From 82a81bff90c5fd11fefae35773f7396617a3cfff Mon Sep 17 00:00:00 2001 From: Marc Zyngier Date: Thu, 30 Jun 2016 18:40:34 +0100 Subject: [PATCH] arm64: KVM: Merged page tables documentation Since dealing with VA ranges tends to hurt my brain badly, let's start with a bit of documentation that will hopefully help understanding what comes next... Signed-off-by: Marc Zyngier Signed-off-by: Christoffer Dall --- arch/arm64/include/asm/kvm_mmu.h | 40 +++++++++++++++++++++++++++++--- 1 file changed, 37 insertions(+), 3 deletions(-) diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h index fdfbddbe9fba..6149dfc2c012 100644 --- a/arch/arm64/include/asm/kvm_mmu.h +++ b/arch/arm64/include/asm/kvm_mmu.h @@ -29,10 +29,44 @@ * * Instead, give the HYP mode its own VA region at a fixed offset from * the kernel by just masking the top bits (which are all ones for a - * kernel address). + * kernel address). We need to find out how many bits to mask. * - * ARMv8.1 (using VHE) does have a TTBR1_EL2, and doesn't use these - * macros (the entire kernel runs at EL2). + * We want to build a set of page tables that cover both parts of the + * idmap (the trampoline page used to initialize EL2), and our normal + * runtime VA space, at the same time. + * + * Given that the kernel uses VA_BITS for its entire address space, + * and that half of that space (VA_BITS - 1) is used for the linear + * mapping, we can also limit the EL2 space to (VA_BITS - 1). + * + * The main question is "Within the VA_BITS space, does EL2 use the + * top or the bottom half of that space to shadow the kernel's linear + * mapping?". As we need to idmap the trampoline page, this is + * determined by the range in which this page lives. + * + * If the page is in the bottom half, we have to use the top half. If + * the page is in the top half, we have to use the bottom half: + * + * T = __virt_to_phys(__hyp_idmap_text_start) + * if (T & BIT(VA_BITS - 1)) + * HYP_VA_MIN = 0 //idmap in upper half + * else + * HYP_VA_MIN = 1 << (VA_BITS - 1) + * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 + * + * This of course assumes that the trampoline page exists within the + * VA_BITS range. If it doesn't, then it means we're in the odd case + * where the kernel idmap (as well as HYP) uses more levels than the + * kernel runtime page tables (as seen when the kernel is configured + * for 4k pages, 39bits VA, and yet memory lives just above that + * limit, forcing the idmap to use 4 levels of page tables while the + * kernel itself only uses 3). In this particular case, it doesn't + * matter which side of VA_BITS we use, as we're guaranteed not to + * conflict with anything. + * + * When using VHE, there are no separate hyp mappings and all KVM + * functionality is already mapped as part of the main kernel + * mappings, and none of this applies in that case. */ #define HYP_PAGE_OFFSET_SHIFT VA_BITS #define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1) -- GitLab