_DWORD_FIELD(phy_id, MDIO45_DEV_ID_COMP);
}
static inline int mdio_clause45_read(struct efx_nic *efx,
u8 prt, u8 dev, u16 addr)
{
return efx->mii.mdio_read(efx->net_dev,
mdio_clause45_pack(prt, dev), addr);
}
static inline void mdio_clause45_write(struct efx_nic *efx,
u8 prt, u8 dev, u16 addr, int value)
{
efx->mii.mdio_write(efx->net_dev,
mdio_clause45_pack(prt, dev), addr, value);
}
static inline u32 mdio_clause45_read_id(struct efx_nic *efx, int mmd)
{
int phy_id = efx->mii.phy_id;
u16 id_low = mdio_clause45_read(efx, phy_id, mmd, MDIO_MMDREG_IDLOW);
u16 id_hi = mdio_clause45_read(efx, phy_id, mmd, MDIO_MMDREG_IDHI);
return (id_hi << 16) | (id_low);
}
static inline int mdio_clause45_phyxgxs_lane_sync(struct efx_nic *efx)
{
int i, sync, lane_status;
for (i = 0; i < 2; ++i)
lane_status = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PHYXS,
MDIO_PHYXS_LANE_STATE);
sync = (lane_status & (1 << MDIO_PHYXS_LANE_ALIGNED_LBN)) != 0;
if (!sync)
EFX_INFO(efx, "XGXS lane status: %x\n", lane_status);
return sync;
}
extern const char *mdio_clause45_mmd_name(int mmd);
/*
* Reset a specific MMD and wait for reset to clear.
* Return number of spins left (>0) on success, -%ETIMEDOUT on failure.
*
* This function will sleep
*/
extern int mdio_clause45_reset_mmd(struct efx_nic *efx, int mmd,
int spins, int spintime);
/* As mdio_clause45_check_mmd but for multiple MMDs */
int mdio_clause45_check_mmds(struct efx_nic *efx,
unsigned int mmd_mask, unsigned int fatal_mask);
/* Check the link status of specified mmds in bit mask */
extern int mdio_clause45_links_ok(struct efx_nic *efx,
unsigned int mmd_mask);
/* Read (some of) the PHY settings over MDIO */
extern void mdio_clause45_get_settings(struct efx_nic *efx,
struct ethtool_cmd *ecmd);
/* Set (some of) the PHY settings over MDIO */
extern int mdio_clause45_set_settings(struct efx_nic *efx,
struct ethtool_cmd *ecmd);
/* Wait for specified MMDs to exit reset within a timeout */
extern int mdio_clause45_wait_reset_mmds(struct efx_nic *efx,
unsigned int mmd_mask);
#endif /* EFX_MDIO_10G_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/* Common definitions for all Efx net driver code */
#ifndef EFX_NET_DRIVER_H
#define EFX_NET_DRIVER_H
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mii.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/inet_lro.h>
#include "enum.h"
#include "bitfield.h"
#include "i2c-direct.h"
#define EFX_MAX_LRO_DESCRIPTORS 8
#define EFX_MAX_LRO_AGGR MAX_SKB_FRAGS
/**************************************************************************
*
* Build definitions
*
**************************************************************************/
#ifndef EFX_DRIVER_NAME
#define EFX_DRIVER_NAME "sfc"
#endif
#define EFX_DRIVER_VERSION "2.2.0136"
#ifdef EFX_ENABLE_DEBUG
#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
#else
#define EFX_BUG_ON_PARANOID(x) do {} while (0)
#define EFX_WARN_ON_PARANOID(x) do {} while (0)
#endif
#define NET_DEV_REGISTERED(efx) \
((efx)->net_dev->reg_state == NETREG_REGISTERED)
/* Include net device name in log messages if it has been registered.
* Use efx->name not efx->net_dev->name so that races with (un)registration
* are harmless.
*/
#define NET_DEV_NAME(efx) (NET_DEV_REGISTERED(efx) ? (efx)->name : "")
/* Un-rate-limited logging */
#define EFX_ERR(efx, fmt, args...) \
dev_err(&((efx)->pci_dev->dev), "ERR: %s " fmt, NET_DEV_NAME(efx), ##args)
#define EFX_INFO(efx, fmt, args...) \
dev_info(&((efx)->pci_dev->dev), "INFO: %s " fmt, NET_DEV_NAME(efx), ##args)
#ifdef EFX_ENABLE_DEBUG
#define EFX_LOG(efx, fmt, args...) \
dev_info(&((efx)->pci_dev->dev), "DBG: %s " fmt, NET_DEV_NAME(efx), ##args)
#else
#define EFX_LOG(efx, fmt, args...) \
dev_dbg(&((efx)->pci_dev->dev), "DBG: %s " fmt, NET_DEV_NAME(efx), ##args)
#endif
#define EFX_TRACE(efx, fmt, args...) do {} while (0)
#define EFX_REGDUMP(efx, fmt, args...) do {} while (0)
/* Rate-limited logging */
#define EFX_ERR_RL(efx, fmt, args...) \
do {if (net_ratelimit()) EFX_ERR(efx, fmt, ##args); } while (0)
#define EFX_INFO_RL(efx, fmt, args...) \
do {if (net_ratelimit()) EFX_INFO(efx, fmt, ##args); } while (0)
#define EFX_LOG_RL(efx, fmt, args...) \
do {if (net_ratelimit()) EFX_LOG(efx, fmt, ##args); } while (0)
/* Kernel headers may redefine inline anyway */
#ifndef inline
#define inline inline __attribute__ ((always_inline))
#endif
/**************************************************************************
*
* Efx data structures
*
**************************************************************************/
#define EFX_MAX_CHANNELS 32
#define EFX_MAX_TX_QUEUES 1
#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
/**
* struct efx_special_buffer - An Efx special buffer
* @addr: CPU base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
* @index: Buffer index within controller;s buffer table
* @entries: Number of buffer table entries
*
* Special buffers are used for the event queues and the TX and RX
* descriptor queues for each channel. They are *not* used for the
* actual transmit and receive buffers.
*
* Note that for Falcon, TX and RX descriptor queues live in host memory.
* Allocation and freeing procedures must take this into account.
*/
struct efx_special_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
int index;
int entries;
};
/**
* struct efx_tx_buffer - An Efx TX buffer
* @skb: The associated socket buffer.
* Set only on the final fragment of a packet; %NULL for all other
* fragments. When this fragment completes, then we can free this
* skb.
* @dma_addr: DMA address of the fragment.
* @len: Length of this fragment.
* This field is zero when the queue slot is empty.
* @continuation: True if this fragment is not the end of a packet.
* @unmap_single: True if pci_unmap_single should be used.
* @unmap_addr: DMA address to unmap
* @unmap_len: Length of this fragment to unmap
*/
struct efx_tx_buffer {
const struct sk_buff *skb;
dma_addr_t dma_addr;
unsigned short len;
unsigned char continuation;
unsigned char unmap_single;
dma_addr_t unmap_addr;
unsigned short unmap_len;
};
/**
* struct efx_tx_queue - An Efx TX queue
*
* This is a ring buffer of TX fragments.
* Since the TX completion path always executes on the same
* CPU and the xmit path can operate on different CPUs,
* performance is increased by ensuring that the completion
* path and the xmit path operate on different cache lines.
* This is particularly important if the xmit path is always
* executing on one CPU which is different from the completion
* path. There is also a cache line for members which are
* read but not written on the fast path.
*
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @used: Queue is used by net driver
* @channel: The associated channel
* @buffer: The software buffer ring
* @txd: The hardware descriptor ring
* @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings.
* @stopped: Stopped flag.
* Set if this TX queue is currently stopping its port.
* @insert_count: Current insert pointer
* This is the number of buffers that have been added to the
* software ring.
* @write_count: Current write pointer
* This is the number of buffers that have been added to the
* hardware ring.
* @old_read_count: The value of read_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of read_count if this
* variable indicates that the queue is full. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
*/
struct efx_tx_queue {
/* Members which don't change on the fast path */
struct efx_nic *efx ____cacheline_aligned_in_smp;
int queue;
int used;
struct efx_channel *channel;
struct efx_nic *nic;
struct efx_tx_buffer *buffer;
struct efx_special_buffer txd;
/* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp;
int stopped;
/* Members used only on the xmit path */
unsigned int insert_count ____cacheline_aligned_in_smp;
unsigned int write_count;
unsigned int old_read_count;
};
/**
* struct efx_rx_buffer - An Efx RX data buffer
* @dma_addr: DMA base address of the buffer
* @skb: The associated socket buffer, if any.
* If both this and page are %NULL, the buffer slot is currently free.
* @page: The associated page buffer, if any.
* If both this and skb are %NULL, the buffer slot is currently free.
* @data: Pointer to ethernet header
* @len: Buffer length, in bytes.
* @unmap_addr: DMA address to unmap
*/
struct efx_rx_buffer {
dma_addr_t dma_addr;
struct sk_buff *skb;
struct page *page;
char *data;
unsigned int len;
dma_addr_t unmap_addr;
};
/**
* struct efx_rx_queue - An Efx RX queue
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @used: Queue is used by net driver
* @channel: The associated channel
* @buffer: The software buffer ring
* @rxd: The hardware descriptor ring
* @added_count: Number of buffers added to the receive queue.
* @notified_count: Number of buffers given to NIC (<= @added_count).
* @removed_count: Number of buffers removed from the receive queue.
* @add_lock: Receive queue descriptor add spin lock.
* This lock must be held in order to add buffers to the RX
* descriptor ring (rxd and buffer) and to update added_count (but
* not removed_count).
* @max_fill: RX descriptor maximum fill level (<= ring size)
* @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
* (<= @max_fill)
* @fast_fill_limit: The level to which a fast fill will fill
* (@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
* @min_fill: RX descriptor minimum non-zero fill level.
* This records the minimum fill level observed when a ring
* refill was triggered.
* @min_overfill: RX descriptor minimum overflow fill level.
* This records the minimum fill level at which RX queue
* overflow was observed. It should never be set.
* @alloc_page_count: RX allocation strategy counter.
* @alloc_skb_count: RX allocation strategy counter.
* @work: Descriptor push work thread
* @buf_page: Page for next RX buffer.
* We can use a single page for multiple RX buffers. This tracks
* the remaining space in the allocation.
* @buf_dma_addr: Page's DMA address.
* @buf_data: Page's host address.
*/
struct efx_rx_queue {
struct efx_nic *efx;
int queue;
int used;
struct efx_channel *channel;
struct efx_rx_buffer *buffer;
struct efx_special_buffer rxd;
int added_count;
int notified_count;
int removed_count;
spinlock_t add_lock;
unsigned int max_fill;
unsigned int fast_fill_trigger;
unsigned int fast_fill_limit;
unsigned int min_fill;
unsigned int min_overfill;
unsigned int alloc_page_count;
unsigned int alloc_skb_count;
struct delayed_work work;
unsigned int slow_fill_count;
struct page *buf_page;
dma_addr_t buf_dma_addr;
char *buf_data;
};
/**
* struct efx_buffer - An Efx general-purpose buffer
* @addr: host base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
*
* Falcon uses these buffers for its interrupt status registers and
* MAC stats dumps.
*/
struct efx_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
};
/* Flags for channel->used_flags */
#define EFX_USED_BY_RX 1
#define EFX_USED_BY_TX 2
#define EFX_USED_BY_RX_TX (EFX_USED_BY_RX | EFX_USED_BY_TX)
enum efx_rx_alloc_method {
RX_ALLOC_METHOD_AUTO = 0,
RX_ALLOC_METHOD_SKB = 1,
RX_ALLOC_METHOD_PAGE = 2,
};
/**
* struct efx_channel - An Efx channel
*
* A channel comprises an event queue, at least one TX queue, at least
* one RX queue, and an associated tasklet for processing the event
* queue.
*
* @efx: Associated Efx NIC
* @evqnum: Event queue number
* @channel: Channel instance number
* @used_flags: Channel is used by net driver
* @enabled: Channel enabled indicator
* @irq: IRQ number (MSI and MSI-X only)
* @has_interrupt: Channel has an interrupt
* @irq_moderation: IRQ moderation value (in us)
* @napi_dev: Net device used with NAPI
* @napi_str: NAPI control structure
* @reset_work: Scheduled reset work thread
* @work_pending: Is work pending via NAPI?
* @eventq: Event queue buffer
* @eventq_read_ptr: Event queue read pointer
* @last_eventq_read_ptr: Last event queue read pointer value.
* @eventq_magic: Event queue magic value for driver-generated test events
* @lro_mgr: LRO state
* @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
* and diagnostic counters
* @rx_alloc_push_pages: RX allocation method currently in use for pushing
* descriptors
* @rx_alloc_pop_pages: RX allocation method currently in use for popping
* descriptors
* @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
* @n_rx_ip_frag_err: Count of RX IP fragment errors
* @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
* @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
* @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
* @n_rx_overlength: Count of RX_OVERLENGTH errors
* @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
*/
struct efx_channel {
struct efx_nic *efx;
int evqnum;
int channel;
int used_flags;
int enabled;
int irq;
unsigned int has_interrupt;
unsigned int irq_moderation;
struct net_device *napi_dev;
struct napi_struct napi_str;
struct work_struct reset_work;
int work_pending;
struct efx_special_buffer eventq;
unsigned int eventq_read_ptr;
unsigned int last_eventq_read_ptr;
unsigned int eventq_magic;
struct net_lro_mgr lro_mgr;
int rx_alloc_level;
int rx_alloc_push_pages;
int rx_alloc_pop_pages;
unsigned n_rx_tobe_disc;
unsigned n_rx_ip_frag_err;
unsigned n_rx_ip_hdr_chksum_err;
unsigned n_rx_tcp_udp_chksum_err;
unsigned n_rx_frm_trunc;
unsigned n_rx_overlength;
unsigned n_skbuff_leaks;
/* Used to pipeline received packets in order to optimise memory
* access with prefetches.
*/
struct efx_rx_buffer *rx_pkt;
int rx_pkt_csummed;
};
/**
* struct efx_blinker - S/W LED blinking context
* @led_num: LED ID (board-specific meaning)
* @state: Current state - on or off
* @resubmit: Timer resubmission flag
* @timer: Control timer for blinking
*/
struct efx_blinker {
int led_num;
int state;
int resubmit;
struct timer_list timer;
};
/**
* struct efx_board - board information
* @type: Board model type
* @major: Major rev. ('A', 'B' ...)
* @minor: Minor rev. (0, 1, ...)
* @init: Initialisation function
* @init_leds: Sets up board LEDs
* @set_fault_led: Turns the fault LED on or off
* @blink: Starts/stops blinking
* @blinker: used to blink LEDs in software
*/
struct efx_board {
int type;
int major;
int minor;
int (*init) (struct efx_nic *nic);
/* As the LEDs are typically attached to the PHY, LEDs
* have a separate init callback that happens later than
* board init. */
int (*init_leds)(struct efx_nic *efx);
void (*set_fault_led) (struct efx_nic *efx, int state);
void (*blink) (struct efx_nic *efx, int start);
struct efx_blinker blinker;
};
enum efx_int_mode {
/* Be careful if altering to correct macro below */
EFX_INT_MODE_MSIX = 0,
EFX_INT_MODE_MSI = 1,
EFX_INT_MODE_LEGACY = 2,
EFX_INT_MODE_MAX /* Insert any new items before this */
};
#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
enum phy_type {
PHY_TYPE_NONE = 0,
PHY_TYPE_CX4_RTMR = 1,
PHY_TYPE_1G_ALASKA = 2,
PHY_TYPE_10XPRESS = 3,
PHY_TYPE_XFP = 4,
PHY_TYPE_PM8358 = 6,
PHY_TYPE_MAX /* Insert any new items before this */
};
#define PHY_ADDR_INVALID 0xff
enum nic_state {
STATE_INIT = 0,
STATE_RUNNING = 1,
STATE_FINI = 2,
STATE_RESETTING = 3, /* rtnl_lock always held */
STATE_DISABLED = 4,
STATE_MAX,
};
/*
* Alignment of page-allocated RX buffers
*
* Controls the number of bytes inserted at the start of an RX buffer.
* This is the equivalent of NET_IP_ALIGN [which controls the alignment
* of the skb->head for hardware DMA].
*/
#if defined(__i386__) || defined(__x86_64__)
#define EFX_PAGE_IP_ALIGN 0
#else
#define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
#endif
/*
* Alignment of the skb->head which wraps a page-allocated RX buffer
*
* The skb allocated to wrap an rx_buffer can have this alignment. Since
* the data is memcpy'd from the rx_buf, it does not need to be equal to
* EFX_PAGE_IP_ALIGN.
*/
#define EFX_PAGE_SKB_ALIGN 2
/* Forward declaration */
struct efx_nic;
/* Pseudo bit-mask flow control field */
enum efx_fc_type {
EFX_FC_RX = 1,
EFX_FC_TX = 2,
EFX_FC_AUTO = 4,
};
/**
* struct efx_phy_operations - Efx PHY operations table
* @init: Initialise PHY
* @fini: Shut down PHY
* @reconfigure: Reconfigure PHY (e.g. for new link parameters)
* @clear_interrupt: Clear down interrupt
* @blink: Blink LEDs
* @check_hw: Check hardware
* @reset_xaui: Reset XAUI side of PHY for (software sequenced reset)
* @mmds: MMD presence mask
*/
struct efx_phy_operations {
int (*init) (struct efx_nic *efx);
void (*fini) (struct efx_nic *efx);
void (*reconfigure) (struct efx_nic *efx);
void (*clear_interrupt) (struct efx_nic *efx);
int (*check_hw) (struct efx_nic *efx);
void (*reset_xaui) (struct efx_nic *efx);
int mmds;
};
/*
* Efx extended statistics
*
* Not all statistics are provided by all supported MACs. The purpose
* is this structure is to contain the raw statistics provided by each
* MAC.
*/
struct efx_mac_stats {
u64 tx_bytes;
u64 tx_good_bytes;
u64 tx_bad_bytes;
unsigned long tx_packets;
unsigned long tx_bad;
unsigned long tx_pause;
unsigned long tx_control;
unsigned long tx_unicast;
unsigned long tx_multicast;
unsigned long tx_broadcast;
unsigned long tx_lt64;
unsigned long tx_64;
unsigned long tx_65_to_127;
unsigned long tx_128_to_255;
unsigned long tx_256_to_511;
unsigned long tx_512_to_1023;
unsigned long tx_1024_to_15xx;
unsigned long tx_15xx_to_jumbo;
unsigned long tx_gtjumbo;
unsigned long tx_collision;
unsigned long tx_single_collision;
unsigned long tx_multiple_collision;
unsigned long tx_excessive_collision;
unsigned long tx_deferred;
unsigned long tx_late_collision;
unsigned long tx_excessive_deferred;
unsigned long tx_non_tcpudp;
unsigned long tx_mac_src_error;
unsigned long tx_ip_src_error;
u64 rx_bytes;
u64 rx_good_bytes;
u64 rx_bad_bytes;
unsigned long rx_packets;
unsigned long rx_good;
unsigned long rx_bad;
unsigned long rx_pause;
unsigned long rx_control;
unsigned long rx_unicast;
unsigned long rx_multicast;
unsigned long rx_broadcast;
unsigned long rx_lt64;
unsigned long rx_64;
unsigned long rx_65_to_127;
unsigned long rx_128_to_255;
unsigned long rx_256_to_511;
unsigned long rx_512_to_1023;
unsigned long rx_1024_to_15xx;
unsigned long rx_15xx_to_jumbo;
unsigned long rx_gtjumbo;
unsigned long rx_bad_lt64;
unsigned long rx_bad_64_to_15xx;
unsigned long rx_bad_15xx_to_jumbo;
unsigned long rx_bad_gtjumbo;
unsigned long rx_overflow;
unsigned long rx_missed;
unsigned long rx_false_carrier;
unsigned long rx_symbol_error;
unsigned long rx_align_error;
unsigned long rx_length_error;
unsigned long rx_internal_error;
unsigned long rx_good_lt64;
};
/* Number of bits used in a multicast filter hash address */
#define EFX_MCAST_HASH_BITS 8
/* Number of (single-bit) entries in a multicast filter hash */
#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
/* An Efx multicast filter hash */
union efx_multicast_hash {
u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
};
/**
* struct efx_nic - an Efx NIC
* @name: Device name (net device name or bus id before net device registered)
* @pci_dev: The PCI device
* @type: Controller type attributes
* @legacy_irq: IRQ number
* @workqueue: Workqueue for resets, port reconfigures and the HW monitor
* @reset_work: Scheduled reset workitem
* @monitor_work: Hardware monitor workitem
* @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value
* @biu_lock: BIU (bus interface unit) lock
* @interrupt_mode: Interrupt mode
* @i2c: I2C interface
* @board_info: Board-level information
* @state: Device state flag. Serialised by the rtnl_lock.
* @reset_pending: Pending reset method (normally RESET_TYPE_NONE)
* @tx_queue: TX DMA queues
* @rx_queue: RX DMA queues
* @channel: Channels
* @rss_queues: Number of RSS queues
* @rx_buffer_len: RX buffer length
* @rx_buffer_order: Order (log2) of number of pages for each RX buffer
* @irq_status: Interrupt status buffer
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by falcon_test_interrupt()
* to verify that an interrupt has occurred.
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @nic_data: Hardware dependant state
* @mac_lock: MAC access lock. Protects @port_enabled, efx_monitor() and
* efx_reconfigure_port()
* @port_enabled: Port enabled indicator.
* Serialises efx_stop_all(), efx_start_all() and efx_monitor() and
* efx_reconfigure_work with kernel interfaces. Safe to read under any
* one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
* be held to modify it.
* @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock
* @rx_checksum_enabled: RX checksumming enabled
* @netif_stop_count: Port stop count
* @netif_stop_lock: Port stop lock
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_buffer: DMA buffer for statistics
* @stats_lock: Statistics update lock
* @mac_address: Permanent MAC address
* @phy_type: PHY type
* @phy_lock: PHY access lock
* @phy_op: PHY interface
* @phy_data: PHY private data (including PHY-specific stats)
* @mii: PHY interface
* @phy_powered: PHY power state
* @tx_disabled: PHY transmitter turned off
* @link_up: Link status
* @link_options: Link options (MII/GMII format)
* @n_link_state_changes: Number of times the link has changed state
* @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
* @multicast_hash: Multicast hash table
* @flow_control: Flow control flags - separate RX/TX so can't use link_options
* @reconfigure_work: work item for dealing with PHY events
*
* The @priv field of the corresponding &struct net_device points to
* this.
*/
struct efx_nic {
char name[IFNAMSIZ];
struct pci_dev *pci_dev;
const struct efx_nic_type *type;
int legacy_irq;
struct workqueue_struct *workqueue;
struct work_struct reset_work;
struct delayed_work monitor_work;
unsigned long membase_phys;
void __iomem *membase;
spinlock_t biu_lock;
enum efx_int_mode interrupt_mode;
struct efx_i2c_interface i2c;
struct efx_board board_info;
enum nic_state state;
enum reset_type reset_pending;
struct efx_tx_queue tx_queue[EFX_MAX_TX_QUEUES];
struct efx_rx_queue rx_queue[EFX_MAX_RX_QUEUES];
struct efx_channel channel[EFX_MAX_CHANNELS];
int rss_queues;
unsigned int rx_buffer_len;
unsigned int rx_buffer_order;
struct efx_buffer irq_status;
volatile signed int last_irq_cpu;
unsigned n_rx_nodesc_drop_cnt;
void *nic_data;
struct mutex mac_lock;
int port_enabled;
int port_initialized;
struct net_device *net_dev;
int rx_checksum_enabled;
atomic_t netif_stop_count;
spinlock_t netif_stop_lock;
struct efx_mac_stats mac_stats;
struct efx_buffer stats_buffer;
spinlock_t stats_lock;
unsigned char mac_address[ETH_ALEN];
enum phy_type phy_type;
spinlock_t phy_lock;
struct efx_phy_operations *phy_op;
void *phy_data;
struct mii_if_info mii;
int link_up;
unsigned int link_options;
unsigned int n_link_state_changes;
int promiscuous;
union efx_multicast_hash multicast_hash;
enum efx_fc_type flow_control;
struct work_struct reconfigure_work;
atomic_t rx_reset;
};
/**
* struct efx_nic_type - Efx device type definition
* @mem_bar: Memory BAR number
* @mem_map_size: Memory BAR mapped size
* @txd_ptr_tbl_base: TX descriptor ring base address
* @rxd_ptr_tbl_base: RX descriptor ring base address
* @buf_tbl_base: Buffer table base address
* @evq_ptr_tbl_base: Event queue pointer table base address
* @evq_rptr_tbl_base: Event queue read-pointer table base address
* @txd_ring_mask: TX descriptor ring size - 1 (must be a power of two - 1)
* @rxd_ring_mask: RX descriptor ring size - 1 (must be a power of two - 1)
* @evq_size: Event queue size (must be a power of two)
* @max_dma_mask: Maximum possible DMA mask
* @tx_dma_mask: TX DMA mask
* @bug5391_mask: Address mask for bug 5391 workaround
* @rx_xoff_thresh: RX FIFO XOFF watermark (bytes)
* @rx_xon_thresh: RX FIFO XON watermark (bytes)
* @rx_buffer_padding: Padding added to each RX buffer
* @max_interrupt_mode: Highest capability interrupt mode supported
* from &enum efx_init_mode.
* @phys_addr_channels: Number of channels with physically addressed
* descriptors
*/
struct efx_nic_type {
unsigned int mem_bar;
unsigned int mem_map_size;
unsigned int txd_ptr_tbl_base;
unsigned int rxd_ptr_tbl_base;
unsigned int buf_tbl_base;
unsigned int evq_ptr_tbl_base;
unsigned int evq_rptr_tbl_base;
unsigned int txd_ring_mask;
unsigned int rxd_ring_mask;
unsigned int evq_size;
dma_addr_t max_dma_mask;
unsigned int tx_dma_mask;
unsigned bug5391_mask;
int rx_xoff_thresh;
int rx_xon_thresh;
unsigned int rx_buffer_padding;
unsigned int max_interrupt_mode;
unsigned int phys_addr_channels;
};
/**************************************************************************
*
* Prototypes and inline functions
*
*************************************************************************/
/* Iterate over all used channels */
#define efx_for_each_channel(_channel, _efx) \
for (_channel = &_efx->channel[0]; \
_channel < &_efx->channel[EFX_MAX_CHANNELS]; \
_channel++) \
if (!_channel->used_flags) \
continue; \
else
/* Iterate over all used channels with interrupts */
#define efx_for_each_channel_with_interrupt(_channel, _efx) \
for (_channel = &_efx->channel[0]; \
_channel < &_efx->channel[EFX_MAX_CHANNELS]; \
_channel++) \
if (!(_channel->used_flags && _channel->has_interrupt)) \
continue; \
else
/* Iterate over all used TX queues */
#define efx_for_each_tx_queue(_tx_queue, _efx) \
for (_tx_queue = &_efx->tx_queue[0]; \
_tx_queue < &_efx->tx_queue[EFX_MAX_TX_QUEUES]; \
_tx_queue++) \
if (!_tx_queue->used) \
continue; \
else
/* Iterate over all TX queues belonging to a channel */
#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
for (_tx_queue = &_channel->efx->tx_queue[0]; \
_tx_queue < &_channel->efx->tx_queue[EFX_MAX_TX_QUEUES]; \
_tx_queue++) \
if ((!_tx_queue->used) || \
(_tx_queue->channel != _channel)) \
continue; \
else
/* Iterate over all used RX queues */
#define efx_for_each_rx_queue(_rx_queue, _efx) \
for (_rx_queue = &_efx->rx_queue[0]; \
_rx_queue < &_efx->rx_queue[EFX_MAX_RX_QUEUES]; \
_rx_queue++) \
if (!_rx_queue->used) \
continue; \
else
/* Iterate over all RX queues belonging to a channel */
#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
for (_rx_queue = &_channel->efx->rx_queue[0]; \
_rx_queue < &_channel->efx->rx_queue[EFX_MAX_RX_QUEUES]; \
_rx_queue++) \
if ((!_rx_queue->used) || \
(_rx_queue->channel != _channel)) \
continue; \
else
/* Returns a pointer to the specified receive buffer in the RX
* descriptor queue.
*/
static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return (&rx_queue->buffer[index]);
}
/* Set bit in a little-endian bitfield */
static inline void set_bit_le(int nr, unsigned char *addr)
{
addr[nr / 8] |= (1 << (nr % 8));
}
/* Clear bit in a little-endian bitfield */
static inline void clear_bit_le(int nr, unsigned char *addr)
{
addr[nr / 8] &= ~(1 << (nr % 8));
}
/**
* EFX_MAX_FRAME_LEN - calculate maximum frame length
*
* This calculates the maximum frame length that will be used for a
* given MTU. The frame length will be equal to the MTU plus a
* constant amount of header space and padding. This is the quantity
* that the net driver will program into the MAC as the maximum frame
* length.
*
* The 10G MAC used in Falcon requires 8-byte alignment on the frame
* length, so we round up to the nearest 8.
*/
#define EFX_MAX_FRAME_LEN(mtu) \
((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */) + 7) & ~7)
#endif /* EFX_NET_DRIVER_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_PHY_H
#define EFX_PHY_H
/****************************************************************************
* 10Xpress (SFX7101) PHY
*/
extern struct efx_phy_operations falcon_tenxpress_phy_ops;
enum tenxpress_state {
TENXPRESS_STATUS_OFF = 0,
TENXPRESS_STATUS_OTEMP = 1,
TENXPRESS_STATUS_NORMAL = 2,
};
extern void tenxpress_set_state(struct efx_nic *efx,
enum tenxpress_state state);
extern void tenxpress_phy_blink(struct efx_nic *efx, int blink);
extern void tenxpress_crc_err(struct efx_nic *efx);
/****************************************************************************
* Exported functions from the driver for XFP optical PHYs
*/
extern struct efx_phy_operations falcon_xfp_phy_ops;
/* The QUAKE XFP PHY provides various H/W control states for LEDs */
#define QUAKE_LED_LINK_INVAL (0)
#define QUAKE_LED_LINK_STAT (1)
#define QUAKE_LED_LINK_ACT (2)
#define QUAKE_LED_LINK_ACTSTAT (3)
#define QUAKE_LED_OFF (4)
#define QUAKE_LED_ON (5)
#define QUAKE_LED_LINK_INPUT (6) /* Pin is an input. */
/* What link the LED tracks */
#define QUAKE_LED_TXLINK (0)
#define QUAKE_LED_RXLINK (8)
extern void xfp_set_led(struct efx_nic *p, int led, int state);
#endif
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "rx.h"
#include "efx.h"
#include "falcon.h"
#include "workarounds.h"
/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH 8
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS 64u
/*
* rx_alloc_method - RX buffer allocation method
*
* This driver supports two methods for allocating and using RX buffers:
* each RX buffer may be backed by an skb or by an order-n page.
*
* When LRO is in use then the second method has a lower overhead,
* since we don't have to allocate then free skbs on reassembled frames.
*
* Values:
* - RX_ALLOC_METHOD_AUTO = 0
* - RX_ALLOC_METHOD_SKB = 1
* - RX_ALLOC_METHOD_PAGE = 2
*
* The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
* controlled by the parameters below.
*
* - Since pushing and popping descriptors are separated by the rx_queue
* size, so the watermarks should be ~rxd_size.
* - The performance win by using page-based allocation for LRO is less
* than the performance hit of using page-based allocation of non-LRO,
* so the watermarks should reflect this.
*
* Per channel we maintain a single variable, updated by each channel:
*
* rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
* RX_ALLOC_FACTOR_SKB)
* Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
* limits the hysteresis), and update the allocation strategy:
*
* rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
* RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
*/
static int rx_alloc_method = RX_ALLOC_METHOD_PAGE;
#define RX_ALLOC_LEVEL_LRO 0x2000
#define RX_ALLOC_LEVEL_MAX 0x3000
#define RX_ALLOC_FACTOR_LRO 1
#define RX_ALLOC_FACTOR_SKB (-2)
/* This is the percentage fill level below which new RX descriptors
* will be added to the RX descriptor ring.
*/
static unsigned int rx_refill_threshold = 90;
/* This is the percentage fill level to which an RX queue will be refilled
* when the "RX refill threshold" is reached.
*/
static unsigned int rx_refill_limit = 95;
/*
* RX maximum head room required.
*
* This must be at least 1 to prevent overflow and at least 2 to allow
* pipelined receives.
*/
#define EFX_RXD_HEAD_ROOM 2
/* Macros for zero-order pages (potentially) containing multiple RX buffers */
#define RX_DATA_OFFSET(_data) \
(((unsigned long) (_data)) & (PAGE_SIZE-1))
#define RX_BUF_OFFSET(_rx_buf) \
RX_DATA_OFFSET((_rx_buf)->data)
#define RX_PAGE_SIZE(_efx) \
(PAGE_SIZE * (1u << (_efx)->rx_buffer_order))
/**************************************************************************
*
* Linux generic LRO handling
*
**************************************************************************
*/
static int efx_lro_get_skb_hdr(struct sk_buff *skb, void **ip_hdr,
void **tcpudp_hdr, u64 *hdr_flags, void *priv)
{
struct efx_channel *channel = (struct efx_channel *)priv;
struct iphdr *iph;
struct tcphdr *th;
iph = (struct iphdr *)skb->data;
if (skb->protocol != htons(ETH_P_IP) || iph->protocol != IPPROTO_TCP)
goto fail;
th = (struct tcphdr *)(skb->data + iph->ihl * 4);
*tcpudp_hdr = th;
*ip_hdr = iph;
*hdr_flags = LRO_IPV4 | LRO_TCP;
channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
return 0;
fail:
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
return -1;
}
static int efx_get_frag_hdr(struct skb_frag_struct *frag, void **mac_hdr,
void **ip_hdr, void **tcpudp_hdr, u64 *hdr_flags,
void *priv)
{
struct efx_channel *channel = (struct efx_channel *)priv;
struct ethhdr *eh;
struct iphdr *iph;
/* We support EtherII and VLAN encapsulated IPv4 */
eh = (struct ethhdr *)(page_address(frag->page) + frag->page_offset);
*mac_hdr = eh;
if (eh->h_proto == htons(ETH_P_IP)) {
iph = (struct iphdr *)(eh + 1);
} else {
struct vlan_ethhdr *veh = (struct vlan_ethhdr *)eh;
if (veh->h_vlan_encapsulated_proto != htons(ETH_P_IP))
goto fail;
iph = (struct iphdr *)(veh + 1);
}
*ip_hdr = iph;
/* We can only do LRO over TCP */
if (iph->protocol != IPPROTO_TCP)
goto fail;
*hdr_flags = LRO_IPV4 | LRO_TCP;
*tcpudp_hdr = (struct tcphdr *)((u8 *) iph + iph->ihl * 4);
channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
return 0;
fail:
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
return -1;
}
int efx_lro_init(struct net_lro_mgr *lro_mgr, struct efx_nic *efx)
{
size_t s = sizeof(struct net_lro_desc) * EFX_MAX_LRO_DESCRIPTORS;
struct net_lro_desc *lro_arr;
/* Allocate the LRO descriptors structure */
lro_arr = kzalloc(s, GFP_KERNEL);
if (lro_arr == NULL)
return -ENOMEM;
lro_mgr->lro_arr = lro_arr;
lro_mgr->max_desc = EFX_MAX_LRO_DESCRIPTORS;
lro_mgr->max_aggr = EFX_MAX_LRO_AGGR;
lro_mgr->frag_align_pad = EFX_PAGE_SKB_ALIGN;
lro_mgr->get_skb_header = efx_lro_get_skb_hdr;
lro_mgr->get_frag_header = efx_get_frag_hdr;
lro_mgr->dev = efx->net_dev;
lro_mgr->features = LRO_F_NAPI;
/* We can pass packets up with the checksum intact */
lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
return 0;
}
void efx_lro_fini(struct net_lro_mgr *lro_mgr)
{
kfree(lro_mgr->lro_arr);
lro_mgr->lro_arr = NULL;
}
/**
* efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
*
* @rx_queue: Efx RX queue
* @rx_buf: RX buffer structure to populate
*
* This allocates memory for a new receive buffer, maps it for DMA,
* and populates a struct efx_rx_buffer with the relevant
* information. Return a negative error code or 0 on success.
*/
static inline int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
struct efx_nic *efx = rx_queue->efx;
struct net_device *net_dev = efx->net_dev;
int skb_len = efx->rx_buffer_len;
rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
if (unlikely(!rx_buf->skb))
return -ENOMEM;
/* Adjust the SKB for padding and checksum */
skb_reserve(rx_buf->skb, NET_IP_ALIGN);
rx_buf->len = skb_len - NET_IP_ALIGN;
rx_buf->data = (char *)rx_buf->skb->data;
rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
rx_buf->dma_addr = pci_map_single(efx->pci_dev,
rx_buf->data, rx_buf->len,
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(rx_buf->dma_addr))) {
dev_kfree_skb_any(rx_buf->skb);
rx_buf->skb = NULL;
return -EIO;
}
return 0;
}
/**
* efx_init_rx_buffer_page - create new RX buffer using page-based allocation
*
* @rx_queue: Efx RX queue
* @rx_buf: RX buffer structure to populate
*
* This allocates memory for a new receive buffer, maps it for DMA,
* and populates a struct efx_rx_buffer with the relevant
* information. Return a negative error code or 0 on success.
*/
static inline int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
struct efx_nic *efx = rx_queue->efx;
int bytes, space, offset;
bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
/* If there is space left in the previously allocated page,
* then use it. Otherwise allocate a new one */
rx_buf->page = rx_queue->buf_page;
if (rx_buf->page == NULL) {
dma_addr_t dma_addr;
rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
efx->rx_buffer_order);
if (unlikely(rx_buf->page == NULL))
return -ENOMEM;
dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
0, RX_PAGE_SIZE(efx),
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(dma_addr))) {
__free_pages(rx_buf->page, efx->rx_buffer_order);
rx_buf->page = NULL;
return -EIO;
}
rx_queue->buf_page = rx_buf->page;
rx_queue->buf_dma_addr = dma_addr;
rx_queue->buf_data = ((char *) page_address(rx_buf->page) +
EFX_PAGE_IP_ALIGN);
}
offset = RX_DATA_OFFSET(rx_queue->buf_data);
rx_buf->len = bytes;
rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
rx_buf->data = rx_queue->buf_data;
/* Try to pack multiple buffers per page */
if (efx->rx_buffer_order == 0) {
/* The next buffer starts on the next 512 byte boundary */
rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
offset += ((bytes + 0x1ff) & ~0x1ff);
space = RX_PAGE_SIZE(efx) - offset;
if (space >= bytes) {
/* Refs dropped on kernel releasing each skb */
get_page(rx_queue->buf_page);
goto out;
}
}
/* This is the final RX buffer for this page, so mark it for
* unmapping */
rx_queue->buf_page = NULL;
rx_buf->unmap_addr = rx_queue->buf_dma_addr;
out:
return 0;
}
/* This allocates memory for a new receive buffer, maps it for DMA,
* and populates a struct efx_rx_buffer with the relevant
* information.
*/
static inline int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *new_rx_buf)
{
int rc = 0;
if (rx_queue->channel->rx_alloc_push_pages) {
new_rx_buf->skb = NULL;
rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
rx_queue->alloc_page_count++;
} else {
new_rx_buf->page = NULL;
rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
rx_queue->alloc_skb_count++;
}
if (unlikely(rc < 0))
EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
rx_queue->queue, rc);
return rc;
}
static inline void efx_unmap_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
if (rx_buf->page) {
EFX_BUG_ON_PARANOID(rx_buf->skb);
if (rx_buf->unmap_addr) {
pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
RX_PAGE_SIZE(efx), PCI_DMA_FROMDEVICE);
rx_buf->unmap_addr = 0;
}
} else if (likely(rx_buf->skb)) {
pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
rx_buf->len, PCI_DMA_FROMDEVICE);
}
}
static inline void efx_free_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
if (rx_buf->page) {
__free_pages(rx_buf->page, efx->rx_buffer_order);
rx_buf->page = NULL;
} else if (likely(rx_buf->skb)) {
dev_kfree_skb_any(rx_buf->skb);
rx_buf->skb = NULL;
}
}
static inline void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
efx_free_rx_buffer(rx_queue->efx, rx_buf);
}
/**
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
* @retry: Recheck the fill level
* This will aim to fill the RX descriptor queue up to
* @rx_queue->@fast_fill_limit. If there is insufficient atomic
* memory to do so, the caller should retry.
*/
static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
int retry)
{
struct efx_rx_buffer *rx_buf;
unsigned fill_level, index;
int i, space, rc = 0;
/* Calculate current fill level. Do this outside the lock,
* because most of the time we'll end up not wanting to do the
* fill anyway.
*/
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EFX_BUG_ON_PARANOID(fill_level >
rx_queue->efx->type->rxd_ring_mask + 1);
/* Don't fill if we don't need to */
if (fill_level >= rx_queue->fast_fill_trigger)
return 0;
/* Record minimum fill level */
if (unlikely(fill_level < rx_queue->min_fill))
if (fill_level)
rx_queue->min_fill = fill_level;
/* Acquire RX add lock. If this lock is contended, then a fast
* fill must already be in progress (e.g. in the refill
* tasklet), so we don't need to do anything
*/
if (!spin_trylock_bh(&rx_queue->add_lock))
return -1;
retry:
/* Recalculate current fill level now that we have the lock */
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EFX_BUG_ON_PARANOID(fill_level >
rx_queue->efx->type->rxd_ring_mask + 1);
space = rx_queue->fast_fill_limit - fill_level;
if (space < EFX_RX_BATCH)
goto out_unlock;
EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
" level %d to level %d using %s allocation\n",
rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
do {
for (i = 0; i < EFX_RX_BATCH; ++i) {
index = (rx_queue->added_count &
rx_queue->efx->type->rxd_ring_mask);
rx_buf = efx_rx_buffer(rx_queue, index);
rc = efx_init_rx_buffer(rx_queue, rx_buf);
if (unlikely(rc))
goto out;
++rx_queue->added_count;
}
} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
"to level %d\n", rx_queue->queue,
rx_queue->added_count - rx_queue->removed_count);
out:
/* Send write pointer to card. */
falcon_notify_rx_desc(rx_queue);
/* If the fast fill is running inside from the refill tasklet, then
* for SMP systems it may be running on a different CPU to
* RX event processing, which means that the fill level may now be
* out of date. */
if (unlikely(retry && (rc == 0)))
goto retry;
out_unlock:
spin_unlock_bh(&rx_queue->add_lock);
return rc;
}
/**
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
*
* This will aim to fill the RX descriptor queue up to
* @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
* it will schedule a work item to immediately continue the fast fill
*/
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
{
int rc;
rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
if (unlikely(rc)) {
/* Schedule the work item to run immediately. The hope is
* that work is immediately pending to free some memory
* (e.g. an RX event or TX completion)
*/
efx_schedule_slow_fill(rx_queue, 0);
}
}
void efx_rx_work(struct work_struct *data)
{
struct efx_rx_queue *rx_queue;
int rc;
rx_queue = container_of(data, struct efx_rx_queue, work.work);
if (unlikely(!rx_queue->channel->enabled))
return;
EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
"%d\n", rx_queue->queue, raw_smp_processor_id());
++rx_queue->slow_fill_count;
/* Push new RX descriptors, allowing at least 1 jiffy for
* the kernel to free some more memory. */
rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
if (rc)
efx_schedule_slow_fill(rx_queue, 1);
}
static inline void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf,
int len, int *discard,
int *leak_packet)
{
struct efx_nic *efx = rx_queue->efx;
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
if (likely(len <= max_len))
return;
/* The packet must be discarded, but this is only a fatal error
* if the caller indicated it was
*/
*discard = 1;
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
EFX_ERR_RL(efx, " RX queue %d seriously overlength "
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
rx_queue->queue, len, max_len,
efx->type->rx_buffer_padding);
/* If this buffer was skb-allocated, then the meta
* data at the end of the skb will be trashed. So
* we have no choice but to leak the fragment.
*/
*leak_packet = (rx_buf->skb != NULL);
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
} else {
EFX_ERR_RL(efx, " RX queue %d overlength RX event "
"(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
}
rx_queue->channel->n_rx_overlength++;
}
/* Pass a received packet up through the generic LRO stack
*
* Handles driverlink veto, and passes the fragment up via
* the appropriate LRO method
*/
static inline void efx_rx_packet_lro(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf)
{
struct net_lro_mgr *lro_mgr = &channel->lro_mgr;
void *priv = channel;
/* Pass the skb/page into the LRO engine */
if (rx_buf->page) {
struct skb_frag_struct frags;
frags.page = rx_buf->page;
frags.page_offset = RX_BUF_OFFSET(rx_buf);
frags.size = rx_buf->len;
lro_receive_frags(lro_mgr, &frags, rx_buf->len,
rx_buf->len, priv, 0);
EFX_BUG_ON_PARANOID(rx_buf->skb);
rx_buf->page = NULL;
} else {
EFX_BUG_ON_PARANOID(!rx_buf->skb);
lro_receive_skb(lro_mgr, rx_buf->skb, priv);
rx_buf->skb = NULL;
}
}
/* Allocate and construct an SKB around a struct page.*/
static inline struct sk_buff *efx_rx_mk_skb(struct efx_rx_buffer *rx_buf,
struct efx_nic *efx,
int hdr_len)
{
struct sk_buff *skb;
/* Allocate an SKB to store the headers */
skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
if (unlikely(skb == NULL)) {
EFX_ERR_RL(efx, "RX out of memory for skb\n");
return NULL;
}
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags);
EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
skb->len = rx_buf->len;
skb->truesize = rx_buf->len + sizeof(struct sk_buff);
memcpy(skb->data, rx_buf->data, hdr_len);
skb->tail += hdr_len;
/* Append the remaining page onto the frag list */
if (unlikely(rx_buf->len > hdr_len)) {
struct skb_frag_struct *frag = skb_shinfo(skb)->frags;
frag->page = rx_buf->page;
frag->page_offset = RX_BUF_OFFSET(rx_buf) + hdr_len;
frag->size = skb->len - hdr_len;
skb_shinfo(skb)->nr_frags = 1;
skb->data_len = frag->size;
} else {
__free_pages(rx_buf->page, efx->rx_buffer_order);
skb->data_len = 0;
}
/* Ownership has transferred from the rx_buf to skb */
rx_buf->page = NULL;
/* Move past the ethernet header */
skb->protocol = eth_type_trans(skb, efx->net_dev);
return skb;
}
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
unsigned int len, int checksummed, int discard)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_rx_buffer *rx_buf;
int leak_packet = 0;
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_BUG_ON_PARANOID(!rx_buf->data);
EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
/* This allows the refill path to post another buffer.
* EFX_RXD_HEAD_ROOM ensures that the slot we are using
* isn't overwritten yet.
*/
rx_queue->removed_count++;
/* Validate the length encoded in the event vs the descriptor pushed */
efx_rx_packet__check_len(rx_queue, rx_buf, len,
&discard, &leak_packet);
EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
rx_queue->queue, index,
(unsigned long long)rx_buf->dma_addr, len,
(checksummed ? " [SUMMED]" : ""),
(discard ? " [DISCARD]" : ""));
/* Discard packet, if instructed to do so */
if (unlikely(discard)) {
if (unlikely(leak_packet))
rx_queue->channel->n_skbuff_leaks++;
else
/* We haven't called efx_unmap_rx_buffer yet,
* so fini the entire rx_buffer here */
efx_fini_rx_buffer(rx_queue, rx_buf);
return;
}
/* Release card resources - assumes all RX buffers consumed in-order
* per RX queue
*/
efx_unmap_rx_buffer(efx, rx_buf);
/* Prefetch nice and early so data will (hopefully) be in cache by
* the time we look at it.
*/
prefetch(rx_buf->data);
/* Pipeline receives so that we give time for packet headers to be
* prefetched into cache.
*/
rx_buf->len = len;
if (rx_queue->channel->rx_pkt)
__efx_rx_packet(rx_queue->channel,
rx_queue->channel->rx_pkt,
rx_queue->channel->rx_pkt_csummed);
rx_queue->channel->rx_pkt = rx_buf;
rx_queue->channel->rx_pkt_csummed = checksummed;
}
/* Handle a received packet. Second half: Touches packet payload. */
void __efx_rx_packet(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf, int checksummed)
{
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
int lro = efx->net_dev->features & NETIF_F_LRO;
if (rx_buf->skb) {
prefetch(skb_shinfo(rx_buf->skb));
skb_put(rx_buf->skb, rx_buf->len);
/* Move past the ethernet header. rx_buf->data still points
* at the ethernet header */
rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
efx->net_dev);
}
/* Both our generic-LRO and SFC-SSR support skb and page based
* allocation, but neither support switching from one to the
* other on the fly. If we spot that the allocation mode has
* changed, then flush the LRO state.
*/
if (unlikely(channel->rx_alloc_pop_pages != (rx_buf->page != NULL))) {
efx_flush_lro(channel);
channel->rx_alloc_pop_pages = (rx_buf->page != NULL);
}
if (likely(checksummed && lro)) {
efx_rx_packet_lro(channel, rx_buf);
goto done;
}
/* Form an skb if required */
if (rx_buf->page) {
int hdr_len = min(rx_buf->len, EFX_SKB_HEADERS);
skb = efx_rx_mk_skb(rx_buf, efx, hdr_len);
if (unlikely(skb == NULL)) {
efx_free_rx_buffer(efx, rx_buf);
goto done;
}
} else {
/* We now own the SKB */
skb = rx_buf->skb;
rx_buf->skb = NULL;
}
EFX_BUG_ON_PARANOID(rx_buf->page);
EFX_BUG_ON_PARANOID(rx_buf->skb);
EFX_BUG_ON_PARANOID(!skb);
/* Set the SKB flags */
if (unlikely(!checksummed || !efx->rx_checksum_enabled))
skb->ip_summed = CHECKSUM_NONE;
/* Pass the packet up */
netif_receive_skb(skb);
/* Update allocation strategy method */
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
/* fall-thru */
done:
efx->net_dev->last_rx = jiffies;
}
void efx_rx_strategy(struct efx_channel *channel)
{
enum efx_rx_alloc_method method = rx_alloc_method;
/* Only makes sense to use page based allocation if LRO is enabled */
if (!(channel->efx->net_dev->features & NETIF_F_LRO)) {
method = RX_ALLOC_METHOD_SKB;
} else if (method == RX_ALLOC_METHOD_AUTO) {
/* Constrain the rx_alloc_level */
if (channel->rx_alloc_level < 0)
channel->rx_alloc_level = 0;
else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
/* Decide on the allocation method */
method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
}
/* Push the option */
channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
}
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int rxq_size;
int rc;
EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
/* Allocate RX buffers */
rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer);
rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
if (!rx_queue->buffer) {
rc = -ENOMEM;
goto fail1;
}
rc = falcon_probe_rx(rx_queue);
if (rc)
goto fail2;
return 0;
fail2:
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
fail1:
rx_queue->used = 0;
return rc;
}
int efx_init_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int max_fill, trigger, limit;
EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
/* Initialise ptr fields */
rx_queue->added_count = 0;
rx_queue->notified_count = 0;
rx_queue->removed_count = 0;
rx_queue->min_fill = -1U;
rx_queue->min_overfill = -1U;
/* Initialise limit fields */
max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM;
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
limit = max_fill * min(rx_refill_limit, 100U) / 100U;
rx_queue->max_fill = max_fill;
rx_queue->fast_fill_trigger = trigger;
rx_queue->fast_fill_limit = limit;
/* Set up RX descriptor ring */
return falcon_init_rx(rx_queue);
}
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
int i;
struct efx_rx_buffer *rx_buf;
EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
falcon_fini_rx(rx_queue);
/* Release RX buffers NB start at index 0 not current HW ptr */
if (rx_queue->buffer) {
for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) {
rx_buf = efx_rx_buffer(rx_queue, i);
efx_fini_rx_buffer(rx_queue, rx_buf);
}
}
/* For a page that is part-way through splitting into RX buffers */
if (rx_queue->buf_page != NULL) {
pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
RX_PAGE_SIZE(rx_queue->efx), PCI_DMA_FROMDEVICE);
__free_pages(rx_queue->buf_page,
rx_queue->efx->rx_buffer_order);
rx_queue->buf_page = NULL;
}
}
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
falcon_remove_rx(rx_queue);
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
rx_queue->used = 0;
}
void efx_flush_lro(struct efx_channel *channel)
{
lro_flush_all(&channel->lro_mgr);
}
module_param(rx_alloc_method, int, 0644);
MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
"RX descriptor ring fast/slow fill threshold (%)");
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_RX_H
#define EFX_RX_H
#include "net_driver.h"
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue);
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue);
int efx_init_rx_queue(struct efx_rx_queue *rx_queue);
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue);
int efx_lro_init(struct net_lro_mgr *lro_mgr, struct efx_nic *efx);
void efx_lro_fini(struct net_lro_mgr *lro_mgr);
void efx_flush_lro(struct efx_channel *channel);
void efx_rx_strategy(struct efx_channel *channel);
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue);
void efx_rx_work(struct work_struct *data);
void __efx_rx_packet(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf, int checksummed);
#endif /* EFX_RX_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/*****************************************************************************
* Support for the SFE4001 NIC: driver code for the PCA9539 I/O expander that
* controls the PHY power rails, and for the MAX6647 temp. sensor used to check
* the PHY
*/
#include <linux/delay.h>
#include "efx.h"
#include "phy.h"
#include "boards.h"
#include "falcon.h"
#include "falcon_hwdefs.h"
#include "mac.h"
/**************************************************************************
*
* I2C IO Expander device
*
**************************************************************************/
#define PCA9539 0x74
#define P0_IN 0x00
#define P0_OUT 0x02
#define P0_INVERT 0x04
#define P0_CONFIG 0x06
#define P0_EN_1V0X_LBN 0
#define P0_EN_1V0X_WIDTH 1
#define P0_EN_1V2_LBN 1
#define P0_EN_1V2_WIDTH 1
#define P0_EN_2V5_LBN 2
#define P0_EN_2V5_WIDTH 1
#define P0_EN_3V3X_LBN 3
#define P0_EN_3V3X_WIDTH 1
#define P0_EN_5V_LBN 4
#define P0_EN_5V_WIDTH 1
#define P0_SHORTEN_JTAG_LBN 5
#define P0_SHORTEN_JTAG_WIDTH 1
#define P0_X_TRST_LBN 6
#define P0_X_TRST_WIDTH 1
#define P0_DSP_RESET_LBN 7
#define P0_DSP_RESET_WIDTH 1
#define P1_IN 0x01
#define P1_OUT 0x03
#define P1_INVERT 0x05
#define P1_CONFIG 0x07
#define P1_AFE_PWD_LBN 0
#define P1_AFE_PWD_WIDTH 1
#define P1_DSP_PWD25_LBN 1
#define P1_DSP_PWD25_WIDTH 1
#define P1_RESERVED_LBN 2
#define P1_RESERVED_WIDTH 2
#define P1_SPARE_LBN 4
#define P1_SPARE_WIDTH 4
/**************************************************************************
*
* Temperature Sensor
*
**************************************************************************/
#define MAX6647 0x4e
#define RLTS 0x00
#define RLTE 0x01
#define RSL 0x02
#define RCL 0x03
#define RCRA 0x04
#define RLHN 0x05
#define RLLI 0x06
#define RRHI 0x07
#define RRLS 0x08
#define WCRW 0x0a
#define WLHO 0x0b
#define WRHA 0x0c
#define WRLN 0x0e
#define OSHT 0x0f
#define REET 0x10
#define RIET 0x11
#define RWOE 0x19
#define RWOI 0x20
#define HYS 0x21
#define QUEUE 0x22
#define MFID 0xfe
#define REVID 0xff
/* Status bits */
#define MAX6647_BUSY (1 << 7) /* ADC is converting */
#define MAX6647_LHIGH (1 << 6) /* Local high temp. alarm */
#define MAX6647_LLOW (1 << 5) /* Local low temp. alarm */
#define MAX6647_RHIGH (1 << 4) /* Remote high temp. alarm */
#define MAX6647_RLOW (1 << 3) /* Remote low temp. alarm */
#define MAX6647_FAULT (1 << 2) /* DXN/DXP short/open circuit */
#define MAX6647_EOT (1 << 1) /* Remote junction overtemp. */
#define MAX6647_IOT (1 << 0) /* Local junction overtemp. */
static const u8 xgphy_max_temperature = 90;
void sfe4001_poweroff(struct efx_nic *efx)
{
struct efx_i2c_interface *i2c = &efx->i2c;
u8 cfg, out, in;
EFX_INFO(efx, "%s\n", __func__);
/* Turn off all power rails */
out = 0xff;
(void) efx_i2c_write(i2c, PCA9539, P0_OUT, &out, 1);
/* Disable port 1 outputs on IO expander */
cfg = 0xff;
(void) efx_i2c_write(i2c, PCA9539, P1_CONFIG, &cfg, 1);
/* Disable port 0 outputs on IO expander */
cfg = 0xff;
(void) efx_i2c_write(i2c, PCA9539, P0_CONFIG, &cfg, 1);
/* Clear any over-temperature alert */
(void) efx_i2c_read(i2c, MAX6647, RSL, &in, 1);
}
/* This board uses an I2C expander to provider power to the PHY, which needs to
* be turned on before the PHY can be used.
* Context: Process context, rtnl lock held
*/
int sfe4001_poweron(struct efx_nic *efx)
{
struct efx_i2c_interface *i2c = &efx->i2c;
unsigned int count;
int rc;
u8 out, in, cfg;
efx_dword_t reg;
/* 10Xpress has fixed-function LED pins, so there is no board-specific
* blink code. */
efx->board_info.blink = tenxpress_phy_blink;
/* Ensure that XGXS and XAUI SerDes are held in reset */
EFX_POPULATE_DWORD_7(reg, XX_PWRDNA_EN, 1,
XX_PWRDNB_EN, 1,
XX_RSTPLLAB_EN, 1,
XX_RESETA_EN, 1,
XX_RESETB_EN, 1,
XX_RSTXGXSRX_EN, 1,
XX_RSTXGXSTX_EN, 1);
falcon_xmac_writel(efx, &reg, XX_PWR_RST_REG_MAC);
udelay(10);
/* Set DSP over-temperature alert threshold */
EFX_INFO(efx, "DSP cut-out at %dC\n", xgphy_max_temperature);
rc = efx_i2c_write(i2c, MAX6647, WLHO,
&xgphy_max_temperature, 1);
if (rc)
goto fail1;
/* Read it back and verify */
rc = efx_i2c_read(i2c, MAX6647, RLHN, &in, 1);
if (rc)
goto fail1;
if (in != xgphy_max_temperature) {
rc = -EFAULT;
goto fail1;
}
/* Clear any previous over-temperature alert */
rc = efx_i2c_read(i2c, MAX6647, RSL, &in, 1);
if (rc)
goto fail1;
/* Enable port 0 and port 1 outputs on IO expander */
cfg = 0x00;
rc = efx_i2c_write(i2c, PCA9539, P0_CONFIG, &cfg, 1);
if (rc)
goto fail1;
cfg = 0xff & ~(1 << P1_SPARE_LBN);
rc = efx_i2c_write(i2c, PCA9539, P1_CONFIG, &cfg, 1);
if (rc)
goto fail2;
/* Turn all power off then wait 1 sec. This ensures PHY is reset */
out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) |
(0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) |
(0 << P0_EN_1V0X_LBN));
rc = efx_i2c_write(i2c, PCA9539, P0_OUT, &out, 1);
if (rc)
goto fail3;
schedule_timeout_uninterruptible(HZ);
count = 0;
do {
/* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */
out = 0xff & ~((1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) |
(1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) |
(1 << P0_X_TRST_LBN));
rc = efx_i2c_write(i2c, PCA9539, P0_OUT, &out, 1);
if (rc)
goto fail3;
msleep(10);
/* Turn on 1V power rail */
out &= ~(1 << P0_EN_1V0X_LBN);
rc = efx_i2c_write(i2c, PCA9539, P0_OUT, &out, 1);
if (rc)
goto fail3;
EFX_INFO(efx, "waiting for power (attempt %d)...\n", count);
schedule_timeout_uninterruptible(HZ);
/* Check DSP is powered */
rc = efx_i2c_read(i2c, PCA9539, P1_IN, &in, 1);
if (rc)
goto fail3;
if (in & (1 << P1_AFE_PWD_LBN))
goto done;
} while (++count < 20);
EFX_INFO(efx, "timed out waiting for power\n");
rc = -ETIMEDOUT;
goto fail3;
done:
EFX_INFO(efx, "PHY is powered on\n");
return 0;
fail3:
/* Turn off all power rails */
out = 0xff;
(void) efx_i2c_write(i2c, PCA9539, P0_OUT, &out, 1);
/* Disable port 1 outputs on IO expander */
out = 0xff;
(void) efx_i2c_write(i2c, PCA9539, P1_CONFIG, &out, 1);
fail2:
/* Disable port 0 outputs on IO expander */
out = 0xff;
(void) efx_i2c_write(i2c, PCA9539, P0_CONFIG, &out, 1);
fail1:
return rc;
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005 Fen Systems Ltd.
* Copyright 2006 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_SPI_H
#define EFX_SPI_H
#include "net_driver.h"
/**************************************************************************
*
* Basic SPI command set and bit definitions
*
*************************************************************************/
/*
* Commands common to all known devices.
*
*/
/* Write status register */
#define SPI_WRSR 0x01
/* Write data to memory array */
#define SPI_WRITE 0x02
/* Read data from memory array */
#define SPI_READ 0x03
/* Reset write enable latch */
#define SPI_WRDI 0x04
/* Read status register */
#define SPI_RDSR 0x05
/* Set write enable latch */
#define SPI_WREN 0x06
/* SST: Enable write to status register */
#define SPI_SST_EWSR 0x50
/*
* Status register bits. Not all bits are supported on all devices.
*
*/
/* Write-protect pin enabled */
#define SPI_STATUS_WPEN 0x80
/* Block protection bit 2 */
#define SPI_STATUS_BP2 0x10
/* Block protection bit 1 */
#define SPI_STATUS_BP1 0x08
/* Block protection bit 0 */
#define SPI_STATUS_BP0 0x04
/* State of the write enable latch */
#define SPI_STATUS_WEN 0x02
/* Device busy flag */
#define SPI_STATUS_NRDY 0x01
#endif /* EFX_SPI_H */
/****************************************************************************
* Driver for Solarflare 802.3an compliant PHY
* Copyright 2007 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/delay.h>
#include <linux/seq_file.h>
#include "efx.h"
#include "gmii.h"
#include "mdio_10g.h"
#include "falcon.h"
#include "phy.h"
#include "falcon_hwdefs.h"
#include "boards.h"
#include "mac.h"
/* We expect these MMDs to be in the package */
/* AN not here as mdio_check_mmds() requires STAT2 support */
#define TENXPRESS_REQUIRED_DEVS (MDIO_MMDREG_DEVS0_PMAPMD | \
MDIO_MMDREG_DEVS0_PCS | \
MDIO_MMDREG_DEVS0_PHYXS)
/* We complain if we fail to see the link partner as 10G capable this many
* times in a row (must be > 1 as sampling the autoneg. registers is racy)
*/
#define MAX_BAD_LP_TRIES (5)
/* Extended control register */
#define PMA_PMD_XCONTROL_REG 0xc000
#define PMA_PMD_LNPGA_POWERDOWN_LBN 8
#define PMA_PMD_LNPGA_POWERDOWN_WIDTH 1
/* extended status register */
#define PMA_PMD_XSTATUS_REG 0xc001
#define PMA_PMD_XSTAT_FLP_LBN (12)
/* LED control register */
#define PMA_PMD_LED_CTRL_REG (0xc007)
#define PMA_PMA_LED_ACTIVITY_LBN (3)
/* LED function override register */
#define PMA_PMD_LED_OVERR_REG (0xc009)
/* Bit positions for different LEDs (there are more but not wired on SFE4001)*/
#define PMA_PMD_LED_LINK_LBN (0)
#define PMA_PMD_LED_SPEED_LBN (2)
#define PMA_PMD_LED_TX_LBN (4)
#define PMA_PMD_LED_RX_LBN (6)
/* Override settings */
#define PMA_PMD_LED_AUTO (0) /* H/W control */
#define PMA_PMD_LED_ON (1)
#define PMA_PMD_LED_OFF (2)
#define PMA_PMD_LED_FLASH (3)
/* All LEDs under hardware control */
#define PMA_PMD_LED_FULL_AUTO (0)
/* Green and Amber under hardware control, Red off */
#define PMA_PMD_LED_DEFAULT (PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN)
/* Self test (BIST) control register */
#define PMA_PMD_BIST_CTRL_REG (0xc014)
#define PMA_PMD_BIST_BER_LBN (2) /* Run BER test */
#define PMA_PMD_BIST_CONT_LBN (1) /* Run continuous BIST until cleared */
#define PMA_PMD_BIST_SINGLE_LBN (0) /* Run 1 BIST iteration (self clears) */
/* Self test status register */
#define PMA_PMD_BIST_STAT_REG (0xc015)
#define PMA_PMD_BIST_ENX_LBN (3)
#define PMA_PMD_BIST_PMA_LBN (2)
#define PMA_PMD_BIST_RXD_LBN (1)
#define PMA_PMD_BIST_AFE_LBN (0)
#define BIST_MAX_DELAY (1000)
#define BIST_POLL_DELAY (10)
/* Misc register defines */
#define PCS_CLOCK_CTRL_REG 0xd801
#define PLL312_RST_N_LBN 2
#define PCS_SOFT_RST2_REG 0xd806
#define SERDES_RST_N_LBN 13
#define XGXS_RST_N_LBN 12
#define PCS_TEST_SELECT_REG 0xd807 /* PRM 10.5.8 */
#define CLK312_EN_LBN 3
/* Boot status register */
#define PCS_BOOT_STATUS_REG (0xd000)
#define PCS_BOOT_FATAL_ERR_LBN (0)
#define PCS_BOOT_PROGRESS_LBN (1)
#define PCS_BOOT_PROGRESS_WIDTH (2)
#define PCS_BOOT_COMPLETE_LBN (3)
#define PCS_BOOT_MAX_DELAY (100)
#define PCS_BOOT_POLL_DELAY (10)
/* Time to wait between powering down the LNPGA and turning off the power
* rails */
#define LNPGA_PDOWN_WAIT (HZ / 5)
static int crc_error_reset_threshold = 100;
module_param(crc_error_reset_threshold, int, 0644);
MODULE_PARM_DESC(crc_error_reset_threshold,
"Max number of CRC errors before XAUI reset");
struct tenxpress_phy_data {
enum tenxpress_state state;
atomic_t bad_crc_count;
int bad_lp_tries;
};
static int tenxpress_state_is(struct efx_nic *efx, int state)
{
struct tenxpress_phy_data *phy_data = efx->phy_data;
return (phy_data != NULL) && (state == phy_data->state);
}
void tenxpress_set_state(struct efx_nic *efx,
enum tenxpress_state state)
{
struct tenxpress_phy_data *phy_data = efx->phy_data;
if (phy_data != NULL)
phy_data->state = state;
}
void tenxpress_crc_err(struct efx_nic *efx)
{
struct tenxpress_phy_data *phy_data = efx->phy_data;
if (phy_data != NULL)
atomic_inc(&phy_data->bad_crc_count);
}
/* Check that the C166 has booted successfully */
static int tenxpress_phy_check(struct efx_nic *efx)
{
int phy_id = efx->mii.phy_id;
int count = PCS_BOOT_MAX_DELAY / PCS_BOOT_POLL_DELAY;
int boot_stat;
/* Wait for the boot to complete (or not) */
while (count) {
boot_stat = mdio_clause45_read(efx, phy_id,
MDIO_MMD_PCS,
PCS_BOOT_STATUS_REG);
if (boot_stat & (1 << PCS_BOOT_COMPLETE_LBN))
break;
count--;
udelay(PCS_BOOT_POLL_DELAY);
}
if (!count) {
EFX_ERR(efx, "%s: PHY boot timed out. Last status "
"%x\n", __func__,
(boot_stat >> PCS_BOOT_PROGRESS_LBN) &
((1 << PCS_BOOT_PROGRESS_WIDTH) - 1));
return -ETIMEDOUT;
}
return 0;
}
static void tenxpress_reset_xaui(struct efx_nic *efx);
static int tenxpress_init(struct efx_nic *efx)
{
int rc, reg;
/* Turn on the clock */
reg = (1 << CLK312_EN_LBN);
mdio_clause45_write(efx, efx->mii.phy_id,
MDIO_MMD_PCS, PCS_TEST_SELECT_REG, reg);
rc = tenxpress_phy_check(efx);
if (rc < 0)
return rc;
/* Set the LEDs up as: Green = Link, Amber = Link/Act, Red = Off */
reg = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD, PMA_PMD_LED_CTRL_REG);
reg |= (1 << PMA_PMA_LED_ACTIVITY_LBN);
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_CTRL_REG, reg);
reg = PMA_PMD_LED_DEFAULT;
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG, reg);
return rc;
}
static int tenxpress_phy_init(struct efx_nic *efx)
{
struct tenxpress_phy_data *phy_data;
int rc = 0;
phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL);
efx->phy_data = phy_data;
tenxpress_set_state(efx, TENXPRESS_STATUS_NORMAL);
rc = mdio_clause45_wait_reset_mmds(efx,
TENXPRESS_REQUIRED_DEVS);
if (rc < 0)
goto fail;
rc = mdio_clause45_check_mmds(efx, TENXPRESS_REQUIRED_DEVS, 0);
if (rc < 0)
goto fail;
rc = tenxpress_init(efx);
if (rc < 0)
goto fail;
schedule_timeout_uninterruptible(HZ / 5); /* 200ms */
/* Let XGXS and SerDes out of reset and resets 10XPress */
falcon_reset_xaui(efx);
return 0;
fail:
kfree(efx->phy_data);
efx->phy_data = NULL;
return rc;
}
static void tenxpress_set_bad_lp(struct efx_nic *efx, int bad_lp)
{
struct tenxpress_phy_data *pd = efx->phy_data;
int reg;
/* Nothing to do if all is well and was previously so. */
if (!(bad_lp || pd->bad_lp_tries))
return;
reg = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG);
if (bad_lp)
pd->bad_lp_tries++;
else
pd->bad_lp_tries = 0;
if (pd->bad_lp_tries == MAX_BAD_LP_TRIES) {
pd->bad_lp_tries = 0; /* Restart count */
reg &= ~(PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN);
reg |= (PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN);
EFX_ERR(efx, "This NIC appears to be plugged into"
" a port that is not 10GBASE-T capable.\n"
" This PHY is 10GBASE-T ONLY, so no link can"
" be established.\n");
} else {
reg |= (PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN);
}
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG, reg);
}
/* Check link status and return a boolean OK value. If the link is NOT
* OK we have a quick rummage round to see if we appear to be plugged
* into a non-10GBT port and if so warn the user that they won't get
* link any time soon as we are 10GBT only, unless caller specified
* not to do this check (it isn't useful in loopback) */
static int tenxpress_link_ok(struct efx_nic *efx, int check_lp)
{
int ok = mdio_clause45_links_ok(efx, TENXPRESS_REQUIRED_DEVS);
if (ok) {
tenxpress_set_bad_lp(efx, 0);
} else if (check_lp) {
/* Are we plugged into the wrong sort of link? */
int bad_lp = 0;
int phy_id = efx->mii.phy_id;
int an_stat = mdio_clause45_read(efx, phy_id, MDIO_MMD_AN,
MDIO_AN_STATUS);
int xphy_stat = mdio_clause45_read(efx, phy_id,
MDIO_MMD_PMAPMD,
PMA_PMD_XSTATUS_REG);
/* Are we plugged into anything that sends FLPs? If
* not we can't distinguish between not being plugged
* in and being plugged into a non-AN antique. The FLP
* bit has the advantage of not clearing when autoneg
* restarts. */
if (!(xphy_stat & (1 << PMA_PMD_XSTAT_FLP_LBN))) {
tenxpress_set_bad_lp(efx, 0);
return ok;
}
/* If it can do 10GBT it must be XNP capable */
bad_lp = !(an_stat & (1 << MDIO_AN_STATUS_XNP_LBN));
if (!bad_lp && (an_stat & (1 << MDIO_AN_STATUS_PAGE_LBN))) {
bad_lp = !(mdio_clause45_read(efx, phy_id,
MDIO_MMD_AN, MDIO_AN_10GBT_STATUS) &
(1 << MDIO_AN_10GBT_STATUS_LP_10G_LBN));
}
tenxpress_set_bad_lp(efx, bad_lp);
}
return ok;
}
static void tenxpress_phy_reconfigure(struct efx_nic *efx)
{
if (!tenxpress_state_is(efx, TENXPRESS_STATUS_NORMAL))
return;
efx->link_up = tenxpress_link_ok(efx, 0);
efx->link_options = GM_LPA_10000FULL;
}
static void tenxpress_phy_clear_interrupt(struct efx_nic *efx)
{
/* Nothing done here - LASI interrupts aren't reliable so poll */
}
/* Poll PHY for interrupt */
static int tenxpress_phy_check_hw(struct efx_nic *efx)
{
struct tenxpress_phy_data *phy_data = efx->phy_data;
int phy_up = tenxpress_state_is(efx, TENXPRESS_STATUS_NORMAL);
int link_ok;
link_ok = phy_up && tenxpress_link_ok(efx, 1);
if (link_ok != efx->link_up)
falcon_xmac_sim_phy_event(efx);
/* Nothing to check if we've already shut down the PHY */
if (!phy_up)
return 0;
if (atomic_read(&phy_data->bad_crc_count) > crc_error_reset_threshold) {
EFX_ERR(efx, "Resetting XAUI due to too many CRC errors\n");
falcon_reset_xaui(efx);
atomic_set(&phy_data->bad_crc_count, 0);
}
return 0;
}
static void tenxpress_phy_fini(struct efx_nic *efx)
{
int reg;
/* Power down the LNPGA */
reg = (1 << PMA_PMD_LNPGA_POWERDOWN_LBN);
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG, reg);
/* Waiting here ensures that the board fini, which can turn off the
* power to the PHY, won't get run until the LNPGA powerdown has been
* given long enough to complete. */
schedule_timeout_uninterruptible(LNPGA_PDOWN_WAIT); /* 200 ms */
kfree(efx->phy_data);
efx->phy_data = NULL;
}
/* Set the RX and TX LEDs and Link LED flashing. The other LEDs
* (which probably aren't wired anyway) are left in AUTO mode */
void tenxpress_phy_blink(struct efx_nic *efx, int blink)
{
int reg;
if (blink)
reg = (PMA_PMD_LED_FLASH << PMA_PMD_LED_TX_LBN) |
(PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN) |
(PMA_PMD_LED_FLASH << PMA_PMD_LED_LINK_LBN);
else
reg = PMA_PMD_LED_DEFAULT;
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG, reg);
}
static void tenxpress_reset_xaui(struct efx_nic *efx)
{
int phy = efx->mii.phy_id;
int clk_ctrl, test_select, soft_rst2;
/* Real work is done on clock_ctrl other resets are thought to be
* optional but make the reset more reliable
*/
/* Read */
clk_ctrl = mdio_clause45_read(efx, phy, MDIO_MMD_PCS,
PCS_CLOCK_CTRL_REG);
test_select = mdio_clause45_read(efx, phy, MDIO_MMD_PCS,
PCS_TEST_SELECT_REG);
soft_rst2 = mdio_clause45_read(efx, phy, MDIO_MMD_PCS,
PCS_SOFT_RST2_REG);
/* Put in reset */
test_select &= ~(1 << CLK312_EN_LBN);
mdio_clause45_write(efx, phy, MDIO_MMD_PCS,
PCS_TEST_SELECT_REG, test_select);
soft_rst2 &= ~((1 << XGXS_RST_N_LBN) | (1 << SERDES_RST_N_LBN));
mdio_clause45_write(efx, phy, MDIO_MMD_PCS,
PCS_SOFT_RST2_REG, soft_rst2);
clk_ctrl &= ~(1 << PLL312_RST_N_LBN);
mdio_clause45_write(efx, phy, MDIO_MMD_PCS,
PCS_CLOCK_CTRL_REG, clk_ctrl);
udelay(10);
/* Remove reset */
clk_ctrl |= (1 << PLL312_RST_N_LBN);
mdio_clause45_write(efx, phy, MDIO_MMD_PCS,
PCS_CLOCK_CTRL_REG, clk_ctrl);
udelay(10);
soft_rst2 |= ((1 << XGXS_RST_N_LBN) | (1 << SERDES_RST_N_LBN));
mdio_clause45_write(efx, phy, MDIO_MMD_PCS,
PCS_SOFT_RST2_REG, soft_rst2);
udelay(10);
test_select |= (1 << CLK312_EN_LBN);
mdio_clause45_write(efx, phy, MDIO_MMD_PCS,
PCS_TEST_SELECT_REG, test_select);
udelay(10);
}
struct efx_phy_operations falcon_tenxpress_phy_ops = {
.init = tenxpress_phy_init,
.reconfigure = tenxpress_phy_reconfigure,
.check_hw = tenxpress_phy_check_hw,
.fini = tenxpress_phy_fini,
.clear_interrupt = tenxpress_phy_clear_interrupt,
.reset_xaui = tenxpress_reset_xaui,
.mmds = TENXPRESS_REQUIRED_DEVS,
};
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "tx.h"
#include "efx.h"
#include "falcon.h"
#include "workarounds.h"
/*
* TX descriptor ring full threshold
*
* The tx_queue descriptor ring fill-level must fall below this value
* before we restart the netif queue
*/
#define EFX_NETDEV_TX_THRESHOLD(_tx_queue) \
(_tx_queue->efx->type->txd_ring_mask / 2u)
/* We want to be able to nest calls to netif_stop_queue(), since each
* channel can have an individual stop on the queue.
*/
void efx_stop_queue(struct efx_nic *efx)
{
spin_lock_bh(&efx->netif_stop_lock);
EFX_TRACE(efx, "stop TX queue\n");
atomic_inc(&efx->netif_stop_count);
netif_stop_queue(efx->net_dev);
spin_unlock_bh(&efx->netif_stop_lock);
}
/* Wake netif's TX queue
* We want to be able to nest calls to netif_stop_queue(), since each
* channel can have an individual stop on the queue.
*/
inline void efx_wake_queue(struct efx_nic *efx)
{
local_bh_disable();
if (atomic_dec_and_lock(&efx->netif_stop_count,
&efx->netif_stop_lock)) {
EFX_TRACE(efx, "waking TX queue\n");
netif_wake_queue(efx->net_dev);
spin_unlock(&efx->netif_stop_lock);
}
local_bh_enable();
}
static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
if (buffer->unmap_len) {
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
if (buffer->unmap_single)
pci_unmap_single(pci_dev, buffer->unmap_addr,
buffer->unmap_len, PCI_DMA_TODEVICE);
else
pci_unmap_page(pci_dev, buffer->unmap_addr,
buffer->unmap_len, PCI_DMA_TODEVICE);
buffer->unmap_len = 0;
buffer->unmap_single = 0;
}
if (buffer->skb) {
dev_kfree_skb_any((struct sk_buff *) buffer->skb);
buffer->skb = NULL;
EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
"complete\n", tx_queue->queue, read_ptr);
}
}
/*
* Add a socket buffer to a TX queue
*
* This maps all fragments of a socket buffer for DMA and adds them to
* the TX queue. The queue's insert pointer will be incremented by
* the number of fragments in the socket buffer.
*
* If any DMA mapping fails, any mapped fragments will be unmapped,
* the queue's insert pointer will be restored to its original value.
*
* Returns NETDEV_TX_OK or NETDEV_TX_BUSY
* You must hold netif_tx_lock() to call this function.
*/
static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb)
{
struct efx_nic *efx = tx_queue->efx;
struct pci_dev *pci_dev = efx->pci_dev;
struct efx_tx_buffer *buffer;
skb_frag_t *fragment;
struct page *page;
int page_offset;
unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
dma_addr_t dma_addr, unmap_addr = 0;
unsigned int dma_len;
unsigned unmap_single;
int q_space, i = 0;
int rc = NETDEV_TX_OK;
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
/* Get size of the initial fragment */
len = skb_headlen(skb);
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
q_space = efx->type->txd_ring_mask - 1 - fill_level;
/* Map for DMA. Use pci_map_single rather than pci_map_page
* since this is more efficient on machines with sparse
* memory.
*/
unmap_single = 1;
dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
/* Process all fragments */
while (1) {
if (unlikely(pci_dma_mapping_error(dma_addr)))
goto pci_err;
/* Store fields for marking in the per-fragment final
* descriptor */
unmap_len = len;
unmap_addr = dma_addr;
/* Add to TX queue, splitting across DMA boundaries */
do {
if (unlikely(q_space-- <= 0)) {
/* It might be that completions have
* happened since the xmit path last
* checked. Update the xmit path's
* copy of read_count.
*/
++tx_queue->stopped;
/* This memory barrier protects the
* change of stopped from the access
* of read_count. */
smp_mb();
tx_queue->old_read_count =
*(volatile unsigned *)
&tx_queue->read_count;
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = (efx->type->txd_ring_mask - 1 -
fill_level);
if (unlikely(q_space-- <= 0))
goto stop;
smp_mb();
--tx_queue->stopped;
}
insert_ptr = (tx_queue->insert_count &
efx->type->txd_ring_mask);
buffer = &tx_queue->buffer[insert_ptr];
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
if (likely(dma_len > len))
dma_len = len;
misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
if (misalign && dma_len + misalign > 512)
dma_len = 512 - misalign;
/* Fill out per descriptor fields */
buffer->len = dma_len;
buffer->dma_addr = dma_addr;
len -= dma_len;
dma_addr += dma_len;
++tx_queue->insert_count;
} while (len);
/* Transfer ownership of the unmapping to the final buffer */
buffer->unmap_addr = unmap_addr;
buffer->unmap_single = unmap_single;
buffer->unmap_len = unmap_len;
unmap_len = 0;
/* Get address and size of next fragment */
if (i >= skb_shinfo(skb)->nr_frags)
break;
fragment = &skb_shinfo(skb)->frags[i];
len = fragment->size;
page = fragment->page;
page_offset = fragment->page_offset;
i++;
/* Map for DMA */
unmap_single = 0;
dma_addr = pci_map_page(pci_dev, page, page_offset, len,
PCI_DMA_TODEVICE);
}
/* Transfer ownership of the skb to the final buffer */
buffer->skb = skb;
buffer->continuation = 0;
/* Pass off to hardware */
falcon_push_buffers(tx_queue);
return NETDEV_TX_OK;
pci_err:
EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
"fragments for DMA\n", tx_queue->queue, skb->len,
skb_shinfo(skb)->nr_frags + 1);
/* Mark the packet as transmitted, and free the SKB ourselves */
dev_kfree_skb_any((struct sk_buff *)skb);
goto unwind;
stop:
rc = NETDEV_TX_BUSY;
if (tx_queue->stopped == 1)
efx_stop_queue(efx);
unwind:
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != tx_queue->write_count) {
--tx_queue->insert_count;
insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
buffer = &tx_queue->buffer[insert_ptr];
efx_dequeue_buffer(tx_queue, buffer);
buffer->len = 0;
}
/* Free the fragment we were mid-way through pushing */
if (unmap_len)
pci_unmap_page(pci_dev, unmap_addr, unmap_len,
PCI_DMA_TODEVICE);
return rc;
}
/* Remove packets from the TX queue
*
* This removes packets from the TX queue, up to and including the
* specified index.
*/
static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
unsigned int index)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int stop_index, read_ptr;
unsigned int mask = tx_queue->efx->type->txd_ring_mask;
stop_index = (index + 1) & mask;
read_ptr = tx_queue->read_count & mask;
while (read_ptr != stop_index) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (unlikely(buffer->len == 0)) {
EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
"completion id %x\n", tx_queue->queue,
read_ptr);
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
efx_dequeue_buffer(tx_queue, buffer);
buffer->continuation = 1;
buffer->len = 0;
++tx_queue->read_count;
read_ptr = tx_queue->read_count & mask;
}
}
/* Initiate a packet transmission on the specified TX queue.
* Note that returning anything other than NETDEV_TX_OK will cause the
* OS to free the skb.
*
* This function is split out from efx_hard_start_xmit to allow the
* loopback test to direct packets via specific TX queues. It is
* therefore a non-static inline, so as not to penalise performance
* for non-loopback transmissions.
*
* Context: netif_tx_lock held
*/
inline int efx_xmit(struct efx_nic *efx,
struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
int rc;
/* Map fragments for DMA and add to TX queue */
rc = efx_enqueue_skb(tx_queue, skb);
if (unlikely(rc != NETDEV_TX_OK))
goto out;
/* Update last TX timer */
efx->net_dev->trans_start = jiffies;
out:
return rc;
}
/* Initiate a packet transmission. We use one channel per CPU
* (sharing when we have more CPUs than channels). On Falcon, the TX
* completion events will be directed back to the CPU that transmitted
* the packet, which should be cache-efficient.
*
* Context: non-blocking.
* Note that returning anything other than NETDEV_TX_OK will cause the
* OS to free the skb.
*/
int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
return efx_xmit(efx, &efx->tx_queue[0], skb);
}
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
unsigned fill_level;
struct efx_nic *efx = tx_queue->efx;
EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);
efx_dequeue_buffers(tx_queue, index);
/* See if we need to restart the netif queue. This barrier
* separates the update of read_count from the test of
* stopped. */
smp_mb();
if (unlikely(tx_queue->stopped)) {
fill_level = tx_queue->insert_count - tx_queue->read_count;
if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
EFX_BUG_ON_PARANOID(!NET_DEV_REGISTERED(efx));
/* Do this under netif_tx_lock(), to avoid racing
* with efx_xmit(). */
netif_tx_lock(efx->net_dev);
if (tx_queue->stopped) {
tx_queue->stopped = 0;
efx_wake_queue(efx);
}
netif_tx_unlock(efx->net_dev);
}
}
}
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int txq_size;
int i, rc;
EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
/* Allocate software ring */
txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
if (!tx_queue->buffer) {
rc = -ENOMEM;
goto fail1;
}
for (i = 0; i <= efx->type->txd_ring_mask; ++i)
tx_queue->buffer[i].continuation = 1;
/* Allocate hardware ring */
rc = falcon_probe_tx(tx_queue);
if (rc)
goto fail2;
return 0;
fail2:
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
fail1:
tx_queue->used = 0;
return rc;
}
int efx_init_tx_queue(struct efx_tx_queue *tx_queue)
{
EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
tx_queue->insert_count = 0;
tx_queue->write_count = 0;
tx_queue->read_count = 0;
tx_queue->old_read_count = 0;
BUG_ON(tx_queue->stopped);
/* Set up TX descriptor ring */
return falcon_init_tx(tx_queue);
}
void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
if (!tx_queue->buffer)
return;
/* Free any buffers left in the ring */
while (tx_queue->read_count != tx_queue->write_count) {
buffer = &tx_queue->buffer[tx_queue->read_count &
tx_queue->efx->type->txd_ring_mask];
efx_dequeue_buffer(tx_queue, buffer);
buffer->continuation = 1;
buffer->len = 0;
++tx_queue->read_count;
}
}
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
/* Flush TX queue, remove descriptor ring */
falcon_fini_tx(tx_queue);
efx_release_tx_buffers(tx_queue);
/* Release queue's stop on port, if any */
if (tx_queue->stopped) {
tx_queue->stopped = 0;
efx_wake_queue(tx_queue->efx);
}
}
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
falcon_remove_tx(tx_queue);
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
tx_queue->used = 0;
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_TX_H
#define EFX_TX_H
#include "net_driver.h"
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue);
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue);
int efx_init_tx_queue(struct efx_tx_queue *tx_queue);
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue);
int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
void efx_release_tx_buffers(struct efx_tx_queue *tx_queue);
#endif /* EFX_TX_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_WORKAROUNDS_H
#define EFX_WORKAROUNDS_H
/*
* Hardware workarounds.
* Bug numbers are from Solarflare's Bugzilla.
*/
#define EFX_WORKAROUND_ALWAYS(efx) 1
#define EFX_WORKAROUND_FALCON_A(efx) (FALCON_REV(efx) <= FALCON_REV_A1)
/* XAUI resets if link not detected */
#define EFX_WORKAROUND_5147 EFX_WORKAROUND_ALWAYS
/* SNAP frames have TOBE_DISC set */
#define EFX_WORKAROUND_5475 EFX_WORKAROUND_ALWAYS
/* RX PCIe double split performance issue */
#define EFX_WORKAROUND_7575 EFX_WORKAROUND_ALWAYS
/* TX pkt parser problem with <= 16 byte TXes */
#define EFX_WORKAROUND_9141 EFX_WORKAROUND_ALWAYS
/* XGXS and XAUI reset sequencing in SW */
#define EFX_WORKAROUND_9388 EFX_WORKAROUND_ALWAYS
/* Low rate CRC errors require XAUI reset */
#define EFX_WORKAROUND_10750 EFX_WORKAROUND_ALWAYS
/* TX_EV_PKT_ERR can be caused by a dangling TX descriptor
* or a PCIe error (bug 11028) */
#define EFX_WORKAROUND_10727 EFX_WORKAROUND_ALWAYS
/* Transmit flow control may get disabled */
#define EFX_WORKAROUND_11482 EFX_WORKAROUND_ALWAYS
/* Flush events can take a very long time to appear */
#define EFX_WORKAROUND_11557 EFX_WORKAROUND_ALWAYS
/* Spurious parity errors in TSORT buffers */
#define EFX_WORKAROUND_5129 EFX_WORKAROUND_FALCON_A
/* iSCSI parsing errors */
#define EFX_WORKAROUND_5583 EFX_WORKAROUND_FALCON_A
/* RX events go missing */
#define EFX_WORKAROUND_5676 EFX_WORKAROUND_FALCON_A
/* RX_RESET on A1 */
#define EFX_WORKAROUND_6555 EFX_WORKAROUND_FALCON_A
/* Increase filter depth to avoid RX_RESET */
#define EFX_WORKAROUND_7244 EFX_WORKAROUND_FALCON_A
/* Flushes may never complete */
#define EFX_WORKAROUND_7803 EFX_WORKAROUND_FALCON_A
/* Leak overlength packets rather than free */
#define EFX_WORKAROUND_8071 EFX_WORKAROUND_FALCON_A
#endif /* EFX_WORKAROUNDS_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_XENPACK_H
#define EFX_XENPACK_H
/* Exported functions from Xenpack standard PHY control */
#include "mdio_10g.h"
/****************************************************************************/
/* XENPACK MDIO register extensions */
#define MDIO_XP_LASI_RX_CTRL (0x9000)
#define MDIO_XP_LASI_TX_CTRL (0x9001)
#define MDIO_XP_LASI_CTRL (0x9002)
#define MDIO_XP_LASI_RX_STAT (0x9003)
#define MDIO_XP_LASI_TX_STAT (0x9004)
#define MDIO_XP_LASI_STAT (0x9005)
/* Control/Status bits */
#define XP_LASI_LS_ALARM (1 << 0)
#define XP_LASI_TX_ALARM (1 << 1)
#define XP_LASI_RX_ALARM (1 << 2)
/* These two are Quake vendor extensions to the standard XENPACK defines */
#define XP_LASI_LS_INTB (1 << 3)
#define XP_LASI_TEST (1 << 7)
/* Enable LASI interrupts for PHY */
static inline void xenpack_enable_lasi_irqs(struct efx_nic *efx)
{
int reg;
int phy_id = efx->mii.phy_id;
/* Read to clear LASI status register */
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_PMAPMD,
MDIO_XP_LASI_STAT);
mdio_clause45_write(efx, phy_id, MDIO_MMD_PMAPMD,
MDIO_XP_LASI_CTRL, XP_LASI_LS_ALARM);
}
/* Read the LASI interrupt status to clear the interrupt. */
static inline int xenpack_clear_lasi_irqs(struct efx_nic *efx)
{
/* Read to clear link status alarm */
return mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD, MDIO_XP_LASI_STAT);
}
/* Turn off LASI interrupts */
static inline void xenpack_disable_lasi_irqs(struct efx_nic *efx)
{
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
MDIO_XP_LASI_CTRL, 0);
}
#endif /* EFX_XENPACK_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/*
* Driver for XFP optical PHYs (plus some support specific to the Quake 2032)
* See www.amcc.com for details (search for qt2032)
*/
#include <linux/timer.h>
#include <linux/delay.h>
#include "efx.h"
#include "gmii.h"
#include "mdio_10g.h"
#include "xenpack.h"
#include "phy.h"
#include "mac.h"
#define XFP_REQUIRED_DEVS (MDIO_MMDREG_DEVS0_PCS | \
MDIO_MMDREG_DEVS0_PMAPMD | \
MDIO_MMDREG_DEVS0_PHYXS)
/****************************************************************************/
/* Quake-specific MDIO registers */
#define MDIO_QUAKE_LED0_REG (0xD006)
void xfp_set_led(struct efx_nic *p, int led, int mode)
{
int addr = MDIO_QUAKE_LED0_REG + led;
mdio_clause45_write(p, p->mii.phy_id, MDIO_MMD_PMAPMD, addr,
mode);
}
#define XFP_MAX_RESET_TIME 500
#define XFP_RESET_WAIT 10
/* Reset the PHYXS MMD. This is documented (for the Quake PHY) as doing
* a complete soft reset.
*/
static int xfp_reset_phy(struct efx_nic *efx)
{
int rc;
rc = mdio_clause45_reset_mmd(efx, MDIO_MMD_PHYXS,
XFP_MAX_RESET_TIME / XFP_RESET_WAIT,
XFP_RESET_WAIT);
if (rc < 0)
goto fail;
/* Wait 250ms for the PHY to complete bootup */
msleep(250);
/* Check that all the MMDs we expect are present and responding. We
* expect faults on some if the link is down, but not on the PHY XS */
rc = mdio_clause45_check_mmds(efx, XFP_REQUIRED_DEVS,
MDIO_MMDREG_DEVS0_PHYXS);
if (rc < 0)
goto fail;
efx->board_info.init_leds(efx);
return rc;
fail:
EFX_ERR(efx, "XFP: reset timed out!\n");
return rc;
}
static int xfp_phy_init(struct efx_nic *efx)
{
u32 devid = mdio_clause45_read_id(efx, MDIO_MMD_PHYXS);
int rc;
EFX_INFO(efx, "XFP: PHY ID reg %x (OUI %x model %x revision"
" %x)\n", devid, MDIO_ID_OUI(devid), MDIO_ID_MODEL(devid),
MDIO_ID_REV(devid));
rc = xfp_reset_phy(efx);
EFX_INFO(efx, "XFP: PHY init %s.\n",
rc ? "failed" : "successful");
return rc;
}
static void xfp_phy_clear_interrupt(struct efx_nic *efx)
{
xenpack_clear_lasi_irqs(efx);
}
static int xfp_link_ok(struct efx_nic *efx)
{
return mdio_clause45_links_ok(efx, XFP_REQUIRED_DEVS);
}
static int xfp_phy_check_hw(struct efx_nic *efx)
{
int rc = 0;
int link_up = xfp_link_ok(efx);
/* Simulate a PHY event if link state has changed */
if (link_up != efx->link_up)
falcon_xmac_sim_phy_event(efx);
return rc;
}
static void xfp_phy_reconfigure(struct efx_nic *efx)
{
efx->link_up = xfp_link_ok(efx);
efx->link_options = GM_LPA_10000FULL;
}
static void xfp_phy_fini(struct efx_nic *efx)
{
/* Clobber the LED if it was blinking */
efx->board_info.blink(efx, 0);
}
struct efx_phy_operations falcon_xfp_phy_ops = {
.init = xfp_phy_init,
.reconfigure = xfp_phy_reconfigure,
.check_hw = xfp_phy_check_hw,
.fini = xfp_phy_fini,
.clear_interrupt = xfp_phy_clear_interrupt,
.reset_xaui = efx_port_dummy_op_void,
.mmds = XFP_REQUIRED_DEVS,
};
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册