提交 84210aeb 编写于 作者: L Linus Torvalds

Merge branch 'drm-radeon-kms' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6

* 'drm-radeon-kms' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6: (35 commits)
  drm/radeon: set fb aperture sizes for framebuffer handoff.
  drm/ttm: fix highuser vs dma32 confusion.
  drm/radeon: Fix size used for benchmarking BO copies.
  drm/radeon: Add radeon.test parameter for running BO GPU copy tests.
  drm/radeon/kms: allow interruptible waits for objects.
  drm/ttm: powerpc: Fix Highmem cache flushing.
  x86: Export kmap_atomic_prot() needed for TTM.
  drm/ttm: Fix ttm in-kernel copying of pages with non-standard caching attributes.
  drm/ttm: Fix an oops and sync object leak.
  drm/radeon/kms: vram sizing on certain r100 chips needs workaround.
  drm/radeon: Pay more attention to object placement requested by userspace.
  drm/radeon: Fall back to evicting BOs with memcpy if necessary.
  drm/radeon: Don't unreserve twice on failure to validate.
  drm/radeon/kms: fix bandwidth computation on avivo hardware
  drm/radeon/kms: add initial colortiling support.
  drm/radeon/kms: fix hotspot handling on pre-avivo chips
  drm/radeon/kms: enable frac fb divs on rs600/rs690/rs740
  drm/radeon/kms: add PLL flag to prefer frequencies <= the target freq
  drm/radeon/kms: block RN50 from using 3D engine.
  drm/radeon/kms: fix VRAM sizing like DDX does it.
  ...
...@@ -103,6 +103,7 @@ EXPORT_SYMBOL(kmap); ...@@ -103,6 +103,7 @@ EXPORT_SYMBOL(kmap);
EXPORT_SYMBOL(kunmap); EXPORT_SYMBOL(kunmap);
EXPORT_SYMBOL(kmap_atomic); EXPORT_SYMBOL(kmap_atomic);
EXPORT_SYMBOL(kunmap_atomic); EXPORT_SYMBOL(kunmap_atomic);
EXPORT_SYMBOL(kmap_atomic_prot);
void __init set_highmem_pages_init(void) void __init set_highmem_pages_init(void)
{ {
......
...@@ -13,7 +13,8 @@ radeon-$(CONFIG_DRM_RADEON_KMS) += radeon_device.o radeon_kms.o \ ...@@ -13,7 +13,8 @@ radeon-$(CONFIG_DRM_RADEON_KMS) += radeon_device.o radeon_kms.o \
radeon_encoders.o radeon_display.o radeon_cursor.o radeon_i2c.o \ radeon_encoders.o radeon_display.o radeon_cursor.o radeon_i2c.o \
radeon_clocks.o radeon_fb.o radeon_gem.o radeon_ring.o radeon_irq_kms.o \ radeon_clocks.o radeon_fb.o radeon_gem.o radeon_ring.o radeon_irq_kms.o \
radeon_cs.o radeon_bios.o radeon_benchmark.o r100.o r300.o r420.o \ radeon_cs.o radeon_bios.o radeon_benchmark.o r100.o r300.o r420.o \
rs400.o rs600.o rs690.o rv515.o r520.o r600.o rs780.o rv770.o rs400.o rs600.o rs690.o rv515.o r520.o r600.o rs780.o rv770.o \
radeon_test.o
radeon-$(CONFIG_COMPAT) += radeon_ioc32.o radeon-$(CONFIG_COMPAT) += radeon_ioc32.o
......
...@@ -31,6 +31,132 @@ ...@@ -31,6 +31,132 @@
#include "atom.h" #include "atom.h"
#include "atom-bits.h" #include "atom-bits.h"
static void atombios_overscan_setup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
SET_CRTC_OVERSCAN_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan);
int a1, a2;
memset(&args, 0, sizeof(args));
args.usOverscanRight = 0;
args.usOverscanLeft = 0;
args.usOverscanBottom = 0;
args.usOverscanTop = 0;
args.ucCRTC = radeon_crtc->crtc_id;
switch (radeon_crtc->rmx_type) {
case RMX_CENTER:
args.usOverscanTop = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2;
args.usOverscanBottom = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2;
args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2;
args.usOverscanRight = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
break;
case RMX_ASPECT:
a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay;
a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay;
if (a1 > a2) {
args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2;
args.usOverscanRight = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2;
} else if (a2 > a1) {
args.usOverscanLeft = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2;
args.usOverscanRight = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
break;
case RMX_FULL:
default:
args.usOverscanRight = 0;
args.usOverscanLeft = 0;
args.usOverscanBottom = 0;
args.usOverscanTop = 0;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
break;
}
}
static void atombios_scaler_setup(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
ENABLE_SCALER_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, EnableScaler);
/* fixme - fill in enc_priv for atom dac */
enum radeon_tv_std tv_std = TV_STD_NTSC;
if (!ASIC_IS_AVIVO(rdev) && radeon_crtc->crtc_id)
return;
memset(&args, 0, sizeof(args));
args.ucScaler = radeon_crtc->crtc_id;
if (radeon_crtc->devices & (ATOM_DEVICE_TV_SUPPORT)) {
switch (tv_std) {
case TV_STD_NTSC:
default:
args.ucTVStandard = ATOM_TV_NTSC;
break;
case TV_STD_PAL:
args.ucTVStandard = ATOM_TV_PAL;
break;
case TV_STD_PAL_M:
args.ucTVStandard = ATOM_TV_PALM;
break;
case TV_STD_PAL_60:
args.ucTVStandard = ATOM_TV_PAL60;
break;
case TV_STD_NTSC_J:
args.ucTVStandard = ATOM_TV_NTSCJ;
break;
case TV_STD_SCART_PAL:
args.ucTVStandard = ATOM_TV_PAL; /* ??? */
break;
case TV_STD_SECAM:
args.ucTVStandard = ATOM_TV_SECAM;
break;
case TV_STD_PAL_CN:
args.ucTVStandard = ATOM_TV_PALCN;
break;
}
args.ucEnable = SCALER_ENABLE_MULTITAP_MODE;
} else if (radeon_crtc->devices & (ATOM_DEVICE_CV_SUPPORT)) {
args.ucTVStandard = ATOM_TV_CV;
args.ucEnable = SCALER_ENABLE_MULTITAP_MODE;
} else {
switch (radeon_crtc->rmx_type) {
case RMX_FULL:
args.ucEnable = ATOM_SCALER_EXPANSION;
break;
case RMX_CENTER:
args.ucEnable = ATOM_SCALER_CENTER;
break;
case RMX_ASPECT:
args.ucEnable = ATOM_SCALER_EXPANSION;
break;
default:
if (ASIC_IS_AVIVO(rdev))
args.ucEnable = ATOM_SCALER_DISABLE;
else
args.ucEnable = ATOM_SCALER_CENTER;
break;
}
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
if (radeon_crtc->devices & (ATOM_DEVICE_CV_SUPPORT | ATOM_DEVICE_TV_SUPPORT)
&& rdev->family >= CHIP_RV515 && rdev->family <= CHIP_RV570) {
atom_rv515_force_tv_scaler(rdev);
}
}
static void atombios_lock_crtc(struct drm_crtc *crtc, int lock) static void atombios_lock_crtc(struct drm_crtc *crtc, int lock)
{ {
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
...@@ -203,6 +329,12 @@ void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) ...@@ -203,6 +329,12 @@ void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode)
if (ASIC_IS_AVIVO(rdev)) { if (ASIC_IS_AVIVO(rdev)) {
uint32_t ss_cntl; uint32_t ss_cntl;
if ((rdev->family == CHIP_RS600) ||
(rdev->family == CHIP_RS690) ||
(rdev->family == CHIP_RS740))
pll_flags |= (RADEON_PLL_USE_FRAC_FB_DIV |
RADEON_PLL_PREFER_CLOSEST_LOWER);
if (ASIC_IS_DCE32(rdev) && mode->clock > 200000) /* range limits??? */ if (ASIC_IS_DCE32(rdev) && mode->clock > 200000) /* range limits??? */
pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV; pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV;
else else
...@@ -321,7 +453,7 @@ int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -321,7 +453,7 @@ int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_gem_object *obj; struct drm_gem_object *obj;
struct drm_radeon_gem_object *obj_priv; struct drm_radeon_gem_object *obj_priv;
uint64_t fb_location; uint64_t fb_location;
uint32_t fb_format, fb_pitch_pixels; uint32_t fb_format, fb_pitch_pixels, tiling_flags;
if (!crtc->fb) if (!crtc->fb)
return -EINVAL; return -EINVAL;
...@@ -358,7 +490,14 @@ int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -358,7 +490,14 @@ int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y,
return -EINVAL; return -EINVAL;
} }
/* TODO tiling */ radeon_object_get_tiling_flags(obj->driver_private,
&tiling_flags, NULL);
if (tiling_flags & RADEON_TILING_MACRO)
fb_format |= AVIVO_D1GRPH_MACRO_ADDRESS_MODE;
if (tiling_flags & RADEON_TILING_MICRO)
fb_format |= AVIVO_D1GRPH_TILED;
if (radeon_crtc->crtc_id == 0) if (radeon_crtc->crtc_id == 0)
WREG32(AVIVO_D1VGA_CONTROL, 0); WREG32(AVIVO_D1VGA_CONTROL, 0);
else else
...@@ -509,6 +648,9 @@ int atombios_crtc_mode_set(struct drm_crtc *crtc, ...@@ -509,6 +648,9 @@ int atombios_crtc_mode_set(struct drm_crtc *crtc,
radeon_crtc_set_base(crtc, x, y, old_fb); radeon_crtc_set_base(crtc, x, y, old_fb);
radeon_legacy_atom_set_surface(crtc); radeon_legacy_atom_set_surface(crtc);
} }
atombios_overscan_setup(crtc, mode, adjusted_mode);
atombios_scaler_setup(crtc);
radeon_bandwidth_update(rdev);
return 0; return 0;
} }
...@@ -516,6 +658,8 @@ static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc, ...@@ -516,6 +658,8 @@ static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode) struct drm_display_mode *adjusted_mode)
{ {
if (!radeon_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
return false;
return true; return true;
} }
...@@ -548,148 +692,3 @@ void radeon_atombios_init_crtc(struct drm_device *dev, ...@@ -548,148 +692,3 @@ void radeon_atombios_init_crtc(struct drm_device *dev,
AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL; AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL;
drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs); drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs);
} }
void radeon_init_disp_bw_avivo(struct drm_device *dev,
struct drm_display_mode *mode1,
uint32_t pixel_bytes1,
struct drm_display_mode *mode2,
uint32_t pixel_bytes2)
{
struct radeon_device *rdev = dev->dev_private;
fixed20_12 min_mem_eff;
fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff;
fixed20_12 sclk_ff, mclk_ff;
uint32_t dc_lb_memory_split, temp;
min_mem_eff.full = rfixed_const_8(0);
if (rdev->disp_priority == 2) {
uint32_t mc_init_misc_lat_timer = 0;
if (rdev->family == CHIP_RV515)
mc_init_misc_lat_timer =
RREG32_MC(RV515_MC_INIT_MISC_LAT_TIMER);
else if (rdev->family == CHIP_RS690)
mc_init_misc_lat_timer =
RREG32_MC(RS690_MC_INIT_MISC_LAT_TIMER);
mc_init_misc_lat_timer &=
~(R300_MC_DISP1R_INIT_LAT_MASK <<
R300_MC_DISP1R_INIT_LAT_SHIFT);
mc_init_misc_lat_timer &=
~(R300_MC_DISP0R_INIT_LAT_MASK <<
R300_MC_DISP0R_INIT_LAT_SHIFT);
if (mode2)
mc_init_misc_lat_timer |=
(1 << R300_MC_DISP1R_INIT_LAT_SHIFT);
if (mode1)
mc_init_misc_lat_timer |=
(1 << R300_MC_DISP0R_INIT_LAT_SHIFT);
if (rdev->family == CHIP_RV515)
WREG32_MC(RV515_MC_INIT_MISC_LAT_TIMER,
mc_init_misc_lat_timer);
else if (rdev->family == CHIP_RS690)
WREG32_MC(RS690_MC_INIT_MISC_LAT_TIMER,
mc_init_misc_lat_timer);
}
/*
* determine is there is enough bw for current mode
*/
temp_ff.full = rfixed_const(100);
mclk_ff.full = rfixed_const(rdev->clock.default_mclk);
mclk_ff.full = rfixed_div(mclk_ff, temp_ff);
sclk_ff.full = rfixed_const(rdev->clock.default_sclk);
sclk_ff.full = rfixed_div(sclk_ff, temp_ff);
temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1);
temp_ff.full = rfixed_const(temp);
mem_bw.full = rfixed_mul(mclk_ff, temp_ff);
mem_bw.full = rfixed_mul(mem_bw, min_mem_eff);
pix_clk.full = 0;
pix_clk2.full = 0;
peak_disp_bw.full = 0;
if (mode1) {
temp_ff.full = rfixed_const(1000);
pix_clk.full = rfixed_const(mode1->clock); /* convert to fixed point */
pix_clk.full = rfixed_div(pix_clk, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes1);
peak_disp_bw.full += rfixed_mul(pix_clk, temp_ff);
}
if (mode2) {
temp_ff.full = rfixed_const(1000);
pix_clk2.full = rfixed_const(mode2->clock); /* convert to fixed point */
pix_clk2.full = rfixed_div(pix_clk2, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes2);
peak_disp_bw.full += rfixed_mul(pix_clk2, temp_ff);
}
if (peak_disp_bw.full >= mem_bw.full) {
DRM_ERROR
("You may not have enough display bandwidth for current mode\n"
"If you have flickering problem, try to lower resolution, refresh rate, or color depth\n");
printk("peak disp bw %d, mem_bw %d\n",
rfixed_trunc(peak_disp_bw), rfixed_trunc(mem_bw));
}
/*
* Line Buffer Setup
* There is a single line buffer shared by both display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between the display
* controllers. The paritioning can either be done manually or via one of four
* preset allocations specified in bits 1:0:
* 0 - line buffer is divided in half and shared between each display controller
* 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4
* 2 - D1 gets the whole buffer
* 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4
* Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual allocation mode.
* In manual allocation mode, D1 always starts at 0, D1 end/2 is specified in bits
* 14:4; D2 allocation follows D1.
*/
/* is auto or manual better ? */
dc_lb_memory_split =
RREG32(AVIVO_DC_LB_MEMORY_SPLIT) & ~AVIVO_DC_LB_MEMORY_SPLIT_MASK;
dc_lb_memory_split &= ~AVIVO_DC_LB_MEMORY_SPLIT_SHIFT_MODE;
#if 1
/* auto */
if (mode1 && mode2) {
if (mode1->hdisplay > mode2->hdisplay) {
if (mode1->hdisplay > 2560)
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q;
else
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else if (mode2->hdisplay > mode1->hdisplay) {
if (mode2->hdisplay > 2560)
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
else
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else if (mode1) {
dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_ONLY;
} else if (mode2) {
dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
}
#else
/* manual */
dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_SHIFT_MODE;
dc_lb_memory_split &=
~(AVIVO_DC_LB_DISP1_END_ADR_MASK <<
AVIVO_DC_LB_DISP1_END_ADR_SHIFT);
if (mode1) {
dc_lb_memory_split |=
((((mode1->hdisplay / 2) + 64) & AVIVO_DC_LB_DISP1_END_ADR_MASK)
<< AVIVO_DC_LB_DISP1_END_ADR_SHIFT);
} else if (mode2) {
dc_lb_memory_split |= (0 << AVIVO_DC_LB_DISP1_END_ADR_SHIFT);
}
#endif
WREG32(AVIVO_DC_LB_MEMORY_SPLIT, dc_lb_memory_split);
}
...@@ -110,7 +110,7 @@ int r100_pci_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr) ...@@ -110,7 +110,7 @@ int r100_pci_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr)
if (i < 0 || i > rdev->gart.num_gpu_pages) { if (i < 0 || i > rdev->gart.num_gpu_pages) {
return -EINVAL; return -EINVAL;
} }
rdev->gart.table.ram.ptr[i] = cpu_to_le32((uint32_t)addr); rdev->gart.table.ram.ptr[i] = cpu_to_le32(lower_32_bits(addr));
return 0; return 0;
} }
...@@ -173,8 +173,12 @@ void r100_mc_setup(struct radeon_device *rdev) ...@@ -173,8 +173,12 @@ void r100_mc_setup(struct radeon_device *rdev)
DRM_ERROR("Failed to register debugfs file for R100 MC !\n"); DRM_ERROR("Failed to register debugfs file for R100 MC !\n");
} }
/* Write VRAM size in case we are limiting it */ /* Write VRAM size in case we are limiting it */
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; /* Novell bug 204882 for RN50/M6/M7 with 8/16/32MB VRAM,
* if the aperture is 64MB but we have 32MB VRAM
* we report only 32MB VRAM but we have to set MC_FB_LOCATION
* to 64MB, otherwise the gpu accidentially dies */
tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(RADEON_MC_FB_TOP, tmp >> 16); tmp = REG_SET(RADEON_MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(RADEON_MC_FB_START, rdev->mc.vram_location >> 16); tmp |= REG_SET(RADEON_MC_FB_START, rdev->mc.vram_location >> 16);
WREG32(RADEON_MC_FB_LOCATION, tmp); WREG32(RADEON_MC_FB_LOCATION, tmp);
...@@ -215,7 +219,6 @@ int r100_mc_init(struct radeon_device *rdev) ...@@ -215,7 +219,6 @@ int r100_mc_init(struct radeon_device *rdev)
r100_pci_gart_disable(rdev); r100_pci_gart_disable(rdev);
/* Setup GPU memory space */ /* Setup GPU memory space */
rdev->mc.vram_location = 0xFFFFFFFFUL;
rdev->mc.gtt_location = 0xFFFFFFFFUL; rdev->mc.gtt_location = 0xFFFFFFFFUL;
if (rdev->flags & RADEON_IS_AGP) { if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev); r = radeon_agp_init(rdev);
...@@ -752,6 +755,102 @@ int r100_cs_packet_parse(struct radeon_cs_parser *p, ...@@ -752,6 +755,102 @@ int r100_cs_packet_parse(struct radeon_cs_parser *p,
return 0; return 0;
} }
/**
* r100_cs_packet_next_vline() - parse userspace VLINE packet
* @parser: parser structure holding parsing context.
*
* Userspace sends a special sequence for VLINE waits.
* PACKET0 - VLINE_START_END + value
* PACKET0 - WAIT_UNTIL +_value
* RELOC (P3) - crtc_id in reloc.
*
* This function parses this and relocates the VLINE START END
* and WAIT UNTIL packets to the correct crtc.
* It also detects a switched off crtc and nulls out the
* wait in that case.
*/
int r100_cs_packet_parse_vline(struct radeon_cs_parser *p)
{
struct radeon_cs_chunk *ib_chunk;
struct drm_mode_object *obj;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
struct radeon_cs_packet p3reloc, waitreloc;
int crtc_id;
int r;
uint32_t header, h_idx, reg;
ib_chunk = &p->chunks[p->chunk_ib_idx];
/* parse the wait until */
r = r100_cs_packet_parse(p, &waitreloc, p->idx);
if (r)
return r;
/* check its a wait until and only 1 count */
if (waitreloc.reg != RADEON_WAIT_UNTIL ||
waitreloc.count != 0) {
DRM_ERROR("vline wait had illegal wait until segment\n");
r = -EINVAL;
return r;
}
if (ib_chunk->kdata[waitreloc.idx + 1] != RADEON_WAIT_CRTC_VLINE) {
DRM_ERROR("vline wait had illegal wait until\n");
r = -EINVAL;
return r;
}
/* jump over the NOP */
r = r100_cs_packet_parse(p, &p3reloc, p->idx);
if (r)
return r;
h_idx = p->idx - 2;
p->idx += waitreloc.count;
p->idx += p3reloc.count;
header = ib_chunk->kdata[h_idx];
crtc_id = ib_chunk->kdata[h_idx + 5];
reg = ib_chunk->kdata[h_idx] >> 2;
mutex_lock(&p->rdev->ddev->mode_config.mutex);
obj = drm_mode_object_find(p->rdev->ddev, crtc_id, DRM_MODE_OBJECT_CRTC);
if (!obj) {
DRM_ERROR("cannot find crtc %d\n", crtc_id);
r = -EINVAL;
goto out;
}
crtc = obj_to_crtc(obj);
radeon_crtc = to_radeon_crtc(crtc);
crtc_id = radeon_crtc->crtc_id;
if (!crtc->enabled) {
/* if the CRTC isn't enabled - we need to nop out the wait until */
ib_chunk->kdata[h_idx + 2] = PACKET2(0);
ib_chunk->kdata[h_idx + 3] = PACKET2(0);
} else if (crtc_id == 1) {
switch (reg) {
case AVIVO_D1MODE_VLINE_START_END:
header &= R300_CP_PACKET0_REG_MASK;
header |= AVIVO_D2MODE_VLINE_START_END >> 2;
break;
case RADEON_CRTC_GUI_TRIG_VLINE:
header &= R300_CP_PACKET0_REG_MASK;
header |= RADEON_CRTC2_GUI_TRIG_VLINE >> 2;
break;
default:
DRM_ERROR("unknown crtc reloc\n");
r = -EINVAL;
goto out;
}
ib_chunk->kdata[h_idx] = header;
ib_chunk->kdata[h_idx + 3] |= RADEON_ENG_DISPLAY_SELECT_CRTC1;
}
out:
mutex_unlock(&p->rdev->ddev->mode_config.mutex);
return r;
}
/** /**
* r100_cs_packet_next_reloc() - parse next packet which should be reloc packet3 * r100_cs_packet_next_reloc() - parse next packet which should be reloc packet3
* @parser: parser structure holding parsing context. * @parser: parser structure holding parsing context.
...@@ -814,6 +913,7 @@ static int r100_packet0_check(struct radeon_cs_parser *p, ...@@ -814,6 +913,7 @@ static int r100_packet0_check(struct radeon_cs_parser *p,
unsigned idx; unsigned idx;
bool onereg; bool onereg;
int r; int r;
u32 tile_flags = 0;
ib = p->ib->ptr; ib = p->ib->ptr;
ib_chunk = &p->chunks[p->chunk_ib_idx]; ib_chunk = &p->chunks[p->chunk_ib_idx];
...@@ -825,6 +925,15 @@ static int r100_packet0_check(struct radeon_cs_parser *p, ...@@ -825,6 +925,15 @@ static int r100_packet0_check(struct radeon_cs_parser *p,
} }
for (i = 0; i <= pkt->count; i++, idx++, reg += 4) { for (i = 0; i <= pkt->count; i++, idx++, reg += 4) {
switch (reg) { switch (reg) {
case RADEON_CRTC_GUI_TRIG_VLINE:
r = r100_cs_packet_parse_vline(p);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
break;
/* FIXME: only allow PACKET3 blit? easier to check for out of /* FIXME: only allow PACKET3 blit? easier to check for out of
* range access */ * range access */
case RADEON_DST_PITCH_OFFSET: case RADEON_DST_PITCH_OFFSET:
...@@ -838,7 +947,20 @@ static int r100_packet0_check(struct radeon_cs_parser *p, ...@@ -838,7 +947,20 @@ static int r100_packet0_check(struct radeon_cs_parser *p,
} }
tmp = ib_chunk->kdata[idx] & 0x003fffff; tmp = ib_chunk->kdata[idx] & 0x003fffff;
tmp += (((u32)reloc->lobj.gpu_offset) >> 10); tmp += (((u32)reloc->lobj.gpu_offset) >> 10);
ib[idx] = (ib_chunk->kdata[idx] & 0xffc00000) | tmp;
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= RADEON_DST_TILE_MACRO;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO) {
if (reg == RADEON_SRC_PITCH_OFFSET) {
DRM_ERROR("Cannot src blit from microtiled surface\n");
r100_cs_dump_packet(p, pkt);
return -EINVAL;
}
tile_flags |= RADEON_DST_TILE_MICRO;
}
tmp |= tile_flags;
ib[idx] = (ib_chunk->kdata[idx] & 0x3fc00000) | tmp;
break; break;
case RADEON_RB3D_DEPTHOFFSET: case RADEON_RB3D_DEPTHOFFSET:
case RADEON_RB3D_COLOROFFSET: case RADEON_RB3D_COLOROFFSET:
...@@ -869,6 +991,11 @@ static int r100_packet0_check(struct radeon_cs_parser *p, ...@@ -869,6 +991,11 @@ static int r100_packet0_check(struct radeon_cs_parser *p,
case R300_TX_OFFSET_0+52: case R300_TX_OFFSET_0+52:
case R300_TX_OFFSET_0+56: case R300_TX_OFFSET_0+56:
case R300_TX_OFFSET_0+60: case R300_TX_OFFSET_0+60:
/* rn50 has no 3D engine so fail on any 3d setup */
if (ASIC_IS_RN50(p->rdev)) {
DRM_ERROR("attempt to use RN50 3D engine failed\n");
return -EINVAL;
}
r = r100_cs_packet_next_reloc(p, &reloc); r = r100_cs_packet_next_reloc(p, &reloc);
if (r) { if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n", DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
...@@ -878,6 +1005,25 @@ static int r100_packet0_check(struct radeon_cs_parser *p, ...@@ -878,6 +1005,25 @@ static int r100_packet0_check(struct radeon_cs_parser *p,
} }
ib[idx] = ib_chunk->kdata[idx] + ((u32)reloc->lobj.gpu_offset); ib[idx] = ib_chunk->kdata[idx] + ((u32)reloc->lobj.gpu_offset);
break; break;
case R300_RB3D_COLORPITCH0:
case RADEON_RB3D_COLORPITCH:
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= RADEON_COLOR_TILE_ENABLE;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO)
tile_flags |= RADEON_COLOR_MICROTILE_ENABLE;
tmp = ib_chunk->kdata[idx] & ~(0x7 << 16);
tmp |= tile_flags;
ib[idx] = tmp;
break;
default: default:
/* FIXME: we don't want to allow anyothers packet */ /* FIXME: we don't want to allow anyothers packet */
break; break;
...@@ -1256,29 +1402,100 @@ static void r100_vram_get_type(struct radeon_device *rdev) ...@@ -1256,29 +1402,100 @@ static void r100_vram_get_type(struct radeon_device *rdev)
} }
} }
void r100_vram_info(struct radeon_device *rdev) static u32 r100_get_accessible_vram(struct radeon_device *rdev)
{ {
r100_vram_get_type(rdev); u32 aper_size;
u8 byte;
aper_size = RREG32(RADEON_CONFIG_APER_SIZE);
/* Set HDP_APER_CNTL only on cards that are known not to be broken,
* that is has the 2nd generation multifunction PCI interface
*/
if (rdev->family == CHIP_RV280 ||
rdev->family >= CHIP_RV350) {
WREG32_P(RADEON_HOST_PATH_CNTL, RADEON_HDP_APER_CNTL,
~RADEON_HDP_APER_CNTL);
DRM_INFO("Generation 2 PCI interface, using max accessible memory\n");
return aper_size * 2;
}
/* Older cards have all sorts of funny issues to deal with. First
* check if it's a multifunction card by reading the PCI config
* header type... Limit those to one aperture size
*/
pci_read_config_byte(rdev->pdev, 0xe, &byte);
if (byte & 0x80) {
DRM_INFO("Generation 1 PCI interface in multifunction mode\n");
DRM_INFO("Limiting VRAM to one aperture\n");
return aper_size;
}
/* Single function older card. We read HDP_APER_CNTL to see how the BIOS
* have set it up. We don't write this as it's broken on some ASICs but
* we expect the BIOS to have done the right thing (might be too optimistic...)
*/
if (RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL)
return aper_size * 2;
return aper_size;
}
void r100_vram_init_sizes(struct radeon_device *rdev)
{
u64 config_aper_size;
u32 accessible;
config_aper_size = RREG32(RADEON_CONFIG_APER_SIZE);
if (rdev->flags & RADEON_IS_IGP) { if (rdev->flags & RADEON_IS_IGP) {
uint32_t tom; uint32_t tom;
/* read NB_TOM to get the amount of ram stolen for the GPU */ /* read NB_TOM to get the amount of ram stolen for the GPU */
tom = RREG32(RADEON_NB_TOM); tom = RREG32(RADEON_NB_TOM);
rdev->mc.vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16); rdev->mc.real_vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16);
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); /* for IGPs we need to keep VRAM where it was put by the BIOS */
rdev->mc.vram_location = (tom & 0xffff) << 16;
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
} else { } else {
rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE); rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
/* Some production boards of m6 will report 0 /* Some production boards of m6 will report 0
* if it's 8 MB * if it's 8 MB
*/ */
if (rdev->mc.vram_size == 0) { if (rdev->mc.real_vram_size == 0) {
rdev->mc.vram_size = 8192 * 1024; rdev->mc.real_vram_size = 8192 * 1024;
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
} }
/* let driver place VRAM */
rdev->mc.vram_location = 0xFFFFFFFFUL;
/* Fix for RN50, M6, M7 with 8/16/32(??) MBs of VRAM -
* Novell bug 204882 + along with lots of ubuntu ones */
if (config_aper_size > rdev->mc.real_vram_size)
rdev->mc.mc_vram_size = config_aper_size;
else
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
} }
/* work out accessible VRAM */
accessible = r100_get_accessible_vram(rdev);
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
if (accessible > rdev->mc.aper_size)
accessible = rdev->mc.aper_size;
if (rdev->mc.mc_vram_size > rdev->mc.aper_size)
rdev->mc.mc_vram_size = rdev->mc.aper_size;
if (rdev->mc.real_vram_size > rdev->mc.aper_size)
rdev->mc.real_vram_size = rdev->mc.aper_size;
}
void r100_vram_info(struct radeon_device *rdev)
{
r100_vram_get_type(rdev);
r100_vram_init_sizes(rdev);
} }
...@@ -1533,3 +1750,530 @@ int r100_debugfs_mc_info_init(struct radeon_device *rdev) ...@@ -1533,3 +1750,530 @@ int r100_debugfs_mc_info_init(struct radeon_device *rdev)
return 0; return 0;
#endif #endif
} }
int r100_set_surface_reg(struct radeon_device *rdev, int reg,
uint32_t tiling_flags, uint32_t pitch,
uint32_t offset, uint32_t obj_size)
{
int surf_index = reg * 16;
int flags = 0;
/* r100/r200 divide by 16 */
if (rdev->family < CHIP_R300)
flags = pitch / 16;
else
flags = pitch / 8;
if (rdev->family <= CHIP_RS200) {
if ((tiling_flags & (RADEON_TILING_MACRO|RADEON_TILING_MICRO))
== (RADEON_TILING_MACRO|RADEON_TILING_MICRO))
flags |= RADEON_SURF_TILE_COLOR_BOTH;
if (tiling_flags & RADEON_TILING_MACRO)
flags |= RADEON_SURF_TILE_COLOR_MACRO;
} else if (rdev->family <= CHIP_RV280) {
if (tiling_flags & (RADEON_TILING_MACRO))
flags |= R200_SURF_TILE_COLOR_MACRO;
if (tiling_flags & RADEON_TILING_MICRO)
flags |= R200_SURF_TILE_COLOR_MICRO;
} else {
if (tiling_flags & RADEON_TILING_MACRO)
flags |= R300_SURF_TILE_MACRO;
if (tiling_flags & RADEON_TILING_MICRO)
flags |= R300_SURF_TILE_MICRO;
}
DRM_DEBUG("writing surface %d %d %x %x\n", reg, flags, offset, offset+obj_size-1);
WREG32(RADEON_SURFACE0_INFO + surf_index, flags);
WREG32(RADEON_SURFACE0_LOWER_BOUND + surf_index, offset);
WREG32(RADEON_SURFACE0_UPPER_BOUND + surf_index, offset + obj_size - 1);
return 0;
}
void r100_clear_surface_reg(struct radeon_device *rdev, int reg)
{
int surf_index = reg * 16;
WREG32(RADEON_SURFACE0_INFO + surf_index, 0);
}
void r100_bandwidth_update(struct radeon_device *rdev)
{
fixed20_12 trcd_ff, trp_ff, tras_ff, trbs_ff, tcas_ff;
fixed20_12 sclk_ff, mclk_ff, sclk_eff_ff, sclk_delay_ff;
fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff, crit_point_ff;
uint32_t temp, data, mem_trcd, mem_trp, mem_tras;
fixed20_12 memtcas_ff[8] = {
fixed_init(1),
fixed_init(2),
fixed_init(3),
fixed_init(0),
fixed_init_half(1),
fixed_init_half(2),
fixed_init(0),
};
fixed20_12 memtcas_rs480_ff[8] = {
fixed_init(0),
fixed_init(1),
fixed_init(2),
fixed_init(3),
fixed_init(0),
fixed_init_half(1),
fixed_init_half(2),
fixed_init_half(3),
};
fixed20_12 memtcas2_ff[8] = {
fixed_init(0),
fixed_init(1),
fixed_init(2),
fixed_init(3),
fixed_init(4),
fixed_init(5),
fixed_init(6),
fixed_init(7),
};
fixed20_12 memtrbs[8] = {
fixed_init(1),
fixed_init_half(1),
fixed_init(2),
fixed_init_half(2),
fixed_init(3),
fixed_init_half(3),
fixed_init(4),
fixed_init_half(4)
};
fixed20_12 memtrbs_r4xx[8] = {
fixed_init(4),
fixed_init(5),
fixed_init(6),
fixed_init(7),
fixed_init(8),
fixed_init(9),
fixed_init(10),
fixed_init(11)
};
fixed20_12 min_mem_eff;
fixed20_12 mc_latency_sclk, mc_latency_mclk, k1;
fixed20_12 cur_latency_mclk, cur_latency_sclk;
fixed20_12 disp_latency, disp_latency_overhead, disp_drain_rate,
disp_drain_rate2, read_return_rate;
fixed20_12 time_disp1_drop_priority;
int c;
int cur_size = 16; /* in octawords */
int critical_point = 0, critical_point2;
/* uint32_t read_return_rate, time_disp1_drop_priority; */
int stop_req, max_stop_req;
struct drm_display_mode *mode1 = NULL;
struct drm_display_mode *mode2 = NULL;
uint32_t pixel_bytes1 = 0;
uint32_t pixel_bytes2 = 0;
if (rdev->mode_info.crtcs[0]->base.enabled) {
mode1 = &rdev->mode_info.crtcs[0]->base.mode;
pixel_bytes1 = rdev->mode_info.crtcs[0]->base.fb->bits_per_pixel / 8;
}
if (rdev->mode_info.crtcs[1]->base.enabled) {
mode2 = &rdev->mode_info.crtcs[1]->base.mode;
pixel_bytes2 = rdev->mode_info.crtcs[1]->base.fb->bits_per_pixel / 8;
}
min_mem_eff.full = rfixed_const_8(0);
/* get modes */
if ((rdev->disp_priority == 2) && ASIC_IS_R300(rdev)) {
uint32_t mc_init_misc_lat_timer = RREG32(R300_MC_INIT_MISC_LAT_TIMER);
mc_init_misc_lat_timer &= ~(R300_MC_DISP1R_INIT_LAT_MASK << R300_MC_DISP1R_INIT_LAT_SHIFT);
mc_init_misc_lat_timer &= ~(R300_MC_DISP0R_INIT_LAT_MASK << R300_MC_DISP0R_INIT_LAT_SHIFT);
/* check crtc enables */
if (mode2)
mc_init_misc_lat_timer |= (1 << R300_MC_DISP1R_INIT_LAT_SHIFT);
if (mode1)
mc_init_misc_lat_timer |= (1 << R300_MC_DISP0R_INIT_LAT_SHIFT);
WREG32(R300_MC_INIT_MISC_LAT_TIMER, mc_init_misc_lat_timer);
}
/*
* determine is there is enough bw for current mode
*/
mclk_ff.full = rfixed_const(rdev->clock.default_mclk);
temp_ff.full = rfixed_const(100);
mclk_ff.full = rfixed_div(mclk_ff, temp_ff);
sclk_ff.full = rfixed_const(rdev->clock.default_sclk);
sclk_ff.full = rfixed_div(sclk_ff, temp_ff);
temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1);
temp_ff.full = rfixed_const(temp);
mem_bw.full = rfixed_mul(mclk_ff, temp_ff);
pix_clk.full = 0;
pix_clk2.full = 0;
peak_disp_bw.full = 0;
if (mode1) {
temp_ff.full = rfixed_const(1000);
pix_clk.full = rfixed_const(mode1->clock); /* convert to fixed point */
pix_clk.full = rfixed_div(pix_clk, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes1);
peak_disp_bw.full += rfixed_mul(pix_clk, temp_ff);
}
if (mode2) {
temp_ff.full = rfixed_const(1000);
pix_clk2.full = rfixed_const(mode2->clock); /* convert to fixed point */
pix_clk2.full = rfixed_div(pix_clk2, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes2);
peak_disp_bw.full += rfixed_mul(pix_clk2, temp_ff);
}
mem_bw.full = rfixed_mul(mem_bw, min_mem_eff);
if (peak_disp_bw.full >= mem_bw.full) {
DRM_ERROR("You may not have enough display bandwidth for current mode\n"
"If you have flickering problem, try to lower resolution, refresh rate, or color depth\n");
}
/* Get values from the EXT_MEM_CNTL register...converting its contents. */
temp = RREG32(RADEON_MEM_TIMING_CNTL);
if ((rdev->family == CHIP_RV100) || (rdev->flags & RADEON_IS_IGP)) { /* RV100, M6, IGPs */
mem_trcd = ((temp >> 2) & 0x3) + 1;
mem_trp = ((temp & 0x3)) + 1;
mem_tras = ((temp & 0x70) >> 4) + 1;
} else if (rdev->family == CHIP_R300 ||
rdev->family == CHIP_R350) { /* r300, r350 */
mem_trcd = (temp & 0x7) + 1;
mem_trp = ((temp >> 8) & 0x7) + 1;
mem_tras = ((temp >> 11) & 0xf) + 4;
} else if (rdev->family == CHIP_RV350 ||
rdev->family <= CHIP_RV380) {
/* rv3x0 */
mem_trcd = (temp & 0x7) + 3;
mem_trp = ((temp >> 8) & 0x7) + 3;
mem_tras = ((temp >> 11) & 0xf) + 6;
} else if (rdev->family == CHIP_R420 ||
rdev->family == CHIP_R423 ||
rdev->family == CHIP_RV410) {
/* r4xx */
mem_trcd = (temp & 0xf) + 3;
if (mem_trcd > 15)
mem_trcd = 15;
mem_trp = ((temp >> 8) & 0xf) + 3;
if (mem_trp > 15)
mem_trp = 15;
mem_tras = ((temp >> 12) & 0x1f) + 6;
if (mem_tras > 31)
mem_tras = 31;
} else { /* RV200, R200 */
mem_trcd = (temp & 0x7) + 1;
mem_trp = ((temp >> 8) & 0x7) + 1;
mem_tras = ((temp >> 12) & 0xf) + 4;
}
/* convert to FF */
trcd_ff.full = rfixed_const(mem_trcd);
trp_ff.full = rfixed_const(mem_trp);
tras_ff.full = rfixed_const(mem_tras);
/* Get values from the MEM_SDRAM_MODE_REG register...converting its */
temp = RREG32(RADEON_MEM_SDRAM_MODE_REG);
data = (temp & (7 << 20)) >> 20;
if ((rdev->family == CHIP_RV100) || rdev->flags & RADEON_IS_IGP) {
if (rdev->family == CHIP_RS480) /* don't think rs400 */
tcas_ff = memtcas_rs480_ff[data];
else
tcas_ff = memtcas_ff[data];
} else
tcas_ff = memtcas2_ff[data];
if (rdev->family == CHIP_RS400 ||
rdev->family == CHIP_RS480) {
/* extra cas latency stored in bits 23-25 0-4 clocks */
data = (temp >> 23) & 0x7;
if (data < 5)
tcas_ff.full += rfixed_const(data);
}
if (ASIC_IS_R300(rdev) && !(rdev->flags & RADEON_IS_IGP)) {
/* on the R300, Tcas is included in Trbs.
*/
temp = RREG32(RADEON_MEM_CNTL);
data = (R300_MEM_NUM_CHANNELS_MASK & temp);
if (data == 1) {
if (R300_MEM_USE_CD_CH_ONLY & temp) {
temp = RREG32(R300_MC_IND_INDEX);
temp &= ~R300_MC_IND_ADDR_MASK;
temp |= R300_MC_READ_CNTL_CD_mcind;
WREG32(R300_MC_IND_INDEX, temp);
temp = RREG32(R300_MC_IND_DATA);
data = (R300_MEM_RBS_POSITION_C_MASK & temp);
} else {
temp = RREG32(R300_MC_READ_CNTL_AB);
data = (R300_MEM_RBS_POSITION_A_MASK & temp);
}
} else {
temp = RREG32(R300_MC_READ_CNTL_AB);
data = (R300_MEM_RBS_POSITION_A_MASK & temp);
}
if (rdev->family == CHIP_RV410 ||
rdev->family == CHIP_R420 ||
rdev->family == CHIP_R423)
trbs_ff = memtrbs_r4xx[data];
else
trbs_ff = memtrbs[data];
tcas_ff.full += trbs_ff.full;
}
sclk_eff_ff.full = sclk_ff.full;
if (rdev->flags & RADEON_IS_AGP) {
fixed20_12 agpmode_ff;
agpmode_ff.full = rfixed_const(radeon_agpmode);
temp_ff.full = rfixed_const_666(16);
sclk_eff_ff.full -= rfixed_mul(agpmode_ff, temp_ff);
}
/* TODO PCIE lanes may affect this - agpmode == 16?? */
if (ASIC_IS_R300(rdev)) {
sclk_delay_ff.full = rfixed_const(250);
} else {
if ((rdev->family == CHIP_RV100) ||
rdev->flags & RADEON_IS_IGP) {
if (rdev->mc.vram_is_ddr)
sclk_delay_ff.full = rfixed_const(41);
else
sclk_delay_ff.full = rfixed_const(33);
} else {
if (rdev->mc.vram_width == 128)
sclk_delay_ff.full = rfixed_const(57);
else
sclk_delay_ff.full = rfixed_const(41);
}
}
mc_latency_sclk.full = rfixed_div(sclk_delay_ff, sclk_eff_ff);
if (rdev->mc.vram_is_ddr) {
if (rdev->mc.vram_width == 32) {
k1.full = rfixed_const(40);
c = 3;
} else {
k1.full = rfixed_const(20);
c = 1;
}
} else {
k1.full = rfixed_const(40);
c = 3;
}
temp_ff.full = rfixed_const(2);
mc_latency_mclk.full = rfixed_mul(trcd_ff, temp_ff);
temp_ff.full = rfixed_const(c);
mc_latency_mclk.full += rfixed_mul(tcas_ff, temp_ff);
temp_ff.full = rfixed_const(4);
mc_latency_mclk.full += rfixed_mul(tras_ff, temp_ff);
mc_latency_mclk.full += rfixed_mul(trp_ff, temp_ff);
mc_latency_mclk.full += k1.full;
mc_latency_mclk.full = rfixed_div(mc_latency_mclk, mclk_ff);
mc_latency_mclk.full += rfixed_div(temp_ff, sclk_eff_ff);
/*
HW cursor time assuming worst case of full size colour cursor.
*/
temp_ff.full = rfixed_const((2 * (cur_size - (rdev->mc.vram_is_ddr + 1))));
temp_ff.full += trcd_ff.full;
if (temp_ff.full < tras_ff.full)
temp_ff.full = tras_ff.full;
cur_latency_mclk.full = rfixed_div(temp_ff, mclk_ff);
temp_ff.full = rfixed_const(cur_size);
cur_latency_sclk.full = rfixed_div(temp_ff, sclk_eff_ff);
/*
Find the total latency for the display data.
*/
disp_latency_overhead.full = rfixed_const(80);
disp_latency_overhead.full = rfixed_div(disp_latency_overhead, sclk_ff);
mc_latency_mclk.full += disp_latency_overhead.full + cur_latency_mclk.full;
mc_latency_sclk.full += disp_latency_overhead.full + cur_latency_sclk.full;
if (mc_latency_mclk.full > mc_latency_sclk.full)
disp_latency.full = mc_latency_mclk.full;
else
disp_latency.full = mc_latency_sclk.full;
/* setup Max GRPH_STOP_REQ default value */
if (ASIC_IS_RV100(rdev))
max_stop_req = 0x5c;
else
max_stop_req = 0x7c;
if (mode1) {
/* CRTC1
Set GRPH_BUFFER_CNTL register using h/w defined optimal values.
GRPH_STOP_REQ <= MIN[ 0x7C, (CRTC_H_DISP + 1) * (bit depth) / 0x10 ]
*/
stop_req = mode1->hdisplay * pixel_bytes1 / 16;
if (stop_req > max_stop_req)
stop_req = max_stop_req;
/*
Find the drain rate of the display buffer.
*/
temp_ff.full = rfixed_const((16/pixel_bytes1));
disp_drain_rate.full = rfixed_div(pix_clk, temp_ff);
/*
Find the critical point of the display buffer.
*/
crit_point_ff.full = rfixed_mul(disp_drain_rate, disp_latency);
crit_point_ff.full += rfixed_const_half(0);
critical_point = rfixed_trunc(crit_point_ff);
if (rdev->disp_priority == 2) {
critical_point = 0;
}
/*
The critical point should never be above max_stop_req-4. Setting
GRPH_CRITICAL_CNTL = 0 will thus force high priority all the time.
*/
if (max_stop_req - critical_point < 4)
critical_point = 0;
if (critical_point == 0 && mode2 && rdev->family == CHIP_R300) {
/* some R300 cards have problem with this set to 0, when CRTC2 is enabled.*/
critical_point = 0x10;
}
temp = RREG32(RADEON_GRPH_BUFFER_CNTL);
temp &= ~(RADEON_GRPH_STOP_REQ_MASK);
temp |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT);
temp &= ~(RADEON_GRPH_START_REQ_MASK);
if ((rdev->family == CHIP_R350) &&
(stop_req > 0x15)) {
stop_req -= 0x10;
}
temp |= (stop_req << RADEON_GRPH_START_REQ_SHIFT);
temp |= RADEON_GRPH_BUFFER_SIZE;
temp &= ~(RADEON_GRPH_CRITICAL_CNTL |
RADEON_GRPH_CRITICAL_AT_SOF |
RADEON_GRPH_STOP_CNTL);
/*
Write the result into the register.
*/
WREG32(RADEON_GRPH_BUFFER_CNTL, ((temp & ~RADEON_GRPH_CRITICAL_POINT_MASK) |
(critical_point << RADEON_GRPH_CRITICAL_POINT_SHIFT)));
#if 0
if ((rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
/* attempt to program RS400 disp regs correctly ??? */
temp = RREG32(RS400_DISP1_REG_CNTL);
temp &= ~(RS400_DISP1_START_REQ_LEVEL_MASK |
RS400_DISP1_STOP_REQ_LEVEL_MASK);
WREG32(RS400_DISP1_REQ_CNTL1, (temp |
(critical_point << RS400_DISP1_START_REQ_LEVEL_SHIFT) |
(critical_point << RS400_DISP1_STOP_REQ_LEVEL_SHIFT)));
temp = RREG32(RS400_DMIF_MEM_CNTL1);
temp &= ~(RS400_DISP1_CRITICAL_POINT_START_MASK |
RS400_DISP1_CRITICAL_POINT_STOP_MASK);
WREG32(RS400_DMIF_MEM_CNTL1, (temp |
(critical_point << RS400_DISP1_CRITICAL_POINT_START_SHIFT) |
(critical_point << RS400_DISP1_CRITICAL_POINT_STOP_SHIFT)));
}
#endif
DRM_DEBUG("GRPH_BUFFER_CNTL from to %x\n",
/* (unsigned int)info->SavedReg->grph_buffer_cntl, */
(unsigned int)RREG32(RADEON_GRPH_BUFFER_CNTL));
}
if (mode2) {
u32 grph2_cntl;
stop_req = mode2->hdisplay * pixel_bytes2 / 16;
if (stop_req > max_stop_req)
stop_req = max_stop_req;
/*
Find the drain rate of the display buffer.
*/
temp_ff.full = rfixed_const((16/pixel_bytes2));
disp_drain_rate2.full = rfixed_div(pix_clk2, temp_ff);
grph2_cntl = RREG32(RADEON_GRPH2_BUFFER_CNTL);
grph2_cntl &= ~(RADEON_GRPH_STOP_REQ_MASK);
grph2_cntl |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT);
grph2_cntl &= ~(RADEON_GRPH_START_REQ_MASK);
if ((rdev->family == CHIP_R350) &&
(stop_req > 0x15)) {
stop_req -= 0x10;
}
grph2_cntl |= (stop_req << RADEON_GRPH_START_REQ_SHIFT);
grph2_cntl |= RADEON_GRPH_BUFFER_SIZE;
grph2_cntl &= ~(RADEON_GRPH_CRITICAL_CNTL |
RADEON_GRPH_CRITICAL_AT_SOF |
RADEON_GRPH_STOP_CNTL);
if ((rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200))
critical_point2 = 0;
else {
temp = (rdev->mc.vram_width * rdev->mc.vram_is_ddr + 1)/128;
temp_ff.full = rfixed_const(temp);
temp_ff.full = rfixed_mul(mclk_ff, temp_ff);
if (sclk_ff.full < temp_ff.full)
temp_ff.full = sclk_ff.full;
read_return_rate.full = temp_ff.full;
if (mode1) {
temp_ff.full = read_return_rate.full - disp_drain_rate.full;
time_disp1_drop_priority.full = rfixed_div(crit_point_ff, temp_ff);
} else {
time_disp1_drop_priority.full = 0;
}
crit_point_ff.full = disp_latency.full + time_disp1_drop_priority.full + disp_latency.full;
crit_point_ff.full = rfixed_mul(crit_point_ff, disp_drain_rate2);
crit_point_ff.full += rfixed_const_half(0);
critical_point2 = rfixed_trunc(crit_point_ff);
if (rdev->disp_priority == 2) {
critical_point2 = 0;
}
if (max_stop_req - critical_point2 < 4)
critical_point2 = 0;
}
if (critical_point2 == 0 && rdev->family == CHIP_R300) {
/* some R300 cards have problem with this set to 0 */
critical_point2 = 0x10;
}
WREG32(RADEON_GRPH2_BUFFER_CNTL, ((grph2_cntl & ~RADEON_GRPH_CRITICAL_POINT_MASK) |
(critical_point2 << RADEON_GRPH_CRITICAL_POINT_SHIFT)));
if ((rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
#if 0
/* attempt to program RS400 disp2 regs correctly ??? */
temp = RREG32(RS400_DISP2_REQ_CNTL1);
temp &= ~(RS400_DISP2_START_REQ_LEVEL_MASK |
RS400_DISP2_STOP_REQ_LEVEL_MASK);
WREG32(RS400_DISP2_REQ_CNTL1, (temp |
(critical_point2 << RS400_DISP1_START_REQ_LEVEL_SHIFT) |
(critical_point2 << RS400_DISP1_STOP_REQ_LEVEL_SHIFT)));
temp = RREG32(RS400_DISP2_REQ_CNTL2);
temp &= ~(RS400_DISP2_CRITICAL_POINT_START_MASK |
RS400_DISP2_CRITICAL_POINT_STOP_MASK);
WREG32(RS400_DISP2_REQ_CNTL2, (temp |
(critical_point2 << RS400_DISP2_CRITICAL_POINT_START_SHIFT) |
(critical_point2 << RS400_DISP2_CRITICAL_POINT_STOP_SHIFT)));
#endif
WREG32(RS400_DISP2_REQ_CNTL1, 0x105DC1CC);
WREG32(RS400_DISP2_REQ_CNTL2, 0x2749D000);
WREG32(RS400_DMIF_MEM_CNTL1, 0x29CA71DC);
WREG32(RS400_DISP1_REQ_CNTL1, 0x28FBC3AC);
}
DRM_DEBUG("GRPH2_BUFFER_CNTL from to %x\n",
(unsigned int)RREG32(RADEON_GRPH2_BUFFER_CNTL));
}
}
...@@ -30,6 +30,8 @@ ...@@ -30,6 +30,8 @@
#include "drm.h" #include "drm.h"
#include "radeon_reg.h" #include "radeon_reg.h"
#include "radeon.h" #include "radeon.h"
#include "radeon_drm.h"
#include "radeon_share.h"
/* r300,r350,rv350,rv370,rv380 depends on : */ /* r300,r350,rv350,rv370,rv380 depends on : */
void r100_hdp_reset(struct radeon_device *rdev); void r100_hdp_reset(struct radeon_device *rdev);
...@@ -44,6 +46,7 @@ int r100_gui_wait_for_idle(struct radeon_device *rdev); ...@@ -44,6 +46,7 @@ int r100_gui_wait_for_idle(struct radeon_device *rdev);
int r100_cs_packet_parse(struct radeon_cs_parser *p, int r100_cs_packet_parse(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt, struct radeon_cs_packet *pkt,
unsigned idx); unsigned idx);
int r100_cs_packet_parse_vline(struct radeon_cs_parser *p);
int r100_cs_packet_next_reloc(struct radeon_cs_parser *p, int r100_cs_packet_next_reloc(struct radeon_cs_parser *p,
struct radeon_cs_reloc **cs_reloc); struct radeon_cs_reloc **cs_reloc);
int r100_cs_parse_packet0(struct radeon_cs_parser *p, int r100_cs_parse_packet0(struct radeon_cs_parser *p,
...@@ -150,8 +153,13 @@ int rv370_pcie_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr) ...@@ -150,8 +153,13 @@ int rv370_pcie_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr)
if (i < 0 || i > rdev->gart.num_gpu_pages) { if (i < 0 || i > rdev->gart.num_gpu_pages) {
return -EINVAL; return -EINVAL;
} }
addr = (((u32)addr) >> 8) | ((upper_32_bits(addr) & 0xff) << 4) | 0xC; addr = (lower_32_bits(addr) >> 8) |
writel(cpu_to_le32(addr), ((void __iomem *)ptr) + (i * 4)); ((upper_32_bits(addr) & 0xff) << 24) |
0xc;
/* on x86 we want this to be CPU endian, on powerpc
* on powerpc without HW swappers, it'll get swapped on way
* into VRAM - so no need for cpu_to_le32 on VRAM tables */
writel(addr, ((void __iomem *)ptr) + (i * 4));
return 0; return 0;
} }
...@@ -579,10 +587,8 @@ void r300_vram_info(struct radeon_device *rdev) ...@@ -579,10 +587,8 @@ void r300_vram_info(struct radeon_device *rdev)
} else { } else {
rdev->mc.vram_width = 64; rdev->mc.vram_width = 64;
} }
rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); r100_vram_init_sizes(rdev);
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
} }
...@@ -970,7 +976,7 @@ static inline void r300_cs_track_clear(struct r300_cs_track *track) ...@@ -970,7 +976,7 @@ static inline void r300_cs_track_clear(struct r300_cs_track *track)
static const unsigned r300_reg_safe_bm[159] = { static const unsigned r300_reg_safe_bm[159] = {
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFBF, 0xFFFFFFFF, 0xFFFFFFBF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
...@@ -1019,7 +1025,7 @@ static int r300_packet0_check(struct radeon_cs_parser *p, ...@@ -1019,7 +1025,7 @@ static int r300_packet0_check(struct radeon_cs_parser *p,
struct radeon_cs_reloc *reloc; struct radeon_cs_reloc *reloc;
struct r300_cs_track *track; struct r300_cs_track *track;
volatile uint32_t *ib; volatile uint32_t *ib;
uint32_t tmp; uint32_t tmp, tile_flags = 0;
unsigned i; unsigned i;
int r; int r;
...@@ -1027,6 +1033,16 @@ static int r300_packet0_check(struct radeon_cs_parser *p, ...@@ -1027,6 +1033,16 @@ static int r300_packet0_check(struct radeon_cs_parser *p,
ib_chunk = &p->chunks[p->chunk_ib_idx]; ib_chunk = &p->chunks[p->chunk_ib_idx];
track = (struct r300_cs_track*)p->track; track = (struct r300_cs_track*)p->track;
switch(reg) { switch(reg) {
case AVIVO_D1MODE_VLINE_START_END:
case RADEON_CRTC_GUI_TRIG_VLINE:
r = r100_cs_packet_parse_vline(p);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
break;
case RADEON_DST_PITCH_OFFSET: case RADEON_DST_PITCH_OFFSET:
case RADEON_SRC_PITCH_OFFSET: case RADEON_SRC_PITCH_OFFSET:
r = r100_cs_packet_next_reloc(p, &reloc); r = r100_cs_packet_next_reloc(p, &reloc);
...@@ -1038,7 +1054,19 @@ static int r300_packet0_check(struct radeon_cs_parser *p, ...@@ -1038,7 +1054,19 @@ static int r300_packet0_check(struct radeon_cs_parser *p,
} }
tmp = ib_chunk->kdata[idx] & 0x003fffff; tmp = ib_chunk->kdata[idx] & 0x003fffff;
tmp += (((u32)reloc->lobj.gpu_offset) >> 10); tmp += (((u32)reloc->lobj.gpu_offset) >> 10);
ib[idx] = (ib_chunk->kdata[idx] & 0xffc00000) | tmp;
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= RADEON_DST_TILE_MACRO;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO) {
if (reg == RADEON_SRC_PITCH_OFFSET) {
DRM_ERROR("Cannot src blit from microtiled surface\n");
r100_cs_dump_packet(p, pkt);
return -EINVAL;
}
tile_flags |= RADEON_DST_TILE_MICRO;
}
tmp |= tile_flags;
ib[idx] = (ib_chunk->kdata[idx] & 0x3fc00000) | tmp;
break; break;
case R300_RB3D_COLOROFFSET0: case R300_RB3D_COLOROFFSET0:
case R300_RB3D_COLOROFFSET1: case R300_RB3D_COLOROFFSET1:
...@@ -1127,6 +1155,23 @@ static int r300_packet0_check(struct radeon_cs_parser *p, ...@@ -1127,6 +1155,23 @@ static int r300_packet0_check(struct radeon_cs_parser *p,
/* RB3D_COLORPITCH1 */ /* RB3D_COLORPITCH1 */
/* RB3D_COLORPITCH2 */ /* RB3D_COLORPITCH2 */
/* RB3D_COLORPITCH3 */ /* RB3D_COLORPITCH3 */
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= R300_COLOR_TILE_ENABLE;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO)
tile_flags |= R300_COLOR_MICROTILE_ENABLE;
tmp = ib_chunk->kdata[idx] & ~(0x7 << 16);
tmp |= tile_flags;
ib[idx] = tmp;
i = (reg - 0x4E38) >> 2; i = (reg - 0x4E38) >> 2;
track->cb[i].pitch = ib_chunk->kdata[idx] & 0x3FFE; track->cb[i].pitch = ib_chunk->kdata[idx] & 0x3FFE;
switch (((ib_chunk->kdata[idx] >> 21) & 0xF)) { switch (((ib_chunk->kdata[idx] >> 21) & 0xF)) {
...@@ -1182,6 +1227,23 @@ static int r300_packet0_check(struct radeon_cs_parser *p, ...@@ -1182,6 +1227,23 @@ static int r300_packet0_check(struct radeon_cs_parser *p,
break; break;
case 0x4F24: case 0x4F24:
/* ZB_DEPTHPITCH */ /* ZB_DEPTHPITCH */
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= R300_DEPTHMACROTILE_ENABLE;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO)
tile_flags |= R300_DEPTHMICROTILE_TILED;;
tmp = ib_chunk->kdata[idx] & ~(0x7 << 16);
tmp |= tile_flags;
ib[idx] = tmp;
track->zb.pitch = ib_chunk->kdata[idx] & 0x3FFC; track->zb.pitch = ib_chunk->kdata[idx] & 0x3FFC;
break; break;
case 0x4104: case 0x4104:
......
...@@ -27,7 +27,9 @@ ...@@ -27,7 +27,9 @@
#ifndef _R300_REG_H_ #ifndef _R300_REG_H_
#define _R300_REG_H_ #define _R300_REG_H_
#define R300_SURF_TILE_MACRO (1<<16)
#define R300_SURF_TILE_MICRO (2<<16)
#define R300_SURF_TILE_BOTH (3<<16)
#define R300_MC_INIT_MISC_LAT_TIMER 0x180 #define R300_MC_INIT_MISC_LAT_TIMER 0x180
......
...@@ -445,6 +445,7 @@ ...@@ -445,6 +445,7 @@
#define AVIVO_D1MODE_DATA_FORMAT 0x6528 #define AVIVO_D1MODE_DATA_FORMAT 0x6528
# define AVIVO_D1MODE_INTERLEAVE_EN (1 << 0) # define AVIVO_D1MODE_INTERLEAVE_EN (1 << 0)
#define AVIVO_D1MODE_DESKTOP_HEIGHT 0x652C #define AVIVO_D1MODE_DESKTOP_HEIGHT 0x652C
#define AVIVO_D1MODE_VLINE_START_END 0x6538
#define AVIVO_D1MODE_VIEWPORT_START 0x6580 #define AVIVO_D1MODE_VIEWPORT_START 0x6580
#define AVIVO_D1MODE_VIEWPORT_SIZE 0x6584 #define AVIVO_D1MODE_VIEWPORT_SIZE 0x6584
#define AVIVO_D1MODE_EXT_OVERSCAN_LEFT_RIGHT 0x6588 #define AVIVO_D1MODE_EXT_OVERSCAN_LEFT_RIGHT 0x6588
...@@ -496,6 +497,7 @@ ...@@ -496,6 +497,7 @@
#define AVIVO_D2CUR_SIZE 0x6c10 #define AVIVO_D2CUR_SIZE 0x6c10
#define AVIVO_D2CUR_POSITION 0x6c14 #define AVIVO_D2CUR_POSITION 0x6c14
#define AVIVO_D2MODE_VLINE_START_END 0x6d38
#define AVIVO_D2MODE_VIEWPORT_START 0x6d80 #define AVIVO_D2MODE_VIEWPORT_START 0x6d80
#define AVIVO_D2MODE_VIEWPORT_SIZE 0x6d84 #define AVIVO_D2MODE_VIEWPORT_SIZE 0x6d84
#define AVIVO_D2MODE_EXT_OVERSCAN_LEFT_RIGHT 0x6d88 #define AVIVO_D2MODE_EXT_OVERSCAN_LEFT_RIGHT 0x6d88
......
...@@ -28,6 +28,7 @@ ...@@ -28,6 +28,7 @@
#include "drmP.h" #include "drmP.h"
#include "radeon_reg.h" #include "radeon_reg.h"
#include "radeon.h" #include "radeon.h"
#include "radeon_share.h"
/* r520,rv530,rv560,rv570,r580 depends on : */ /* r520,rv530,rv560,rv570,r580 depends on : */
void r100_hdp_reset(struct radeon_device *rdev); void r100_hdp_reset(struct radeon_device *rdev);
...@@ -94,8 +95,8 @@ int r520_mc_init(struct radeon_device *rdev) ...@@ -94,8 +95,8 @@ int r520_mc_init(struct radeon_device *rdev)
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
/* Write VRAM size in case we are limiting it */ /* Write VRAM size in case we are limiting it */
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(R520_MC_FB_TOP, tmp >> 16); tmp = REG_SET(R520_MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(R520_MC_FB_START, rdev->mc.vram_location >> 16); tmp |= REG_SET(R520_MC_FB_START, rdev->mc.vram_location >> 16);
WREG32_MC(R520_MC_FB_LOCATION, tmp); WREG32_MC(R520_MC_FB_LOCATION, tmp);
...@@ -226,9 +227,20 @@ static void r520_vram_get_type(struct radeon_device *rdev) ...@@ -226,9 +227,20 @@ static void r520_vram_get_type(struct radeon_device *rdev)
void r520_vram_info(struct radeon_device *rdev) void r520_vram_info(struct radeon_device *rdev)
{ {
fixed20_12 a;
r520_vram_get_type(rdev); r520_vram_get_type(rdev);
rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); r100_vram_init_sizes(rdev);
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); /* FIXME: we should enforce default clock in case GPU is not in
* default setup
*/
a.full = rfixed_const(100);
rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk);
rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);
}
void r520_bandwidth_update(struct radeon_device *rdev)
{
rv515_bandwidth_avivo_update(rdev);
} }
...@@ -67,7 +67,7 @@ int r600_mc_init(struct radeon_device *rdev) ...@@ -67,7 +67,7 @@ int r600_mc_init(struct radeon_device *rdev)
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(R600_MC_FB_TOP, tmp >> 24); tmp = REG_SET(R600_MC_FB_TOP, tmp >> 24);
tmp |= REG_SET(R600_MC_FB_BASE, rdev->mc.vram_location >> 24); tmp |= REG_SET(R600_MC_FB_BASE, rdev->mc.vram_location >> 24);
WREG32(R600_MC_VM_FB_LOCATION, tmp); WREG32(R600_MC_VM_FB_LOCATION, tmp);
...@@ -140,7 +140,8 @@ void r600_vram_get_type(struct radeon_device *rdev) ...@@ -140,7 +140,8 @@ void r600_vram_get_type(struct radeon_device *rdev)
void r600_vram_info(struct radeon_device *rdev) void r600_vram_info(struct radeon_device *rdev)
{ {
r600_vram_get_type(rdev); r600_vram_get_type(rdev);
rdev->mc.vram_size = RREG32(R600_CONFIG_MEMSIZE); rdev->mc.real_vram_size = RREG32(R600_CONFIG_MEMSIZE);
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
/* Could aper size report 0 ? */ /* Could aper size report 0 ? */
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
......
...@@ -64,6 +64,7 @@ extern int radeon_agpmode; ...@@ -64,6 +64,7 @@ extern int radeon_agpmode;
extern int radeon_vram_limit; extern int radeon_vram_limit;
extern int radeon_gart_size; extern int radeon_gart_size;
extern int radeon_benchmarking; extern int radeon_benchmarking;
extern int radeon_testing;
extern int radeon_connector_table; extern int radeon_connector_table;
/* /*
...@@ -113,6 +114,7 @@ enum radeon_family { ...@@ -113,6 +114,7 @@ enum radeon_family {
CHIP_RV770, CHIP_RV770,
CHIP_RV730, CHIP_RV730,
CHIP_RV710, CHIP_RV710,
CHIP_RS880,
CHIP_LAST, CHIP_LAST,
}; };
...@@ -201,6 +203,14 @@ int radeon_fence_wait_last(struct radeon_device *rdev); ...@@ -201,6 +203,14 @@ int radeon_fence_wait_last(struct radeon_device *rdev);
struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence); struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence);
void radeon_fence_unref(struct radeon_fence **fence); void radeon_fence_unref(struct radeon_fence **fence);
/*
* Tiling registers
*/
struct radeon_surface_reg {
struct radeon_object *robj;
};
#define RADEON_GEM_MAX_SURFACES 8
/* /*
* Radeon buffer. * Radeon buffer.
...@@ -213,6 +223,7 @@ struct radeon_object_list { ...@@ -213,6 +223,7 @@ struct radeon_object_list {
uint64_t gpu_offset; uint64_t gpu_offset;
unsigned rdomain; unsigned rdomain;
unsigned wdomain; unsigned wdomain;
uint32_t tiling_flags;
}; };
int radeon_object_init(struct radeon_device *rdev); int radeon_object_init(struct radeon_device *rdev);
...@@ -242,8 +253,15 @@ void radeon_object_list_clean(struct list_head *head); ...@@ -242,8 +253,15 @@ void radeon_object_list_clean(struct list_head *head);
int radeon_object_fbdev_mmap(struct radeon_object *robj, int radeon_object_fbdev_mmap(struct radeon_object *robj,
struct vm_area_struct *vma); struct vm_area_struct *vma);
unsigned long radeon_object_size(struct radeon_object *robj); unsigned long radeon_object_size(struct radeon_object *robj);
void radeon_object_clear_surface_reg(struct radeon_object *robj);
int radeon_object_check_tiling(struct radeon_object *robj, bool has_moved,
bool force_drop);
void radeon_object_set_tiling_flags(struct radeon_object *robj,
uint32_t tiling_flags, uint32_t pitch);
void radeon_object_get_tiling_flags(struct radeon_object *robj, uint32_t *tiling_flags, uint32_t *pitch);
void radeon_bo_move_notify(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem);
void radeon_bo_fault_reserve_notify(struct ttm_buffer_object *bo);
/* /*
* GEM objects. * GEM objects.
*/ */
...@@ -315,8 +333,11 @@ struct radeon_mc { ...@@ -315,8 +333,11 @@ struct radeon_mc {
unsigned gtt_location; unsigned gtt_location;
unsigned gtt_size; unsigned gtt_size;
unsigned vram_location; unsigned vram_location;
unsigned vram_size; /* for some chips with <= 32MB we need to lie
* about vram size near mc fb location */
unsigned mc_vram_size;
unsigned vram_width; unsigned vram_width;
unsigned real_vram_size;
int vram_mtrr; int vram_mtrr;
bool vram_is_ddr; bool vram_is_ddr;
}; };
...@@ -474,6 +495,39 @@ struct radeon_wb { ...@@ -474,6 +495,39 @@ struct radeon_wb {
uint64_t gpu_addr; uint64_t gpu_addr;
}; };
/**
* struct radeon_pm - power management datas
* @max_bandwidth: maximum bandwidth the gpu has (MByte/s)
* @igp_sideport_mclk: sideport memory clock Mhz (rs690,rs740,rs780,rs880)
* @igp_system_mclk: system clock Mhz (rs690,rs740,rs780,rs880)
* @igp_ht_link_clk: ht link clock Mhz (rs690,rs740,rs780,rs880)
* @igp_ht_link_width: ht link width in bits (rs690,rs740,rs780,rs880)
* @k8_bandwidth: k8 bandwidth the gpu has (MByte/s) (IGP)
* @sideport_bandwidth: sideport bandwidth the gpu has (MByte/s) (IGP)
* @ht_bandwidth: ht bandwidth the gpu has (MByte/s) (IGP)
* @core_bandwidth: core GPU bandwidth the gpu has (MByte/s) (IGP)
* @sclk: GPU clock Mhz (core bandwith depends of this clock)
* @needed_bandwidth: current bandwidth needs
*
* It keeps track of various data needed to take powermanagement decision.
* Bandwith need is used to determine minimun clock of the GPU and memory.
* Equation between gpu/memory clock and available bandwidth is hw dependent
* (type of memory, bus size, efficiency, ...)
*/
struct radeon_pm {
fixed20_12 max_bandwidth;
fixed20_12 igp_sideport_mclk;
fixed20_12 igp_system_mclk;
fixed20_12 igp_ht_link_clk;
fixed20_12 igp_ht_link_width;
fixed20_12 k8_bandwidth;
fixed20_12 sideport_bandwidth;
fixed20_12 ht_bandwidth;
fixed20_12 core_bandwidth;
fixed20_12 sclk;
fixed20_12 needed_bandwidth;
};
/* /*
* Benchmarking * Benchmarking
...@@ -481,6 +535,12 @@ struct radeon_wb { ...@@ -481,6 +535,12 @@ struct radeon_wb {
void radeon_benchmark(struct radeon_device *rdev); void radeon_benchmark(struct radeon_device *rdev);
/*
* Testing
*/
void radeon_test_moves(struct radeon_device *rdev);
/* /*
* Debugfs * Debugfs
*/ */
...@@ -535,6 +595,11 @@ struct radeon_asic { ...@@ -535,6 +595,11 @@ struct radeon_asic {
void (*set_memory_clock)(struct radeon_device *rdev, uint32_t mem_clock); void (*set_memory_clock)(struct radeon_device *rdev, uint32_t mem_clock);
void (*set_pcie_lanes)(struct radeon_device *rdev, int lanes); void (*set_pcie_lanes)(struct radeon_device *rdev, int lanes);
void (*set_clock_gating)(struct radeon_device *rdev, int enable); void (*set_clock_gating)(struct radeon_device *rdev, int enable);
int (*set_surface_reg)(struct radeon_device *rdev, int reg,
uint32_t tiling_flags, uint32_t pitch,
uint32_t offset, uint32_t obj_size);
int (*clear_surface_reg)(struct radeon_device *rdev, int reg);
void (*bandwidth_update)(struct radeon_device *rdev);
}; };
union radeon_asic_config { union radeon_asic_config {
...@@ -566,6 +631,10 @@ int radeon_gem_busy_ioctl(struct drm_device *dev, void *data, ...@@ -566,6 +631,10 @@ int radeon_gem_busy_ioctl(struct drm_device *dev, void *data,
int radeon_gem_wait_idle_ioctl(struct drm_device *dev, void *data, int radeon_gem_wait_idle_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp); struct drm_file *filp);
int radeon_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp); int radeon_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp);
int radeon_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp);
int radeon_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp);
/* /*
...@@ -594,8 +663,8 @@ struct radeon_device { ...@@ -594,8 +663,8 @@ struct radeon_device {
struct radeon_object *fbdev_robj; struct radeon_object *fbdev_robj;
struct radeon_framebuffer *fbdev_rfb; struct radeon_framebuffer *fbdev_rfb;
/* Register mmio */ /* Register mmio */
unsigned long rmmio_base; resource_size_t rmmio_base;
unsigned long rmmio_size; resource_size_t rmmio_size;
void *rmmio; void *rmmio;
radeon_rreg_t mm_rreg; radeon_rreg_t mm_rreg;
radeon_wreg_t mm_wreg; radeon_wreg_t mm_wreg;
...@@ -619,11 +688,14 @@ struct radeon_device { ...@@ -619,11 +688,14 @@ struct radeon_device {
struct radeon_irq irq; struct radeon_irq irq;
struct radeon_asic *asic; struct radeon_asic *asic;
struct radeon_gem gem; struct radeon_gem gem;
struct radeon_pm pm;
struct mutex cs_mutex; struct mutex cs_mutex;
struct radeon_wb wb; struct radeon_wb wb;
bool gpu_lockup; bool gpu_lockup;
bool shutdown; bool shutdown;
bool suspend; bool suspend;
bool need_dma32;
struct radeon_surface_reg surface_regs[RADEON_GEM_MAX_SURFACES];
}; };
int radeon_device_init(struct radeon_device *rdev, int radeon_device_init(struct radeon_device *rdev,
...@@ -670,6 +742,8 @@ void r100_pll_errata_after_index(struct radeon_device *rdev); ...@@ -670,6 +742,8 @@ void r100_pll_errata_after_index(struct radeon_device *rdev);
/* /*
* ASICs helpers. * ASICs helpers.
*/ */
#define ASIC_IS_RN50(rdev) ((rdev->pdev->device == 0x515e) || \
(rdev->pdev->device == 0x5969))
#define ASIC_IS_RV100(rdev) ((rdev->family == CHIP_RV100) || \ #define ASIC_IS_RV100(rdev) ((rdev->family == CHIP_RV100) || \
(rdev->family == CHIP_RV200) || \ (rdev->family == CHIP_RV200) || \
(rdev->family == CHIP_RS100) || \ (rdev->family == CHIP_RS100) || \
...@@ -796,5 +870,8 @@ static inline void radeon_ring_write(struct radeon_device *rdev, uint32_t v) ...@@ -796,5 +870,8 @@ static inline void radeon_ring_write(struct radeon_device *rdev, uint32_t v)
#define radeon_set_memory_clock(rdev, e) (rdev)->asic->set_engine_clock((rdev), (e)) #define radeon_set_memory_clock(rdev, e) (rdev)->asic->set_engine_clock((rdev), (e))
#define radeon_set_pcie_lanes(rdev, l) (rdev)->asic->set_pcie_lanes((rdev), (l)) #define radeon_set_pcie_lanes(rdev, l) (rdev)->asic->set_pcie_lanes((rdev), (l))
#define radeon_set_clock_gating(rdev, e) (rdev)->asic->set_clock_gating((rdev), (e)) #define radeon_set_clock_gating(rdev, e) (rdev)->asic->set_clock_gating((rdev), (e))
#define radeon_set_surface_reg(rdev, r, f, p, o, s) ((rdev)->asic->set_surface_reg((rdev), (r), (f), (p), (o), (s)))
#define radeon_clear_surface_reg(rdev, r) ((rdev)->asic->clear_surface_reg((rdev), (r)))
#define radeon_bandwidth_update(rdev) (rdev)->asic->bandwidth_update((rdev))
#endif #endif
...@@ -71,6 +71,11 @@ int r100_copy_blit(struct radeon_device *rdev, ...@@ -71,6 +71,11 @@ int r100_copy_blit(struct radeon_device *rdev,
uint64_t dst_offset, uint64_t dst_offset,
unsigned num_pages, unsigned num_pages,
struct radeon_fence *fence); struct radeon_fence *fence);
int r100_set_surface_reg(struct radeon_device *rdev, int reg,
uint32_t tiling_flags, uint32_t pitch,
uint32_t offset, uint32_t obj_size);
int r100_clear_surface_reg(struct radeon_device *rdev, int reg);
void r100_bandwidth_update(struct radeon_device *rdev);
static struct radeon_asic r100_asic = { static struct radeon_asic r100_asic = {
.init = &r100_init, .init = &r100_init,
...@@ -100,6 +105,9 @@ static struct radeon_asic r100_asic = { ...@@ -100,6 +105,9 @@ static struct radeon_asic r100_asic = {
.set_memory_clock = NULL, .set_memory_clock = NULL,
.set_pcie_lanes = NULL, .set_pcie_lanes = NULL,
.set_clock_gating = &radeon_legacy_set_clock_gating, .set_clock_gating = &radeon_legacy_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &r100_bandwidth_update,
}; };
...@@ -128,6 +136,7 @@ int r300_copy_dma(struct radeon_device *rdev, ...@@ -128,6 +136,7 @@ int r300_copy_dma(struct radeon_device *rdev,
uint64_t dst_offset, uint64_t dst_offset,
unsigned num_pages, unsigned num_pages,
struct radeon_fence *fence); struct radeon_fence *fence);
static struct radeon_asic r300_asic = { static struct radeon_asic r300_asic = {
.init = &r300_init, .init = &r300_init,
.errata = &r300_errata, .errata = &r300_errata,
...@@ -156,6 +165,9 @@ static struct radeon_asic r300_asic = { ...@@ -156,6 +165,9 @@ static struct radeon_asic r300_asic = {
.set_memory_clock = NULL, .set_memory_clock = NULL,
.set_pcie_lanes = &rv370_set_pcie_lanes, .set_pcie_lanes = &rv370_set_pcie_lanes,
.set_clock_gating = &radeon_legacy_set_clock_gating, .set_clock_gating = &radeon_legacy_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &r100_bandwidth_update,
}; };
/* /*
...@@ -193,6 +205,9 @@ static struct radeon_asic r420_asic = { ...@@ -193,6 +205,9 @@ static struct radeon_asic r420_asic = {
.set_memory_clock = &radeon_atom_set_memory_clock, .set_memory_clock = &radeon_atom_set_memory_clock,
.set_pcie_lanes = &rv370_set_pcie_lanes, .set_pcie_lanes = &rv370_set_pcie_lanes,
.set_clock_gating = &radeon_atom_set_clock_gating, .set_clock_gating = &radeon_atom_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &r100_bandwidth_update,
}; };
...@@ -237,6 +252,9 @@ static struct radeon_asic rs400_asic = { ...@@ -237,6 +252,9 @@ static struct radeon_asic rs400_asic = {
.set_memory_clock = NULL, .set_memory_clock = NULL,
.set_pcie_lanes = NULL, .set_pcie_lanes = NULL,
.set_clock_gating = &radeon_legacy_set_clock_gating, .set_clock_gating = &radeon_legacy_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &r100_bandwidth_update,
}; };
...@@ -254,6 +272,7 @@ void rs600_gart_tlb_flush(struct radeon_device *rdev); ...@@ -254,6 +272,7 @@ void rs600_gart_tlb_flush(struct radeon_device *rdev);
int rs600_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr); int rs600_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr);
uint32_t rs600_mc_rreg(struct radeon_device *rdev, uint32_t reg); uint32_t rs600_mc_rreg(struct radeon_device *rdev, uint32_t reg);
void rs600_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v); void rs600_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v);
void rs600_bandwidth_update(struct radeon_device *rdev);
static struct radeon_asic rs600_asic = { static struct radeon_asic rs600_asic = {
.init = &r300_init, .init = &r300_init,
.errata = &rs600_errata, .errata = &rs600_errata,
...@@ -282,6 +301,7 @@ static struct radeon_asic rs600_asic = { ...@@ -282,6 +301,7 @@ static struct radeon_asic rs600_asic = {
.set_memory_clock = &radeon_atom_set_memory_clock, .set_memory_clock = &radeon_atom_set_memory_clock,
.set_pcie_lanes = NULL, .set_pcie_lanes = NULL,
.set_clock_gating = &radeon_atom_set_clock_gating, .set_clock_gating = &radeon_atom_set_clock_gating,
.bandwidth_update = &rs600_bandwidth_update,
}; };
...@@ -294,6 +314,7 @@ int rs690_mc_init(struct radeon_device *rdev); ...@@ -294,6 +314,7 @@ int rs690_mc_init(struct radeon_device *rdev);
void rs690_mc_fini(struct radeon_device *rdev); void rs690_mc_fini(struct radeon_device *rdev);
uint32_t rs690_mc_rreg(struct radeon_device *rdev, uint32_t reg); uint32_t rs690_mc_rreg(struct radeon_device *rdev, uint32_t reg);
void rs690_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v); void rs690_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v);
void rs690_bandwidth_update(struct radeon_device *rdev);
static struct radeon_asic rs690_asic = { static struct radeon_asic rs690_asic = {
.init = &r300_init, .init = &r300_init,
.errata = &rs690_errata, .errata = &rs690_errata,
...@@ -322,6 +343,9 @@ static struct radeon_asic rs690_asic = { ...@@ -322,6 +343,9 @@ static struct radeon_asic rs690_asic = {
.set_memory_clock = &radeon_atom_set_memory_clock, .set_memory_clock = &radeon_atom_set_memory_clock,
.set_pcie_lanes = NULL, .set_pcie_lanes = NULL,
.set_clock_gating = &radeon_atom_set_clock_gating, .set_clock_gating = &radeon_atom_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &rs690_bandwidth_update,
}; };
...@@ -339,6 +363,7 @@ void rv515_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v); ...@@ -339,6 +363,7 @@ void rv515_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v);
void rv515_ring_start(struct radeon_device *rdev); void rv515_ring_start(struct radeon_device *rdev);
uint32_t rv515_pcie_rreg(struct radeon_device *rdev, uint32_t reg); uint32_t rv515_pcie_rreg(struct radeon_device *rdev, uint32_t reg);
void rv515_pcie_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v); void rv515_pcie_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v);
void rv515_bandwidth_update(struct radeon_device *rdev);
static struct radeon_asic rv515_asic = { static struct radeon_asic rv515_asic = {
.init = &rv515_init, .init = &rv515_init,
.errata = &rv515_errata, .errata = &rv515_errata,
...@@ -367,6 +392,9 @@ static struct radeon_asic rv515_asic = { ...@@ -367,6 +392,9 @@ static struct radeon_asic rv515_asic = {
.set_memory_clock = &radeon_atom_set_memory_clock, .set_memory_clock = &radeon_atom_set_memory_clock,
.set_pcie_lanes = &rv370_set_pcie_lanes, .set_pcie_lanes = &rv370_set_pcie_lanes,
.set_clock_gating = &radeon_atom_set_clock_gating, .set_clock_gating = &radeon_atom_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &rv515_bandwidth_update,
}; };
...@@ -377,6 +405,7 @@ void r520_errata(struct radeon_device *rdev); ...@@ -377,6 +405,7 @@ void r520_errata(struct radeon_device *rdev);
void r520_vram_info(struct radeon_device *rdev); void r520_vram_info(struct radeon_device *rdev);
int r520_mc_init(struct radeon_device *rdev); int r520_mc_init(struct radeon_device *rdev);
void r520_mc_fini(struct radeon_device *rdev); void r520_mc_fini(struct radeon_device *rdev);
void r520_bandwidth_update(struct radeon_device *rdev);
static struct radeon_asic r520_asic = { static struct radeon_asic r520_asic = {
.init = &rv515_init, .init = &rv515_init,
.errata = &r520_errata, .errata = &r520_errata,
...@@ -405,6 +434,9 @@ static struct radeon_asic r520_asic = { ...@@ -405,6 +434,9 @@ static struct radeon_asic r520_asic = {
.set_memory_clock = &radeon_atom_set_memory_clock, .set_memory_clock = &radeon_atom_set_memory_clock,
.set_pcie_lanes = &rv370_set_pcie_lanes, .set_pcie_lanes = &rv370_set_pcie_lanes,
.set_clock_gating = &radeon_atom_set_clock_gating, .set_clock_gating = &radeon_atom_set_clock_gating,
.set_surface_reg = r100_set_surface_reg,
.clear_surface_reg = r100_clear_surface_reg,
.bandwidth_update = &r520_bandwidth_update,
}; };
/* /*
......
...@@ -103,7 +103,8 @@ static inline struct radeon_i2c_bus_rec radeon_lookup_gpio(struct drm_device ...@@ -103,7 +103,8 @@ static inline struct radeon_i2c_bus_rec radeon_lookup_gpio(struct drm_device
static bool radeon_atom_apply_quirks(struct drm_device *dev, static bool radeon_atom_apply_quirks(struct drm_device *dev,
uint32_t supported_device, uint32_t supported_device,
int *connector_type, int *connector_type,
struct radeon_i2c_bus_rec *i2c_bus) struct radeon_i2c_bus_rec *i2c_bus,
uint8_t *line_mux)
{ {
/* Asus M2A-VM HDMI board lists the DVI port as HDMI */ /* Asus M2A-VM HDMI board lists the DVI port as HDMI */
...@@ -127,8 +128,10 @@ static bool radeon_atom_apply_quirks(struct drm_device *dev, ...@@ -127,8 +128,10 @@ static bool radeon_atom_apply_quirks(struct drm_device *dev,
if ((dev->pdev->device == 0x5653) && if ((dev->pdev->device == 0x5653) &&
(dev->pdev->subsystem_vendor == 0x1462) && (dev->pdev->subsystem_vendor == 0x1462) &&
(dev->pdev->subsystem_device == 0x0291)) { (dev->pdev->subsystem_device == 0x0291)) {
if (*connector_type == DRM_MODE_CONNECTOR_LVDS) if (*connector_type == DRM_MODE_CONNECTOR_LVDS) {
i2c_bus->valid = false; i2c_bus->valid = false;
*line_mux = 53;
}
} }
/* Funky macbooks */ /* Funky macbooks */
...@@ -526,7 +529,7 @@ bool radeon_get_atom_connector_info_from_supported_devices_table(struct ...@@ -526,7 +529,7 @@ bool radeon_get_atom_connector_info_from_supported_devices_table(struct
if (!radeon_atom_apply_quirks if (!radeon_atom_apply_quirks
(dev, (1 << i), &bios_connectors[i].connector_type, (dev, (1 << i), &bios_connectors[i].connector_type,
&bios_connectors[i].ddc_bus)) &bios_connectors[i].ddc_bus, &bios_connectors[i].line_mux))
continue; continue;
bios_connectors[i].valid = true; bios_connectors[i].valid = true;
......
...@@ -63,7 +63,7 @@ void radeon_benchmark_move(struct radeon_device *rdev, unsigned bsize, ...@@ -63,7 +63,7 @@ void radeon_benchmark_move(struct radeon_device *rdev, unsigned bsize,
if (r) { if (r) {
goto out_cleanup; goto out_cleanup;
} }
r = radeon_copy_dma(rdev, saddr, daddr, size >> 14, fence); r = radeon_copy_dma(rdev, saddr, daddr, size / 4096, fence);
if (r) { if (r) {
goto out_cleanup; goto out_cleanup;
} }
...@@ -88,7 +88,7 @@ void radeon_benchmark_move(struct radeon_device *rdev, unsigned bsize, ...@@ -88,7 +88,7 @@ void radeon_benchmark_move(struct radeon_device *rdev, unsigned bsize,
if (r) { if (r) {
goto out_cleanup; goto out_cleanup;
} }
r = radeon_copy_blit(rdev, saddr, daddr, size >> 14, fence); r = radeon_copy_blit(rdev, saddr, daddr, size / 4096, fence);
if (r) { if (r) {
goto out_cleanup; goto out_cleanup;
} }
......
...@@ -127,17 +127,23 @@ int radeon_cs_parser_init(struct radeon_cs_parser *p, void *data) ...@@ -127,17 +127,23 @@ int radeon_cs_parser_init(struct radeon_cs_parser *p, void *data)
sizeof(struct drm_radeon_cs_chunk))) { sizeof(struct drm_radeon_cs_chunk))) {
return -EFAULT; return -EFAULT;
} }
p->chunks[i].length_dw = user_chunk.length_dw;
p->chunks[i].kdata = NULL;
p->chunks[i].chunk_id = user_chunk.chunk_id; p->chunks[i].chunk_id = user_chunk.chunk_id;
if (p->chunks[i].chunk_id == RADEON_CHUNK_ID_RELOCS) { if (p->chunks[i].chunk_id == RADEON_CHUNK_ID_RELOCS) {
p->chunk_relocs_idx = i; p->chunk_relocs_idx = i;
} }
if (p->chunks[i].chunk_id == RADEON_CHUNK_ID_IB) { if (p->chunks[i].chunk_id == RADEON_CHUNK_ID_IB) {
p->chunk_ib_idx = i; p->chunk_ib_idx = i;
/* zero length IB isn't useful */
if (p->chunks[i].length_dw == 0)
return -EINVAL;
} }
p->chunks[i].length_dw = user_chunk.length_dw; p->chunks[i].length_dw = user_chunk.length_dw;
cdata = (uint32_t *)(unsigned long)user_chunk.chunk_data; cdata = (uint32_t *)(unsigned long)user_chunk.chunk_data;
p->chunks[i].kdata = NULL;
size = p->chunks[i].length_dw * sizeof(uint32_t); size = p->chunks[i].length_dw * sizeof(uint32_t);
p->chunks[i].kdata = kzalloc(size, GFP_KERNEL); p->chunks[i].kdata = kzalloc(size, GFP_KERNEL);
if (p->chunks[i].kdata == NULL) { if (p->chunks[i].kdata == NULL) {
......
...@@ -111,9 +111,11 @@ static void radeon_set_cursor(struct drm_crtc *crtc, struct drm_gem_object *obj, ...@@ -111,9 +111,11 @@ static void radeon_set_cursor(struct drm_crtc *crtc, struct drm_gem_object *obj,
if (ASIC_IS_AVIVO(rdev)) if (ASIC_IS_AVIVO(rdev))
WREG32(AVIVO_D1CUR_SURFACE_ADDRESS + radeon_crtc->crtc_offset, gpu_addr); WREG32(AVIVO_D1CUR_SURFACE_ADDRESS + radeon_crtc->crtc_offset, gpu_addr);
else else {
radeon_crtc->legacy_cursor_offset = gpu_addr - radeon_crtc->legacy_display_base_addr;
/* offset is from DISP(2)_BASE_ADDRESS */ /* offset is from DISP(2)_BASE_ADDRESS */
WREG32(RADEON_CUR_OFFSET + radeon_crtc->crtc_offset, gpu_addr); WREG32(RADEON_CUR_OFFSET + radeon_crtc->crtc_offset, radeon_crtc->legacy_cursor_offset);
}
} }
int radeon_crtc_cursor_set(struct drm_crtc *crtc, int radeon_crtc_cursor_set(struct drm_crtc *crtc,
...@@ -245,6 +247,9 @@ int radeon_crtc_cursor_move(struct drm_crtc *crtc, ...@@ -245,6 +247,9 @@ int radeon_crtc_cursor_move(struct drm_crtc *crtc,
(RADEON_CUR_LOCK (RADEON_CUR_LOCK
| ((xorigin ? 0 : x) << 16) | ((xorigin ? 0 : x) << 16)
| (yorigin ? 0 : y))); | (yorigin ? 0 : y)));
/* offset is from DISP(2)_BASE_ADDRESS */
WREG32(RADEON_CUR_OFFSET + radeon_crtc->crtc_offset, (radeon_crtc->legacy_cursor_offset +
(yorigin * 256)));
} }
radeon_lock_cursor(crtc, false); radeon_lock_cursor(crtc, false);
......
...@@ -48,6 +48,8 @@ static void radeon_surface_init(struct radeon_device *rdev) ...@@ -48,6 +48,8 @@ static void radeon_surface_init(struct radeon_device *rdev)
i * (RADEON_SURFACE1_INFO - RADEON_SURFACE0_INFO), i * (RADEON_SURFACE1_INFO - RADEON_SURFACE0_INFO),
0); 0);
} }
/* enable surfaces */
WREG32(RADEON_SURFACE_CNTL, 0);
} }
} }
...@@ -119,7 +121,7 @@ int radeon_mc_setup(struct radeon_device *rdev) ...@@ -119,7 +121,7 @@ int radeon_mc_setup(struct radeon_device *rdev)
if (rdev->mc.vram_location != 0xFFFFFFFFUL) { if (rdev->mc.vram_location != 0xFFFFFFFFUL) {
/* vram location was already setup try to put gtt after /* vram location was already setup try to put gtt after
* if it fits */ * if it fits */
tmp = rdev->mc.vram_location + rdev->mc.vram_size; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size;
tmp = (tmp + rdev->mc.gtt_size - 1) & ~(rdev->mc.gtt_size - 1); tmp = (tmp + rdev->mc.gtt_size - 1) & ~(rdev->mc.gtt_size - 1);
if ((0xFFFFFFFFUL - tmp) >= rdev->mc.gtt_size) { if ((0xFFFFFFFFUL - tmp) >= rdev->mc.gtt_size) {
rdev->mc.gtt_location = tmp; rdev->mc.gtt_location = tmp;
...@@ -134,13 +136,13 @@ int radeon_mc_setup(struct radeon_device *rdev) ...@@ -134,13 +136,13 @@ int radeon_mc_setup(struct radeon_device *rdev)
} else if (rdev->mc.gtt_location != 0xFFFFFFFFUL) { } else if (rdev->mc.gtt_location != 0xFFFFFFFFUL) {
/* gtt location was already setup try to put vram before /* gtt location was already setup try to put vram before
* if it fits */ * if it fits */
if (rdev->mc.vram_size < rdev->mc.gtt_location) { if (rdev->mc.mc_vram_size < rdev->mc.gtt_location) {
rdev->mc.vram_location = 0; rdev->mc.vram_location = 0;
} else { } else {
tmp = rdev->mc.gtt_location + rdev->mc.gtt_size; tmp = rdev->mc.gtt_location + rdev->mc.gtt_size;
tmp += (rdev->mc.vram_size - 1); tmp += (rdev->mc.mc_vram_size - 1);
tmp &= ~(rdev->mc.vram_size - 1); tmp &= ~(rdev->mc.mc_vram_size - 1);
if ((0xFFFFFFFFUL - tmp) >= rdev->mc.vram_size) { if ((0xFFFFFFFFUL - tmp) >= rdev->mc.mc_vram_size) {
rdev->mc.vram_location = tmp; rdev->mc.vram_location = tmp;
} else { } else {
printk(KERN_ERR "[drm] vram too big to fit " printk(KERN_ERR "[drm] vram too big to fit "
...@@ -150,12 +152,14 @@ int radeon_mc_setup(struct radeon_device *rdev) ...@@ -150,12 +152,14 @@ int radeon_mc_setup(struct radeon_device *rdev)
} }
} else { } else {
rdev->mc.vram_location = 0; rdev->mc.vram_location = 0;
rdev->mc.gtt_location = rdev->mc.vram_size; rdev->mc.gtt_location = rdev->mc.mc_vram_size;
} }
DRM_INFO("radeon: VRAM %uM\n", rdev->mc.vram_size >> 20); DRM_INFO("radeon: VRAM %uM\n", rdev->mc.real_vram_size >> 20);
DRM_INFO("radeon: VRAM from 0x%08X to 0x%08X\n", DRM_INFO("radeon: VRAM from 0x%08X to 0x%08X\n",
rdev->mc.vram_location, rdev->mc.vram_location,
rdev->mc.vram_location + rdev->mc.vram_size - 1); rdev->mc.vram_location + rdev->mc.mc_vram_size - 1);
if (rdev->mc.real_vram_size != rdev->mc.mc_vram_size)
DRM_INFO("radeon: VRAM less than aperture workaround enabled\n");
DRM_INFO("radeon: GTT %uM\n", rdev->mc.gtt_size >> 20); DRM_INFO("radeon: GTT %uM\n", rdev->mc.gtt_size >> 20);
DRM_INFO("radeon: GTT from 0x%08X to 0x%08X\n", DRM_INFO("radeon: GTT from 0x%08X to 0x%08X\n",
rdev->mc.gtt_location, rdev->mc.gtt_location,
...@@ -450,6 +454,7 @@ int radeon_device_init(struct radeon_device *rdev, ...@@ -450,6 +454,7 @@ int radeon_device_init(struct radeon_device *rdev,
uint32_t flags) uint32_t flags)
{ {
int r, ret; int r, ret;
int dma_bits;
DRM_INFO("radeon: Initializing kernel modesetting.\n"); DRM_INFO("radeon: Initializing kernel modesetting.\n");
rdev->shutdown = false; rdev->shutdown = false;
...@@ -492,8 +497,20 @@ int radeon_device_init(struct radeon_device *rdev, ...@@ -492,8 +497,20 @@ int radeon_device_init(struct radeon_device *rdev,
return r; return r;
} }
/* Report DMA addressing limitation */ /* set DMA mask + need_dma32 flags.
r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(32)); * PCIE - can handle 40-bits.
* IGP - can handle 40-bits (in theory)
* AGP - generally dma32 is safest
* PCI - only dma32
*/
rdev->need_dma32 = false;
if (rdev->flags & RADEON_IS_AGP)
rdev->need_dma32 = true;
if (rdev->flags & RADEON_IS_PCI)
rdev->need_dma32 = true;
dma_bits = rdev->need_dma32 ? 32 : 40;
r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
if (r) { if (r) {
printk(KERN_WARNING "radeon: No suitable DMA available.\n"); printk(KERN_WARNING "radeon: No suitable DMA available.\n");
} }
...@@ -546,27 +563,22 @@ int radeon_device_init(struct radeon_device *rdev, ...@@ -546,27 +563,22 @@ int radeon_device_init(struct radeon_device *rdev,
radeon_combios_asic_init(rdev->ddev); radeon_combios_asic_init(rdev->ddev);
} }
} }
/* Initialize clocks */
r = radeon_clocks_init(rdev);
if (r) {
return r;
}
/* Get vram informations */ /* Get vram informations */
radeon_vram_info(rdev); radeon_vram_info(rdev);
/* Device is severly broken if aper size > vram size.
* for RN50/M6/M7 - Novell bug 204882 ?
*/
if (rdev->mc.vram_size < rdev->mc.aper_size) {
rdev->mc.aper_size = rdev->mc.vram_size;
}
/* Add an MTRR for the VRAM */ /* Add an MTRR for the VRAM */
rdev->mc.vram_mtrr = mtrr_add(rdev->mc.aper_base, rdev->mc.aper_size, rdev->mc.vram_mtrr = mtrr_add(rdev->mc.aper_base, rdev->mc.aper_size,
MTRR_TYPE_WRCOMB, 1); MTRR_TYPE_WRCOMB, 1);
DRM_INFO("Detected VRAM RAM=%uM, BAR=%uM\n", DRM_INFO("Detected VRAM RAM=%uM, BAR=%uM\n",
rdev->mc.vram_size >> 20, rdev->mc.real_vram_size >> 20,
(unsigned)rdev->mc.aper_size >> 20); (unsigned)rdev->mc.aper_size >> 20);
DRM_INFO("RAM width %dbits %cDR\n", DRM_INFO("RAM width %dbits %cDR\n",
rdev->mc.vram_width, rdev->mc.vram_is_ddr ? 'D' : 'S'); rdev->mc.vram_width, rdev->mc.vram_is_ddr ? 'D' : 'S');
/* Initialize clocks */
r = radeon_clocks_init(rdev);
if (r) {
return r;
}
/* Initialize memory controller (also test AGP) */ /* Initialize memory controller (also test AGP) */
r = radeon_mc_init(rdev); r = radeon_mc_init(rdev);
if (r) { if (r) {
...@@ -626,6 +638,9 @@ int radeon_device_init(struct radeon_device *rdev, ...@@ -626,6 +638,9 @@ int radeon_device_init(struct radeon_device *rdev,
if (!ret) { if (!ret) {
DRM_INFO("radeon: kernel modesetting successfully initialized.\n"); DRM_INFO("radeon: kernel modesetting successfully initialized.\n");
} }
if (radeon_testing) {
radeon_test_moves(rdev);
}
if (radeon_benchmarking) { if (radeon_benchmarking) {
radeon_benchmark(rdev); radeon_benchmark(rdev);
} }
......
...@@ -187,6 +187,7 @@ static void radeon_crtc_init(struct drm_device *dev, int index) ...@@ -187,6 +187,7 @@ static void radeon_crtc_init(struct drm_device *dev, int index)
drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256); drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256);
radeon_crtc->crtc_id = index; radeon_crtc->crtc_id = index;
rdev->mode_info.crtcs[index] = radeon_crtc;
radeon_crtc->mode_set.crtc = &radeon_crtc->base; radeon_crtc->mode_set.crtc = &radeon_crtc->base;
radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1); radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1);
...@@ -491,7 +492,11 @@ void radeon_compute_pll(struct radeon_pll *pll, ...@@ -491,7 +492,11 @@ void radeon_compute_pll(struct radeon_pll *pll,
tmp += (uint64_t)pll->reference_freq * 1000 * frac_feedback_div; tmp += (uint64_t)pll->reference_freq * 1000 * frac_feedback_div;
current_freq = radeon_div(tmp, ref_div * post_div); current_freq = radeon_div(tmp, ref_div * post_div);
error = abs(current_freq - freq); if (flags & RADEON_PLL_PREFER_CLOSEST_LOWER) {
error = freq - current_freq;
error = error < 0 ? 0xffffffff : error;
} else
error = abs(current_freq - freq);
vco_diff = abs(vco - best_vco); vco_diff = abs(vco - best_vco);
if ((best_vco == 0 && error < best_error) || if ((best_vco == 0 && error < best_error) ||
...@@ -657,36 +662,51 @@ void radeon_modeset_fini(struct radeon_device *rdev) ...@@ -657,36 +662,51 @@ void radeon_modeset_fini(struct radeon_device *rdev)
} }
} }
void radeon_init_disp_bandwidth(struct drm_device *dev) bool radeon_crtc_scaling_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{ {
struct radeon_device *rdev = dev->dev_private; struct drm_device *dev = crtc->dev;
struct drm_display_mode *modes[2]; struct drm_encoder *encoder;
int pixel_bytes[2]; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_crtc *crtc; struct radeon_encoder *radeon_encoder;
bool first = true;
pixel_bytes[0] = pixel_bytes[1] = 0;
modes[0] = modes[1] = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
if (crtc->enabled && crtc->fb) { list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
modes[radeon_crtc->crtc_id] = &crtc->mode; radeon_encoder = to_radeon_encoder(encoder);
pixel_bytes[radeon_crtc->crtc_id] = crtc->fb->bits_per_pixel / 8; if (encoder->crtc != crtc)
continue;
if (first) {
radeon_crtc->rmx_type = radeon_encoder->rmx_type;
radeon_crtc->devices = radeon_encoder->devices;
memcpy(&radeon_crtc->native_mode,
&radeon_encoder->native_mode,
sizeof(struct radeon_native_mode));
first = false;
} else {
if (radeon_crtc->rmx_type != radeon_encoder->rmx_type) {
/* WARNING: Right now this can't happen but
* in the future we need to check that scaling
* are consistent accross different encoder
* (ie all encoder can work with the same
* scaling).
*/
DRM_ERROR("Scaling not consistent accross encoder.\n");
return false;
}
} }
} }
if (radeon_crtc->rmx_type != RMX_OFF) {
if (ASIC_IS_AVIVO(rdev)) { fixed20_12 a, b;
radeon_init_disp_bw_avivo(dev, a.full = rfixed_const(crtc->mode.vdisplay);
modes[0], b.full = rfixed_const(radeon_crtc->native_mode.panel_xres);
pixel_bytes[0], radeon_crtc->vsc.full = rfixed_div(a, b);
modes[1], a.full = rfixed_const(crtc->mode.hdisplay);
pixel_bytes[1]); b.full = rfixed_const(radeon_crtc->native_mode.panel_yres);
radeon_crtc->hsc.full = rfixed_div(a, b);
} else { } else {
radeon_init_disp_bw_legacy(dev, radeon_crtc->vsc.full = rfixed_const(1);
modes[0], radeon_crtc->hsc.full = rfixed_const(1);
pixel_bytes[0],
modes[1],
pixel_bytes[1]);
} }
return true;
} }
...@@ -89,6 +89,7 @@ int radeon_agpmode = 0; ...@@ -89,6 +89,7 @@ int radeon_agpmode = 0;
int radeon_vram_limit = 0; int radeon_vram_limit = 0;
int radeon_gart_size = 512; /* default gart size */ int radeon_gart_size = 512; /* default gart size */
int radeon_benchmarking = 0; int radeon_benchmarking = 0;
int radeon_testing = 0;
int radeon_connector_table = 0; int radeon_connector_table = 0;
#endif #endif
...@@ -117,6 +118,9 @@ module_param_named(gartsize, radeon_gart_size, int, 0600); ...@@ -117,6 +118,9 @@ module_param_named(gartsize, radeon_gart_size, int, 0600);
MODULE_PARM_DESC(benchmark, "Run benchmark"); MODULE_PARM_DESC(benchmark, "Run benchmark");
module_param_named(benchmark, radeon_benchmarking, int, 0444); module_param_named(benchmark, radeon_benchmarking, int, 0444);
MODULE_PARM_DESC(test, "Run tests");
module_param_named(test, radeon_testing, int, 0444);
MODULE_PARM_DESC(connector_table, "Force connector table"); MODULE_PARM_DESC(connector_table, "Force connector table");
module_param_named(connector_table, radeon_connector_table, int, 0444); module_param_named(connector_table, radeon_connector_table, int, 0444);
#endif #endif
......
...@@ -154,7 +154,6 @@ void radeon_rmx_mode_fixup(struct drm_encoder *encoder, ...@@ -154,7 +154,6 @@ void radeon_rmx_mode_fixup(struct drm_encoder *encoder,
if (mode->hdisplay < native_mode->panel_xres || if (mode->hdisplay < native_mode->panel_xres ||
mode->vdisplay < native_mode->panel_yres) { mode->vdisplay < native_mode->panel_yres) {
radeon_encoder->flags |= RADEON_USE_RMX;
if (ASIC_IS_AVIVO(rdev)) { if (ASIC_IS_AVIVO(rdev)) {
adjusted_mode->hdisplay = native_mode->panel_xres; adjusted_mode->hdisplay = native_mode->panel_xres;
adjusted_mode->vdisplay = native_mode->panel_yres; adjusted_mode->vdisplay = native_mode->panel_yres;
...@@ -197,15 +196,13 @@ void radeon_rmx_mode_fixup(struct drm_encoder *encoder, ...@@ -197,15 +196,13 @@ void radeon_rmx_mode_fixup(struct drm_encoder *encoder,
} }
} }
static bool radeon_atom_mode_fixup(struct drm_encoder *encoder, static bool radeon_atom_mode_fixup(struct drm_encoder *encoder,
struct drm_display_mode *mode, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode) struct drm_display_mode *adjusted_mode)
{ {
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
radeon_encoder->flags &= ~RADEON_USE_RMX;
drm_mode_set_crtcinfo(adjusted_mode, 0); drm_mode_set_crtcinfo(adjusted_mode, 0);
if (radeon_encoder->rmx_type != RMX_OFF) if (radeon_encoder->rmx_type != RMX_OFF)
...@@ -808,234 +805,6 @@ atombios_dig_transmitter_setup(struct drm_encoder *encoder, int action) ...@@ -808,234 +805,6 @@ atombios_dig_transmitter_setup(struct drm_encoder *encoder, int action)
} }
static void atom_rv515_force_tv_scaler(struct radeon_device *rdev)
{
WREG32(0x659C, 0x0);
WREG32(0x6594, 0x705);
WREG32(0x65A4, 0x10001);
WREG32(0x65D8, 0x0);
WREG32(0x65B0, 0x0);
WREG32(0x65C0, 0x0);
WREG32(0x65D4, 0x0);
WREG32(0x6578, 0x0);
WREG32(0x657C, 0x841880A8);
WREG32(0x6578, 0x1);
WREG32(0x657C, 0x84208680);
WREG32(0x6578, 0x2);
WREG32(0x657C, 0xBFF880B0);
WREG32(0x6578, 0x100);
WREG32(0x657C, 0x83D88088);
WREG32(0x6578, 0x101);
WREG32(0x657C, 0x84608680);
WREG32(0x6578, 0x102);
WREG32(0x657C, 0xBFF080D0);
WREG32(0x6578, 0x200);
WREG32(0x657C, 0x83988068);
WREG32(0x6578, 0x201);
WREG32(0x657C, 0x84A08680);
WREG32(0x6578, 0x202);
WREG32(0x657C, 0xBFF080F8);
WREG32(0x6578, 0x300);
WREG32(0x657C, 0x83588058);
WREG32(0x6578, 0x301);
WREG32(0x657C, 0x84E08660);
WREG32(0x6578, 0x302);
WREG32(0x657C, 0xBFF88120);
WREG32(0x6578, 0x400);
WREG32(0x657C, 0x83188040);
WREG32(0x6578, 0x401);
WREG32(0x657C, 0x85008660);
WREG32(0x6578, 0x402);
WREG32(0x657C, 0xBFF88150);
WREG32(0x6578, 0x500);
WREG32(0x657C, 0x82D88030);
WREG32(0x6578, 0x501);
WREG32(0x657C, 0x85408640);
WREG32(0x6578, 0x502);
WREG32(0x657C, 0xBFF88180);
WREG32(0x6578, 0x600);
WREG32(0x657C, 0x82A08018);
WREG32(0x6578, 0x601);
WREG32(0x657C, 0x85808620);
WREG32(0x6578, 0x602);
WREG32(0x657C, 0xBFF081B8);
WREG32(0x6578, 0x700);
WREG32(0x657C, 0x82608010);
WREG32(0x6578, 0x701);
WREG32(0x657C, 0x85A08600);
WREG32(0x6578, 0x702);
WREG32(0x657C, 0x800081F0);
WREG32(0x6578, 0x800);
WREG32(0x657C, 0x8228BFF8);
WREG32(0x6578, 0x801);
WREG32(0x657C, 0x85E085E0);
WREG32(0x6578, 0x802);
WREG32(0x657C, 0xBFF88228);
WREG32(0x6578, 0x10000);
WREG32(0x657C, 0x82A8BF00);
WREG32(0x6578, 0x10001);
WREG32(0x657C, 0x82A08CC0);
WREG32(0x6578, 0x10002);
WREG32(0x657C, 0x8008BEF8);
WREG32(0x6578, 0x10100);
WREG32(0x657C, 0x81F0BF28);
WREG32(0x6578, 0x10101);
WREG32(0x657C, 0x83608CA0);
WREG32(0x6578, 0x10102);
WREG32(0x657C, 0x8018BED0);
WREG32(0x6578, 0x10200);
WREG32(0x657C, 0x8148BF38);
WREG32(0x6578, 0x10201);
WREG32(0x657C, 0x84408C80);
WREG32(0x6578, 0x10202);
WREG32(0x657C, 0x8008BEB8);
WREG32(0x6578, 0x10300);
WREG32(0x657C, 0x80B0BF78);
WREG32(0x6578, 0x10301);
WREG32(0x657C, 0x85008C20);
WREG32(0x6578, 0x10302);
WREG32(0x657C, 0x8020BEA0);
WREG32(0x6578, 0x10400);
WREG32(0x657C, 0x8028BF90);
WREG32(0x6578, 0x10401);
WREG32(0x657C, 0x85E08BC0);
WREG32(0x6578, 0x10402);
WREG32(0x657C, 0x8018BE90);
WREG32(0x6578, 0x10500);
WREG32(0x657C, 0xBFB8BFB0);
WREG32(0x6578, 0x10501);
WREG32(0x657C, 0x86C08B40);
WREG32(0x6578, 0x10502);
WREG32(0x657C, 0x8010BE90);
WREG32(0x6578, 0x10600);
WREG32(0x657C, 0xBF58BFC8);
WREG32(0x6578, 0x10601);
WREG32(0x657C, 0x87A08AA0);
WREG32(0x6578, 0x10602);
WREG32(0x657C, 0x8010BE98);
WREG32(0x6578, 0x10700);
WREG32(0x657C, 0xBF10BFF0);
WREG32(0x6578, 0x10701);
WREG32(0x657C, 0x886089E0);
WREG32(0x6578, 0x10702);
WREG32(0x657C, 0x8018BEB0);
WREG32(0x6578, 0x10800);
WREG32(0x657C, 0xBED8BFE8);
WREG32(0x6578, 0x10801);
WREG32(0x657C, 0x89408940);
WREG32(0x6578, 0x10802);
WREG32(0x657C, 0xBFE8BED8);
WREG32(0x6578, 0x20000);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20001);
WREG32(0x657C, 0x90008000);
WREG32(0x6578, 0x20002);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20003);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20100);
WREG32(0x657C, 0x80108000);
WREG32(0x6578, 0x20101);
WREG32(0x657C, 0x8FE0BF70);
WREG32(0x6578, 0x20102);
WREG32(0x657C, 0xBFE880C0);
WREG32(0x6578, 0x20103);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20200);
WREG32(0x657C, 0x8018BFF8);
WREG32(0x6578, 0x20201);
WREG32(0x657C, 0x8F80BF08);
WREG32(0x6578, 0x20202);
WREG32(0x657C, 0xBFD081A0);
WREG32(0x6578, 0x20203);
WREG32(0x657C, 0xBFF88000);
WREG32(0x6578, 0x20300);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20301);
WREG32(0x657C, 0x8EE0BEC0);
WREG32(0x6578, 0x20302);
WREG32(0x657C, 0xBFB082A0);
WREG32(0x6578, 0x20303);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20400);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20401);
WREG32(0x657C, 0x8E00BEA0);
WREG32(0x6578, 0x20402);
WREG32(0x657C, 0xBF8883C0);
WREG32(0x6578, 0x20403);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20500);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20501);
WREG32(0x657C, 0x8D00BE90);
WREG32(0x6578, 0x20502);
WREG32(0x657C, 0xBF588500);
WREG32(0x6578, 0x20503);
WREG32(0x657C, 0x80008008);
WREG32(0x6578, 0x20600);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20601);
WREG32(0x657C, 0x8BC0BE98);
WREG32(0x6578, 0x20602);
WREG32(0x657C, 0xBF308660);
WREG32(0x6578, 0x20603);
WREG32(0x657C, 0x80008008);
WREG32(0x6578, 0x20700);
WREG32(0x657C, 0x80108000);
WREG32(0x6578, 0x20701);
WREG32(0x657C, 0x8A80BEB0);
WREG32(0x6578, 0x20702);
WREG32(0x657C, 0xBF0087C0);
WREG32(0x6578, 0x20703);
WREG32(0x657C, 0x80008008);
WREG32(0x6578, 0x20800);
WREG32(0x657C, 0x80108000);
WREG32(0x6578, 0x20801);
WREG32(0x657C, 0x8920BED0);
WREG32(0x6578, 0x20802);
WREG32(0x657C, 0xBED08920);
WREG32(0x6578, 0x20803);
WREG32(0x657C, 0x80008010);
WREG32(0x6578, 0x30000);
WREG32(0x657C, 0x90008000);
WREG32(0x6578, 0x30001);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x30100);
WREG32(0x657C, 0x8FE0BF90);
WREG32(0x6578, 0x30101);
WREG32(0x657C, 0xBFF880A0);
WREG32(0x6578, 0x30200);
WREG32(0x657C, 0x8F60BF40);
WREG32(0x6578, 0x30201);
WREG32(0x657C, 0xBFE88180);
WREG32(0x6578, 0x30300);
WREG32(0x657C, 0x8EC0BF00);
WREG32(0x6578, 0x30301);
WREG32(0x657C, 0xBFC88280);
WREG32(0x6578, 0x30400);
WREG32(0x657C, 0x8DE0BEE0);
WREG32(0x6578, 0x30401);
WREG32(0x657C, 0xBFA083A0);
WREG32(0x6578, 0x30500);
WREG32(0x657C, 0x8CE0BED0);
WREG32(0x6578, 0x30501);
WREG32(0x657C, 0xBF7884E0);
WREG32(0x6578, 0x30600);
WREG32(0x657C, 0x8BA0BED8);
WREG32(0x6578, 0x30601);
WREG32(0x657C, 0xBF508640);
WREG32(0x6578, 0x30700);
WREG32(0x657C, 0x8A60BEE8);
WREG32(0x6578, 0x30701);
WREG32(0x657C, 0xBF2087A0);
WREG32(0x6578, 0x30800);
WREG32(0x657C, 0x8900BF00);
WREG32(0x6578, 0x30801);
WREG32(0x657C, 0xBF008900);
}
static void static void
atombios_yuv_setup(struct drm_encoder *encoder, bool enable) atombios_yuv_setup(struct drm_encoder *encoder, bool enable)
{ {
...@@ -1073,129 +842,6 @@ atombios_yuv_setup(struct drm_encoder *encoder, bool enable) ...@@ -1073,129 +842,6 @@ atombios_yuv_setup(struct drm_encoder *encoder, bool enable)
WREG32(reg, temp); WREG32(reg, temp);
} }
static void
atombios_overscan_setup(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc);
SET_CRTC_OVERSCAN_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan);
memset(&args, 0, sizeof(args));
args.usOverscanRight = 0;
args.usOverscanLeft = 0;
args.usOverscanBottom = 0;
args.usOverscanTop = 0;
args.ucCRTC = radeon_crtc->crtc_id;
if (radeon_encoder->flags & RADEON_USE_RMX) {
if (radeon_encoder->rmx_type == RMX_FULL) {
args.usOverscanRight = 0;
args.usOverscanLeft = 0;
args.usOverscanBottom = 0;
args.usOverscanTop = 0;
} else if (radeon_encoder->rmx_type == RMX_CENTER) {
args.usOverscanTop = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2;
args.usOverscanBottom = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2;
args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2;
args.usOverscanRight = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2;
} else if (radeon_encoder->rmx_type == RMX_ASPECT) {
int a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay;
int a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay;
if (a1 > a2) {
args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2;
args.usOverscanRight = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2;
} else if (a2 > a1) {
args.usOverscanLeft = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2;
args.usOverscanRight = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2;
}
}
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void
atombios_scaler_setup(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc);
ENABLE_SCALER_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, EnableScaler);
/* fixme - fill in enc_priv for atom dac */
enum radeon_tv_std tv_std = TV_STD_NTSC;
if (!ASIC_IS_AVIVO(rdev) && radeon_crtc->crtc_id)
return;
memset(&args, 0, sizeof(args));
args.ucScaler = radeon_crtc->crtc_id;
if (radeon_encoder->devices & (ATOM_DEVICE_TV_SUPPORT)) {
switch (tv_std) {
case TV_STD_NTSC:
default:
args.ucTVStandard = ATOM_TV_NTSC;
break;
case TV_STD_PAL:
args.ucTVStandard = ATOM_TV_PAL;
break;
case TV_STD_PAL_M:
args.ucTVStandard = ATOM_TV_PALM;
break;
case TV_STD_PAL_60:
args.ucTVStandard = ATOM_TV_PAL60;
break;
case TV_STD_NTSC_J:
args.ucTVStandard = ATOM_TV_NTSCJ;
break;
case TV_STD_SCART_PAL:
args.ucTVStandard = ATOM_TV_PAL; /* ??? */
break;
case TV_STD_SECAM:
args.ucTVStandard = ATOM_TV_SECAM;
break;
case TV_STD_PAL_CN:
args.ucTVStandard = ATOM_TV_PALCN;
break;
}
args.ucEnable = SCALER_ENABLE_MULTITAP_MODE;
} else if (radeon_encoder->devices & (ATOM_DEVICE_CV_SUPPORT)) {
args.ucTVStandard = ATOM_TV_CV;
args.ucEnable = SCALER_ENABLE_MULTITAP_MODE;
} else if (radeon_encoder->flags & RADEON_USE_RMX) {
if (radeon_encoder->rmx_type == RMX_FULL)
args.ucEnable = ATOM_SCALER_EXPANSION;
else if (radeon_encoder->rmx_type == RMX_CENTER)
args.ucEnable = ATOM_SCALER_CENTER;
else if (radeon_encoder->rmx_type == RMX_ASPECT)
args.ucEnable = ATOM_SCALER_EXPANSION;
} else {
if (ASIC_IS_AVIVO(rdev))
args.ucEnable = ATOM_SCALER_DISABLE;
else
args.ucEnable = ATOM_SCALER_CENTER;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
if (radeon_encoder->devices & (ATOM_DEVICE_CV_SUPPORT | ATOM_DEVICE_TV_SUPPORT)
&& rdev->family >= CHIP_RV515 && rdev->family <= CHIP_RV570) {
atom_rv515_force_tv_scaler(rdev);
}
}
static void static void
radeon_atom_encoder_dpms(struct drm_encoder *encoder, int mode) radeon_atom_encoder_dpms(struct drm_encoder *encoder, int mode)
{ {
...@@ -1448,8 +1094,6 @@ radeon_atom_encoder_mode_set(struct drm_encoder *encoder, ...@@ -1448,8 +1094,6 @@ radeon_atom_encoder_mode_set(struct drm_encoder *encoder,
radeon_encoder->pixel_clock = adjusted_mode->clock; radeon_encoder->pixel_clock = adjusted_mode->clock;
radeon_atombios_encoder_crtc_scratch_regs(encoder, radeon_crtc->crtc_id); radeon_atombios_encoder_crtc_scratch_regs(encoder, radeon_crtc->crtc_id);
atombios_overscan_setup(encoder, mode, adjusted_mode);
atombios_scaler_setup(encoder);
atombios_set_encoder_crtc_source(encoder); atombios_set_encoder_crtc_source(encoder);
if (ASIC_IS_AVIVO(rdev)) { if (ASIC_IS_AVIVO(rdev)) {
...@@ -1667,6 +1311,7 @@ radeon_add_atom_encoder(struct drm_device *dev, uint32_t encoder_id, uint32_t su ...@@ -1667,6 +1311,7 @@ radeon_add_atom_encoder(struct drm_device *dev, uint32_t encoder_id, uint32_t su
radeon_encoder->encoder_id = encoder_id; radeon_encoder->encoder_id = encoder_id;
radeon_encoder->devices = supported_device; radeon_encoder->devices = supported_device;
radeon_encoder->rmx_type = RMX_OFF;
switch (radeon_encoder->encoder_id) { switch (radeon_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_LVDS: case ENCODER_OBJECT_ID_INTERNAL_LVDS:
......
...@@ -101,9 +101,10 @@ static int radeonfb_setcolreg(unsigned regno, ...@@ -101,9 +101,10 @@ static int radeonfb_setcolreg(unsigned regno,
break; break;
case 24: case 24:
case 32: case 32:
fb->pseudo_palette[regno] = ((red & 0xff00) << 8) | fb->pseudo_palette[regno] =
(green & 0xff00) | (((red >> 8) & 0xff) << info->var.red.offset) |
((blue & 0xff00) >> 8); (((green >> 8) & 0xff) << info->var.green.offset) |
(((blue >> 8) & 0xff) << info->var.blue.offset);
break; break;
} }
} }
...@@ -154,6 +155,7 @@ static int radeonfb_check_var(struct fb_var_screeninfo *var, ...@@ -154,6 +155,7 @@ static int radeonfb_check_var(struct fb_var_screeninfo *var,
var->transp.length = 0; var->transp.length = 0;
var->transp.offset = 0; var->transp.offset = 0;
break; break;
#ifdef __LITTLE_ENDIAN
case 15: case 15:
var->red.offset = 10; var->red.offset = 10;
var->green.offset = 5; var->green.offset = 5;
...@@ -194,6 +196,28 @@ static int radeonfb_check_var(struct fb_var_screeninfo *var, ...@@ -194,6 +196,28 @@ static int radeonfb_check_var(struct fb_var_screeninfo *var,
var->transp.length = 8; var->transp.length = 8;
var->transp.offset = 24; var->transp.offset = 24;
break; break;
#else
case 24:
var->red.offset = 8;
var->green.offset = 16;
var->blue.offset = 24;
var->red.length = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.length = 0;
var->transp.offset = 0;
break;
case 32:
var->red.offset = 8;
var->green.offset = 16;
var->blue.offset = 24;
var->red.length = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.length = 8;
var->transp.offset = 0;
break;
#endif
default: default:
return -EINVAL; return -EINVAL;
} }
...@@ -447,10 +471,10 @@ static struct notifier_block paniced = { ...@@ -447,10 +471,10 @@ static struct notifier_block paniced = {
.notifier_call = radeonfb_panic, .notifier_call = radeonfb_panic,
}; };
static int radeon_align_pitch(struct radeon_device *rdev, int width, int bpp) static int radeon_align_pitch(struct radeon_device *rdev, int width, int bpp, bool tiled)
{ {
int aligned = width; int aligned = width;
int align_large = (ASIC_IS_AVIVO(rdev)); int align_large = (ASIC_IS_AVIVO(rdev)) || tiled;
int pitch_mask = 0; int pitch_mask = 0;
switch (bpp / 8) { switch (bpp / 8) {
...@@ -488,12 +512,13 @@ int radeonfb_create(struct radeon_device *rdev, ...@@ -488,12 +512,13 @@ int radeonfb_create(struct radeon_device *rdev,
u64 fb_gpuaddr; u64 fb_gpuaddr;
void *fbptr = NULL; void *fbptr = NULL;
unsigned long tmp; unsigned long tmp;
bool fb_tiled = false; /* useful for testing */
mode_cmd.width = surface_width; mode_cmd.width = surface_width;
mode_cmd.height = surface_height; mode_cmd.height = surface_height;
mode_cmd.bpp = 32; mode_cmd.bpp = 32;
/* need to align pitch with crtc limits */ /* need to align pitch with crtc limits */
mode_cmd.pitch = radeon_align_pitch(rdev, mode_cmd.width, mode_cmd.bpp) * ((mode_cmd.bpp + 1) / 8); mode_cmd.pitch = radeon_align_pitch(rdev, mode_cmd.width, mode_cmd.bpp, fb_tiled) * ((mode_cmd.bpp + 1) / 8);
mode_cmd.depth = 24; mode_cmd.depth = 24;
size = mode_cmd.pitch * mode_cmd.height; size = mode_cmd.pitch * mode_cmd.height;
...@@ -511,6 +536,8 @@ int radeonfb_create(struct radeon_device *rdev, ...@@ -511,6 +536,8 @@ int radeonfb_create(struct radeon_device *rdev,
} }
robj = gobj->driver_private; robj = gobj->driver_private;
if (fb_tiled)
radeon_object_set_tiling_flags(robj, RADEON_TILING_MACRO|RADEON_TILING_SURFACE, mode_cmd.pitch);
mutex_lock(&rdev->ddev->struct_mutex); mutex_lock(&rdev->ddev->struct_mutex);
fb = radeon_framebuffer_create(rdev->ddev, &mode_cmd, gobj); fb = radeon_framebuffer_create(rdev->ddev, &mode_cmd, gobj);
if (fb == NULL) { if (fb == NULL) {
...@@ -539,6 +566,9 @@ int radeonfb_create(struct radeon_device *rdev, ...@@ -539,6 +566,9 @@ int radeonfb_create(struct radeon_device *rdev,
} }
rfbdev = info->par; rfbdev = info->par;
if (fb_tiled)
radeon_object_check_tiling(robj, 0, 0);
ret = radeon_object_kmap(robj, &fbptr); ret = radeon_object_kmap(robj, &fbptr);
if (ret) { if (ret) {
goto out_unref; goto out_unref;
...@@ -572,6 +602,11 @@ int radeonfb_create(struct radeon_device *rdev, ...@@ -572,6 +602,11 @@ int radeonfb_create(struct radeon_device *rdev,
info->var.width = -1; info->var.width = -1;
info->var.xres = fb_width; info->var.xres = fb_width;
info->var.yres = fb_height; info->var.yres = fb_height;
/* setup aperture base/size for vesafb takeover */
info->aperture_base = rdev->ddev->mode_config.fb_base;
info->aperture_size = rdev->mc.real_vram_size;
info->fix.mmio_start = 0; info->fix.mmio_start = 0;
info->fix.mmio_len = 0; info->fix.mmio_len = 0;
info->pixmap.size = 64*1024; info->pixmap.size = 64*1024;
...@@ -600,6 +635,7 @@ int radeonfb_create(struct radeon_device *rdev, ...@@ -600,6 +635,7 @@ int radeonfb_create(struct radeon_device *rdev,
info->var.transp.offset = 0; info->var.transp.offset = 0;
info->var.transp.length = 0; info->var.transp.length = 0;
break; break;
#ifdef __LITTLE_ENDIAN
case 15: case 15:
info->var.red.offset = 10; info->var.red.offset = 10;
info->var.green.offset = 5; info->var.green.offset = 5;
...@@ -639,7 +675,29 @@ int radeonfb_create(struct radeon_device *rdev, ...@@ -639,7 +675,29 @@ int radeonfb_create(struct radeon_device *rdev,
info->var.transp.offset = 24; info->var.transp.offset = 24;
info->var.transp.length = 8; info->var.transp.length = 8;
break; break;
#else
case 24:
info->var.red.offset = 8;
info->var.green.offset = 16;
info->var.blue.offset = 24;
info->var.red.length = 8;
info->var.green.length = 8;
info->var.blue.length = 8;
info->var.transp.offset = 0;
info->var.transp.length = 0;
break;
case 32:
info->var.red.offset = 8;
info->var.green.offset = 16;
info->var.blue.offset = 24;
info->var.red.length = 8;
info->var.green.length = 8;
info->var.blue.length = 8;
info->var.transp.offset = 0;
info->var.transp.length = 8;
break;
default: default:
#endif
break; break;
} }
......
...@@ -195,7 +195,7 @@ int radeon_fence_wait(struct radeon_fence *fence, bool interruptible) ...@@ -195,7 +195,7 @@ int radeon_fence_wait(struct radeon_fence *fence, bool interruptible)
r = wait_event_interruptible_timeout(rdev->fence_drv.queue, r = wait_event_interruptible_timeout(rdev->fence_drv.queue,
radeon_fence_signaled(fence), timeout); radeon_fence_signaled(fence), timeout);
if (unlikely(r == -ERESTARTSYS)) { if (unlikely(r == -ERESTARTSYS)) {
return -ERESTART; return -EBUSY;
} }
} else { } else {
r = wait_event_timeout(rdev->fence_drv.queue, r = wait_event_timeout(rdev->fence_drv.queue,
......
...@@ -177,7 +177,7 @@ int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, ...@@ -177,7 +177,7 @@ int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
return -ENOMEM; return -ENOMEM;
} }
rdev->gart.pages[p] = pagelist[i]; rdev->gart.pages[p] = pagelist[i];
page_base = (uint32_t)rdev->gart.pages_addr[p]; page_base = rdev->gart.pages_addr[p];
for (j = 0; j < (PAGE_SIZE / 4096); j++, t++) { for (j = 0; j < (PAGE_SIZE / 4096); j++, t++) {
radeon_gart_set_page(rdev, t, page_base); radeon_gart_set_page(rdev, t, page_base);
page_base += 4096; page_base += 4096;
......
...@@ -157,9 +157,9 @@ int radeon_gem_info_ioctl(struct drm_device *dev, void *data, ...@@ -157,9 +157,9 @@ int radeon_gem_info_ioctl(struct drm_device *dev, void *data,
struct radeon_device *rdev = dev->dev_private; struct radeon_device *rdev = dev->dev_private;
struct drm_radeon_gem_info *args = data; struct drm_radeon_gem_info *args = data;
args->vram_size = rdev->mc.vram_size; args->vram_size = rdev->mc.real_vram_size;
/* FIXME: report somethings that makes sense */ /* FIXME: report somethings that makes sense */
args->vram_visible = rdev->mc.vram_size - (4 * 1024 * 1024); args->vram_visible = rdev->mc.real_vram_size - (4 * 1024 * 1024);
args->gart_size = rdev->mc.gtt_size; args->gart_size = rdev->mc.gtt_size;
return 0; return 0;
} }
...@@ -285,3 +285,44 @@ int radeon_gem_wait_idle_ioctl(struct drm_device *dev, void *data, ...@@ -285,3 +285,44 @@ int radeon_gem_wait_idle_ioctl(struct drm_device *dev, void *data,
mutex_unlock(&dev->struct_mutex); mutex_unlock(&dev->struct_mutex);
return r; return r;
} }
int radeon_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
struct drm_radeon_gem_set_tiling *args = data;
struct drm_gem_object *gobj;
struct radeon_object *robj;
int r = 0;
DRM_DEBUG("%d \n", args->handle);
gobj = drm_gem_object_lookup(dev, filp, args->handle);
if (gobj == NULL)
return -EINVAL;
robj = gobj->driver_private;
radeon_object_set_tiling_flags(robj, args->tiling_flags, args->pitch);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(gobj);
mutex_unlock(&dev->struct_mutex);
return r;
}
int radeon_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
struct drm_radeon_gem_get_tiling *args = data;
struct drm_gem_object *gobj;
struct radeon_object *robj;
int r = 0;
DRM_DEBUG("\n");
gobj = drm_gem_object_lookup(dev, filp, args->handle);
if (gobj == NULL)
return -EINVAL;
robj = gobj->driver_private;
radeon_object_get_tiling_flags(robj, &args->tiling_flags,
&args->pitch);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(gobj);
mutex_unlock(&dev->struct_mutex);
return r;
}
...@@ -291,5 +291,7 @@ struct drm_ioctl_desc radeon_ioctls_kms[] = { ...@@ -291,5 +291,7 @@ struct drm_ioctl_desc radeon_ioctls_kms[] = {
DRM_IOCTL_DEF(DRM_RADEON_GEM_WAIT_IDLE, radeon_gem_wait_idle_ioctl, DRM_AUTH), DRM_IOCTL_DEF(DRM_RADEON_GEM_WAIT_IDLE, radeon_gem_wait_idle_ioctl, DRM_AUTH),
DRM_IOCTL_DEF(DRM_RADEON_CS, radeon_cs_ioctl, DRM_AUTH), DRM_IOCTL_DEF(DRM_RADEON_CS, radeon_cs_ioctl, DRM_AUTH),
DRM_IOCTL_DEF(DRM_RADEON_INFO, radeon_info_ioctl, DRM_AUTH), DRM_IOCTL_DEF(DRM_RADEON_INFO, radeon_info_ioctl, DRM_AUTH),
DRM_IOCTL_DEF(DRM_RADEON_GEM_SET_TILING, radeon_gem_set_tiling_ioctl, DRM_AUTH),
DRM_IOCTL_DEF(DRM_RADEON_GEM_GET_TILING, radeon_gem_get_tiling_ioctl, DRM_AUTH),
}; };
int radeon_max_kms_ioctl = DRM_ARRAY_SIZE(radeon_ioctls_kms); int radeon_max_kms_ioctl = DRM_ARRAY_SIZE(radeon_ioctls_kms);
...@@ -29,6 +29,171 @@ ...@@ -29,6 +29,171 @@
#include "radeon_fixed.h" #include "radeon_fixed.h"
#include "radeon.h" #include "radeon.h"
static void radeon_legacy_rmx_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
int xres = mode->hdisplay;
int yres = mode->vdisplay;
bool hscale = true, vscale = true;
int hsync_wid;
int vsync_wid;
int hsync_start;
int blank_width;
u32 scale, inc, crtc_more_cntl;
u32 fp_horz_stretch, fp_vert_stretch, fp_horz_vert_active;
u32 fp_h_sync_strt_wid, fp_crtc_h_total_disp;
u32 fp_v_sync_strt_wid, fp_crtc_v_total_disp;
struct radeon_native_mode *native_mode = &radeon_crtc->native_mode;
fp_vert_stretch = RREG32(RADEON_FP_VERT_STRETCH) &
(RADEON_VERT_STRETCH_RESERVED |
RADEON_VERT_AUTO_RATIO_INC);
fp_horz_stretch = RREG32(RADEON_FP_HORZ_STRETCH) &
(RADEON_HORZ_FP_LOOP_STRETCH |
RADEON_HORZ_AUTO_RATIO_INC);
crtc_more_cntl = 0;
if ((rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200)) {
/* This is to workaround the asic bug for RMX, some versions
of BIOS dosen't have this register initialized correctly. */
crtc_more_cntl |= RADEON_CRTC_H_CUTOFF_ACTIVE_EN;
}
fp_crtc_h_total_disp = ((((mode->crtc_htotal / 8) - 1) & 0x3ff)
| ((((mode->crtc_hdisplay / 8) - 1) & 0x1ff) << 16));
hsync_wid = (mode->crtc_hsync_end - mode->crtc_hsync_start) / 8;
if (!hsync_wid)
hsync_wid = 1;
hsync_start = mode->crtc_hsync_start - 8;
fp_h_sync_strt_wid = ((hsync_start & 0x1fff)
| ((hsync_wid & 0x3f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NHSYNC)
? RADEON_CRTC_H_SYNC_POL
: 0));
fp_crtc_v_total_disp = (((mode->crtc_vtotal - 1) & 0xffff)
| ((mode->crtc_vdisplay - 1) << 16));
vsync_wid = mode->crtc_vsync_end - mode->crtc_vsync_start;
if (!vsync_wid)
vsync_wid = 1;
fp_v_sync_strt_wid = (((mode->crtc_vsync_start - 1) & 0xfff)
| ((vsync_wid & 0x1f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NVSYNC)
? RADEON_CRTC_V_SYNC_POL
: 0));
fp_horz_vert_active = 0;
if (native_mode->panel_xres == 0 ||
native_mode->panel_yres == 0) {
hscale = false;
vscale = false;
} else {
if (xres > native_mode->panel_xres)
xres = native_mode->panel_xres;
if (yres > native_mode->panel_yres)
yres = native_mode->panel_yres;
if (xres == native_mode->panel_xres)
hscale = false;
if (yres == native_mode->panel_yres)
vscale = false;
}
switch (radeon_crtc->rmx_type) {
case RMX_FULL:
case RMX_ASPECT:
if (!hscale)
fp_horz_stretch |= ((xres/8-1) << 16);
else {
inc = (fp_horz_stretch & RADEON_HORZ_AUTO_RATIO_INC) ? 1 : 0;
scale = ((xres + inc) * RADEON_HORZ_STRETCH_RATIO_MAX)
/ native_mode->panel_xres + 1;
fp_horz_stretch |= (((scale) & RADEON_HORZ_STRETCH_RATIO_MASK) |
RADEON_HORZ_STRETCH_BLEND |
RADEON_HORZ_STRETCH_ENABLE |
((native_mode->panel_xres/8-1) << 16));
}
if (!vscale)
fp_vert_stretch |= ((yres-1) << 12);
else {
inc = (fp_vert_stretch & RADEON_VERT_AUTO_RATIO_INC) ? 1 : 0;
scale = ((yres + inc) * RADEON_VERT_STRETCH_RATIO_MAX)
/ native_mode->panel_yres + 1;
fp_vert_stretch |= (((scale) & RADEON_VERT_STRETCH_RATIO_MASK) |
RADEON_VERT_STRETCH_ENABLE |
RADEON_VERT_STRETCH_BLEND |
((native_mode->panel_yres-1) << 12));
}
break;
case RMX_CENTER:
fp_horz_stretch |= ((xres/8-1) << 16);
fp_vert_stretch |= ((yres-1) << 12);
crtc_more_cntl |= (RADEON_CRTC_AUTO_HORZ_CENTER_EN |
RADEON_CRTC_AUTO_VERT_CENTER_EN);
blank_width = (mode->crtc_hblank_end - mode->crtc_hblank_start) / 8;
if (blank_width > 110)
blank_width = 110;
fp_crtc_h_total_disp = (((blank_width) & 0x3ff)
| ((((mode->crtc_hdisplay / 8) - 1) & 0x1ff) << 16));
hsync_wid = (mode->crtc_hsync_end - mode->crtc_hsync_start) / 8;
if (!hsync_wid)
hsync_wid = 1;
fp_h_sync_strt_wid = ((((mode->crtc_hsync_start - mode->crtc_hblank_start) / 8) & 0x1fff)
| ((hsync_wid & 0x3f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NHSYNC)
? RADEON_CRTC_H_SYNC_POL
: 0));
fp_crtc_v_total_disp = (((mode->crtc_vblank_end - mode->crtc_vblank_start) & 0xffff)
| ((mode->crtc_vdisplay - 1) << 16));
vsync_wid = mode->crtc_vsync_end - mode->crtc_vsync_start;
if (!vsync_wid)
vsync_wid = 1;
fp_v_sync_strt_wid = ((((mode->crtc_vsync_start - mode->crtc_vblank_start) & 0xfff)
| ((vsync_wid & 0x1f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NVSYNC)
? RADEON_CRTC_V_SYNC_POL
: 0)));
fp_horz_vert_active = (((native_mode->panel_yres) & 0xfff) |
(((native_mode->panel_xres / 8) & 0x1ff) << 16));
break;
case RMX_OFF:
default:
fp_horz_stretch |= ((xres/8-1) << 16);
fp_vert_stretch |= ((yres-1) << 12);
break;
}
WREG32(RADEON_FP_HORZ_STRETCH, fp_horz_stretch);
WREG32(RADEON_FP_VERT_STRETCH, fp_vert_stretch);
WREG32(RADEON_CRTC_MORE_CNTL, crtc_more_cntl);
WREG32(RADEON_FP_HORZ_VERT_ACTIVE, fp_horz_vert_active);
WREG32(RADEON_FP_H_SYNC_STRT_WID, fp_h_sync_strt_wid);
WREG32(RADEON_FP_V_SYNC_STRT_WID, fp_v_sync_strt_wid);
WREG32(RADEON_FP_CRTC_H_TOTAL_DISP, fp_crtc_h_total_disp);
WREG32(RADEON_FP_CRTC_V_TOTAL_DISP, fp_crtc_v_total_disp);
}
void radeon_restore_common_regs(struct drm_device *dev) void radeon_restore_common_regs(struct drm_device *dev)
{ {
/* don't need this yet */ /* don't need this yet */
...@@ -235,6 +400,7 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -235,6 +400,7 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y,
uint64_t base; uint64_t base;
uint32_t crtc_offset, crtc_offset_cntl, crtc_tile_x0_y0 = 0; uint32_t crtc_offset, crtc_offset_cntl, crtc_tile_x0_y0 = 0;
uint32_t crtc_pitch, pitch_pixels; uint32_t crtc_pitch, pitch_pixels;
uint32_t tiling_flags;
DRM_DEBUG("\n"); DRM_DEBUG("\n");
...@@ -244,7 +410,12 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -244,7 +410,12 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y,
if (radeon_gem_object_pin(obj, RADEON_GEM_DOMAIN_VRAM, &base)) { if (radeon_gem_object_pin(obj, RADEON_GEM_DOMAIN_VRAM, &base)) {
return -EINVAL; return -EINVAL;
} }
crtc_offset = (u32)base; /* if scanout was in GTT this really wouldn't work */
/* crtc offset is from display base addr not FB location */
radeon_crtc->legacy_display_base_addr = rdev->mc.vram_location;
base -= radeon_crtc->legacy_display_base_addr;
crtc_offset_cntl = 0; crtc_offset_cntl = 0;
pitch_pixels = crtc->fb->pitch / (crtc->fb->bits_per_pixel / 8); pitch_pixels = crtc->fb->pitch / (crtc->fb->bits_per_pixel / 8);
...@@ -253,8 +424,12 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -253,8 +424,12 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y,
(crtc->fb->bits_per_pixel * 8)); (crtc->fb->bits_per_pixel * 8));
crtc_pitch |= crtc_pitch << 16; crtc_pitch |= crtc_pitch << 16;
/* TODO tiling */ radeon_object_get_tiling_flags(obj->driver_private,
if (0) { &tiling_flags, NULL);
if (tiling_flags & RADEON_TILING_MICRO)
DRM_ERROR("trying to scanout microtiled buffer\n");
if (tiling_flags & RADEON_TILING_MACRO) {
if (ASIC_IS_R300(rdev)) if (ASIC_IS_R300(rdev))
crtc_offset_cntl |= (R300_CRTC_X_Y_MODE_EN | crtc_offset_cntl |= (R300_CRTC_X_Y_MODE_EN |
R300_CRTC_MICRO_TILE_BUFFER_DIS | R300_CRTC_MICRO_TILE_BUFFER_DIS |
...@@ -270,15 +445,13 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -270,15 +445,13 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y,
crtc_offset_cntl &= ~RADEON_CRTC_TILE_EN; crtc_offset_cntl &= ~RADEON_CRTC_TILE_EN;
} }
if (tiling_flags & RADEON_TILING_MACRO) {
/* TODO more tiling */
if (0) {
if (ASIC_IS_R300(rdev)) { if (ASIC_IS_R300(rdev)) {
crtc_tile_x0_y0 = x | (y << 16); crtc_tile_x0_y0 = x | (y << 16);
base &= ~0x7ff; base &= ~0x7ff;
} else { } else {
int byteshift = crtc->fb->bits_per_pixel >> 4; int byteshift = crtc->fb->bits_per_pixel >> 4;
int tile_addr = (((y >> 3) * crtc->fb->width + x) >> (8 - byteshift)) << 11; int tile_addr = (((y >> 3) * pitch_pixels + x) >> (8 - byteshift)) << 11;
base += tile_addr + ((x << byteshift) % 256) + ((y % 8) << 8); base += tile_addr + ((x << byteshift) % 256) + ((y % 8) << 8);
crtc_offset_cntl |= (y % 16); crtc_offset_cntl |= (y % 16);
} }
...@@ -303,11 +476,9 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y, ...@@ -303,11 +476,9 @@ int radeon_crtc_set_base(struct drm_crtc *crtc, int x, int y,
base &= ~7; base &= ~7;
/* update sarea TODO */
crtc_offset = (u32)base; crtc_offset = (u32)base;
WREG32(RADEON_DISPLAY_BASE_ADDR + radeon_crtc->crtc_offset, rdev->mc.vram_location); WREG32(RADEON_DISPLAY_BASE_ADDR + radeon_crtc->crtc_offset, radeon_crtc->legacy_display_base_addr);
if (ASIC_IS_R300(rdev)) { if (ASIC_IS_R300(rdev)) {
if (radeon_crtc->crtc_id) if (radeon_crtc->crtc_id)
...@@ -751,6 +922,8 @@ static bool radeon_crtc_mode_fixup(struct drm_crtc *crtc, ...@@ -751,6 +922,8 @@ static bool radeon_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode) struct drm_display_mode *adjusted_mode)
{ {
if (!radeon_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
return false;
return true; return true;
} }
...@@ -759,16 +932,25 @@ static int radeon_crtc_mode_set(struct drm_crtc *crtc, ...@@ -759,16 +932,25 @@ static int radeon_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode, struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb) int x, int y, struct drm_framebuffer *old_fb)
{ {
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
DRM_DEBUG("\n"); struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
/* TODO TV */ /* TODO TV */
radeon_crtc_set_base(crtc, x, y, old_fb); radeon_crtc_set_base(crtc, x, y, old_fb);
radeon_set_crtc_timing(crtc, adjusted_mode); radeon_set_crtc_timing(crtc, adjusted_mode);
radeon_set_pll(crtc, adjusted_mode); radeon_set_pll(crtc, adjusted_mode);
radeon_init_disp_bandwidth(crtc->dev); radeon_bandwidth_update(rdev);
if (radeon_crtc->crtc_id == 0) {
radeon_legacy_rmx_mode_set(crtc, mode, adjusted_mode);
} else {
if (radeon_crtc->rmx_type != RMX_OFF) {
/* FIXME: only first crtc has rmx what should we
* do ?
*/
DRM_ERROR("Mode need scaling but only first crtc can do that.\n");
}
}
return 0; return 0;
} }
...@@ -799,478 +981,3 @@ void radeon_legacy_init_crtc(struct drm_device *dev, ...@@ -799,478 +981,3 @@ void radeon_legacy_init_crtc(struct drm_device *dev,
radeon_crtc->crtc_offset = RADEON_CRTC2_H_TOTAL_DISP - RADEON_CRTC_H_TOTAL_DISP; radeon_crtc->crtc_offset = RADEON_CRTC2_H_TOTAL_DISP - RADEON_CRTC_H_TOTAL_DISP;
drm_crtc_helper_add(&radeon_crtc->base, &legacy_helper_funcs); drm_crtc_helper_add(&radeon_crtc->base, &legacy_helper_funcs);
} }
void radeon_init_disp_bw_legacy(struct drm_device *dev,
struct drm_display_mode *mode1,
uint32_t pixel_bytes1,
struct drm_display_mode *mode2,
uint32_t pixel_bytes2)
{
struct radeon_device *rdev = dev->dev_private;
fixed20_12 trcd_ff, trp_ff, tras_ff, trbs_ff, tcas_ff;
fixed20_12 sclk_ff, mclk_ff, sclk_eff_ff, sclk_delay_ff;
fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff, crit_point_ff;
uint32_t temp, data, mem_trcd, mem_trp, mem_tras;
fixed20_12 memtcas_ff[8] = {
fixed_init(1),
fixed_init(2),
fixed_init(3),
fixed_init(0),
fixed_init_half(1),
fixed_init_half(2),
fixed_init(0),
};
fixed20_12 memtcas_rs480_ff[8] = {
fixed_init(0),
fixed_init(1),
fixed_init(2),
fixed_init(3),
fixed_init(0),
fixed_init_half(1),
fixed_init_half(2),
fixed_init_half(3),
};
fixed20_12 memtcas2_ff[8] = {
fixed_init(0),
fixed_init(1),
fixed_init(2),
fixed_init(3),
fixed_init(4),
fixed_init(5),
fixed_init(6),
fixed_init(7),
};
fixed20_12 memtrbs[8] = {
fixed_init(1),
fixed_init_half(1),
fixed_init(2),
fixed_init_half(2),
fixed_init(3),
fixed_init_half(3),
fixed_init(4),
fixed_init_half(4)
};
fixed20_12 memtrbs_r4xx[8] = {
fixed_init(4),
fixed_init(5),
fixed_init(6),
fixed_init(7),
fixed_init(8),
fixed_init(9),
fixed_init(10),
fixed_init(11)
};
fixed20_12 min_mem_eff;
fixed20_12 mc_latency_sclk, mc_latency_mclk, k1;
fixed20_12 cur_latency_mclk, cur_latency_sclk;
fixed20_12 disp_latency, disp_latency_overhead, disp_drain_rate,
disp_drain_rate2, read_return_rate;
fixed20_12 time_disp1_drop_priority;
int c;
int cur_size = 16; /* in octawords */
int critical_point = 0, critical_point2;
/* uint32_t read_return_rate, time_disp1_drop_priority; */
int stop_req, max_stop_req;
min_mem_eff.full = rfixed_const_8(0);
/* get modes */
if ((rdev->disp_priority == 2) && ASIC_IS_R300(rdev)) {
uint32_t mc_init_misc_lat_timer = RREG32(R300_MC_INIT_MISC_LAT_TIMER);
mc_init_misc_lat_timer &= ~(R300_MC_DISP1R_INIT_LAT_MASK << R300_MC_DISP1R_INIT_LAT_SHIFT);
mc_init_misc_lat_timer &= ~(R300_MC_DISP0R_INIT_LAT_MASK << R300_MC_DISP0R_INIT_LAT_SHIFT);
/* check crtc enables */
if (mode2)
mc_init_misc_lat_timer |= (1 << R300_MC_DISP1R_INIT_LAT_SHIFT);
if (mode1)
mc_init_misc_lat_timer |= (1 << R300_MC_DISP0R_INIT_LAT_SHIFT);
WREG32(R300_MC_INIT_MISC_LAT_TIMER, mc_init_misc_lat_timer);
}
/*
* determine is there is enough bw for current mode
*/
mclk_ff.full = rfixed_const(rdev->clock.default_mclk);
temp_ff.full = rfixed_const(100);
mclk_ff.full = rfixed_div(mclk_ff, temp_ff);
sclk_ff.full = rfixed_const(rdev->clock.default_sclk);
sclk_ff.full = rfixed_div(sclk_ff, temp_ff);
temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1);
temp_ff.full = rfixed_const(temp);
mem_bw.full = rfixed_mul(mclk_ff, temp_ff);
pix_clk.full = 0;
pix_clk2.full = 0;
peak_disp_bw.full = 0;
if (mode1) {
temp_ff.full = rfixed_const(1000);
pix_clk.full = rfixed_const(mode1->clock); /* convert to fixed point */
pix_clk.full = rfixed_div(pix_clk, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes1);
peak_disp_bw.full += rfixed_mul(pix_clk, temp_ff);
}
if (mode2) {
temp_ff.full = rfixed_const(1000);
pix_clk2.full = rfixed_const(mode2->clock); /* convert to fixed point */
pix_clk2.full = rfixed_div(pix_clk2, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes2);
peak_disp_bw.full += rfixed_mul(pix_clk2, temp_ff);
}
mem_bw.full = rfixed_mul(mem_bw, min_mem_eff);
if (peak_disp_bw.full >= mem_bw.full) {
DRM_ERROR("You may not have enough display bandwidth for current mode\n"
"If you have flickering problem, try to lower resolution, refresh rate, or color depth\n");
}
/* Get values from the EXT_MEM_CNTL register...converting its contents. */
temp = RREG32(RADEON_MEM_TIMING_CNTL);
if ((rdev->family == CHIP_RV100) || (rdev->flags & RADEON_IS_IGP)) { /* RV100, M6, IGPs */
mem_trcd = ((temp >> 2) & 0x3) + 1;
mem_trp = ((temp & 0x3)) + 1;
mem_tras = ((temp & 0x70) >> 4) + 1;
} else if (rdev->family == CHIP_R300 ||
rdev->family == CHIP_R350) { /* r300, r350 */
mem_trcd = (temp & 0x7) + 1;
mem_trp = ((temp >> 8) & 0x7) + 1;
mem_tras = ((temp >> 11) & 0xf) + 4;
} else if (rdev->family == CHIP_RV350 ||
rdev->family <= CHIP_RV380) {
/* rv3x0 */
mem_trcd = (temp & 0x7) + 3;
mem_trp = ((temp >> 8) & 0x7) + 3;
mem_tras = ((temp >> 11) & 0xf) + 6;
} else if (rdev->family == CHIP_R420 ||
rdev->family == CHIP_R423 ||
rdev->family == CHIP_RV410) {
/* r4xx */
mem_trcd = (temp & 0xf) + 3;
if (mem_trcd > 15)
mem_trcd = 15;
mem_trp = ((temp >> 8) & 0xf) + 3;
if (mem_trp > 15)
mem_trp = 15;
mem_tras = ((temp >> 12) & 0x1f) + 6;
if (mem_tras > 31)
mem_tras = 31;
} else { /* RV200, R200 */
mem_trcd = (temp & 0x7) + 1;
mem_trp = ((temp >> 8) & 0x7) + 1;
mem_tras = ((temp >> 12) & 0xf) + 4;
}
/* convert to FF */
trcd_ff.full = rfixed_const(mem_trcd);
trp_ff.full = rfixed_const(mem_trp);
tras_ff.full = rfixed_const(mem_tras);
/* Get values from the MEM_SDRAM_MODE_REG register...converting its */
temp = RREG32(RADEON_MEM_SDRAM_MODE_REG);
data = (temp & (7 << 20)) >> 20;
if ((rdev->family == CHIP_RV100) || rdev->flags & RADEON_IS_IGP) {
if (rdev->family == CHIP_RS480) /* don't think rs400 */
tcas_ff = memtcas_rs480_ff[data];
else
tcas_ff = memtcas_ff[data];
} else
tcas_ff = memtcas2_ff[data];
if (rdev->family == CHIP_RS400 ||
rdev->family == CHIP_RS480) {
/* extra cas latency stored in bits 23-25 0-4 clocks */
data = (temp >> 23) & 0x7;
if (data < 5)
tcas_ff.full += rfixed_const(data);
}
if (ASIC_IS_R300(rdev) && !(rdev->flags & RADEON_IS_IGP)) {
/* on the R300, Tcas is included in Trbs.
*/
temp = RREG32(RADEON_MEM_CNTL);
data = (R300_MEM_NUM_CHANNELS_MASK & temp);
if (data == 1) {
if (R300_MEM_USE_CD_CH_ONLY & temp) {
temp = RREG32(R300_MC_IND_INDEX);
temp &= ~R300_MC_IND_ADDR_MASK;
temp |= R300_MC_READ_CNTL_CD_mcind;
WREG32(R300_MC_IND_INDEX, temp);
temp = RREG32(R300_MC_IND_DATA);
data = (R300_MEM_RBS_POSITION_C_MASK & temp);
} else {
temp = RREG32(R300_MC_READ_CNTL_AB);
data = (R300_MEM_RBS_POSITION_A_MASK & temp);
}
} else {
temp = RREG32(R300_MC_READ_CNTL_AB);
data = (R300_MEM_RBS_POSITION_A_MASK & temp);
}
if (rdev->family == CHIP_RV410 ||
rdev->family == CHIP_R420 ||
rdev->family == CHIP_R423)
trbs_ff = memtrbs_r4xx[data];
else
trbs_ff = memtrbs[data];
tcas_ff.full += trbs_ff.full;
}
sclk_eff_ff.full = sclk_ff.full;
if (rdev->flags & RADEON_IS_AGP) {
fixed20_12 agpmode_ff;
agpmode_ff.full = rfixed_const(radeon_agpmode);
temp_ff.full = rfixed_const_666(16);
sclk_eff_ff.full -= rfixed_mul(agpmode_ff, temp_ff);
}
/* TODO PCIE lanes may affect this - agpmode == 16?? */
if (ASIC_IS_R300(rdev)) {
sclk_delay_ff.full = rfixed_const(250);
} else {
if ((rdev->family == CHIP_RV100) ||
rdev->flags & RADEON_IS_IGP) {
if (rdev->mc.vram_is_ddr)
sclk_delay_ff.full = rfixed_const(41);
else
sclk_delay_ff.full = rfixed_const(33);
} else {
if (rdev->mc.vram_width == 128)
sclk_delay_ff.full = rfixed_const(57);
else
sclk_delay_ff.full = rfixed_const(41);
}
}
mc_latency_sclk.full = rfixed_div(sclk_delay_ff, sclk_eff_ff);
if (rdev->mc.vram_is_ddr) {
if (rdev->mc.vram_width == 32) {
k1.full = rfixed_const(40);
c = 3;
} else {
k1.full = rfixed_const(20);
c = 1;
}
} else {
k1.full = rfixed_const(40);
c = 3;
}
temp_ff.full = rfixed_const(2);
mc_latency_mclk.full = rfixed_mul(trcd_ff, temp_ff);
temp_ff.full = rfixed_const(c);
mc_latency_mclk.full += rfixed_mul(tcas_ff, temp_ff);
temp_ff.full = rfixed_const(4);
mc_latency_mclk.full += rfixed_mul(tras_ff, temp_ff);
mc_latency_mclk.full += rfixed_mul(trp_ff, temp_ff);
mc_latency_mclk.full += k1.full;
mc_latency_mclk.full = rfixed_div(mc_latency_mclk, mclk_ff);
mc_latency_mclk.full += rfixed_div(temp_ff, sclk_eff_ff);
/*
HW cursor time assuming worst case of full size colour cursor.
*/
temp_ff.full = rfixed_const((2 * (cur_size - (rdev->mc.vram_is_ddr + 1))));
temp_ff.full += trcd_ff.full;
if (temp_ff.full < tras_ff.full)
temp_ff.full = tras_ff.full;
cur_latency_mclk.full = rfixed_div(temp_ff, mclk_ff);
temp_ff.full = rfixed_const(cur_size);
cur_latency_sclk.full = rfixed_div(temp_ff, sclk_eff_ff);
/*
Find the total latency for the display data.
*/
disp_latency_overhead.full = rfixed_const(80);
disp_latency_overhead.full = rfixed_div(disp_latency_overhead, sclk_ff);
mc_latency_mclk.full += disp_latency_overhead.full + cur_latency_mclk.full;
mc_latency_sclk.full += disp_latency_overhead.full + cur_latency_sclk.full;
if (mc_latency_mclk.full > mc_latency_sclk.full)
disp_latency.full = mc_latency_mclk.full;
else
disp_latency.full = mc_latency_sclk.full;
/* setup Max GRPH_STOP_REQ default value */
if (ASIC_IS_RV100(rdev))
max_stop_req = 0x5c;
else
max_stop_req = 0x7c;
if (mode1) {
/* CRTC1
Set GRPH_BUFFER_CNTL register using h/w defined optimal values.
GRPH_STOP_REQ <= MIN[ 0x7C, (CRTC_H_DISP + 1) * (bit depth) / 0x10 ]
*/
stop_req = mode1->hdisplay * pixel_bytes1 / 16;
if (stop_req > max_stop_req)
stop_req = max_stop_req;
/*
Find the drain rate of the display buffer.
*/
temp_ff.full = rfixed_const((16/pixel_bytes1));
disp_drain_rate.full = rfixed_div(pix_clk, temp_ff);
/*
Find the critical point of the display buffer.
*/
crit_point_ff.full = rfixed_mul(disp_drain_rate, disp_latency);
crit_point_ff.full += rfixed_const_half(0);
critical_point = rfixed_trunc(crit_point_ff);
if (rdev->disp_priority == 2) {
critical_point = 0;
}
/*
The critical point should never be above max_stop_req-4. Setting
GRPH_CRITICAL_CNTL = 0 will thus force high priority all the time.
*/
if (max_stop_req - critical_point < 4)
critical_point = 0;
if (critical_point == 0 && mode2 && rdev->family == CHIP_R300) {
/* some R300 cards have problem with this set to 0, when CRTC2 is enabled.*/
critical_point = 0x10;
}
temp = RREG32(RADEON_GRPH_BUFFER_CNTL);
temp &= ~(RADEON_GRPH_STOP_REQ_MASK);
temp |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT);
temp &= ~(RADEON_GRPH_START_REQ_MASK);
if ((rdev->family == CHIP_R350) &&
(stop_req > 0x15)) {
stop_req -= 0x10;
}
temp |= (stop_req << RADEON_GRPH_START_REQ_SHIFT);
temp |= RADEON_GRPH_BUFFER_SIZE;
temp &= ~(RADEON_GRPH_CRITICAL_CNTL |
RADEON_GRPH_CRITICAL_AT_SOF |
RADEON_GRPH_STOP_CNTL);
/*
Write the result into the register.
*/
WREG32(RADEON_GRPH_BUFFER_CNTL, ((temp & ~RADEON_GRPH_CRITICAL_POINT_MASK) |
(critical_point << RADEON_GRPH_CRITICAL_POINT_SHIFT)));
#if 0
if ((rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
/* attempt to program RS400 disp regs correctly ??? */
temp = RREG32(RS400_DISP1_REG_CNTL);
temp &= ~(RS400_DISP1_START_REQ_LEVEL_MASK |
RS400_DISP1_STOP_REQ_LEVEL_MASK);
WREG32(RS400_DISP1_REQ_CNTL1, (temp |
(critical_point << RS400_DISP1_START_REQ_LEVEL_SHIFT) |
(critical_point << RS400_DISP1_STOP_REQ_LEVEL_SHIFT)));
temp = RREG32(RS400_DMIF_MEM_CNTL1);
temp &= ~(RS400_DISP1_CRITICAL_POINT_START_MASK |
RS400_DISP1_CRITICAL_POINT_STOP_MASK);
WREG32(RS400_DMIF_MEM_CNTL1, (temp |
(critical_point << RS400_DISP1_CRITICAL_POINT_START_SHIFT) |
(critical_point << RS400_DISP1_CRITICAL_POINT_STOP_SHIFT)));
}
#endif
DRM_DEBUG("GRPH_BUFFER_CNTL from to %x\n",
/* (unsigned int)info->SavedReg->grph_buffer_cntl, */
(unsigned int)RREG32(RADEON_GRPH_BUFFER_CNTL));
}
if (mode2) {
u32 grph2_cntl;
stop_req = mode2->hdisplay * pixel_bytes2 / 16;
if (stop_req > max_stop_req)
stop_req = max_stop_req;
/*
Find the drain rate of the display buffer.
*/
temp_ff.full = rfixed_const((16/pixel_bytes2));
disp_drain_rate2.full = rfixed_div(pix_clk2, temp_ff);
grph2_cntl = RREG32(RADEON_GRPH2_BUFFER_CNTL);
grph2_cntl &= ~(RADEON_GRPH_STOP_REQ_MASK);
grph2_cntl |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT);
grph2_cntl &= ~(RADEON_GRPH_START_REQ_MASK);
if ((rdev->family == CHIP_R350) &&
(stop_req > 0x15)) {
stop_req -= 0x10;
}
grph2_cntl |= (stop_req << RADEON_GRPH_START_REQ_SHIFT);
grph2_cntl |= RADEON_GRPH_BUFFER_SIZE;
grph2_cntl &= ~(RADEON_GRPH_CRITICAL_CNTL |
RADEON_GRPH_CRITICAL_AT_SOF |
RADEON_GRPH_STOP_CNTL);
if ((rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200))
critical_point2 = 0;
else {
temp = (rdev->mc.vram_width * rdev->mc.vram_is_ddr + 1)/128;
temp_ff.full = rfixed_const(temp);
temp_ff.full = rfixed_mul(mclk_ff, temp_ff);
if (sclk_ff.full < temp_ff.full)
temp_ff.full = sclk_ff.full;
read_return_rate.full = temp_ff.full;
if (mode1) {
temp_ff.full = read_return_rate.full - disp_drain_rate.full;
time_disp1_drop_priority.full = rfixed_div(crit_point_ff, temp_ff);
} else {
time_disp1_drop_priority.full = 0;
}
crit_point_ff.full = disp_latency.full + time_disp1_drop_priority.full + disp_latency.full;
crit_point_ff.full = rfixed_mul(crit_point_ff, disp_drain_rate2);
crit_point_ff.full += rfixed_const_half(0);
critical_point2 = rfixed_trunc(crit_point_ff);
if (rdev->disp_priority == 2) {
critical_point2 = 0;
}
if (max_stop_req - critical_point2 < 4)
critical_point2 = 0;
}
if (critical_point2 == 0 && rdev->family == CHIP_R300) {
/* some R300 cards have problem with this set to 0 */
critical_point2 = 0x10;
}
WREG32(RADEON_GRPH2_BUFFER_CNTL, ((grph2_cntl & ~RADEON_GRPH_CRITICAL_POINT_MASK) |
(critical_point2 << RADEON_GRPH_CRITICAL_POINT_SHIFT)));
if ((rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
#if 0
/* attempt to program RS400 disp2 regs correctly ??? */
temp = RREG32(RS400_DISP2_REQ_CNTL1);
temp &= ~(RS400_DISP2_START_REQ_LEVEL_MASK |
RS400_DISP2_STOP_REQ_LEVEL_MASK);
WREG32(RS400_DISP2_REQ_CNTL1, (temp |
(critical_point2 << RS400_DISP1_START_REQ_LEVEL_SHIFT) |
(critical_point2 << RS400_DISP1_STOP_REQ_LEVEL_SHIFT)));
temp = RREG32(RS400_DISP2_REQ_CNTL2);
temp &= ~(RS400_DISP2_CRITICAL_POINT_START_MASK |
RS400_DISP2_CRITICAL_POINT_STOP_MASK);
WREG32(RS400_DISP2_REQ_CNTL2, (temp |
(critical_point2 << RS400_DISP2_CRITICAL_POINT_START_SHIFT) |
(critical_point2 << RS400_DISP2_CRITICAL_POINT_STOP_SHIFT)));
#endif
WREG32(RS400_DISP2_REQ_CNTL1, 0x105DC1CC);
WREG32(RS400_DISP2_REQ_CNTL2, 0x2749D000);
WREG32(RS400_DMIF_MEM_CNTL1, 0x29CA71DC);
WREG32(RS400_DISP1_REQ_CNTL1, 0x28FBC3AC);
}
DRM_DEBUG("GRPH2_BUFFER_CNTL from to %x\n",
(unsigned int)RREG32(RADEON_GRPH2_BUFFER_CNTL));
}
}
...@@ -30,170 +30,6 @@ ...@@ -30,170 +30,6 @@
#include "atom.h" #include "atom.h"
static void radeon_legacy_rmx_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
int xres = mode->hdisplay;
int yres = mode->vdisplay;
bool hscale = true, vscale = true;
int hsync_wid;
int vsync_wid;
int hsync_start;
uint32_t scale, inc;
uint32_t fp_horz_stretch, fp_vert_stretch, crtc_more_cntl, fp_horz_vert_active;
uint32_t fp_h_sync_strt_wid, fp_v_sync_strt_wid, fp_crtc_h_total_disp, fp_crtc_v_total_disp;
struct radeon_native_mode *native_mode = &radeon_encoder->native_mode;
DRM_DEBUG("\n");
fp_vert_stretch = RREG32(RADEON_FP_VERT_STRETCH) &
(RADEON_VERT_STRETCH_RESERVED |
RADEON_VERT_AUTO_RATIO_INC);
fp_horz_stretch = RREG32(RADEON_FP_HORZ_STRETCH) &
(RADEON_HORZ_FP_LOOP_STRETCH |
RADEON_HORZ_AUTO_RATIO_INC);
crtc_more_cntl = 0;
if ((rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200)) {
/* This is to workaround the asic bug for RMX, some versions
of BIOS dosen't have this register initialized correctly. */
crtc_more_cntl |= RADEON_CRTC_H_CUTOFF_ACTIVE_EN;
}
fp_crtc_h_total_disp = ((((mode->crtc_htotal / 8) - 1) & 0x3ff)
| ((((mode->crtc_hdisplay / 8) - 1) & 0x1ff) << 16));
hsync_wid = (mode->crtc_hsync_end - mode->crtc_hsync_start) / 8;
if (!hsync_wid)
hsync_wid = 1;
hsync_start = mode->crtc_hsync_start - 8;
fp_h_sync_strt_wid = ((hsync_start & 0x1fff)
| ((hsync_wid & 0x3f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NHSYNC)
? RADEON_CRTC_H_SYNC_POL
: 0));
fp_crtc_v_total_disp = (((mode->crtc_vtotal - 1) & 0xffff)
| ((mode->crtc_vdisplay - 1) << 16));
vsync_wid = mode->crtc_vsync_end - mode->crtc_vsync_start;
if (!vsync_wid)
vsync_wid = 1;
fp_v_sync_strt_wid = (((mode->crtc_vsync_start - 1) & 0xfff)
| ((vsync_wid & 0x1f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NVSYNC)
? RADEON_CRTC_V_SYNC_POL
: 0));
fp_horz_vert_active = 0;
if (native_mode->panel_xres == 0 ||
native_mode->panel_yres == 0) {
hscale = false;
vscale = false;
} else {
if (xres > native_mode->panel_xres)
xres = native_mode->panel_xres;
if (yres > native_mode->panel_yres)
yres = native_mode->panel_yres;
if (xres == native_mode->panel_xres)
hscale = false;
if (yres == native_mode->panel_yres)
vscale = false;
}
if (radeon_encoder->flags & RADEON_USE_RMX) {
if (radeon_encoder->rmx_type != RMX_CENTER) {
if (!hscale)
fp_horz_stretch |= ((xres/8-1) << 16);
else {
inc = (fp_horz_stretch & RADEON_HORZ_AUTO_RATIO_INC) ? 1 : 0;
scale = ((xres + inc) * RADEON_HORZ_STRETCH_RATIO_MAX)
/ native_mode->panel_xres + 1;
fp_horz_stretch |= (((scale) & RADEON_HORZ_STRETCH_RATIO_MASK) |
RADEON_HORZ_STRETCH_BLEND |
RADEON_HORZ_STRETCH_ENABLE |
((native_mode->panel_xres/8-1) << 16));
}
if (!vscale)
fp_vert_stretch |= ((yres-1) << 12);
else {
inc = (fp_vert_stretch & RADEON_VERT_AUTO_RATIO_INC) ? 1 : 0;
scale = ((yres + inc) * RADEON_VERT_STRETCH_RATIO_MAX)
/ native_mode->panel_yres + 1;
fp_vert_stretch |= (((scale) & RADEON_VERT_STRETCH_RATIO_MASK) |
RADEON_VERT_STRETCH_ENABLE |
RADEON_VERT_STRETCH_BLEND |
((native_mode->panel_yres-1) << 12));
}
} else if (radeon_encoder->rmx_type == RMX_CENTER) {
int blank_width;
fp_horz_stretch |= ((xres/8-1) << 16);
fp_vert_stretch |= ((yres-1) << 12);
crtc_more_cntl |= (RADEON_CRTC_AUTO_HORZ_CENTER_EN |
RADEON_CRTC_AUTO_VERT_CENTER_EN);
blank_width = (mode->crtc_hblank_end - mode->crtc_hblank_start) / 8;
if (blank_width > 110)
blank_width = 110;
fp_crtc_h_total_disp = (((blank_width) & 0x3ff)
| ((((mode->crtc_hdisplay / 8) - 1) & 0x1ff) << 16));
hsync_wid = (mode->crtc_hsync_end - mode->crtc_hsync_start) / 8;
if (!hsync_wid)
hsync_wid = 1;
fp_h_sync_strt_wid = ((((mode->crtc_hsync_start - mode->crtc_hblank_start) / 8) & 0x1fff)
| ((hsync_wid & 0x3f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NHSYNC)
? RADEON_CRTC_H_SYNC_POL
: 0));
fp_crtc_v_total_disp = (((mode->crtc_vblank_end - mode->crtc_vblank_start) & 0xffff)
| ((mode->crtc_vdisplay - 1) << 16));
vsync_wid = mode->crtc_vsync_end - mode->crtc_vsync_start;
if (!vsync_wid)
vsync_wid = 1;
fp_v_sync_strt_wid = ((((mode->crtc_vsync_start - mode->crtc_vblank_start) & 0xfff)
| ((vsync_wid & 0x1f) << 16)
| ((mode->flags & DRM_MODE_FLAG_NVSYNC)
? RADEON_CRTC_V_SYNC_POL
: 0)));
fp_horz_vert_active = (((native_mode->panel_yres) & 0xfff) |
(((native_mode->panel_xres / 8) & 0x1ff) << 16));
}
} else {
fp_horz_stretch |= ((xres/8-1) << 16);
fp_vert_stretch |= ((yres-1) << 12);
}
WREG32(RADEON_FP_HORZ_STRETCH, fp_horz_stretch);
WREG32(RADEON_FP_VERT_STRETCH, fp_vert_stretch);
WREG32(RADEON_CRTC_MORE_CNTL, crtc_more_cntl);
WREG32(RADEON_FP_HORZ_VERT_ACTIVE, fp_horz_vert_active);
WREG32(RADEON_FP_H_SYNC_STRT_WID, fp_h_sync_strt_wid);
WREG32(RADEON_FP_V_SYNC_STRT_WID, fp_v_sync_strt_wid);
WREG32(RADEON_FP_CRTC_H_TOTAL_DISP, fp_crtc_h_total_disp);
WREG32(RADEON_FP_CRTC_V_TOTAL_DISP, fp_crtc_v_total_disp);
}
static void radeon_legacy_lvds_dpms(struct drm_encoder *encoder, int mode) static void radeon_legacy_lvds_dpms(struct drm_encoder *encoder, int mode)
{ {
struct drm_device *dev = encoder->dev; struct drm_device *dev = encoder->dev;
...@@ -287,9 +123,6 @@ static void radeon_legacy_lvds_mode_set(struct drm_encoder *encoder, ...@@ -287,9 +123,6 @@ static void radeon_legacy_lvds_mode_set(struct drm_encoder *encoder,
DRM_DEBUG("\n"); DRM_DEBUG("\n");
if (radeon_crtc->crtc_id == 0)
radeon_legacy_rmx_mode_set(encoder, mode, adjusted_mode);
lvds_pll_cntl = RREG32(RADEON_LVDS_PLL_CNTL); lvds_pll_cntl = RREG32(RADEON_LVDS_PLL_CNTL);
lvds_pll_cntl &= ~RADEON_LVDS_PLL_EN; lvds_pll_cntl &= ~RADEON_LVDS_PLL_EN;
...@@ -318,7 +151,7 @@ static void radeon_legacy_lvds_mode_set(struct drm_encoder *encoder, ...@@ -318,7 +151,7 @@ static void radeon_legacy_lvds_mode_set(struct drm_encoder *encoder,
if (radeon_crtc->crtc_id == 0) { if (radeon_crtc->crtc_id == 0) {
if (ASIC_IS_R300(rdev)) { if (ASIC_IS_R300(rdev)) {
if (radeon_encoder->flags & RADEON_USE_RMX) if (radeon_encoder->rmx_type != RMX_OFF)
lvds_pll_cntl |= R300_LVDS_SRC_SEL_RMX; lvds_pll_cntl |= R300_LVDS_SRC_SEL_RMX;
} else } else
lvds_gen_cntl &= ~RADEON_LVDS_SEL_CRTC2; lvds_gen_cntl &= ~RADEON_LVDS_SEL_CRTC2;
...@@ -350,8 +183,6 @@ static bool radeon_legacy_lvds_mode_fixup(struct drm_encoder *encoder, ...@@ -350,8 +183,6 @@ static bool radeon_legacy_lvds_mode_fixup(struct drm_encoder *encoder,
drm_mode_set_crtcinfo(adjusted_mode, 0); drm_mode_set_crtcinfo(adjusted_mode, 0);
radeon_encoder->flags &= ~RADEON_USE_RMX;
if (radeon_encoder->rmx_type != RMX_OFF) if (radeon_encoder->rmx_type != RMX_OFF)
radeon_rmx_mode_fixup(encoder, mode, adjusted_mode); radeon_rmx_mode_fixup(encoder, mode, adjusted_mode);
...@@ -455,9 +286,6 @@ static void radeon_legacy_primary_dac_mode_set(struct drm_encoder *encoder, ...@@ -455,9 +286,6 @@ static void radeon_legacy_primary_dac_mode_set(struct drm_encoder *encoder,
DRM_DEBUG("\n"); DRM_DEBUG("\n");
if (radeon_crtc->crtc_id == 0)
radeon_legacy_rmx_mode_set(encoder, mode, adjusted_mode);
if (radeon_crtc->crtc_id == 0) { if (radeon_crtc->crtc_id == 0) {
if (rdev->family == CHIP_R200 || ASIC_IS_R300(rdev)) { if (rdev->family == CHIP_R200 || ASIC_IS_R300(rdev)) {
disp_output_cntl = RREG32(RADEON_DISP_OUTPUT_CNTL) & disp_output_cntl = RREG32(RADEON_DISP_OUTPUT_CNTL) &
...@@ -653,9 +481,6 @@ static void radeon_legacy_tmds_int_mode_set(struct drm_encoder *encoder, ...@@ -653,9 +481,6 @@ static void radeon_legacy_tmds_int_mode_set(struct drm_encoder *encoder,
DRM_DEBUG("\n"); DRM_DEBUG("\n");
if (radeon_crtc->crtc_id == 0)
radeon_legacy_rmx_mode_set(encoder, mode, adjusted_mode);
tmp = tmds_pll_cntl = RREG32(RADEON_TMDS_PLL_CNTL); tmp = tmds_pll_cntl = RREG32(RADEON_TMDS_PLL_CNTL);
tmp &= 0xfffff; tmp &= 0xfffff;
if (rdev->family == CHIP_RV280) { if (rdev->family == CHIP_RV280) {
...@@ -711,7 +536,7 @@ static void radeon_legacy_tmds_int_mode_set(struct drm_encoder *encoder, ...@@ -711,7 +536,7 @@ static void radeon_legacy_tmds_int_mode_set(struct drm_encoder *encoder,
if (radeon_crtc->crtc_id == 0) { if (radeon_crtc->crtc_id == 0) {
if (ASIC_IS_R300(rdev) || rdev->family == CHIP_R200) { if (ASIC_IS_R300(rdev) || rdev->family == CHIP_R200) {
fp_gen_cntl &= ~R200_FP_SOURCE_SEL_MASK; fp_gen_cntl &= ~R200_FP_SOURCE_SEL_MASK;
if (radeon_encoder->flags & RADEON_USE_RMX) if (radeon_encoder->rmx_type != RMX_OFF)
fp_gen_cntl |= R200_FP_SOURCE_SEL_RMX; fp_gen_cntl |= R200_FP_SOURCE_SEL_RMX;
else else
fp_gen_cntl |= R200_FP_SOURCE_SEL_CRTC1; fp_gen_cntl |= R200_FP_SOURCE_SEL_CRTC1;
...@@ -820,9 +645,6 @@ static void radeon_legacy_tmds_ext_mode_set(struct drm_encoder *encoder, ...@@ -820,9 +645,6 @@ static void radeon_legacy_tmds_ext_mode_set(struct drm_encoder *encoder,
DRM_DEBUG("\n"); DRM_DEBUG("\n");
if (radeon_crtc->crtc_id == 0)
radeon_legacy_rmx_mode_set(encoder, mode, adjusted_mode);
if (rdev->is_atom_bios) { if (rdev->is_atom_bios) {
radeon_encoder->pixel_clock = adjusted_mode->clock; radeon_encoder->pixel_clock = adjusted_mode->clock;
atombios_external_tmds_setup(encoder, ATOM_ENABLE); atombios_external_tmds_setup(encoder, ATOM_ENABLE);
...@@ -856,7 +678,7 @@ static void radeon_legacy_tmds_ext_mode_set(struct drm_encoder *encoder, ...@@ -856,7 +678,7 @@ static void radeon_legacy_tmds_ext_mode_set(struct drm_encoder *encoder,
if (radeon_crtc->crtc_id == 0) { if (radeon_crtc->crtc_id == 0) {
if ((rdev->family == CHIP_R200) || ASIC_IS_R300(rdev)) { if ((rdev->family == CHIP_R200) || ASIC_IS_R300(rdev)) {
fp2_gen_cntl &= ~R200_FP2_SOURCE_SEL_MASK; fp2_gen_cntl &= ~R200_FP2_SOURCE_SEL_MASK;
if (radeon_encoder->flags & RADEON_USE_RMX) if (radeon_encoder->rmx_type != RMX_OFF)
fp2_gen_cntl |= R200_FP2_SOURCE_SEL_RMX; fp2_gen_cntl |= R200_FP2_SOURCE_SEL_RMX;
else else
fp2_gen_cntl |= R200_FP2_SOURCE_SEL_CRTC1; fp2_gen_cntl |= R200_FP2_SOURCE_SEL_CRTC1;
...@@ -1014,9 +836,6 @@ static void radeon_legacy_tv_dac_mode_set(struct drm_encoder *encoder, ...@@ -1014,9 +836,6 @@ static void radeon_legacy_tv_dac_mode_set(struct drm_encoder *encoder,
DRM_DEBUG("\n"); DRM_DEBUG("\n");
if (radeon_crtc->crtc_id == 0)
radeon_legacy_rmx_mode_set(encoder, mode, adjusted_mode);
if (rdev->family != CHIP_R200) { if (rdev->family != CHIP_R200) {
tv_dac_cntl = RREG32(RADEON_TV_DAC_CNTL); tv_dac_cntl = RREG32(RADEON_TV_DAC_CNTL);
if (rdev->family == CHIP_R420 || if (rdev->family == CHIP_R420 ||
...@@ -1243,6 +1062,7 @@ radeon_add_legacy_encoder(struct drm_device *dev, uint32_t encoder_id, uint32_t ...@@ -1243,6 +1062,7 @@ radeon_add_legacy_encoder(struct drm_device *dev, uint32_t encoder_id, uint32_t
radeon_encoder->encoder_id = encoder_id; radeon_encoder->encoder_id = encoder_id;
radeon_encoder->devices = supported_device; radeon_encoder->devices = supported_device;
radeon_encoder->rmx_type = RMX_OFF;
switch (radeon_encoder->encoder_id) { switch (radeon_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_LVDS: case ENCODER_OBJECT_ID_INTERNAL_LVDS:
......
...@@ -36,6 +36,9 @@ ...@@ -36,6 +36,9 @@
#include <linux/i2c.h> #include <linux/i2c.h>
#include <linux/i2c-id.h> #include <linux/i2c-id.h>
#include <linux/i2c-algo-bit.h> #include <linux/i2c-algo-bit.h>
#include "radeon_fixed.h"
struct radeon_device;
#define to_radeon_crtc(x) container_of(x, struct radeon_crtc, base) #define to_radeon_crtc(x) container_of(x, struct radeon_crtc, base)
#define to_radeon_connector(x) container_of(x, struct radeon_connector, base) #define to_radeon_connector(x) container_of(x, struct radeon_connector, base)
...@@ -124,6 +127,7 @@ struct radeon_tmds_pll { ...@@ -124,6 +127,7 @@ struct radeon_tmds_pll {
#define RADEON_PLL_PREFER_LOW_POST_DIV (1 << 8) #define RADEON_PLL_PREFER_LOW_POST_DIV (1 << 8)
#define RADEON_PLL_PREFER_HIGH_POST_DIV (1 << 9) #define RADEON_PLL_PREFER_HIGH_POST_DIV (1 << 9)
#define RADEON_PLL_USE_FRAC_FB_DIV (1 << 10) #define RADEON_PLL_USE_FRAC_FB_DIV (1 << 10)
#define RADEON_PLL_PREFER_CLOSEST_LOWER (1 << 11)
struct radeon_pll { struct radeon_pll {
uint16_t reference_freq; uint16_t reference_freq;
...@@ -170,6 +174,18 @@ struct radeon_mode_info { ...@@ -170,6 +174,18 @@ struct radeon_mode_info {
struct atom_context *atom_context; struct atom_context *atom_context;
enum radeon_connector_table connector_table; enum radeon_connector_table connector_table;
bool mode_config_initialized; bool mode_config_initialized;
struct radeon_crtc *crtcs[2];
};
struct radeon_native_mode {
/* preferred mode */
uint32_t panel_xres, panel_yres;
uint32_t hoverplus, hsync_width;
uint32_t hblank;
uint32_t voverplus, vsync_width;
uint32_t vblank;
uint32_t dotclock;
uint32_t flags;
}; };
struct radeon_crtc { struct radeon_crtc {
...@@ -185,19 +201,13 @@ struct radeon_crtc { ...@@ -185,19 +201,13 @@ struct radeon_crtc {
uint64_t cursor_addr; uint64_t cursor_addr;
int cursor_width; int cursor_width;
int cursor_height; int cursor_height;
}; uint32_t legacy_display_base_addr;
uint32_t legacy_cursor_offset;
#define RADEON_USE_RMX 1 enum radeon_rmx_type rmx_type;
uint32_t devices;
struct radeon_native_mode { fixed20_12 vsc;
/* preferred mode */ fixed20_12 hsc;
uint32_t panel_xres, panel_yres; struct radeon_native_mode native_mode;
uint32_t hoverplus, hsync_width;
uint32_t hblank;
uint32_t voverplus, vsync_width;
uint32_t vblank;
uint32_t dotclock;
uint32_t flags;
}; };
struct radeon_encoder_primary_dac { struct radeon_encoder_primary_dac {
...@@ -383,16 +393,9 @@ void radeon_enc_destroy(struct drm_encoder *encoder); ...@@ -383,16 +393,9 @@ void radeon_enc_destroy(struct drm_encoder *encoder);
void radeon_copy_fb(struct drm_device *dev, struct drm_gem_object *dst_obj); void radeon_copy_fb(struct drm_device *dev, struct drm_gem_object *dst_obj);
void radeon_combios_asic_init(struct drm_device *dev); void radeon_combios_asic_init(struct drm_device *dev);
extern int radeon_static_clocks_init(struct drm_device *dev); extern int radeon_static_clocks_init(struct drm_device *dev);
void radeon_init_disp_bw_legacy(struct drm_device *dev, bool radeon_crtc_scaling_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode1, struct drm_display_mode *mode,
uint32_t pixel_bytes1, struct drm_display_mode *adjusted_mode);
struct drm_display_mode *mode2, void atom_rv515_force_tv_scaler(struct radeon_device *rdev);
uint32_t pixel_bytes2);
void radeon_init_disp_bw_avivo(struct drm_device *dev,
struct drm_display_mode *mode1,
uint32_t pixel_bytes1,
struct drm_display_mode *mode2,
uint32_t pixel_bytes2);
void radeon_init_disp_bandwidth(struct drm_device *dev);
#endif #endif
...@@ -44,6 +44,9 @@ struct radeon_object { ...@@ -44,6 +44,9 @@ struct radeon_object {
uint64_t gpu_addr; uint64_t gpu_addr;
void *kptr; void *kptr;
bool is_iomem; bool is_iomem;
uint32_t tiling_flags;
uint32_t pitch;
int surface_reg;
}; };
int radeon_ttm_init(struct radeon_device *rdev); int radeon_ttm_init(struct radeon_device *rdev);
...@@ -70,6 +73,7 @@ static void radeon_ttm_object_object_destroy(struct ttm_buffer_object *tobj) ...@@ -70,6 +73,7 @@ static void radeon_ttm_object_object_destroy(struct ttm_buffer_object *tobj)
robj = container_of(tobj, struct radeon_object, tobj); robj = container_of(tobj, struct radeon_object, tobj);
list_del_init(&robj->list); list_del_init(&robj->list);
radeon_object_clear_surface_reg(robj);
kfree(robj); kfree(robj);
} }
...@@ -99,16 +103,16 @@ static inline uint32_t radeon_object_flags_from_domain(uint32_t domain) ...@@ -99,16 +103,16 @@ static inline uint32_t radeon_object_flags_from_domain(uint32_t domain)
{ {
uint32_t flags = 0; uint32_t flags = 0;
if (domain & RADEON_GEM_DOMAIN_VRAM) { if (domain & RADEON_GEM_DOMAIN_VRAM) {
flags |= TTM_PL_FLAG_VRAM; flags |= TTM_PL_FLAG_VRAM | TTM_PL_FLAG_WC | TTM_PL_FLAG_UNCACHED;
} }
if (domain & RADEON_GEM_DOMAIN_GTT) { if (domain & RADEON_GEM_DOMAIN_GTT) {
flags |= TTM_PL_FLAG_TT; flags |= TTM_PL_FLAG_TT | TTM_PL_FLAG_WC | TTM_PL_FLAG_UNCACHED;
} }
if (domain & RADEON_GEM_DOMAIN_CPU) { if (domain & RADEON_GEM_DOMAIN_CPU) {
flags |= TTM_PL_FLAG_SYSTEM; flags |= TTM_PL_FLAG_SYSTEM | TTM_PL_MASK_CACHING;
} }
if (!flags) { if (!flags) {
flags |= TTM_PL_FLAG_SYSTEM; flags |= TTM_PL_FLAG_SYSTEM | TTM_PL_MASK_CACHING;
} }
return flags; return flags;
} }
...@@ -141,6 +145,7 @@ int radeon_object_create(struct radeon_device *rdev, ...@@ -141,6 +145,7 @@ int radeon_object_create(struct radeon_device *rdev,
} }
robj->rdev = rdev; robj->rdev = rdev;
robj->gobj = gobj; robj->gobj = gobj;
robj->surface_reg = -1;
INIT_LIST_HEAD(&robj->list); INIT_LIST_HEAD(&robj->list);
flags = radeon_object_flags_from_domain(domain); flags = radeon_object_flags_from_domain(domain);
...@@ -304,7 +309,7 @@ int radeon_object_wait(struct radeon_object *robj) ...@@ -304,7 +309,7 @@ int radeon_object_wait(struct radeon_object *robj)
} }
spin_lock(&robj->tobj.lock); spin_lock(&robj->tobj.lock);
if (robj->tobj.sync_obj) { if (robj->tobj.sync_obj) {
r = ttm_bo_wait(&robj->tobj, true, false, false); r = ttm_bo_wait(&robj->tobj, true, true, false);
} }
spin_unlock(&robj->tobj.lock); spin_unlock(&robj->tobj.lock);
radeon_object_unreserve(robj); radeon_object_unreserve(robj);
...@@ -403,7 +408,6 @@ int radeon_object_list_validate(struct list_head *head, void *fence) ...@@ -403,7 +408,6 @@ int radeon_object_list_validate(struct list_head *head, void *fence)
struct radeon_object *robj; struct radeon_object *robj;
struct radeon_fence *old_fence = NULL; struct radeon_fence *old_fence = NULL;
struct list_head *i; struct list_head *i;
uint32_t flags;
int r; int r;
r = radeon_object_list_reserve(head); r = radeon_object_list_reserve(head);
...@@ -414,27 +418,25 @@ int radeon_object_list_validate(struct list_head *head, void *fence) ...@@ -414,27 +418,25 @@ int radeon_object_list_validate(struct list_head *head, void *fence)
list_for_each(i, head) { list_for_each(i, head) {
lobj = list_entry(i, struct radeon_object_list, list); lobj = list_entry(i, struct radeon_object_list, list);
robj = lobj->robj; robj = lobj->robj;
if (lobj->wdomain) {
flags = radeon_object_flags_from_domain(lobj->wdomain);
flags |= TTM_PL_FLAG_TT;
} else {
flags = radeon_object_flags_from_domain(lobj->rdomain);
flags |= TTM_PL_FLAG_TT;
flags |= TTM_PL_FLAG_VRAM;
}
if (!robj->pin_count) { if (!robj->pin_count) {
robj->tobj.proposed_placement = flags | TTM_PL_MASK_CACHING; if (lobj->wdomain) {
robj->tobj.proposed_placement =
radeon_object_flags_from_domain(lobj->wdomain);
} else {
robj->tobj.proposed_placement =
radeon_object_flags_from_domain(lobj->rdomain);
}
r = ttm_buffer_object_validate(&robj->tobj, r = ttm_buffer_object_validate(&robj->tobj,
robj->tobj.proposed_placement, robj->tobj.proposed_placement,
true, false); true, false);
if (unlikely(r)) { if (unlikely(r)) {
radeon_object_list_unreserve(head);
DRM_ERROR("radeon: failed to validate.\n"); DRM_ERROR("radeon: failed to validate.\n");
return r; return r;
} }
radeon_object_gpu_addr(robj); radeon_object_gpu_addr(robj);
} }
lobj->gpu_offset = robj->gpu_addr; lobj->gpu_offset = robj->gpu_addr;
lobj->tiling_flags = robj->tiling_flags;
if (fence) { if (fence) {
old_fence = (struct radeon_fence *)robj->tobj.sync_obj; old_fence = (struct radeon_fence *)robj->tobj.sync_obj;
robj->tobj.sync_obj = radeon_fence_ref(fence); robj->tobj.sync_obj = radeon_fence_ref(fence);
...@@ -479,3 +481,127 @@ unsigned long radeon_object_size(struct radeon_object *robj) ...@@ -479,3 +481,127 @@ unsigned long radeon_object_size(struct radeon_object *robj)
{ {
return robj->tobj.num_pages << PAGE_SHIFT; return robj->tobj.num_pages << PAGE_SHIFT;
} }
int radeon_object_get_surface_reg(struct radeon_object *robj)
{
struct radeon_device *rdev = robj->rdev;
struct radeon_surface_reg *reg;
struct radeon_object *old_object;
int steal;
int i;
if (!robj->tiling_flags)
return 0;
if (robj->surface_reg >= 0) {
reg = &rdev->surface_regs[robj->surface_reg];
i = robj->surface_reg;
goto out;
}
steal = -1;
for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
reg = &rdev->surface_regs[i];
if (!reg->robj)
break;
old_object = reg->robj;
if (old_object->pin_count == 0)
steal = i;
}
/* if we are all out */
if (i == RADEON_GEM_MAX_SURFACES) {
if (steal == -1)
return -ENOMEM;
/* find someone with a surface reg and nuke their BO */
reg = &rdev->surface_regs[steal];
old_object = reg->robj;
/* blow away the mapping */
DRM_DEBUG("stealing surface reg %d from %p\n", steal, old_object);
ttm_bo_unmap_virtual(&old_object->tobj);
old_object->surface_reg = -1;
i = steal;
}
robj->surface_reg = i;
reg->robj = robj;
out:
radeon_set_surface_reg(rdev, i, robj->tiling_flags, robj->pitch,
robj->tobj.mem.mm_node->start << PAGE_SHIFT,
robj->tobj.num_pages << PAGE_SHIFT);
return 0;
}
void radeon_object_clear_surface_reg(struct radeon_object *robj)
{
struct radeon_device *rdev = robj->rdev;
struct radeon_surface_reg *reg;
if (robj->surface_reg == -1)
return;
reg = &rdev->surface_regs[robj->surface_reg];
radeon_clear_surface_reg(rdev, robj->surface_reg);
reg->robj = NULL;
robj->surface_reg = -1;
}
void radeon_object_set_tiling_flags(struct radeon_object *robj,
uint32_t tiling_flags, uint32_t pitch)
{
robj->tiling_flags = tiling_flags;
robj->pitch = pitch;
}
void radeon_object_get_tiling_flags(struct radeon_object *robj,
uint32_t *tiling_flags,
uint32_t *pitch)
{
if (tiling_flags)
*tiling_flags = robj->tiling_flags;
if (pitch)
*pitch = robj->pitch;
}
int radeon_object_check_tiling(struct radeon_object *robj, bool has_moved,
bool force_drop)
{
if (!(robj->tiling_flags & RADEON_TILING_SURFACE))
return 0;
if (force_drop) {
radeon_object_clear_surface_reg(robj);
return 0;
}
if (robj->tobj.mem.mem_type != TTM_PL_VRAM) {
if (!has_moved)
return 0;
if (robj->surface_reg >= 0)
radeon_object_clear_surface_reg(robj);
return 0;
}
if ((robj->surface_reg >= 0) && !has_moved)
return 0;
return radeon_object_get_surface_reg(robj);
}
void radeon_bo_move_notify(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem)
{
struct radeon_object *robj = container_of(bo, struct radeon_object, tobj);
radeon_object_check_tiling(robj, 0, 1);
}
void radeon_bo_fault_reserve_notify(struct ttm_buffer_object *bo)
{
struct radeon_object *robj = container_of(bo, struct radeon_object, tobj);
radeon_object_check_tiling(robj, 0, 0);
}
...@@ -126,32 +126,19 @@ static void radeon_ib_align(struct radeon_device *rdev, struct radeon_ib *ib) ...@@ -126,32 +126,19 @@ static void radeon_ib_align(struct radeon_device *rdev, struct radeon_ib *ib)
} }
} }
static void radeon_ib_cpu_flush(struct radeon_device *rdev,
struct radeon_ib *ib)
{
unsigned long tmp;
unsigned i;
/* To force CPU cache flush ugly but seems reliable */
for (i = 0; i < ib->length_dw; i += (rdev->cp.align_mask + 1)) {
tmp = readl(&ib->ptr[i]);
}
}
int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib) int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib)
{ {
int r = 0; int r = 0;
mutex_lock(&rdev->ib_pool.mutex); mutex_lock(&rdev->ib_pool.mutex);
radeon_ib_align(rdev, ib); radeon_ib_align(rdev, ib);
radeon_ib_cpu_flush(rdev, ib);
if (!ib->length_dw || !rdev->cp.ready) { if (!ib->length_dw || !rdev->cp.ready) {
/* TODO: Nothings in the ib we should report. */ /* TODO: Nothings in the ib we should report. */
mutex_unlock(&rdev->ib_pool.mutex); mutex_unlock(&rdev->ib_pool.mutex);
DRM_ERROR("radeon: couldn't schedule IB(%lu).\n", ib->idx); DRM_ERROR("radeon: couldn't schedule IB(%lu).\n", ib->idx);
return -EINVAL; return -EINVAL;
} }
/* 64 dwords should be enought for fence too */ /* 64 dwords should be enough for fence too */
r = radeon_ring_lock(rdev, 64); r = radeon_ring_lock(rdev, 64);
if (r) { if (r) {
DRM_ERROR("radeon: scheduling IB failled (%d).\n", r); DRM_ERROR("radeon: scheduling IB failled (%d).\n", r);
......
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#ifndef __RADEON_SHARE_H__
#define __RADEON_SHARE_H__
void r100_vram_init_sizes(struct radeon_device *rdev);
void rs690_line_buffer_adjust(struct radeon_device *rdev,
struct drm_display_mode *mode1,
struct drm_display_mode *mode2);
void rv515_bandwidth_avivo_update(struct radeon_device *rdev);
#endif
/*
* Copyright 2009 VMware, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Michel Dänzer
*/
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon_reg.h"
#include "radeon.h"
/* Test BO GTT->VRAM and VRAM->GTT GPU copies across the whole GTT aperture */
void radeon_test_moves(struct radeon_device *rdev)
{
struct radeon_object *vram_obj = NULL;
struct radeon_object **gtt_obj = NULL;
struct radeon_fence *fence = NULL;
uint64_t gtt_addr, vram_addr;
unsigned i, n, size;
int r;
size = 1024 * 1024;
/* Number of tests =
* (Total GTT - IB pool - writeback page - ring buffer) / test size
*/
n = (rdev->mc.gtt_size - RADEON_IB_POOL_SIZE*64*1024 - 4096 -
rdev->cp.ring_size) / size;
gtt_obj = kzalloc(n * sizeof(*gtt_obj), GFP_KERNEL);
if (!gtt_obj) {
DRM_ERROR("Failed to allocate %d pointers\n", n);
r = 1;
goto out_cleanup;
}
r = radeon_object_create(rdev, NULL, size, true, RADEON_GEM_DOMAIN_VRAM,
false, &vram_obj);
if (r) {
DRM_ERROR("Failed to create VRAM object\n");
goto out_cleanup;
}
r = radeon_object_pin(vram_obj, RADEON_GEM_DOMAIN_VRAM, &vram_addr);
if (r) {
DRM_ERROR("Failed to pin VRAM object\n");
goto out_cleanup;
}
for (i = 0; i < n; i++) {
void *gtt_map, *vram_map;
void **gtt_start, **gtt_end;
void **vram_start, **vram_end;
r = radeon_object_create(rdev, NULL, size, true,
RADEON_GEM_DOMAIN_GTT, false, gtt_obj + i);
if (r) {
DRM_ERROR("Failed to create GTT object %d\n", i);
goto out_cleanup;
}
r = radeon_object_pin(gtt_obj[i], RADEON_GEM_DOMAIN_GTT, &gtt_addr);
if (r) {
DRM_ERROR("Failed to pin GTT object %d\n", i);
goto out_cleanup;
}
r = radeon_object_kmap(gtt_obj[i], &gtt_map);
if (r) {
DRM_ERROR("Failed to map GTT object %d\n", i);
goto out_cleanup;
}
for (gtt_start = gtt_map, gtt_end = gtt_map + size;
gtt_start < gtt_end;
gtt_start++)
*gtt_start = gtt_start;
radeon_object_kunmap(gtt_obj[i]);
r = radeon_fence_create(rdev, &fence);
if (r) {
DRM_ERROR("Failed to create GTT->VRAM fence %d\n", i);
goto out_cleanup;
}
r = radeon_copy(rdev, gtt_addr, vram_addr, size / 4096, fence);
if (r) {
DRM_ERROR("Failed GTT->VRAM copy %d\n", i);
goto out_cleanup;
}
r = radeon_fence_wait(fence, false);
if (r) {
DRM_ERROR("Failed to wait for GTT->VRAM fence %d\n", i);
goto out_cleanup;
}
radeon_fence_unref(&fence);
r = radeon_object_kmap(vram_obj, &vram_map);
if (r) {
DRM_ERROR("Failed to map VRAM object after copy %d\n", i);
goto out_cleanup;
}
for (gtt_start = gtt_map, gtt_end = gtt_map + size,
vram_start = vram_map, vram_end = vram_map + size;
vram_start < vram_end;
gtt_start++, vram_start++) {
if (*vram_start != gtt_start) {
DRM_ERROR("Incorrect GTT->VRAM copy %d: Got 0x%p, "
"expected 0x%p (GTT map 0x%p-0x%p)\n",
i, *vram_start, gtt_start, gtt_map,
gtt_end);
radeon_object_kunmap(vram_obj);
goto out_cleanup;
}
*vram_start = vram_start;
}
radeon_object_kunmap(vram_obj);
r = radeon_fence_create(rdev, &fence);
if (r) {
DRM_ERROR("Failed to create VRAM->GTT fence %d\n", i);
goto out_cleanup;
}
r = radeon_copy(rdev, vram_addr, gtt_addr, size / 4096, fence);
if (r) {
DRM_ERROR("Failed VRAM->GTT copy %d\n", i);
goto out_cleanup;
}
r = radeon_fence_wait(fence, false);
if (r) {
DRM_ERROR("Failed to wait for VRAM->GTT fence %d\n", i);
goto out_cleanup;
}
radeon_fence_unref(&fence);
r = radeon_object_kmap(gtt_obj[i], &gtt_map);
if (r) {
DRM_ERROR("Failed to map GTT object after copy %d\n", i);
goto out_cleanup;
}
for (gtt_start = gtt_map, gtt_end = gtt_map + size,
vram_start = vram_map, vram_end = vram_map + size;
gtt_start < gtt_end;
gtt_start++, vram_start++) {
if (*gtt_start != vram_start) {
DRM_ERROR("Incorrect VRAM->GTT copy %d: Got 0x%p, "
"expected 0x%p (VRAM map 0x%p-0x%p)\n",
i, *gtt_start, vram_start, vram_map,
vram_end);
radeon_object_kunmap(gtt_obj[i]);
goto out_cleanup;
}
}
radeon_object_kunmap(gtt_obj[i]);
DRM_INFO("Tested GTT->VRAM and VRAM->GTT copy for GTT offset 0x%llx\n",
gtt_addr - rdev->mc.gtt_location);
}
out_cleanup:
if (vram_obj) {
radeon_object_unpin(vram_obj);
radeon_object_unref(&vram_obj);
}
if (gtt_obj) {
for (i = 0; i < n; i++) {
if (gtt_obj[i]) {
radeon_object_unpin(gtt_obj[i]);
radeon_object_unref(&gtt_obj[i]);
}
}
kfree(gtt_obj);
}
if (fence) {
radeon_fence_unref(&fence);
}
if (r) {
printk(KERN_WARNING "Error while testing BO move.\n");
}
}
...@@ -355,23 +355,26 @@ static int radeon_bo_move(struct ttm_buffer_object *bo, ...@@ -355,23 +355,26 @@ static int radeon_bo_move(struct ttm_buffer_object *bo,
if (!rdev->cp.ready) { if (!rdev->cp.ready) {
/* use memcpy */ /* use memcpy */
DRM_ERROR("CP is not ready use memcpy.\n"); DRM_ERROR("CP is not ready use memcpy.\n");
return ttm_bo_move_memcpy(bo, evict, no_wait, new_mem); goto memcpy;
} }
if (old_mem->mem_type == TTM_PL_VRAM && if (old_mem->mem_type == TTM_PL_VRAM &&
new_mem->mem_type == TTM_PL_SYSTEM) { new_mem->mem_type == TTM_PL_SYSTEM) {
return radeon_move_vram_ram(bo, evict, interruptible, r = radeon_move_vram_ram(bo, evict, interruptible,
no_wait, new_mem); no_wait, new_mem);
} else if (old_mem->mem_type == TTM_PL_SYSTEM && } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_VRAM) { new_mem->mem_type == TTM_PL_VRAM) {
return radeon_move_ram_vram(bo, evict, interruptible, r = radeon_move_ram_vram(bo, evict, interruptible,
no_wait, new_mem); no_wait, new_mem);
} else { } else {
r = radeon_move_blit(bo, evict, no_wait, new_mem, old_mem); r = radeon_move_blit(bo, evict, no_wait, new_mem, old_mem);
if (unlikely(r)) {
return r;
}
} }
if (r) {
memcpy:
r = ttm_bo_move_memcpy(bo, evict, no_wait, new_mem);
}
return r; return r;
} }
...@@ -429,6 +432,8 @@ static struct ttm_bo_driver radeon_bo_driver = { ...@@ -429,6 +432,8 @@ static struct ttm_bo_driver radeon_bo_driver = {
.sync_obj_flush = &radeon_sync_obj_flush, .sync_obj_flush = &radeon_sync_obj_flush,
.sync_obj_unref = &radeon_sync_obj_unref, .sync_obj_unref = &radeon_sync_obj_unref,
.sync_obj_ref = &radeon_sync_obj_ref, .sync_obj_ref = &radeon_sync_obj_ref,
.move_notify = &radeon_bo_move_notify,
.fault_reserve_notify = &radeon_bo_fault_reserve_notify,
}; };
int radeon_ttm_init(struct radeon_device *rdev) int radeon_ttm_init(struct radeon_device *rdev)
...@@ -442,13 +447,14 @@ int radeon_ttm_init(struct radeon_device *rdev) ...@@ -442,13 +447,14 @@ int radeon_ttm_init(struct radeon_device *rdev)
/* No others user of address space so set it to 0 */ /* No others user of address space so set it to 0 */
r = ttm_bo_device_init(&rdev->mman.bdev, r = ttm_bo_device_init(&rdev->mman.bdev,
rdev->mman.mem_global_ref.object, rdev->mman.mem_global_ref.object,
&radeon_bo_driver, DRM_FILE_PAGE_OFFSET); &radeon_bo_driver, DRM_FILE_PAGE_OFFSET,
rdev->need_dma32);
if (r) { if (r) {
DRM_ERROR("failed initializing buffer object driver(%d).\n", r); DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
return r; return r;
} }
r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_VRAM, 0, r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_VRAM, 0,
((rdev->mc.aper_size) >> PAGE_SHIFT)); ((rdev->mc.real_vram_size) >> PAGE_SHIFT));
if (r) { if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n"); DRM_ERROR("Failed initializing VRAM heap.\n");
return r; return r;
...@@ -465,7 +471,7 @@ int radeon_ttm_init(struct radeon_device *rdev) ...@@ -465,7 +471,7 @@ int radeon_ttm_init(struct radeon_device *rdev)
return r; return r;
} }
DRM_INFO("radeon: %uM of VRAM memory ready\n", DRM_INFO("radeon: %uM of VRAM memory ready\n",
rdev->mc.vram_size / (1024 * 1024)); rdev->mc.real_vram_size / (1024 * 1024));
r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_TT, 0, r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_TT, 0,
((rdev->mc.gtt_size) >> PAGE_SHIFT)); ((rdev->mc.gtt_size) >> PAGE_SHIFT));
if (r) { if (r) {
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <drm/drmP.h> #include <drm/drmP.h>
#include "radeon_reg.h" #include "radeon_reg.h"
#include "radeon.h" #include "radeon.h"
#include "radeon_share.h"
/* rs400,rs480 depends on : */ /* rs400,rs480 depends on : */
void r100_hdp_reset(struct radeon_device *rdev); void r100_hdp_reset(struct radeon_device *rdev);
...@@ -164,7 +165,9 @@ int rs400_gart_enable(struct radeon_device *rdev) ...@@ -164,7 +165,9 @@ int rs400_gart_enable(struct radeon_device *rdev)
WREG32(RADEON_BUS_CNTL, tmp); WREG32(RADEON_BUS_CNTL, tmp);
} }
/* Table should be in 32bits address space so ignore bits above. */ /* Table should be in 32bits address space so ignore bits above. */
tmp = rdev->gart.table_addr & 0xfffff000; tmp = (u32)rdev->gart.table_addr & 0xfffff000;
tmp |= (upper_32_bits(rdev->gart.table_addr) & 0xff) << 4;
WREG32_MC(RS480_GART_BASE, tmp); WREG32_MC(RS480_GART_BASE, tmp);
/* TODO: more tweaking here */ /* TODO: more tweaking here */
WREG32_MC(RS480_GART_FEATURE_ID, WREG32_MC(RS480_GART_FEATURE_ID,
...@@ -201,10 +204,17 @@ void rs400_gart_disable(struct radeon_device *rdev) ...@@ -201,10 +204,17 @@ void rs400_gart_disable(struct radeon_device *rdev)
int rs400_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr) int rs400_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr)
{ {
uint32_t entry;
if (i < 0 || i > rdev->gart.num_gpu_pages) { if (i < 0 || i > rdev->gart.num_gpu_pages) {
return -EINVAL; return -EINVAL;
} }
rdev->gart.table.ram.ptr[i] = cpu_to_le32(((uint32_t)addr) | 0xC);
entry = (lower_32_bits(addr) & PAGE_MASK) |
((upper_32_bits(addr) & 0xff) << 4) |
0xc;
entry = cpu_to_le32(entry);
rdev->gart.table.ram.ptr[i] = entry;
return 0; return 0;
} }
...@@ -223,10 +233,9 @@ int rs400_mc_init(struct radeon_device *rdev) ...@@ -223,10 +233,9 @@ int rs400_mc_init(struct radeon_device *rdev)
rs400_gpu_init(rdev); rs400_gpu_init(rdev);
rs400_gart_disable(rdev); rs400_gart_disable(rdev);
rdev->mc.gtt_location = rdev->mc.vram_size; rdev->mc.gtt_location = rdev->mc.mc_vram_size;
rdev->mc.gtt_location += (rdev->mc.gtt_size - 1); rdev->mc.gtt_location += (rdev->mc.gtt_size - 1);
rdev->mc.gtt_location &= ~(rdev->mc.gtt_size - 1); rdev->mc.gtt_location &= ~(rdev->mc.gtt_size - 1);
rdev->mc.vram_location = 0xFFFFFFFFUL;
r = radeon_mc_setup(rdev); r = radeon_mc_setup(rdev);
if (r) { if (r) {
return r; return r;
...@@ -238,7 +247,7 @@ int rs400_mc_init(struct radeon_device *rdev) ...@@ -238,7 +247,7 @@ int rs400_mc_init(struct radeon_device *rdev)
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(RADEON_MC_FB_TOP, tmp >> 16); tmp = REG_SET(RADEON_MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(RADEON_MC_FB_START, rdev->mc.vram_location >> 16); tmp |= REG_SET(RADEON_MC_FB_START, rdev->mc.vram_location >> 16);
WREG32(RADEON_MC_FB_LOCATION, tmp); WREG32(RADEON_MC_FB_LOCATION, tmp);
...@@ -284,21 +293,12 @@ void rs400_gpu_init(struct radeon_device *rdev) ...@@ -284,21 +293,12 @@ void rs400_gpu_init(struct radeon_device *rdev)
*/ */
void rs400_vram_info(struct radeon_device *rdev) void rs400_vram_info(struct radeon_device *rdev)
{ {
uint32_t tom;
rs400_gart_adjust_size(rdev); rs400_gart_adjust_size(rdev);
/* DDR for all card after R300 & IGP */ /* DDR for all card after R300 & IGP */
rdev->mc.vram_is_ddr = true; rdev->mc.vram_is_ddr = true;
rdev->mc.vram_width = 128; rdev->mc.vram_width = 128;
/* read NB_TOM to get the amount of ram stolen for the GPU */ r100_vram_init_sizes(rdev);
tom = RREG32(RADEON_NB_TOM);
rdev->mc.vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16);
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size);
/* Could aper size report 0 ? */
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
} }
......
...@@ -223,7 +223,7 @@ int rs600_mc_init(struct radeon_device *rdev) ...@@ -223,7 +223,7 @@ int rs600_mc_init(struct radeon_device *rdev)
printk(KERN_WARNING "Failed to wait MC idle while " printk(KERN_WARNING "Failed to wait MC idle while "
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(RS600_MC_FB_TOP, tmp >> 16); tmp = REG_SET(RS600_MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(RS600_MC_FB_START, rdev->mc.vram_location >> 16); tmp |= REG_SET(RS600_MC_FB_START, rdev->mc.vram_location >> 16);
WREG32_MC(RS600_MC_FB_LOCATION, tmp); WREG32_MC(RS600_MC_FB_LOCATION, tmp);
...@@ -301,6 +301,11 @@ void rs600_vram_info(struct radeon_device *rdev) ...@@ -301,6 +301,11 @@ void rs600_vram_info(struct radeon_device *rdev)
rdev->mc.vram_width = 128; rdev->mc.vram_width = 128;
} }
void rs600_bandwidth_update(struct radeon_device *rdev)
{
/* FIXME: implement, should this be like rs690 ? */
}
/* /*
* Indirect registers accessor * Indirect registers accessor
......
...@@ -28,6 +28,9 @@ ...@@ -28,6 +28,9 @@
#include "drmP.h" #include "drmP.h"
#include "radeon_reg.h" #include "radeon_reg.h"
#include "radeon.h" #include "radeon.h"
#include "rs690r.h"
#include "atom.h"
#include "atom-bits.h"
/* rs690,rs740 depends on : */ /* rs690,rs740 depends on : */
void r100_hdp_reset(struct radeon_device *rdev); void r100_hdp_reset(struct radeon_device *rdev);
...@@ -64,7 +67,7 @@ int rs690_mc_init(struct radeon_device *rdev) ...@@ -64,7 +67,7 @@ int rs690_mc_init(struct radeon_device *rdev)
rs400_gart_disable(rdev); rs400_gart_disable(rdev);
/* Setup GPU memory space */ /* Setup GPU memory space */
rdev->mc.gtt_location = rdev->mc.vram_size; rdev->mc.gtt_location = rdev->mc.mc_vram_size;
rdev->mc.gtt_location += (rdev->mc.gtt_size - 1); rdev->mc.gtt_location += (rdev->mc.gtt_size - 1);
rdev->mc.gtt_location &= ~(rdev->mc.gtt_size - 1); rdev->mc.gtt_location &= ~(rdev->mc.gtt_size - 1);
rdev->mc.vram_location = 0xFFFFFFFFUL; rdev->mc.vram_location = 0xFFFFFFFFUL;
...@@ -79,7 +82,7 @@ int rs690_mc_init(struct radeon_device *rdev) ...@@ -79,7 +82,7 @@ int rs690_mc_init(struct radeon_device *rdev)
printk(KERN_WARNING "Failed to wait MC idle while " printk(KERN_WARNING "Failed to wait MC idle while "
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(RS690_MC_FB_TOP, tmp >> 16); tmp = REG_SET(RS690_MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(RS690_MC_FB_START, rdev->mc.vram_location >> 16); tmp |= REG_SET(RS690_MC_FB_START, rdev->mc.vram_location >> 16);
WREG32_MC(RS690_MCCFG_FB_LOCATION, tmp); WREG32_MC(RS690_MCCFG_FB_LOCATION, tmp);
...@@ -138,9 +141,82 @@ void rs690_gpu_init(struct radeon_device *rdev) ...@@ -138,9 +141,82 @@ void rs690_gpu_init(struct radeon_device *rdev)
/* /*
* VRAM info. * VRAM info.
*/ */
void rs690_pm_info(struct radeon_device *rdev)
{
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
struct _ATOM_INTEGRATED_SYSTEM_INFO *info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 *info_v2;
void *ptr;
uint16_t data_offset;
uint8_t frev, crev;
fixed20_12 tmp;
atom_parse_data_header(rdev->mode_info.atom_context, index, NULL,
&frev, &crev, &data_offset);
ptr = rdev->mode_info.atom_context->bios + data_offset;
info = (struct _ATOM_INTEGRATED_SYSTEM_INFO *)ptr;
info_v2 = (struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 *)ptr;
/* Get various system informations from bios */
switch (crev) {
case 1:
tmp.full = rfixed_const(100);
rdev->pm.igp_sideport_mclk.full = rfixed_const(info->ulBootUpMemoryClock);
rdev->pm.igp_sideport_mclk.full = rfixed_div(rdev->pm.igp_sideport_mclk, tmp);
rdev->pm.igp_system_mclk.full = rfixed_const(le16_to_cpu(info->usK8MemoryClock));
rdev->pm.igp_ht_link_clk.full = rfixed_const(le16_to_cpu(info->usFSBClock));
rdev->pm.igp_ht_link_width.full = rfixed_const(info->ucHTLinkWidth);
break;
case 2:
tmp.full = rfixed_const(100);
rdev->pm.igp_sideport_mclk.full = rfixed_const(info_v2->ulBootUpSidePortClock);
rdev->pm.igp_sideport_mclk.full = rfixed_div(rdev->pm.igp_sideport_mclk, tmp);
rdev->pm.igp_system_mclk.full = rfixed_const(info_v2->ulBootUpUMAClock);
rdev->pm.igp_system_mclk.full = rfixed_div(rdev->pm.igp_system_mclk, tmp);
rdev->pm.igp_ht_link_clk.full = rfixed_const(info_v2->ulHTLinkFreq);
rdev->pm.igp_ht_link_clk.full = rfixed_div(rdev->pm.igp_ht_link_clk, tmp);
rdev->pm.igp_ht_link_width.full = rfixed_const(le16_to_cpu(info_v2->usMinHTLinkWidth));
break;
default:
tmp.full = rfixed_const(100);
/* We assume the slower possible clock ie worst case */
/* DDR 333Mhz */
rdev->pm.igp_sideport_mclk.full = rfixed_const(333);
/* FIXME: system clock ? */
rdev->pm.igp_system_mclk.full = rfixed_const(100);
rdev->pm.igp_system_mclk.full = rfixed_div(rdev->pm.igp_system_mclk, tmp);
rdev->pm.igp_ht_link_clk.full = rfixed_const(200);
rdev->pm.igp_ht_link_width.full = rfixed_const(8);
DRM_ERROR("No integrated system info for your GPU, using safe default\n");
break;
}
/* Compute various bandwidth */
/* k8_bandwidth = (memory_clk / 2) * 2 * 8 * 0.5 = memory_clk * 4 */
tmp.full = rfixed_const(4);
rdev->pm.k8_bandwidth.full = rfixed_mul(rdev->pm.igp_system_mclk, tmp);
/* ht_bandwidth = ht_clk * 2 * ht_width / 8 * 0.8
* = ht_clk * ht_width / 5
*/
tmp.full = rfixed_const(5);
rdev->pm.ht_bandwidth.full = rfixed_mul(rdev->pm.igp_ht_link_clk,
rdev->pm.igp_ht_link_width);
rdev->pm.ht_bandwidth.full = rfixed_div(rdev->pm.ht_bandwidth, tmp);
if (tmp.full < rdev->pm.max_bandwidth.full) {
/* HT link is a limiting factor */
rdev->pm.max_bandwidth.full = tmp.full;
}
/* sideport_bandwidth = (sideport_clk / 2) * 2 * 2 * 0.7
* = (sideport_clk * 14) / 10
*/
tmp.full = rfixed_const(14);
rdev->pm.sideport_bandwidth.full = rfixed_mul(rdev->pm.igp_sideport_mclk, tmp);
tmp.full = rfixed_const(10);
rdev->pm.sideport_bandwidth.full = rfixed_div(rdev->pm.sideport_bandwidth, tmp);
}
void rs690_vram_info(struct radeon_device *rdev) void rs690_vram_info(struct radeon_device *rdev)
{ {
uint32_t tmp; uint32_t tmp;
fixed20_12 a;
rs400_gart_adjust_size(rdev); rs400_gart_adjust_size(rdev);
/* DDR for all card after R300 & IGP */ /* DDR for all card after R300 & IGP */
...@@ -152,12 +228,409 @@ void rs690_vram_info(struct radeon_device *rdev) ...@@ -152,12 +228,409 @@ void rs690_vram_info(struct radeon_device *rdev)
} else { } else {
rdev->mc.vram_width = 64; rdev->mc.vram_width = 64;
} }
rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE); rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
rs690_pm_info(rdev);
/* FIXME: we should enforce default clock in case GPU is not in
* default setup
*/
a.full = rfixed_const(100);
rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk);
rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);
a.full = rfixed_const(16);
/* core_bandwidth = sclk(Mhz) * 16 */
rdev->pm.core_bandwidth.full = rfixed_div(rdev->pm.sclk, a);
}
void rs690_line_buffer_adjust(struct radeon_device *rdev,
struct drm_display_mode *mode1,
struct drm_display_mode *mode2)
{
u32 tmp;
/*
* Line Buffer Setup
* There is a single line buffer shared by both display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
* the display controllers. The paritioning can either be done
* manually or via one of four preset allocations specified in bits 1:0:
* 0 - line buffer is divided in half and shared between crtc
* 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4
* 2 - D1 gets the whole buffer
* 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4
* Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual
* allocation mode. In manual allocation mode, D1 always starts at 0,
* D1 end/2 is specified in bits 14:4; D2 allocation follows D1.
*/
tmp = RREG32(DC_LB_MEMORY_SPLIT) & ~DC_LB_MEMORY_SPLIT_MASK;
tmp &= ~DC_LB_MEMORY_SPLIT_SHIFT_MODE;
/* auto */
if (mode1 && mode2) {
if (mode1->hdisplay > mode2->hdisplay) {
if (mode1->hdisplay > 2560)
tmp |= DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q;
else
tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else if (mode2->hdisplay > mode1->hdisplay) {
if (mode2->hdisplay > 2560)
tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
else
tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else
tmp |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else if (mode1) {
tmp |= DC_LB_MEMORY_SPLIT_D1_ONLY;
} else if (mode2) {
tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
}
WREG32(DC_LB_MEMORY_SPLIT, tmp);
} }
struct rs690_watermark {
u32 lb_request_fifo_depth;
fixed20_12 num_line_pair;
fixed20_12 estimated_width;
fixed20_12 worst_case_latency;
fixed20_12 consumption_rate;
fixed20_12 active_time;
fixed20_12 dbpp;
fixed20_12 priority_mark_max;
fixed20_12 priority_mark;
fixed20_12 sclk;
};
void rs690_crtc_bandwidth_compute(struct radeon_device *rdev,
struct radeon_crtc *crtc,
struct rs690_watermark *wm)
{
struct drm_display_mode *mode = &crtc->base.mode;
fixed20_12 a, b, c;
fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width;
fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency;
/* FIXME: detect IGP with sideport memory, i don't think there is any
* such product available
*/
bool sideport = false;
if (!crtc->base.enabled) {
/* FIXME: wouldn't it better to set priority mark to maximum */
wm->lb_request_fifo_depth = 4;
return;
}
if (crtc->vsc.full > rfixed_const(2))
wm->num_line_pair.full = rfixed_const(2);
else
wm->num_line_pair.full = rfixed_const(1);
b.full = rfixed_const(mode->crtc_hdisplay);
c.full = rfixed_const(256);
a.full = rfixed_mul(wm->num_line_pair, b);
request_fifo_depth.full = rfixed_div(a, c);
if (a.full < rfixed_const(4)) {
wm->lb_request_fifo_depth = 4;
} else {
wm->lb_request_fifo_depth = rfixed_trunc(request_fifo_depth);
}
/* Determine consumption rate
* pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000)
* vtaps = number of vertical taps,
* vsc = vertical scaling ratio, defined as source/destination
* hsc = horizontal scaling ration, defined as source/destination
*/
a.full = rfixed_const(mode->clock);
b.full = rfixed_const(1000);
a.full = rfixed_div(a, b);
pclk.full = rfixed_div(b, a);
if (crtc->rmx_type != RMX_OFF) {
b.full = rfixed_const(2);
if (crtc->vsc.full > b.full)
b.full = crtc->vsc.full;
b.full = rfixed_mul(b, crtc->hsc);
c.full = rfixed_const(2);
b.full = rfixed_div(b, c);
consumption_time.full = rfixed_div(pclk, b);
} else {
consumption_time.full = pclk.full;
}
a.full = rfixed_const(1);
wm->consumption_rate.full = rfixed_div(a, consumption_time);
/* Determine line time
* LineTime = total time for one line of displayhtotal
* LineTime = total number of horizontal pixels
* pclk = pixel clock period(ns)
*/
a.full = rfixed_const(crtc->base.mode.crtc_htotal);
line_time.full = rfixed_mul(a, pclk);
/* Determine active time
* ActiveTime = time of active region of display within one line,
* hactive = total number of horizontal active pixels
* htotal = total number of horizontal pixels
*/
a.full = rfixed_const(crtc->base.mode.crtc_htotal);
b.full = rfixed_const(crtc->base.mode.crtc_hdisplay);
wm->active_time.full = rfixed_mul(line_time, b);
wm->active_time.full = rfixed_div(wm->active_time, a);
/* Maximun bandwidth is the minimun bandwidth of all component */
rdev->pm.max_bandwidth = rdev->pm.core_bandwidth;
if (sideport) {
if (rdev->pm.max_bandwidth.full > rdev->pm.sideport_bandwidth.full &&
rdev->pm.sideport_bandwidth.full)
rdev->pm.max_bandwidth = rdev->pm.sideport_bandwidth;
read_delay_latency.full = rfixed_const(370 * 800 * 1000);
read_delay_latency.full = rfixed_div(read_delay_latency,
rdev->pm.igp_sideport_mclk);
} else {
if (rdev->pm.max_bandwidth.full > rdev->pm.k8_bandwidth.full &&
rdev->pm.k8_bandwidth.full)
rdev->pm.max_bandwidth = rdev->pm.k8_bandwidth;
if (rdev->pm.max_bandwidth.full > rdev->pm.ht_bandwidth.full &&
rdev->pm.ht_bandwidth.full)
rdev->pm.max_bandwidth = rdev->pm.ht_bandwidth;
read_delay_latency.full = rfixed_const(5000);
}
/* sclk = system clocks(ns) = 1000 / max_bandwidth / 16 */
a.full = rfixed_const(16);
rdev->pm.sclk.full = rfixed_mul(rdev->pm.max_bandwidth, a);
a.full = rfixed_const(1000);
rdev->pm.sclk.full = rfixed_div(a, rdev->pm.sclk);
/* Determine chunk time
* ChunkTime = the time it takes the DCP to send one chunk of data
* to the LB which consists of pipeline delay and inter chunk gap
* sclk = system clock(ns)
*/
a.full = rfixed_const(256 * 13);
chunk_time.full = rfixed_mul(rdev->pm.sclk, a);
a.full = rfixed_const(10);
chunk_time.full = rfixed_div(chunk_time, a);
/* Determine the worst case latency
* NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines)
* WorstCaseLatency = worst case time from urgent to when the MC starts
* to return data
* READ_DELAY_IDLE_MAX = constant of 1us
* ChunkTime = time it takes the DCP to send one chunk of data to the LB
* which consists of pipeline delay and inter chunk gap
*/
if (rfixed_trunc(wm->num_line_pair) > 1) {
a.full = rfixed_const(3);
wm->worst_case_latency.full = rfixed_mul(a, chunk_time);
wm->worst_case_latency.full += read_delay_latency.full;
} else {
a.full = rfixed_const(2);
wm->worst_case_latency.full = rfixed_mul(a, chunk_time);
wm->worst_case_latency.full += read_delay_latency.full;
}
/* Determine the tolerable latency
* TolerableLatency = Any given request has only 1 line time
* for the data to be returned
* LBRequestFifoDepth = Number of chunk requests the LB can
* put into the request FIFO for a display
* LineTime = total time for one line of display
* ChunkTime = the time it takes the DCP to send one chunk
* of data to the LB which consists of
* pipeline delay and inter chunk gap
*/
if ((2+wm->lb_request_fifo_depth) >= rfixed_trunc(request_fifo_depth)) {
tolerable_latency.full = line_time.full;
} else {
tolerable_latency.full = rfixed_const(wm->lb_request_fifo_depth - 2);
tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full;
tolerable_latency.full = rfixed_mul(tolerable_latency, chunk_time);
tolerable_latency.full = line_time.full - tolerable_latency.full;
}
/* We assume worst case 32bits (4 bytes) */
wm->dbpp.full = rfixed_const(4 * 8);
/* Determine the maximum priority mark
* width = viewport width in pixels
*/
a.full = rfixed_const(16);
wm->priority_mark_max.full = rfixed_const(crtc->base.mode.crtc_hdisplay);
wm->priority_mark_max.full = rfixed_div(wm->priority_mark_max, a);
/* Determine estimated width */
estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full;
estimated_width.full = rfixed_div(estimated_width, consumption_time);
if (rfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) {
wm->priority_mark.full = rfixed_const(10);
} else {
a.full = rfixed_const(16);
wm->priority_mark.full = rfixed_div(estimated_width, a);
wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full;
}
}
void rs690_bandwidth_update(struct radeon_device *rdev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
struct rs690_watermark wm0;
struct rs690_watermark wm1;
u32 tmp;
fixed20_12 priority_mark02, priority_mark12, fill_rate;
fixed20_12 a, b;
if (rdev->mode_info.crtcs[0]->base.enabled)
mode0 = &rdev->mode_info.crtcs[0]->base.mode;
if (rdev->mode_info.crtcs[1]->base.enabled)
mode1 = &rdev->mode_info.crtcs[1]->base.mode;
/*
* Set display0/1 priority up in the memory controller for
* modes if the user specifies HIGH for displaypriority
* option.
*/
if (rdev->disp_priority == 2) {
tmp = RREG32_MC(MC_INIT_MISC_LAT_TIMER);
tmp &= ~MC_DISP1R_INIT_LAT_MASK;
tmp &= ~MC_DISP0R_INIT_LAT_MASK;
if (mode1)
tmp |= (1 << MC_DISP1R_INIT_LAT_SHIFT);
if (mode0)
tmp |= (1 << MC_DISP0R_INIT_LAT_SHIFT);
WREG32_MC(MC_INIT_MISC_LAT_TIMER, tmp);
}
rs690_line_buffer_adjust(rdev, mode0, mode1);
if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740))
WREG32(DCP_CONTROL, 0);
if ((rdev->family == CHIP_RS780) || (rdev->family == CHIP_RS880))
WREG32(DCP_CONTROL, 2);
rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0);
rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1);
tmp = (wm0.lb_request_fifo_depth - 1);
tmp |= (wm1.lb_request_fifo_depth - 1) << 16;
WREG32(LB_MAX_REQ_OUTSTANDING, tmp);
if (mode0 && mode1) {
if (rfixed_trunc(wm0.dbpp) > 64)
a.full = rfixed_mul(wm0.dbpp, wm0.num_line_pair);
else
a.full = wm0.num_line_pair.full;
if (rfixed_trunc(wm1.dbpp) > 64)
b.full = rfixed_mul(wm1.dbpp, wm1.num_line_pair);
else
b.full = wm1.num_line_pair.full;
a.full += b.full;
fill_rate.full = rfixed_div(wm0.sclk, a);
if (wm0.consumption_rate.full > fill_rate.full) {
b.full = wm0.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm0.active_time);
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
a.full = a.full + b.full;
b.full = rfixed_const(16 * 1000);
priority_mark02.full = rfixed_div(a, b);
} else {
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark02.full = rfixed_div(a, b);
}
if (wm1.consumption_rate.full > fill_rate.full) {
b.full = wm1.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm1.active_time);
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
a.full = a.full + b.full;
b.full = rfixed_const(16 * 1000);
priority_mark12.full = rfixed_div(a, b);
} else {
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark12.full = rfixed_div(a, b);
}
if (wm0.priority_mark.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark.full;
if (rfixed_trunc(priority_mark02) < 0)
priority_mark02.full = 0;
if (wm0.priority_mark_max.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark_max.full;
if (wm1.priority_mark.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark.full;
if (rfixed_trunc(priority_mark12) < 0)
priority_mark12.full = 0;
if (wm1.priority_mark_max.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark_max.full;
WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02));
WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02));
WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12));
WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12));
} else if (mode0) {
if (rfixed_trunc(wm0.dbpp) > 64)
a.full = rfixed_mul(wm0.dbpp, wm0.num_line_pair);
else
a.full = wm0.num_line_pair.full;
fill_rate.full = rfixed_div(wm0.sclk, a);
if (wm0.consumption_rate.full > fill_rate.full) {
b.full = wm0.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm0.active_time);
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
a.full = a.full + b.full;
b.full = rfixed_const(16 * 1000);
priority_mark02.full = rfixed_div(a, b);
} else {
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark02.full = rfixed_div(a, b);
}
if (wm0.priority_mark.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark.full;
if (rfixed_trunc(priority_mark02) < 0)
priority_mark02.full = 0;
if (wm0.priority_mark_max.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark_max.full;
WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02));
WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02));
WREG32(D2MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF);
WREG32(D2MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF);
} else {
if (rfixed_trunc(wm1.dbpp) > 64)
a.full = rfixed_mul(wm1.dbpp, wm1.num_line_pair);
else
a.full = wm1.num_line_pair.full;
fill_rate.full = rfixed_div(wm1.sclk, a);
if (wm1.consumption_rate.full > fill_rate.full) {
b.full = wm1.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm1.active_time);
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
a.full = a.full + b.full;
b.full = rfixed_const(16 * 1000);
priority_mark12.full = rfixed_div(a, b);
} else {
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark12.full = rfixed_div(a, b);
}
if (wm1.priority_mark.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark.full;
if (rfixed_trunc(priority_mark12) < 0)
priority_mark12.full = 0;
if (wm1.priority_mark_max.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark_max.full;
WREG32(D1MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF);
WREG32(D1MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF);
WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12));
WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12));
}
}
/* /*
* Indirect registers accessor * Indirect registers accessor
......
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#ifndef RS690R_H
#define RS690R_H
/* RS690/RS740 registers */
#define MC_INDEX 0x0078
# define MC_INDEX_MASK 0x1FF
# define MC_INDEX_WR_EN (1 << 9)
# define MC_INDEX_WR_ACK 0x7F
#define MC_DATA 0x007C
#define HDP_FB_LOCATION 0x0134
#define DC_LB_MEMORY_SPLIT 0x6520
#define DC_LB_MEMORY_SPLIT_MASK 0x00000003
#define DC_LB_MEMORY_SPLIT_SHIFT 0
#define DC_LB_MEMORY_SPLIT_D1HALF_D2HALF 0
#define DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q 1
#define DC_LB_MEMORY_SPLIT_D1_ONLY 2
#define DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q 3
#define DC_LB_MEMORY_SPLIT_SHIFT_MODE (1 << 2)
#define DC_LB_DISP1_END_ADR_SHIFT 4
#define DC_LB_DISP1_END_ADR_MASK 0x00007FF0
#define D1MODE_PRIORITY_A_CNT 0x6548
#define MODE_PRIORITY_MARK_MASK 0x00007FFF
#define MODE_PRIORITY_OFF (1 << 16)
#define MODE_PRIORITY_ALWAYS_ON (1 << 20)
#define MODE_PRIORITY_FORCE_MASK (1 << 24)
#define D1MODE_PRIORITY_B_CNT 0x654C
#define LB_MAX_REQ_OUTSTANDING 0x6D58
#define LB_D1_MAX_REQ_OUTSTANDING_MASK 0x0000000F
#define LB_D1_MAX_REQ_OUTSTANDING_SHIFT 0
#define LB_D2_MAX_REQ_OUTSTANDING_MASK 0x000F0000
#define LB_D2_MAX_REQ_OUTSTANDING_SHIFT 16
#define DCP_CONTROL 0x6C9C
#define D2MODE_PRIORITY_A_CNT 0x6D48
#define D2MODE_PRIORITY_B_CNT 0x6D4C
/* MC indirect registers */
#define MC_STATUS_IDLE (1 << 0)
#define MC_MISC_CNTL 0x18
#define DISABLE_GTW (1 << 1)
#define GART_INDEX_REG_EN (1 << 12)
#define BLOCK_GFX_D3_EN (1 << 14)
#define GART_FEATURE_ID 0x2B
#define HANG_EN (1 << 11)
#define TLB_ENABLE (1 << 18)
#define P2P_ENABLE (1 << 19)
#define GTW_LAC_EN (1 << 25)
#define LEVEL2_GART (0 << 30)
#define LEVEL1_GART (1 << 30)
#define PDC_EN (1 << 31)
#define GART_BASE 0x2C
#define GART_CACHE_CNTRL 0x2E
# define GART_CACHE_INVALIDATE (1 << 0)
#define MC_STATUS 0x90
#define MCCFG_FB_LOCATION 0x100
#define MC_FB_START_MASK 0x0000FFFF
#define MC_FB_START_SHIFT 0
#define MC_FB_TOP_MASK 0xFFFF0000
#define MC_FB_TOP_SHIFT 16
#define MCCFG_AGP_LOCATION 0x101
#define MC_AGP_START_MASK 0x0000FFFF
#define MC_AGP_START_SHIFT 0
#define MC_AGP_TOP_MASK 0xFFFF0000
#define MC_AGP_TOP_SHIFT 16
#define MCCFG_AGP_BASE 0x102
#define MCCFG_AGP_BASE_2 0x103
#define MC_INIT_MISC_LAT_TIMER 0x104
#define MC_DISP0R_INIT_LAT_SHIFT 8
#define MC_DISP0R_INIT_LAT_MASK 0x00000F00
#define MC_DISP1R_INIT_LAT_SHIFT 12
#define MC_DISP1R_INIT_LAT_MASK 0x0000F000
#endif
...@@ -27,8 +27,9 @@ ...@@ -27,8 +27,9 @@
*/ */
#include <linux/seq_file.h> #include <linux/seq_file.h>
#include "drmP.h" #include "drmP.h"
#include "radeon_reg.h" #include "rv515r.h"
#include "radeon.h" #include "radeon.h"
#include "radeon_share.h"
/* rv515 depends on : */ /* rv515 depends on : */
void r100_hdp_reset(struct radeon_device *rdev); void r100_hdp_reset(struct radeon_device *rdev);
...@@ -99,26 +100,26 @@ int rv515_mc_init(struct radeon_device *rdev) ...@@ -99,26 +100,26 @@ int rv515_mc_init(struct radeon_device *rdev)
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
/* Write VRAM size in case we are limiting it */ /* Write VRAM size in case we are limiting it */
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size); WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
tmp = REG_SET(RV515_MC_FB_START, rdev->mc.vram_location >> 16); tmp = REG_SET(MC_FB_START, rdev->mc.vram_location >> 16);
WREG32(0x134, tmp); WREG32(0x134, tmp);
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(RV515_MC_FB_TOP, tmp >> 16); tmp = REG_SET(MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(RV515_MC_FB_START, rdev->mc.vram_location >> 16); tmp |= REG_SET(MC_FB_START, rdev->mc.vram_location >> 16);
WREG32_MC(RV515_MC_FB_LOCATION, tmp); WREG32_MC(MC_FB_LOCATION, tmp);
WREG32(RS690_HDP_FB_LOCATION, rdev->mc.vram_location >> 16); WREG32(HDP_FB_LOCATION, rdev->mc.vram_location >> 16);
WREG32(0x310, rdev->mc.vram_location); WREG32(0x310, rdev->mc.vram_location);
if (rdev->flags & RADEON_IS_AGP) { if (rdev->flags & RADEON_IS_AGP) {
tmp = rdev->mc.gtt_location + rdev->mc.gtt_size - 1; tmp = rdev->mc.gtt_location + rdev->mc.gtt_size - 1;
tmp = REG_SET(RV515_MC_AGP_TOP, tmp >> 16); tmp = REG_SET(MC_AGP_TOP, tmp >> 16);
tmp |= REG_SET(RV515_MC_AGP_START, rdev->mc.gtt_location >> 16); tmp |= REG_SET(MC_AGP_START, rdev->mc.gtt_location >> 16);
WREG32_MC(RV515_MC_AGP_LOCATION, tmp); WREG32_MC(MC_AGP_LOCATION, tmp);
WREG32_MC(RV515_MC_AGP_BASE, rdev->mc.agp_base); WREG32_MC(MC_AGP_BASE, rdev->mc.agp_base);
WREG32_MC(RV515_MC_AGP_BASE_2, 0); WREG32_MC(MC_AGP_BASE_2, 0);
} else { } else {
WREG32_MC(RV515_MC_AGP_LOCATION, 0x0FFFFFFF); WREG32_MC(MC_AGP_LOCATION, 0x0FFFFFFF);
WREG32_MC(RV515_MC_AGP_BASE, 0); WREG32_MC(MC_AGP_BASE, 0);
WREG32_MC(RV515_MC_AGP_BASE_2, 0); WREG32_MC(MC_AGP_BASE_2, 0);
} }
return 0; return 0;
} }
...@@ -136,95 +137,67 @@ void rv515_mc_fini(struct radeon_device *rdev) ...@@ -136,95 +137,67 @@ void rv515_mc_fini(struct radeon_device *rdev)
*/ */
void rv515_ring_start(struct radeon_device *rdev) void rv515_ring_start(struct radeon_device *rdev)
{ {
unsigned gb_tile_config;
int r; int r;
/* Sub pixel 1/12 so we can have 4K rendering according to doc */
gb_tile_config = R300_ENABLE_TILING | R300_TILE_SIZE_16;
switch (rdev->num_gb_pipes) {
case 2:
gb_tile_config |= R300_PIPE_COUNT_R300;
break;
case 3:
gb_tile_config |= R300_PIPE_COUNT_R420_3P;
break;
case 4:
gb_tile_config |= R300_PIPE_COUNT_R420;
break;
case 1:
default:
gb_tile_config |= R300_PIPE_COUNT_RV350;
break;
}
r = radeon_ring_lock(rdev, 64); r = radeon_ring_lock(rdev, 64);
if (r) { if (r) {
return; return;
} }
radeon_ring_write(rdev, PACKET0(RADEON_ISYNC_CNTL, 0)); radeon_ring_write(rdev, PACKET0(ISYNC_CNTL, 0));
radeon_ring_write(rdev,
RADEON_ISYNC_ANY2D_IDLE3D |
RADEON_ISYNC_ANY3D_IDLE2D |
RADEON_ISYNC_WAIT_IDLEGUI |
RADEON_ISYNC_CPSCRATCH_IDLEGUI);
radeon_ring_write(rdev, PACKET0(R300_GB_TILE_CONFIG, 0));
radeon_ring_write(rdev, gb_tile_config);
radeon_ring_write(rdev, PACKET0(RADEON_WAIT_UNTIL, 0));
radeon_ring_write(rdev, radeon_ring_write(rdev,
RADEON_WAIT_2D_IDLECLEAN | ISYNC_ANY2D_IDLE3D |
RADEON_WAIT_3D_IDLECLEAN); ISYNC_ANY3D_IDLE2D |
ISYNC_WAIT_IDLEGUI |
ISYNC_CPSCRATCH_IDLEGUI);
radeon_ring_write(rdev, PACKET0(WAIT_UNTIL, 0));
radeon_ring_write(rdev, WAIT_2D_IDLECLEAN | WAIT_3D_IDLECLEAN);
radeon_ring_write(rdev, PACKET0(0x170C, 0)); radeon_ring_write(rdev, PACKET0(0x170C, 0));
radeon_ring_write(rdev, 1 << 31); radeon_ring_write(rdev, 1 << 31);
radeon_ring_write(rdev, PACKET0(R300_GB_SELECT, 0)); radeon_ring_write(rdev, PACKET0(GB_SELECT, 0));
radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0);
radeon_ring_write(rdev, PACKET0(R300_GB_ENABLE, 0)); radeon_ring_write(rdev, PACKET0(GB_ENABLE, 0));
radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0);
radeon_ring_write(rdev, PACKET0(0x42C8, 0)); radeon_ring_write(rdev, PACKET0(0x42C8, 0));
radeon_ring_write(rdev, (1 << rdev->num_gb_pipes) - 1); radeon_ring_write(rdev, (1 << rdev->num_gb_pipes) - 1);
radeon_ring_write(rdev, PACKET0(R500_VAP_INDEX_OFFSET, 0)); radeon_ring_write(rdev, PACKET0(VAP_INDEX_OFFSET, 0));
radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0);
radeon_ring_write(rdev, PACKET0(R300_RB3D_DSTCACHE_CTLSTAT, 0)); radeon_ring_write(rdev, PACKET0(RB3D_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(rdev, R300_RB3D_DC_FLUSH | R300_RB3D_DC_FREE); radeon_ring_write(rdev, RB3D_DC_FLUSH | RB3D_DC_FREE);
radeon_ring_write(rdev, PACKET0(R300_RB3D_ZCACHE_CTLSTAT, 0)); radeon_ring_write(rdev, PACKET0(ZB_ZCACHE_CTLSTAT, 0));
radeon_ring_write(rdev, R300_ZC_FLUSH | R300_ZC_FREE); radeon_ring_write(rdev, ZC_FLUSH | ZC_FREE);
radeon_ring_write(rdev, PACKET0(RADEON_WAIT_UNTIL, 0)); radeon_ring_write(rdev, PACKET0(WAIT_UNTIL, 0));
radeon_ring_write(rdev, radeon_ring_write(rdev, WAIT_2D_IDLECLEAN | WAIT_3D_IDLECLEAN);
RADEON_WAIT_2D_IDLECLEAN | radeon_ring_write(rdev, PACKET0(GB_AA_CONFIG, 0));
RADEON_WAIT_3D_IDLECLEAN);
radeon_ring_write(rdev, PACKET0(R300_GB_AA_CONFIG, 0));
radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0);
radeon_ring_write(rdev, PACKET0(R300_RB3D_DSTCACHE_CTLSTAT, 0)); radeon_ring_write(rdev, PACKET0(RB3D_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(rdev, R300_RB3D_DC_FLUSH | R300_RB3D_DC_FREE); radeon_ring_write(rdev, RB3D_DC_FLUSH | RB3D_DC_FREE);
radeon_ring_write(rdev, PACKET0(R300_RB3D_ZCACHE_CTLSTAT, 0)); radeon_ring_write(rdev, PACKET0(ZB_ZCACHE_CTLSTAT, 0));
radeon_ring_write(rdev, R300_ZC_FLUSH | R300_ZC_FREE); radeon_ring_write(rdev, ZC_FLUSH | ZC_FREE);
radeon_ring_write(rdev, PACKET0(R300_GB_MSPOS0, 0)); radeon_ring_write(rdev, PACKET0(GB_MSPOS0, 0));
radeon_ring_write(rdev,
((6 << R300_MS_X0_SHIFT) |
(6 << R300_MS_Y0_SHIFT) |
(6 << R300_MS_X1_SHIFT) |
(6 << R300_MS_Y1_SHIFT) |
(6 << R300_MS_X2_SHIFT) |
(6 << R300_MS_Y2_SHIFT) |
(6 << R300_MSBD0_Y_SHIFT) |
(6 << R300_MSBD0_X_SHIFT)));
radeon_ring_write(rdev, PACKET0(R300_GB_MSPOS1, 0));
radeon_ring_write(rdev, radeon_ring_write(rdev,
((6 << R300_MS_X3_SHIFT) | ((6 << MS_X0_SHIFT) |
(6 << R300_MS_Y3_SHIFT) | (6 << MS_Y0_SHIFT) |
(6 << R300_MS_X4_SHIFT) | (6 << MS_X1_SHIFT) |
(6 << R300_MS_Y4_SHIFT) | (6 << MS_Y1_SHIFT) |
(6 << R300_MS_X5_SHIFT) | (6 << MS_X2_SHIFT) |
(6 << R300_MS_Y5_SHIFT) | (6 << MS_Y2_SHIFT) |
(6 << R300_MSBD1_SHIFT))); (6 << MSBD0_Y_SHIFT) |
radeon_ring_write(rdev, PACKET0(R300_GA_ENHANCE, 0)); (6 << MSBD0_X_SHIFT)));
radeon_ring_write(rdev, R300_GA_DEADLOCK_CNTL | R300_GA_FASTSYNC_CNTL); radeon_ring_write(rdev, PACKET0(GB_MSPOS1, 0));
radeon_ring_write(rdev, PACKET0(R300_GA_POLY_MODE, 0));
radeon_ring_write(rdev, radeon_ring_write(rdev,
R300_FRONT_PTYPE_TRIANGE | R300_BACK_PTYPE_TRIANGE); ((6 << MS_X3_SHIFT) |
radeon_ring_write(rdev, PACKET0(R300_GA_ROUND_MODE, 0)); (6 << MS_Y3_SHIFT) |
radeon_ring_write(rdev, (6 << MS_X4_SHIFT) |
R300_GEOMETRY_ROUND_NEAREST | (6 << MS_Y4_SHIFT) |
R300_COLOR_ROUND_NEAREST); (6 << MS_X5_SHIFT) |
(6 << MS_Y5_SHIFT) |
(6 << MSBD1_SHIFT)));
radeon_ring_write(rdev, PACKET0(GA_ENHANCE, 0));
radeon_ring_write(rdev, GA_DEADLOCK_CNTL | GA_FASTSYNC_CNTL);
radeon_ring_write(rdev, PACKET0(GA_POLY_MODE, 0));
radeon_ring_write(rdev, FRONT_PTYPE_TRIANGE | BACK_PTYPE_TRIANGE);
radeon_ring_write(rdev, PACKET0(GA_ROUND_MODE, 0));
radeon_ring_write(rdev, GEOMETRY_ROUND_NEAREST | COLOR_ROUND_NEAREST);
radeon_ring_write(rdev, PACKET0(0x20C8, 0)); radeon_ring_write(rdev, PACKET0(0x20C8, 0));
radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0);
radeon_ring_unlock_commit(rdev); radeon_ring_unlock_commit(rdev);
...@@ -242,8 +215,8 @@ int rv515_mc_wait_for_idle(struct radeon_device *rdev) ...@@ -242,8 +215,8 @@ int rv515_mc_wait_for_idle(struct radeon_device *rdev)
for (i = 0; i < rdev->usec_timeout; i++) { for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */ /* read MC_STATUS */
tmp = RREG32_MC(RV515_MC_STATUS); tmp = RREG32_MC(MC_STATUS);
if (tmp & RV515_MC_STATUS_IDLE) { if (tmp & MC_STATUS_IDLE) {
return 0; return 0;
} }
DRM_UDELAY(1); DRM_UDELAY(1);
...@@ -291,33 +264,33 @@ int rv515_ga_reset(struct radeon_device *rdev) ...@@ -291,33 +264,33 @@ int rv515_ga_reset(struct radeon_device *rdev)
reinit_cp = rdev->cp.ready; reinit_cp = rdev->cp.ready;
rdev->cp.ready = false; rdev->cp.ready = false;
for (i = 0; i < rdev->usec_timeout; i++) { for (i = 0; i < rdev->usec_timeout; i++) {
WREG32(RADEON_CP_CSQ_MODE, 0); WREG32(CP_CSQ_MODE, 0);
WREG32(RADEON_CP_CSQ_CNTL, 0); WREG32(CP_CSQ_CNTL, 0);
WREG32(RADEON_RBBM_SOFT_RESET, 0x32005); WREG32(RBBM_SOFT_RESET, 0x32005);
(void)RREG32(RADEON_RBBM_SOFT_RESET); (void)RREG32(RBBM_SOFT_RESET);
udelay(200); udelay(200);
WREG32(RADEON_RBBM_SOFT_RESET, 0); WREG32(RBBM_SOFT_RESET, 0);
/* Wait to prevent race in RBBM_STATUS */ /* Wait to prevent race in RBBM_STATUS */
mdelay(1); mdelay(1);
tmp = RREG32(RADEON_RBBM_STATUS); tmp = RREG32(RBBM_STATUS);
if (tmp & ((1 << 20) | (1 << 26))) { if (tmp & ((1 << 20) | (1 << 26))) {
DRM_ERROR("VAP & CP still busy (RBBM_STATUS=0x%08X)\n", tmp); DRM_ERROR("VAP & CP still busy (RBBM_STATUS=0x%08X)\n", tmp);
/* GA still busy soft reset it */ /* GA still busy soft reset it */
WREG32(0x429C, 0x200); WREG32(0x429C, 0x200);
WREG32(R300_VAP_PVS_STATE_FLUSH_REG, 0); WREG32(VAP_PVS_STATE_FLUSH_REG, 0);
WREG32(0x43E0, 0); WREG32(0x43E0, 0);
WREG32(0x43E4, 0); WREG32(0x43E4, 0);
WREG32(0x24AC, 0); WREG32(0x24AC, 0);
} }
/* Wait to prevent race in RBBM_STATUS */ /* Wait to prevent race in RBBM_STATUS */
mdelay(1); mdelay(1);
tmp = RREG32(RADEON_RBBM_STATUS); tmp = RREG32(RBBM_STATUS);
if (!(tmp & ((1 << 20) | (1 << 26)))) { if (!(tmp & ((1 << 20) | (1 << 26)))) {
break; break;
} }
} }
for (i = 0; i < rdev->usec_timeout; i++) { for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS); tmp = RREG32(RBBM_STATUS);
if (!(tmp & ((1 << 20) | (1 << 26)))) { if (!(tmp & ((1 << 20) | (1 << 26)))) {
DRM_INFO("GA reset succeed (RBBM_STATUS=0x%08X)\n", DRM_INFO("GA reset succeed (RBBM_STATUS=0x%08X)\n",
tmp); tmp);
...@@ -331,7 +304,7 @@ int rv515_ga_reset(struct radeon_device *rdev) ...@@ -331,7 +304,7 @@ int rv515_ga_reset(struct radeon_device *rdev)
} }
DRM_UDELAY(1); DRM_UDELAY(1);
} }
tmp = RREG32(RADEON_RBBM_STATUS); tmp = RREG32(RBBM_STATUS);
DRM_ERROR("Failed to reset GA ! (RBBM_STATUS=0x%08X)\n", tmp); DRM_ERROR("Failed to reset GA ! (RBBM_STATUS=0x%08X)\n", tmp);
return -1; return -1;
} }
...@@ -341,7 +314,7 @@ int rv515_gpu_reset(struct radeon_device *rdev) ...@@ -341,7 +314,7 @@ int rv515_gpu_reset(struct radeon_device *rdev)
uint32_t status; uint32_t status;
/* reset order likely matter */ /* reset order likely matter */
status = RREG32(RADEON_RBBM_STATUS); status = RREG32(RBBM_STATUS);
/* reset HDP */ /* reset HDP */
r100_hdp_reset(rdev); r100_hdp_reset(rdev);
/* reset rb2d */ /* reset rb2d */
...@@ -353,12 +326,12 @@ int rv515_gpu_reset(struct radeon_device *rdev) ...@@ -353,12 +326,12 @@ int rv515_gpu_reset(struct radeon_device *rdev)
rv515_ga_reset(rdev); rv515_ga_reset(rdev);
} }
/* reset CP */ /* reset CP */
status = RREG32(RADEON_RBBM_STATUS); status = RREG32(RBBM_STATUS);
if (status & (1 << 16)) { if (status & (1 << 16)) {
r100_cp_reset(rdev); r100_cp_reset(rdev);
} }
/* Check if GPU is idle */ /* Check if GPU is idle */
status = RREG32(RADEON_RBBM_STATUS); status = RREG32(RBBM_STATUS);
if (status & (1 << 31)) { if (status & (1 << 31)) {
DRM_ERROR("Failed to reset GPU (RBBM_STATUS=0x%08X)\n", status); DRM_ERROR("Failed to reset GPU (RBBM_STATUS=0x%08X)\n", status);
return -1; return -1;
...@@ -377,8 +350,7 @@ static void rv515_vram_get_type(struct radeon_device *rdev) ...@@ -377,8 +350,7 @@ static void rv515_vram_get_type(struct radeon_device *rdev)
rdev->mc.vram_width = 128; rdev->mc.vram_width = 128;
rdev->mc.vram_is_ddr = true; rdev->mc.vram_is_ddr = true;
tmp = RREG32_MC(RV515_MC_CNTL); tmp = RREG32_MC(RV515_MC_CNTL) & MEM_NUM_CHANNELS_MASK;
tmp &= RV515_MEM_NUM_CHANNELS_MASK;
switch (tmp) { switch (tmp) {
case 0: case 0:
rdev->mc.vram_width = 64; rdev->mc.vram_width = 64;
...@@ -394,11 +366,16 @@ static void rv515_vram_get_type(struct radeon_device *rdev) ...@@ -394,11 +366,16 @@ static void rv515_vram_get_type(struct radeon_device *rdev)
void rv515_vram_info(struct radeon_device *rdev) void rv515_vram_info(struct radeon_device *rdev)
{ {
fixed20_12 a;
rv515_vram_get_type(rdev); rv515_vram_get_type(rdev);
rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); /* FIXME: we should enforce default clock in case GPU is not in
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); * default setup
*/
a.full = rfixed_const(100);
rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk);
rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);
} }
...@@ -409,35 +386,35 @@ uint32_t rv515_mc_rreg(struct radeon_device *rdev, uint32_t reg) ...@@ -409,35 +386,35 @@ uint32_t rv515_mc_rreg(struct radeon_device *rdev, uint32_t reg)
{ {
uint32_t r; uint32_t r;
WREG32(R520_MC_IND_INDEX, 0x7f0000 | (reg & 0xffff)); WREG32(MC_IND_INDEX, 0x7f0000 | (reg & 0xffff));
r = RREG32(R520_MC_IND_DATA); r = RREG32(MC_IND_DATA);
WREG32(R520_MC_IND_INDEX, 0); WREG32(MC_IND_INDEX, 0);
return r; return r;
} }
void rv515_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) void rv515_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
{ {
WREG32(R520_MC_IND_INDEX, 0xff0000 | ((reg) & 0xffff)); WREG32(MC_IND_INDEX, 0xff0000 | ((reg) & 0xffff));
WREG32(R520_MC_IND_DATA, (v)); WREG32(MC_IND_DATA, (v));
WREG32(R520_MC_IND_INDEX, 0); WREG32(MC_IND_INDEX, 0);
} }
uint32_t rv515_pcie_rreg(struct radeon_device *rdev, uint32_t reg) uint32_t rv515_pcie_rreg(struct radeon_device *rdev, uint32_t reg)
{ {
uint32_t r; uint32_t r;
WREG32(RADEON_PCIE_INDEX, ((reg) & 0x7ff)); WREG32(PCIE_INDEX, ((reg) & 0x7ff));
(void)RREG32(RADEON_PCIE_INDEX); (void)RREG32(PCIE_INDEX);
r = RREG32(RADEON_PCIE_DATA); r = RREG32(PCIE_DATA);
return r; return r;
} }
void rv515_pcie_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) void rv515_pcie_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
{ {
WREG32(RADEON_PCIE_INDEX, ((reg) & 0x7ff)); WREG32(PCIE_INDEX, ((reg) & 0x7ff));
(void)RREG32(RADEON_PCIE_INDEX); (void)RREG32(PCIE_INDEX);
WREG32(RADEON_PCIE_DATA, (v)); WREG32(PCIE_DATA, (v));
(void)RREG32(RADEON_PCIE_DATA); (void)RREG32(PCIE_DATA);
} }
...@@ -452,13 +429,13 @@ static int rv515_debugfs_pipes_info(struct seq_file *m, void *data) ...@@ -452,13 +429,13 @@ static int rv515_debugfs_pipes_info(struct seq_file *m, void *data)
struct radeon_device *rdev = dev->dev_private; struct radeon_device *rdev = dev->dev_private;
uint32_t tmp; uint32_t tmp;
tmp = RREG32(R400_GB_PIPE_SELECT); tmp = RREG32(GB_PIPE_SELECT);
seq_printf(m, "GB_PIPE_SELECT 0x%08x\n", tmp); seq_printf(m, "GB_PIPE_SELECT 0x%08x\n", tmp);
tmp = RREG32(R500_SU_REG_DEST); tmp = RREG32(SU_REG_DEST);
seq_printf(m, "SU_REG_DEST 0x%08x\n", tmp); seq_printf(m, "SU_REG_DEST 0x%08x\n", tmp);
tmp = RREG32(R300_GB_TILE_CONFIG); tmp = RREG32(GB_TILE_CONFIG);
seq_printf(m, "GB_TILE_CONFIG 0x%08x\n", tmp); seq_printf(m, "GB_TILE_CONFIG 0x%08x\n", tmp);
tmp = RREG32(R300_DST_PIPE_CONFIG); tmp = RREG32(DST_PIPE_CONFIG);
seq_printf(m, "DST_PIPE_CONFIG 0x%08x\n", tmp); seq_printf(m, "DST_PIPE_CONFIG 0x%08x\n", tmp);
return 0; return 0;
} }
...@@ -509,9 +486,9 @@ int rv515_debugfs_ga_info_init(struct radeon_device *rdev) ...@@ -509,9 +486,9 @@ int rv515_debugfs_ga_info_init(struct radeon_device *rdev)
/* /*
* Asic initialization * Asic initialization
*/ */
static const unsigned r500_reg_safe_bm[159] = { static const unsigned r500_reg_safe_bm[219] = {
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFBF, 0xFFFFFFFF, 0xFFFFFFBF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
...@@ -549,14 +526,575 @@ static const unsigned r500_reg_safe_bm[159] = { ...@@ -549,14 +526,575 @@ static const unsigned r500_reg_safe_bm[159] = {
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFF80FFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFF80FFFF,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x0003FC01, 0x3FFFFCF8, 0xFE800B19, 0x0003FC01, 0x3FFFFCF8, 0xFE800B19, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
}; };
int rv515_init(struct radeon_device *rdev) int rv515_init(struct radeon_device *rdev)
{ {
rdev->config.r300.reg_safe_bm = r500_reg_safe_bm; rdev->config.r300.reg_safe_bm = r500_reg_safe_bm;
rdev->config.r300.reg_safe_bm_size = ARRAY_SIZE(r500_reg_safe_bm); rdev->config.r300.reg_safe_bm_size = ARRAY_SIZE(r500_reg_safe_bm);
return 0; return 0;
} }
void atom_rv515_force_tv_scaler(struct radeon_device *rdev)
{
WREG32(0x659C, 0x0);
WREG32(0x6594, 0x705);
WREG32(0x65A4, 0x10001);
WREG32(0x65D8, 0x0);
WREG32(0x65B0, 0x0);
WREG32(0x65C0, 0x0);
WREG32(0x65D4, 0x0);
WREG32(0x6578, 0x0);
WREG32(0x657C, 0x841880A8);
WREG32(0x6578, 0x1);
WREG32(0x657C, 0x84208680);
WREG32(0x6578, 0x2);
WREG32(0x657C, 0xBFF880B0);
WREG32(0x6578, 0x100);
WREG32(0x657C, 0x83D88088);
WREG32(0x6578, 0x101);
WREG32(0x657C, 0x84608680);
WREG32(0x6578, 0x102);
WREG32(0x657C, 0xBFF080D0);
WREG32(0x6578, 0x200);
WREG32(0x657C, 0x83988068);
WREG32(0x6578, 0x201);
WREG32(0x657C, 0x84A08680);
WREG32(0x6578, 0x202);
WREG32(0x657C, 0xBFF080F8);
WREG32(0x6578, 0x300);
WREG32(0x657C, 0x83588058);
WREG32(0x6578, 0x301);
WREG32(0x657C, 0x84E08660);
WREG32(0x6578, 0x302);
WREG32(0x657C, 0xBFF88120);
WREG32(0x6578, 0x400);
WREG32(0x657C, 0x83188040);
WREG32(0x6578, 0x401);
WREG32(0x657C, 0x85008660);
WREG32(0x6578, 0x402);
WREG32(0x657C, 0xBFF88150);
WREG32(0x6578, 0x500);
WREG32(0x657C, 0x82D88030);
WREG32(0x6578, 0x501);
WREG32(0x657C, 0x85408640);
WREG32(0x6578, 0x502);
WREG32(0x657C, 0xBFF88180);
WREG32(0x6578, 0x600);
WREG32(0x657C, 0x82A08018);
WREG32(0x6578, 0x601);
WREG32(0x657C, 0x85808620);
WREG32(0x6578, 0x602);
WREG32(0x657C, 0xBFF081B8);
WREG32(0x6578, 0x700);
WREG32(0x657C, 0x82608010);
WREG32(0x6578, 0x701);
WREG32(0x657C, 0x85A08600);
WREG32(0x6578, 0x702);
WREG32(0x657C, 0x800081F0);
WREG32(0x6578, 0x800);
WREG32(0x657C, 0x8228BFF8);
WREG32(0x6578, 0x801);
WREG32(0x657C, 0x85E085E0);
WREG32(0x6578, 0x802);
WREG32(0x657C, 0xBFF88228);
WREG32(0x6578, 0x10000);
WREG32(0x657C, 0x82A8BF00);
WREG32(0x6578, 0x10001);
WREG32(0x657C, 0x82A08CC0);
WREG32(0x6578, 0x10002);
WREG32(0x657C, 0x8008BEF8);
WREG32(0x6578, 0x10100);
WREG32(0x657C, 0x81F0BF28);
WREG32(0x6578, 0x10101);
WREG32(0x657C, 0x83608CA0);
WREG32(0x6578, 0x10102);
WREG32(0x657C, 0x8018BED0);
WREG32(0x6578, 0x10200);
WREG32(0x657C, 0x8148BF38);
WREG32(0x6578, 0x10201);
WREG32(0x657C, 0x84408C80);
WREG32(0x6578, 0x10202);
WREG32(0x657C, 0x8008BEB8);
WREG32(0x6578, 0x10300);
WREG32(0x657C, 0x80B0BF78);
WREG32(0x6578, 0x10301);
WREG32(0x657C, 0x85008C20);
WREG32(0x6578, 0x10302);
WREG32(0x657C, 0x8020BEA0);
WREG32(0x6578, 0x10400);
WREG32(0x657C, 0x8028BF90);
WREG32(0x6578, 0x10401);
WREG32(0x657C, 0x85E08BC0);
WREG32(0x6578, 0x10402);
WREG32(0x657C, 0x8018BE90);
WREG32(0x6578, 0x10500);
WREG32(0x657C, 0xBFB8BFB0);
WREG32(0x6578, 0x10501);
WREG32(0x657C, 0x86C08B40);
WREG32(0x6578, 0x10502);
WREG32(0x657C, 0x8010BE90);
WREG32(0x6578, 0x10600);
WREG32(0x657C, 0xBF58BFC8);
WREG32(0x6578, 0x10601);
WREG32(0x657C, 0x87A08AA0);
WREG32(0x6578, 0x10602);
WREG32(0x657C, 0x8010BE98);
WREG32(0x6578, 0x10700);
WREG32(0x657C, 0xBF10BFF0);
WREG32(0x6578, 0x10701);
WREG32(0x657C, 0x886089E0);
WREG32(0x6578, 0x10702);
WREG32(0x657C, 0x8018BEB0);
WREG32(0x6578, 0x10800);
WREG32(0x657C, 0xBED8BFE8);
WREG32(0x6578, 0x10801);
WREG32(0x657C, 0x89408940);
WREG32(0x6578, 0x10802);
WREG32(0x657C, 0xBFE8BED8);
WREG32(0x6578, 0x20000);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20001);
WREG32(0x657C, 0x90008000);
WREG32(0x6578, 0x20002);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20003);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20100);
WREG32(0x657C, 0x80108000);
WREG32(0x6578, 0x20101);
WREG32(0x657C, 0x8FE0BF70);
WREG32(0x6578, 0x20102);
WREG32(0x657C, 0xBFE880C0);
WREG32(0x6578, 0x20103);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20200);
WREG32(0x657C, 0x8018BFF8);
WREG32(0x6578, 0x20201);
WREG32(0x657C, 0x8F80BF08);
WREG32(0x6578, 0x20202);
WREG32(0x657C, 0xBFD081A0);
WREG32(0x6578, 0x20203);
WREG32(0x657C, 0xBFF88000);
WREG32(0x6578, 0x20300);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20301);
WREG32(0x657C, 0x8EE0BEC0);
WREG32(0x6578, 0x20302);
WREG32(0x657C, 0xBFB082A0);
WREG32(0x6578, 0x20303);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20400);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20401);
WREG32(0x657C, 0x8E00BEA0);
WREG32(0x6578, 0x20402);
WREG32(0x657C, 0xBF8883C0);
WREG32(0x6578, 0x20403);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x20500);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20501);
WREG32(0x657C, 0x8D00BE90);
WREG32(0x6578, 0x20502);
WREG32(0x657C, 0xBF588500);
WREG32(0x6578, 0x20503);
WREG32(0x657C, 0x80008008);
WREG32(0x6578, 0x20600);
WREG32(0x657C, 0x80188000);
WREG32(0x6578, 0x20601);
WREG32(0x657C, 0x8BC0BE98);
WREG32(0x6578, 0x20602);
WREG32(0x657C, 0xBF308660);
WREG32(0x6578, 0x20603);
WREG32(0x657C, 0x80008008);
WREG32(0x6578, 0x20700);
WREG32(0x657C, 0x80108000);
WREG32(0x6578, 0x20701);
WREG32(0x657C, 0x8A80BEB0);
WREG32(0x6578, 0x20702);
WREG32(0x657C, 0xBF0087C0);
WREG32(0x6578, 0x20703);
WREG32(0x657C, 0x80008008);
WREG32(0x6578, 0x20800);
WREG32(0x657C, 0x80108000);
WREG32(0x6578, 0x20801);
WREG32(0x657C, 0x8920BED0);
WREG32(0x6578, 0x20802);
WREG32(0x657C, 0xBED08920);
WREG32(0x6578, 0x20803);
WREG32(0x657C, 0x80008010);
WREG32(0x6578, 0x30000);
WREG32(0x657C, 0x90008000);
WREG32(0x6578, 0x30001);
WREG32(0x657C, 0x80008000);
WREG32(0x6578, 0x30100);
WREG32(0x657C, 0x8FE0BF90);
WREG32(0x6578, 0x30101);
WREG32(0x657C, 0xBFF880A0);
WREG32(0x6578, 0x30200);
WREG32(0x657C, 0x8F60BF40);
WREG32(0x6578, 0x30201);
WREG32(0x657C, 0xBFE88180);
WREG32(0x6578, 0x30300);
WREG32(0x657C, 0x8EC0BF00);
WREG32(0x6578, 0x30301);
WREG32(0x657C, 0xBFC88280);
WREG32(0x6578, 0x30400);
WREG32(0x657C, 0x8DE0BEE0);
WREG32(0x6578, 0x30401);
WREG32(0x657C, 0xBFA083A0);
WREG32(0x6578, 0x30500);
WREG32(0x657C, 0x8CE0BED0);
WREG32(0x6578, 0x30501);
WREG32(0x657C, 0xBF7884E0);
WREG32(0x6578, 0x30600);
WREG32(0x657C, 0x8BA0BED8);
WREG32(0x6578, 0x30601);
WREG32(0x657C, 0xBF508640);
WREG32(0x6578, 0x30700);
WREG32(0x657C, 0x8A60BEE8);
WREG32(0x6578, 0x30701);
WREG32(0x657C, 0xBF2087A0);
WREG32(0x6578, 0x30800);
WREG32(0x657C, 0x8900BF00);
WREG32(0x6578, 0x30801);
WREG32(0x657C, 0xBF008900);
}
struct rv515_watermark {
u32 lb_request_fifo_depth;
fixed20_12 num_line_pair;
fixed20_12 estimated_width;
fixed20_12 worst_case_latency;
fixed20_12 consumption_rate;
fixed20_12 active_time;
fixed20_12 dbpp;
fixed20_12 priority_mark_max;
fixed20_12 priority_mark;
fixed20_12 sclk;
};
void rv515_crtc_bandwidth_compute(struct radeon_device *rdev,
struct radeon_crtc *crtc,
struct rv515_watermark *wm)
{
struct drm_display_mode *mode = &crtc->base.mode;
fixed20_12 a, b, c;
fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width;
fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency;
if (!crtc->base.enabled) {
/* FIXME: wouldn't it better to set priority mark to maximum */
wm->lb_request_fifo_depth = 4;
return;
}
if (crtc->vsc.full > rfixed_const(2))
wm->num_line_pair.full = rfixed_const(2);
else
wm->num_line_pair.full = rfixed_const(1);
b.full = rfixed_const(mode->crtc_hdisplay);
c.full = rfixed_const(256);
a.full = rfixed_mul(wm->num_line_pair, b);
request_fifo_depth.full = rfixed_div(a, c);
if (a.full < rfixed_const(4)) {
wm->lb_request_fifo_depth = 4;
} else {
wm->lb_request_fifo_depth = rfixed_trunc(request_fifo_depth);
}
/* Determine consumption rate
* pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000)
* vtaps = number of vertical taps,
* vsc = vertical scaling ratio, defined as source/destination
* hsc = horizontal scaling ration, defined as source/destination
*/
a.full = rfixed_const(mode->clock);
b.full = rfixed_const(1000);
a.full = rfixed_div(a, b);
pclk.full = rfixed_div(b, a);
if (crtc->rmx_type != RMX_OFF) {
b.full = rfixed_const(2);
if (crtc->vsc.full > b.full)
b.full = crtc->vsc.full;
b.full = rfixed_mul(b, crtc->hsc);
c.full = rfixed_const(2);
b.full = rfixed_div(b, c);
consumption_time.full = rfixed_div(pclk, b);
} else {
consumption_time.full = pclk.full;
}
a.full = rfixed_const(1);
wm->consumption_rate.full = rfixed_div(a, consumption_time);
/* Determine line time
* LineTime = total time for one line of displayhtotal
* LineTime = total number of horizontal pixels
* pclk = pixel clock period(ns)
*/
a.full = rfixed_const(crtc->base.mode.crtc_htotal);
line_time.full = rfixed_mul(a, pclk);
/* Determine active time
* ActiveTime = time of active region of display within one line,
* hactive = total number of horizontal active pixels
* htotal = total number of horizontal pixels
*/
a.full = rfixed_const(crtc->base.mode.crtc_htotal);
b.full = rfixed_const(crtc->base.mode.crtc_hdisplay);
wm->active_time.full = rfixed_mul(line_time, b);
wm->active_time.full = rfixed_div(wm->active_time, a);
/* Determine chunk time
* ChunkTime = the time it takes the DCP to send one chunk of data
* to the LB which consists of pipeline delay and inter chunk gap
* sclk = system clock(Mhz)
*/
a.full = rfixed_const(600 * 1000);
chunk_time.full = rfixed_div(a, rdev->pm.sclk);
read_delay_latency.full = rfixed_const(1000);
/* Determine the worst case latency
* NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines)
* WorstCaseLatency = worst case time from urgent to when the MC starts
* to return data
* READ_DELAY_IDLE_MAX = constant of 1us
* ChunkTime = time it takes the DCP to send one chunk of data to the LB
* which consists of pipeline delay and inter chunk gap
*/
if (rfixed_trunc(wm->num_line_pair) > 1) {
a.full = rfixed_const(3);
wm->worst_case_latency.full = rfixed_mul(a, chunk_time);
wm->worst_case_latency.full += read_delay_latency.full;
} else {
wm->worst_case_latency.full = chunk_time.full + read_delay_latency.full;
}
/* Determine the tolerable latency
* TolerableLatency = Any given request has only 1 line time
* for the data to be returned
* LBRequestFifoDepth = Number of chunk requests the LB can
* put into the request FIFO for a display
* LineTime = total time for one line of display
* ChunkTime = the time it takes the DCP to send one chunk
* of data to the LB which consists of
* pipeline delay and inter chunk gap
*/
if ((2+wm->lb_request_fifo_depth) >= rfixed_trunc(request_fifo_depth)) {
tolerable_latency.full = line_time.full;
} else {
tolerable_latency.full = rfixed_const(wm->lb_request_fifo_depth - 2);
tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full;
tolerable_latency.full = rfixed_mul(tolerable_latency, chunk_time);
tolerable_latency.full = line_time.full - tolerable_latency.full;
}
/* We assume worst case 32bits (4 bytes) */
wm->dbpp.full = rfixed_const(2 * 16);
/* Determine the maximum priority mark
* width = viewport width in pixels
*/
a.full = rfixed_const(16);
wm->priority_mark_max.full = rfixed_const(crtc->base.mode.crtc_hdisplay);
wm->priority_mark_max.full = rfixed_div(wm->priority_mark_max, a);
/* Determine estimated width */
estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full;
estimated_width.full = rfixed_div(estimated_width, consumption_time);
if (rfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) {
wm->priority_mark.full = rfixed_const(10);
} else {
a.full = rfixed_const(16);
wm->priority_mark.full = rfixed_div(estimated_width, a);
wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full;
}
}
void rv515_bandwidth_avivo_update(struct radeon_device *rdev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
struct rv515_watermark wm0;
struct rv515_watermark wm1;
u32 tmp;
fixed20_12 priority_mark02, priority_mark12, fill_rate;
fixed20_12 a, b;
if (rdev->mode_info.crtcs[0]->base.enabled)
mode0 = &rdev->mode_info.crtcs[0]->base.mode;
if (rdev->mode_info.crtcs[1]->base.enabled)
mode1 = &rdev->mode_info.crtcs[1]->base.mode;
rs690_line_buffer_adjust(rdev, mode0, mode1);
rv515_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0);
rv515_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1);
tmp = wm0.lb_request_fifo_depth;
tmp |= wm1.lb_request_fifo_depth << 16;
WREG32(LB_MAX_REQ_OUTSTANDING, tmp);
if (mode0 && mode1) {
if (rfixed_trunc(wm0.dbpp) > 64)
a.full = rfixed_div(wm0.dbpp, wm0.num_line_pair);
else
a.full = wm0.num_line_pair.full;
if (rfixed_trunc(wm1.dbpp) > 64)
b.full = rfixed_div(wm1.dbpp, wm1.num_line_pair);
else
b.full = wm1.num_line_pair.full;
a.full += b.full;
fill_rate.full = rfixed_div(wm0.sclk, a);
if (wm0.consumption_rate.full > fill_rate.full) {
b.full = wm0.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm0.active_time);
a.full = rfixed_const(16);
b.full = rfixed_div(b, a);
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
priority_mark02.full = a.full + b.full;
} else {
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark02.full = rfixed_div(a, b);
}
if (wm1.consumption_rate.full > fill_rate.full) {
b.full = wm1.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm1.active_time);
a.full = rfixed_const(16);
b.full = rfixed_div(b, a);
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
priority_mark12.full = a.full + b.full;
} else {
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark12.full = rfixed_div(a, b);
}
if (wm0.priority_mark.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark.full;
if (rfixed_trunc(priority_mark02) < 0)
priority_mark02.full = 0;
if (wm0.priority_mark_max.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark_max.full;
if (wm1.priority_mark.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark.full;
if (rfixed_trunc(priority_mark12) < 0)
priority_mark12.full = 0;
if (wm1.priority_mark_max.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark_max.full;
WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02));
WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02));
WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12));
WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12));
} else if (mode0) {
if (rfixed_trunc(wm0.dbpp) > 64)
a.full = rfixed_div(wm0.dbpp, wm0.num_line_pair);
else
a.full = wm0.num_line_pair.full;
fill_rate.full = rfixed_div(wm0.sclk, a);
if (wm0.consumption_rate.full > fill_rate.full) {
b.full = wm0.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm0.active_time);
a.full = rfixed_const(16);
b.full = rfixed_div(b, a);
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
priority_mark02.full = a.full + b.full;
} else {
a.full = rfixed_mul(wm0.worst_case_latency,
wm0.consumption_rate);
b.full = rfixed_const(16);
priority_mark02.full = rfixed_div(a, b);
}
if (wm0.priority_mark.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark.full;
if (rfixed_trunc(priority_mark02) < 0)
priority_mark02.full = 0;
if (wm0.priority_mark_max.full > priority_mark02.full)
priority_mark02.full = wm0.priority_mark_max.full;
WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02));
WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02));
WREG32(D2MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF);
WREG32(D2MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF);
} else {
if (rfixed_trunc(wm1.dbpp) > 64)
a.full = rfixed_div(wm1.dbpp, wm1.num_line_pair);
else
a.full = wm1.num_line_pair.full;
fill_rate.full = rfixed_div(wm1.sclk, a);
if (wm1.consumption_rate.full > fill_rate.full) {
b.full = wm1.consumption_rate.full - fill_rate.full;
b.full = rfixed_mul(b, wm1.active_time);
a.full = rfixed_const(16);
b.full = rfixed_div(b, a);
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
priority_mark12.full = a.full + b.full;
} else {
a.full = rfixed_mul(wm1.worst_case_latency,
wm1.consumption_rate);
b.full = rfixed_const(16 * 1000);
priority_mark12.full = rfixed_div(a, b);
}
if (wm1.priority_mark.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark.full;
if (rfixed_trunc(priority_mark12) < 0)
priority_mark12.full = 0;
if (wm1.priority_mark_max.full > priority_mark12.full)
priority_mark12.full = wm1.priority_mark_max.full;
WREG32(D1MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF);
WREG32(D1MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF);
WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12));
WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12));
}
}
void rv515_bandwidth_update(struct radeon_device *rdev)
{
uint32_t tmp;
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
if (rdev->mode_info.crtcs[0]->base.enabled)
mode0 = &rdev->mode_info.crtcs[0]->base.mode;
if (rdev->mode_info.crtcs[1]->base.enabled)
mode1 = &rdev->mode_info.crtcs[1]->base.mode;
/*
* Set display0/1 priority up in the memory controller for
* modes if the user specifies HIGH for displaypriority
* option.
*/
if (rdev->disp_priority == 2) {
tmp = RREG32_MC(MC_MISC_LAT_TIMER);
tmp &= ~MC_DISP1R_INIT_LAT_MASK;
tmp &= ~MC_DISP0R_INIT_LAT_MASK;
if (mode1)
tmp |= (1 << MC_DISP1R_INIT_LAT_SHIFT);
if (mode0)
tmp |= (1 << MC_DISP0R_INIT_LAT_SHIFT);
WREG32_MC(MC_MISC_LAT_TIMER, tmp);
}
rv515_bandwidth_avivo_update(rdev);
}
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#ifndef RV515R_H
#define RV515R_H
/* RV515 registers */
#define PCIE_INDEX 0x0030
#define PCIE_DATA 0x0034
#define MC_IND_INDEX 0x0070
#define MC_IND_WR_EN (1 << 24)
#define MC_IND_DATA 0x0074
#define RBBM_SOFT_RESET 0x00F0
#define CONFIG_MEMSIZE 0x00F8
#define HDP_FB_LOCATION 0x0134
#define CP_CSQ_CNTL 0x0740
#define CP_CSQ_MODE 0x0744
#define CP_CSQ_ADDR 0x07F0
#define CP_CSQ_DATA 0x07F4
#define CP_CSQ_STAT 0x07F8
#define CP_CSQ2_STAT 0x07FC
#define RBBM_STATUS 0x0E40
#define DST_PIPE_CONFIG 0x170C
#define WAIT_UNTIL 0x1720
#define WAIT_2D_IDLE (1 << 14)
#define WAIT_3D_IDLE (1 << 15)
#define WAIT_2D_IDLECLEAN (1 << 16)
#define WAIT_3D_IDLECLEAN (1 << 17)
#define ISYNC_CNTL 0x1724
#define ISYNC_ANY2D_IDLE3D (1 << 0)
#define ISYNC_ANY3D_IDLE2D (1 << 1)
#define ISYNC_TRIG2D_IDLE3D (1 << 2)
#define ISYNC_TRIG3D_IDLE2D (1 << 3)
#define ISYNC_WAIT_IDLEGUI (1 << 4)
#define ISYNC_CPSCRATCH_IDLEGUI (1 << 5)
#define VAP_INDEX_OFFSET 0x208C
#define VAP_PVS_STATE_FLUSH_REG 0x2284
#define GB_ENABLE 0x4008
#define GB_MSPOS0 0x4010
#define MS_X0_SHIFT 0
#define MS_Y0_SHIFT 4
#define MS_X1_SHIFT 8
#define MS_Y1_SHIFT 12
#define MS_X2_SHIFT 16
#define MS_Y2_SHIFT 20
#define MSBD0_Y_SHIFT 24
#define MSBD0_X_SHIFT 28
#define GB_MSPOS1 0x4014
#define MS_X3_SHIFT 0
#define MS_Y3_SHIFT 4
#define MS_X4_SHIFT 8
#define MS_Y4_SHIFT 12
#define MS_X5_SHIFT 16
#define MS_Y5_SHIFT 20
#define MSBD1_SHIFT 24
#define GB_TILE_CONFIG 0x4018
#define ENABLE_TILING (1 << 0)
#define PIPE_COUNT_MASK 0x0000000E
#define PIPE_COUNT_SHIFT 1
#define TILE_SIZE_8 (0 << 4)
#define TILE_SIZE_16 (1 << 4)
#define TILE_SIZE_32 (2 << 4)
#define SUBPIXEL_1_12 (0 << 16)
#define SUBPIXEL_1_16 (1 << 16)
#define GB_SELECT 0x401C
#define GB_AA_CONFIG 0x4020
#define GB_PIPE_SELECT 0x402C
#define GA_ENHANCE 0x4274
#define GA_DEADLOCK_CNTL (1 << 0)
#define GA_FASTSYNC_CNTL (1 << 1)
#define GA_POLY_MODE 0x4288
#define FRONT_PTYPE_POINT (0 << 4)
#define FRONT_PTYPE_LINE (1 << 4)
#define FRONT_PTYPE_TRIANGE (2 << 4)
#define BACK_PTYPE_POINT (0 << 7)
#define BACK_PTYPE_LINE (1 << 7)
#define BACK_PTYPE_TRIANGE (2 << 7)
#define GA_ROUND_MODE 0x428C
#define GEOMETRY_ROUND_TRUNC (0 << 0)
#define GEOMETRY_ROUND_NEAREST (1 << 0)
#define COLOR_ROUND_TRUNC (0 << 2)
#define COLOR_ROUND_NEAREST (1 << 2)
#define SU_REG_DEST 0x42C8
#define RB3D_DSTCACHE_CTLSTAT 0x4E4C
#define RB3D_DC_FLUSH (2 << 0)
#define RB3D_DC_FREE (2 << 2)
#define RB3D_DC_FINISH (1 << 4)
#define ZB_ZCACHE_CTLSTAT 0x4F18
#define ZC_FLUSH (1 << 0)
#define ZC_FREE (1 << 1)
#define DC_LB_MEMORY_SPLIT 0x6520
#define DC_LB_MEMORY_SPLIT_MASK 0x00000003
#define DC_LB_MEMORY_SPLIT_SHIFT 0
#define DC_LB_MEMORY_SPLIT_D1HALF_D2HALF 0
#define DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q 1
#define DC_LB_MEMORY_SPLIT_D1_ONLY 2
#define DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q 3
#define DC_LB_MEMORY_SPLIT_SHIFT_MODE (1 << 2)
#define DC_LB_DISP1_END_ADR_SHIFT 4
#define DC_LB_DISP1_END_ADR_MASK 0x00007FF0
#define D1MODE_PRIORITY_A_CNT 0x6548
#define MODE_PRIORITY_MARK_MASK 0x00007FFF
#define MODE_PRIORITY_OFF (1 << 16)
#define MODE_PRIORITY_ALWAYS_ON (1 << 20)
#define MODE_PRIORITY_FORCE_MASK (1 << 24)
#define D1MODE_PRIORITY_B_CNT 0x654C
#define LB_MAX_REQ_OUTSTANDING 0x6D58
#define LB_D1_MAX_REQ_OUTSTANDING_MASK 0x0000000F
#define LB_D1_MAX_REQ_OUTSTANDING_SHIFT 0
#define LB_D2_MAX_REQ_OUTSTANDING_MASK 0x000F0000
#define LB_D2_MAX_REQ_OUTSTANDING_SHIFT 16
#define D2MODE_PRIORITY_A_CNT 0x6D48
#define D2MODE_PRIORITY_B_CNT 0x6D4C
/* ix[MC] registers */
#define MC_FB_LOCATION 0x01
#define MC_FB_START_MASK 0x0000FFFF
#define MC_FB_START_SHIFT 0
#define MC_FB_TOP_MASK 0xFFFF0000
#define MC_FB_TOP_SHIFT 16
#define MC_AGP_LOCATION 0x02
#define MC_AGP_START_MASK 0x0000FFFF
#define MC_AGP_START_SHIFT 0
#define MC_AGP_TOP_MASK 0xFFFF0000
#define MC_AGP_TOP_SHIFT 16
#define MC_AGP_BASE 0x03
#define MC_AGP_BASE_2 0x04
#define MC_CNTL 0x5
#define MEM_NUM_CHANNELS_MASK 0x00000003
#define MC_STATUS 0x08
#define MC_STATUS_IDLE (1 << 4)
#define MC_MISC_LAT_TIMER 0x09
#define MC_CPR_INIT_LAT_MASK 0x0000000F
#define MC_VF_INIT_LAT_MASK 0x000000F0
#define MC_DISP0R_INIT_LAT_MASK 0x00000F00
#define MC_DISP0R_INIT_LAT_SHIFT 8
#define MC_DISP1R_INIT_LAT_MASK 0x0000F000
#define MC_DISP1R_INIT_LAT_SHIFT 12
#define MC_FIXED_INIT_LAT_MASK 0x000F0000
#define MC_E2R_INIT_LAT_MASK 0x00F00000
#define SAME_PAGE_PRIO_MASK 0x0F000000
#define MC_GLOBW_INIT_LAT_MASK 0xF0000000
#endif
...@@ -67,7 +67,7 @@ int rv770_mc_init(struct radeon_device *rdev) ...@@ -67,7 +67,7 @@ int rv770_mc_init(struct radeon_device *rdev)
"programming pipes. Bad things might happen.\n"); "programming pipes. Bad things might happen.\n");
} }
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
tmp = REG_SET(R700_MC_FB_TOP, tmp >> 24); tmp = REG_SET(R700_MC_FB_TOP, tmp >> 24);
tmp |= REG_SET(R700_MC_FB_BASE, rdev->mc.vram_location >> 24); tmp |= REG_SET(R700_MC_FB_BASE, rdev->mc.vram_location >> 24);
WREG32(R700_MC_VM_FB_LOCATION, tmp); WREG32(R700_MC_VM_FB_LOCATION, tmp);
......
...@@ -43,7 +43,6 @@ ...@@ -43,7 +43,6 @@
#define TTM_BO_HASH_ORDER 13 #define TTM_BO_HASH_ORDER 13
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
static void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
static inline uint32_t ttm_bo_type_flags(unsigned type) static inline uint32_t ttm_bo_type_flags(unsigned type)
...@@ -224,6 +223,9 @@ static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) ...@@ -224,6 +223,9 @@ static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
TTM_ASSERT_LOCKED(&bo->mutex); TTM_ASSERT_LOCKED(&bo->mutex);
bo->ttm = NULL; bo->ttm = NULL;
if (bdev->need_dma32)
page_flags |= TTM_PAGE_FLAG_DMA32;
switch (bo->type) { switch (bo->type) {
case ttm_bo_type_device: case ttm_bo_type_device:
if (zero_alloc) if (zero_alloc)
...@@ -304,6 +306,9 @@ static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, ...@@ -304,6 +306,9 @@ static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
} }
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, evict, no_wait, mem); ret = ttm_bo_move_ttm(bo, evict, no_wait, mem);
...@@ -655,31 +660,52 @@ static int ttm_bo_mem_force_space(struct ttm_bo_device *bdev, ...@@ -655,31 +660,52 @@ static int ttm_bo_mem_force_space(struct ttm_bo_device *bdev,
return 0; return 0;
} }
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
bool disallow_fixed, bool disallow_fixed,
uint32_t mem_type, uint32_t mem_type,
uint32_t mask, uint32_t *res_mask) uint32_t proposed_placement,
uint32_t *masked_placement)
{ {
uint32_t cur_flags = ttm_bo_type_flags(mem_type); uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed) if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
return false; return false;
if ((cur_flags & mask & TTM_PL_MASK_MEM) == 0) if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
return false; return false;
if ((mask & man->available_caching) == 0) if ((proposed_placement & man->available_caching) == 0)
return false; return false;
if (mask & man->default_caching)
cur_flags |= man->default_caching;
else if (mask & TTM_PL_FLAG_CACHED)
cur_flags |= TTM_PL_FLAG_CACHED;
else if (mask & TTM_PL_FLAG_WC)
cur_flags |= TTM_PL_FLAG_WC;
else
cur_flags |= TTM_PL_FLAG_UNCACHED;
*res_mask = cur_flags; cur_flags |= (proposed_placement & man->available_caching);
*masked_placement = cur_flags;
return true; return true;
} }
...@@ -723,6 +749,9 @@ int ttm_bo_mem_space(struct ttm_buffer_object *bo, ...@@ -723,6 +749,9 @@ int ttm_bo_mem_space(struct ttm_buffer_object *bo,
if (!type_ok) if (!type_ok)
continue; continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
if (mem_type == TTM_PL_SYSTEM) if (mem_type == TTM_PL_SYSTEM)
break; break;
...@@ -779,6 +808,9 @@ int ttm_bo_mem_space(struct ttm_buffer_object *bo, ...@@ -779,6 +808,9 @@ int ttm_bo_mem_space(struct ttm_buffer_object *bo,
proposed_placement, &cur_flags)) proposed_placement, &cur_flags))
continue; continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
ret = ttm_bo_mem_force_space(bdev, mem, mem_type, ret = ttm_bo_mem_force_space(bdev, mem, mem_type,
interruptible, no_wait); interruptible, no_wait);
...@@ -1305,7 +1337,8 @@ EXPORT_SYMBOL(ttm_bo_device_release); ...@@ -1305,7 +1337,8 @@ EXPORT_SYMBOL(ttm_bo_device_release);
int ttm_bo_device_init(struct ttm_bo_device *bdev, int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_mem_global *mem_glob, struct ttm_mem_global *mem_glob,
struct ttm_bo_driver *driver, uint64_t file_page_offset) struct ttm_bo_driver *driver, uint64_t file_page_offset,
bool need_dma32)
{ {
int ret = -EINVAL; int ret = -EINVAL;
...@@ -1342,6 +1375,7 @@ int ttm_bo_device_init(struct ttm_bo_device *bdev, ...@@ -1342,6 +1375,7 @@ int ttm_bo_device_init(struct ttm_bo_device *bdev,
INIT_LIST_HEAD(&bdev->ddestroy); INIT_LIST_HEAD(&bdev->ddestroy);
INIT_LIST_HEAD(&bdev->swap_lru); INIT_LIST_HEAD(&bdev->swap_lru);
bdev->dev_mapping = NULL; bdev->dev_mapping = NULL;
bdev->need_dma32 = need_dma32;
ttm_mem_init_shrink(&bdev->shrink, ttm_bo_swapout); ttm_mem_init_shrink(&bdev->shrink, ttm_bo_swapout);
ret = ttm_mem_register_shrink(mem_glob, &bdev->shrink); ret = ttm_mem_register_shrink(mem_glob, &bdev->shrink);
if (unlikely(ret != 0)) { if (unlikely(ret != 0)) {
...@@ -1419,6 +1453,7 @@ void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) ...@@ -1419,6 +1453,7 @@ void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
} }
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
{ {
......
...@@ -136,7 +136,8 @@ static int ttm_copy_io_page(void *dst, void *src, unsigned long page) ...@@ -136,7 +136,8 @@ static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
} }
static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
unsigned long page) unsigned long page,
pgprot_t prot)
{ {
struct page *d = ttm_tt_get_page(ttm, page); struct page *d = ttm_tt_get_page(ttm, page);
void *dst; void *dst;
...@@ -145,17 +146,35 @@ static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, ...@@ -145,17 +146,35 @@ static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
return -ENOMEM; return -ENOMEM;
src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
dst = kmap(d);
#ifdef CONFIG_X86
dst = kmap_atomic_prot(d, KM_USER0, prot);
#else
if (prot != PAGE_KERNEL)
dst = vmap(&d, 1, 0, prot);
else
dst = kmap(d);
#endif
if (!dst) if (!dst)
return -ENOMEM; return -ENOMEM;
memcpy_fromio(dst, src, PAGE_SIZE); memcpy_fromio(dst, src, PAGE_SIZE);
kunmap(d);
#ifdef CONFIG_X86
kunmap_atomic(dst, KM_USER0);
#else
if (prot != PAGE_KERNEL)
vunmap(dst);
else
kunmap(d);
#endif
return 0; return 0;
} }
static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
unsigned long page) unsigned long page,
pgprot_t prot)
{ {
struct page *s = ttm_tt_get_page(ttm, page); struct page *s = ttm_tt_get_page(ttm, page);
void *src; void *src;
...@@ -164,12 +183,28 @@ static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, ...@@ -164,12 +183,28 @@ static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
return -ENOMEM; return -ENOMEM;
dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
src = kmap(s); #ifdef CONFIG_X86
src = kmap_atomic_prot(s, KM_USER0, prot);
#else
if (prot != PAGE_KERNEL)
src = vmap(&s, 1, 0, prot);
else
src = kmap(s);
#endif
if (!src) if (!src)
return -ENOMEM; return -ENOMEM;
memcpy_toio(dst, src, PAGE_SIZE); memcpy_toio(dst, src, PAGE_SIZE);
kunmap(s);
#ifdef CONFIG_X86
kunmap_atomic(src, KM_USER0);
#else
if (prot != PAGE_KERNEL)
vunmap(src);
else
kunmap(s);
#endif
return 0; return 0;
} }
...@@ -214,11 +249,17 @@ int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, ...@@ -214,11 +249,17 @@ int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
for (i = 0; i < new_mem->num_pages; ++i) { for (i = 0; i < new_mem->num_pages; ++i) {
page = i * dir + add; page = i * dir + add;
if (old_iomap == NULL) if (old_iomap == NULL) {
ret = ttm_copy_ttm_io_page(ttm, new_iomap, page); pgprot_t prot = ttm_io_prot(old_mem->placement,
else if (new_iomap == NULL) PAGE_KERNEL);
ret = ttm_copy_io_ttm_page(ttm, old_iomap, page); ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
else prot);
} else if (new_iomap == NULL) {
pgprot_t prot = ttm_io_prot(new_mem->placement,
PAGE_KERNEL);
ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
prot);
} else
ret = ttm_copy_io_page(new_iomap, old_iomap, page); ret = ttm_copy_io_page(new_iomap, old_iomap, page);
if (ret) if (ret)
goto out1; goto out1;
...@@ -509,8 +550,8 @@ int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, ...@@ -509,8 +550,8 @@ int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
if (evict) { if (evict) {
ret = ttm_bo_wait(bo, false, false, false); ret = ttm_bo_wait(bo, false, false, false);
spin_unlock(&bo->lock); spin_unlock(&bo->lock);
driver->sync_obj_unref(&bo->sync_obj); if (tmp_obj)
driver->sync_obj_unref(&tmp_obj);
if (ret) if (ret)
return ret; return ret;
...@@ -532,6 +573,8 @@ int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, ...@@ -532,6 +573,8 @@ int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
spin_unlock(&bo->lock); spin_unlock(&bo->lock);
if (tmp_obj)
driver->sync_obj_unref(&tmp_obj);
ret = ttm_buffer_object_transfer(bo, &ghost_obj); ret = ttm_buffer_object_transfer(bo, &ghost_obj);
if (ret) if (ret)
......
...@@ -101,6 +101,9 @@ static int ttm_bo_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) ...@@ -101,6 +101,9 @@ static int ttm_bo_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
return VM_FAULT_NOPAGE; return VM_FAULT_NOPAGE;
} }
if (bdev->driver->fault_reserve_notify)
bdev->driver->fault_reserve_notify(bo);
/* /*
* Wait for buffer data in transit, due to a pipelined * Wait for buffer data in transit, due to a pipelined
* move. * move.
......
...@@ -86,10 +86,16 @@ void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages) ...@@ -86,10 +86,16 @@ void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
unsigned long i; unsigned long i;
for (i = 0; i < num_pages; ++i) { for (i = 0; i < num_pages; ++i) {
if (pages[i]) { struct page *page = pages[i];
unsigned long start = (unsigned long)page_address(pages[i]); void *page_virtual;
flush_dcache_range(start, start + PAGE_SIZE);
} if (unlikely(page == NULL))
continue;
page_virtual = kmap_atomic(page, KM_USER0);
flush_dcache_range((unsigned long) page_virtual,
(unsigned long) page_virtual + PAGE_SIZE);
kunmap_atomic(page_virtual, KM_USER0);
} }
#else #else
if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0) if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
...@@ -131,10 +137,17 @@ static void ttm_tt_free_page_directory(struct ttm_tt *ttm) ...@@ -131,10 +137,17 @@ static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
static struct page *ttm_tt_alloc_page(unsigned page_flags) static struct page *ttm_tt_alloc_page(unsigned page_flags)
{ {
gfp_t gfp_flags = GFP_USER;
if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC) if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
return alloc_page(GFP_HIGHUSER | __GFP_ZERO); gfp_flags |= __GFP_ZERO;
if (page_flags & TTM_PAGE_FLAG_DMA32)
gfp_flags |= __GFP_DMA32;
else
gfp_flags |= __GFP_HIGHMEM;
return alloc_page(GFP_HIGHUSER); return alloc_page(gfp_flags);
} }
static void ttm_tt_free_user_pages(struct ttm_tt *ttm) static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
......
...@@ -506,6 +506,8 @@ typedef struct { ...@@ -506,6 +506,8 @@ typedef struct {
#define DRM_RADEON_GEM_WAIT_IDLE 0x24 #define DRM_RADEON_GEM_WAIT_IDLE 0x24
#define DRM_RADEON_CS 0x26 #define DRM_RADEON_CS 0x26
#define DRM_RADEON_INFO 0x27 #define DRM_RADEON_INFO 0x27
#define DRM_RADEON_GEM_SET_TILING 0x28
#define DRM_RADEON_GEM_GET_TILING 0x29
#define DRM_IOCTL_RADEON_CP_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_RADEON_CP_INIT, drm_radeon_init_t) #define DRM_IOCTL_RADEON_CP_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_RADEON_CP_INIT, drm_radeon_init_t)
#define DRM_IOCTL_RADEON_CP_START DRM_IO( DRM_COMMAND_BASE + DRM_RADEON_CP_START) #define DRM_IOCTL_RADEON_CP_START DRM_IO( DRM_COMMAND_BASE + DRM_RADEON_CP_START)
...@@ -544,7 +546,8 @@ typedef struct { ...@@ -544,7 +546,8 @@ typedef struct {
#define DRM_IOCTL_RADEON_GEM_WAIT_IDLE DRM_IOW(DRM_COMMAND_BASE + DRM_RADEON_GEM_WAIT_IDLE, struct drm_radeon_gem_wait_idle) #define DRM_IOCTL_RADEON_GEM_WAIT_IDLE DRM_IOW(DRM_COMMAND_BASE + DRM_RADEON_GEM_WAIT_IDLE, struct drm_radeon_gem_wait_idle)
#define DRM_IOCTL_RADEON_CS DRM_IOWR(DRM_COMMAND_BASE + DRM_RADEON_CS, struct drm_radeon_cs) #define DRM_IOCTL_RADEON_CS DRM_IOWR(DRM_COMMAND_BASE + DRM_RADEON_CS, struct drm_radeon_cs)
#define DRM_IOCTL_RADEON_INFO DRM_IOWR(DRM_COMMAND_BASE + DRM_RADEON_INFO, struct drm_radeon_info) #define DRM_IOCTL_RADEON_INFO DRM_IOWR(DRM_COMMAND_BASE + DRM_RADEON_INFO, struct drm_radeon_info)
#define DRM_IOCTL_RADEON_SET_TILING DRM_IOWR(DRM_COMMAND_BASE + DRM_RADEON_GEM_SET_TILING, struct drm_radeon_gem_set_tiling)
#define DRM_IOCTL_RADEON_GET_TILING DRM_IOWR(DRM_COMMAND_BASE + DRM_RADEON_GEM_GET_TILING, struct drm_radeon_gem_get_tiling)
typedef struct drm_radeon_init { typedef struct drm_radeon_init {
enum { enum {
...@@ -796,6 +799,24 @@ struct drm_radeon_gem_create { ...@@ -796,6 +799,24 @@ struct drm_radeon_gem_create {
uint32_t flags; uint32_t flags;
}; };
#define RADEON_TILING_MACRO 0x1
#define RADEON_TILING_MICRO 0x2
#define RADEON_TILING_SWAP 0x4
#define RADEON_TILING_SURFACE 0x8 /* this object requires a surface
* when mapped - i.e. front buffer */
struct drm_radeon_gem_set_tiling {
uint32_t handle;
uint32_t tiling_flags;
uint32_t pitch;
};
struct drm_radeon_gem_get_tiling {
uint32_t handle;
uint32_t tiling_flags;
uint32_t pitch;
};
struct drm_radeon_gem_mmap { struct drm_radeon_gem_mmap {
uint32_t handle; uint32_t handle;
uint32_t pad; uint32_t pad;
......
...@@ -121,6 +121,7 @@ struct ttm_backend { ...@@ -121,6 +121,7 @@ struct ttm_backend {
#define TTM_PAGE_FLAG_SWAPPED (1 << 4) #define TTM_PAGE_FLAG_SWAPPED (1 << 4)
#define TTM_PAGE_FLAG_PERSISTANT_SWAP (1 << 5) #define TTM_PAGE_FLAG_PERSISTANT_SWAP (1 << 5)
#define TTM_PAGE_FLAG_ZERO_ALLOC (1 << 6) #define TTM_PAGE_FLAG_ZERO_ALLOC (1 << 6)
#define TTM_PAGE_FLAG_DMA32 (1 << 7)
enum ttm_caching_state { enum ttm_caching_state {
tt_uncached, tt_uncached,
...@@ -353,6 +354,14 @@ struct ttm_bo_driver { ...@@ -353,6 +354,14 @@ struct ttm_bo_driver {
int (*sync_obj_flush) (void *sync_obj, void *sync_arg); int (*sync_obj_flush) (void *sync_obj, void *sync_arg);
void (*sync_obj_unref) (void **sync_obj); void (*sync_obj_unref) (void **sync_obj);
void *(*sync_obj_ref) (void *sync_obj); void *(*sync_obj_ref) (void *sync_obj);
/* hook to notify driver about a driver move so it
* can do tiling things */
void (*move_notify)(struct ttm_buffer_object *bo,
struct ttm_mem_reg *new_mem);
/* notify the driver we are taking a fault on this BO
* and have reserved it */
void (*fault_reserve_notify)(struct ttm_buffer_object *bo);
}; };
#define TTM_NUM_MEM_TYPES 8 #define TTM_NUM_MEM_TYPES 8
...@@ -429,6 +438,8 @@ struct ttm_bo_device { ...@@ -429,6 +438,8 @@ struct ttm_bo_device {
*/ */
struct delayed_work wq; struct delayed_work wq;
bool need_dma32;
}; };
/** /**
...@@ -648,7 +659,14 @@ extern int ttm_bo_device_release(struct ttm_bo_device *bdev); ...@@ -648,7 +659,14 @@ extern int ttm_bo_device_release(struct ttm_bo_device *bdev);
extern int ttm_bo_device_init(struct ttm_bo_device *bdev, extern int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_mem_global *mem_glob, struct ttm_mem_global *mem_glob,
struct ttm_bo_driver *driver, struct ttm_bo_driver *driver,
uint64_t file_page_offset); uint64_t file_page_offset, bool need_dma32);
/**
* ttm_bo_unmap_virtual
*
* @bo: tear down the virtual mappings for this BO
*/
extern void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
/** /**
* ttm_bo_reserve: * ttm_bo_reserve:
......
...@@ -33,7 +33,7 @@ ...@@ -33,7 +33,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#define TTM_PFX "[TTM]" #define TTM_PFX "[TTM] "
enum ttm_global_types { enum ttm_global_types {
TTM_GLOBAL_TTM_MEM = 0, TTM_GLOBAL_TTM_MEM = 0,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册