提交 814a8d50 编写于 作者: A Andrea Paterniani 提交者: Linus Torvalds

/dev/spidevB.C interface

Add a filesystem API for <linux/spi/spi.h> stack.  The initial version of
this interface is purely synchronous.

dbrownell@users.sourceforge.net:

 Cleaned up, bugfixed; much simplified; added preliminary documentation.

 Works with mdev given CONFIG_SYSFS_DEPRECATED; and presumably udev.

 Updated SPI_IOC_MESSAGE ioctl to full spi_message semantics, supporting
 groups of one or more transfers (each of which may be full duplex if
 desired).

 This is marked as EXPERIMENTAL with an explicit disclaimer that the API
 (notably the ioctls) is subject to change.
Signed-off-by: NAndrea Paterniani <a.paterniani@swapp-eng.it>
Signed-off-by: NDavid Brownell <dbrownell@users.sourceforge.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 735ce95e
SPI devices have a limited userspace API, supporting basic half-duplex
read() and write() access to SPI slave devices. Using ioctl() requests,
full duplex transfers and device I/O configuration are also available.
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
Some reasons you might want to use this programming interface include:
* Prototyping in an environment that's not crash-prone; stray pointers
in userspace won't normally bring down any Linux system.
* Developing simple protocols used to talk to microcontrollers acting
as SPI slaves, which you may need to change quite often.
Of course there are drivers that can never be written in userspace, because
they need to access kernel interfaces (such as IRQ handlers or other layers
of the driver stack) that are not accessible to userspace.
DEVICE CREATION, DRIVER BINDING
===============================
The simplest way to arrange to use this driver is to just list it in the
spi_board_info for a device as the driver it should use: the "modalias"
entry is "spidev", matching the name of the driver exposing this API.
Set up the other device characteristics (bits per word, SPI clocking,
chipselect polarity, etc) as usual, so you won't always need to override
them later.
(Sysfs also supports userspace driven binding/unbinding of drivers to
devices. That mechanism might be supported here in the future.)
When you do that, the sysfs node for the SPI device will include a child
device node with a "dev" attribute that will be understood by udev or mdev.
(Larger systems will have "udev". Smaller ones may configure "mdev" into
busybox; it's less featureful, but often enough.) For a SPI device with
chipselect C on bus B, you should see:
/dev/spidevB.C ... character special device, major number 153 with
a dynamically chosen minor device number. This is the node
that userspace programs will open, created by "udev" or "mdev".
/sys/devices/.../spiB.C ... as usual, the SPI device node will
be a child of its SPI master controller.
/sys/class/spidev/spidevB.C ... created when the "spidev" driver
binds to that device. (Directory or symlink, based on whether
or not you enabled the "deprecated sysfs files" Kconfig option.)
Do not try to manage the /dev character device special file nodes by hand.
That's error prone, and you'd need to pay careful attention to system
security issues; udev/mdev should already be configured securely.
If you unbind the "spidev" driver from that device, those two "spidev" nodes
(in sysfs and in /dev) should automatically be removed (respectively by the
kernel and by udev/mdev). You can unbind by removing the "spidev" driver
module, which will affect all devices using this driver. You can also unbind
by having kernel code remove the SPI device, probably by removing the driver
for its SPI controller (so its spi_master vanishes).
Since this is a standard Linux device driver -- even though it just happens
to expose a low level API to userspace -- it can be associated with any number
of devices at a time. Just provide one spi_board_info record for each such
SPI device, and you'll get a /dev device node for each device.
BASIC CHARACTER DEVICE API
==========================
Normal open() and close() operations on /dev/spidevB.D files work as you
would expect.
Standard read() and write() operations are obviously only half-duplex, and
the chipselect is deactivated between those operations. Full-duplex access,
and composite operation without chipselect de-activation, is available using
the SPI_IOC_MESSAGE(N) request.
Several ioctl() requests let your driver read or override the device's current
settings for data transfer parameters:
SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will
return (RD) or assign (WR) the SPI transfer mode. Use the constants
SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL
(clock polarity, idle high iff this is set) or SPI_CPHA (clock phase,
sample on trailing edge iff this is set) flags.
SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte
which will return (RD) or assign (WR) the bit justification used to
transfer SPI words. Zero indicates MSB-first; other values indicate
the less common LSB-first encoding. In both cases the specified value
is right-justified in each word, so that unused (TX) or undefined (RX)
bits are in the MSBs.
SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to
a byte which will return (RD) or assign (WR) the number of bits in
each SPI transfer word. The value zero signifies eight bits.
SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a
u32 which will return (RD) or assign (WR) the maximum SPI transfer
speed, in Hz. The controller can't necessarily assign that specific
clock speed.
NOTES:
- At this time there is no async I/O support; everything is purely
synchronous.
- There's currently no way to report the actual bit rate used to
shift data to/from a given device.
- From userspace, you can't currently change the chip select polarity;
that could corrupt transfers to other devices sharing the SPI bus.
Each SPI device is deselected when it's not in active use, allowing
other drivers to talk to other devices.
- There's a limit on the number of bytes each I/O request can transfer
to the SPI device. It defaults to one page, but that can be changed
using a module parameter.
- Because SPI has no low-level transfer acknowledgement, you usually
won't see any I/O errors when talking to a non-existent device.
FULL DUPLEX CHARACTER DEVICE API
================================
See the sample program below for one example showing the use of the full
duplex programming interface. (Although it doesn't perform a full duplex
transfer.) The model is the same as that used in the kernel spi_sync()
request; the individual transfers offer the same capabilities as are
available to kernel drivers (except that it's not asynchronous).
The example shows one half-duplex RPC-style request and response message.
These requests commonly require that the chip not be deselected between
the request and response. Several such requests could be chained into
a single kernel request, even allowing the chip to be deselected after
each response. (Other protocol options include changing the word size
and bitrate for each transfer segment.)
To make a full duplex request, provide both rx_buf and tx_buf for the
same transfer. It's even OK if those are the same buffer.
SAMPLE PROGRAM
==============
-------------------------------- CUT HERE
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
static int verbose;
static void do_read(int fd, int len)
{
unsigned char buf[32], *bp;
int status;
/* read at least 2 bytes, no more than 32 */
if (len < 2)
len = 2;
else if (len > sizeof(buf))
len = sizeof(buf);
memset(buf, 0, sizeof buf);
status = read(fd, buf, len);
if (status < 0) {
perror("read");
return;
}
if (status != len) {
fprintf(stderr, "short read\n");
return;
}
printf("read(%2d, %2d): %02x %02x,", len, status,
buf[0], buf[1]);
status -= 2;
bp = buf + 2;
while (status-- > 0)
printf(" %02x", *bp++);
printf("\n");
}
static void do_msg(int fd, int len)
{
struct spi_ioc_transfer xfer[2];
unsigned char buf[32], *bp;
int status;
memset(xfer, 0, sizeof xfer);
memset(buf, 0, sizeof buf);
if (len > sizeof buf)
len = sizeof buf;
buf[0] = 0xaa;
xfer[0].tx_buf = (__u64) buf;
xfer[0].len = 1;
xfer[1].rx_buf = (__u64) buf;
xfer[1].len = len;
status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer);
if (status < 0) {
perror("SPI_IOC_MESSAGE");
return;
}
printf("response(%2d, %2d): ", len, status);
for (bp = buf; len; len--)
printf(" %02x", *bp++);
printf("\n");
}
static void dumpstat(const char *name, int fd)
{
__u8 mode, lsb, bits;
__u32 speed;
if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) {
perror("SPI rd_mode");
return;
}
if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) {
perror("SPI rd_lsb_fist");
return;
}
if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) {
perror("SPI bits_per_word");
return;
}
if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) {
perror("SPI max_speed_hz");
return;
}
printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",
name, mode, bits, lsb ? "(lsb first) " : "", speed);
}
int main(int argc, char **argv)
{
int c;
int readcount = 0;
int msglen = 0;
int fd;
const char *name;
while ((c = getopt(argc, argv, "hm:r:v")) != EOF) {
switch (c) {
case 'm':
msglen = atoi(optarg);
if (msglen < 0)
goto usage;
continue;
case 'r':
readcount = atoi(optarg);
if (readcount < 0)
goto usage;
continue;
case 'v':
verbose++;
continue;
case 'h':
case '?':
usage:
fprintf(stderr,
"usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n",
argv[0]);
return 1;
}
}
if ((optind + 1) != argc)
goto usage;
name = argv[optind];
fd = open(name, O_RDWR);
if (fd < 0) {
perror("open");
return 1;
}
dumpstat(name, fd);
if (msglen)
do_msg(fd, msglen);
if (readcount)
do_read(fd, readcount);
close(fd);
return 0;
}
...@@ -159,6 +159,15 @@ config SPI_AT25 ...@@ -159,6 +159,15 @@ config SPI_AT25
This driver can also be built as a module. If so, the module This driver can also be built as a module. If so, the module
will be called at25. will be called at25.
config SPI_SPIDEV
tristate "User mode SPI device driver support"
depends on SPI_MASTER && EXPERIMENTAL
help
This supports user mode SPI protocol drivers.
Note that this application programming interface is EXPERIMENTAL
and hence SUBJECT TO CHANGE WITHOUT NOTICE while it stabilizes.
# #
# Add new SPI protocol masters in alphabetical order above this line # Add new SPI protocol masters in alphabetical order above this line
# #
......
...@@ -25,6 +25,7 @@ obj-$(CONFIG_SPI_S3C24XX) += spi_s3c24xx.o ...@@ -25,6 +25,7 @@ obj-$(CONFIG_SPI_S3C24XX) += spi_s3c24xx.o
# SPI protocol drivers (device/link on bus) # SPI protocol drivers (device/link on bus)
obj-$(CONFIG_SPI_AT25) += at25.o obj-$(CONFIG_SPI_AT25) += at25.o
obj-$(CONFIG_SPI_SPIDEV) += spidev.o
# ... add above this line ... # ... add above this line ...
# SPI slave controller drivers (upstream link) # SPI slave controller drivers (upstream link)
......
/*
* spidev.c -- simple synchronous userspace interface to SPI devices
*
* Copyright (C) 2006 SWAPP
* Andrea Paterniani <a.paterniani@swapp-eng.it>
* Copyright (C) 2007 David Brownell (simplification, cleanup)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ioctl.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
#include <asm/uaccess.h>
/*
* This supports acccess to SPI devices using normal userspace I/O calls.
* Note that while traditional UNIX/POSIX I/O semantics are half duplex,
* and often mask message boundaries, full SPI support requires full duplex
* transfers. There are several kinds of of internal message boundaries to
* handle chipselect management and other protocol options.
*
* SPI has a character major number assigned. We allocate minor numbers
* dynamically using a bitmask. You must use hotplug tools, such as udev
* (or mdev with busybox) to create and destroy the /dev/spidevB.C device
* nodes, since there is no fixed association of minor numbers with any
* particular SPI bus or device.
*/
#define SPIDEV_MAJOR 153 /* assigned */
#define N_SPI_MINORS 32 /* ... up to 256 */
static unsigned long minors[N_SPI_MINORS / BITS_PER_LONG];
/* Bit masks for spi_device.mode management */
#define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL)
struct spidev_data {
struct device dev;
struct spi_device *spi;
struct list_head device_entry;
struct mutex buf_lock;
unsigned users;
u8 *buffer;
};
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_lock);
static unsigned bufsiz = 4096;
module_param(bufsiz, uint, S_IRUGO);
MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
/*-------------------------------------------------------------------------*/
/* Read-only message with current device setup */
static ssize_t
spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
struct spi_device *spi;
ssize_t status = 0;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
spi = spidev->spi;
mutex_lock(&spidev->buf_lock);
status = spi_read(spi, spidev->buffer, count);
if (status == 0) {
unsigned long missing;
missing = copy_to_user(buf, spidev->buffer, count);
if (count && missing == count)
status = -EFAULT;
else
status = count - missing;
}
mutex_unlock(&spidev->buf_lock);
return status;
}
/* Write-only message with current device setup */
static ssize_t
spidev_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
struct spi_device *spi;
ssize_t status = 0;
unsigned long missing;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
spi = spidev->spi;
mutex_lock(&spidev->buf_lock);
missing = copy_from_user(spidev->buffer, buf, count);
if (missing == 0) {
status = spi_write(spi, spidev->buffer, count);
if (status == 0)
status = count;
} else
status = -EFAULT;
mutex_unlock(&spidev->buf_lock);
return status;
}
static int spidev_message(struct spidev_data *spidev,
struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
{
struct spi_message msg;
struct spi_transfer *k_xfers;
struct spi_transfer *k_tmp;
struct spi_ioc_transfer *u_tmp;
struct spi_device *spi = spidev->spi;
unsigned n, total;
u8 *buf;
int status = -EFAULT;
spi_message_init(&msg);
k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
if (k_xfers == NULL)
return -ENOMEM;
/* Construct spi_message, copying any tx data to bounce buffer.
* We walk the array of user-provided transfers, using each one
* to initialize a kernel version of the same transfer.
*/
mutex_lock(&spidev->buf_lock);
buf = spidev->buffer;
total = 0;
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
n;
n--, k_tmp++, u_tmp++) {
k_tmp->len = u_tmp->len;
if (u_tmp->rx_buf) {
k_tmp->rx_buf = buf;
if (!access_ok(VERIFY_WRITE, u_tmp->rx_buf, u_tmp->len))
goto done;
}
if (u_tmp->tx_buf) {
k_tmp->tx_buf = buf;
if (copy_from_user(buf, (const u8 __user *)u_tmp->tx_buf,
u_tmp->len))
goto done;
}
total += k_tmp->len;
if (total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
buf += k_tmp->len;
k_tmp->cs_change = !!u_tmp->cs_change;
k_tmp->bits_per_word = u_tmp->bits_per_word;
k_tmp->delay_usecs = u_tmp->delay_usecs;
k_tmp->speed_hz = u_tmp->speed_hz;
#ifdef VERBOSE
dev_dbg(&spi->dev,
" xfer len %zd %s%s%s%dbits %u usec %uHz\n",
u_tmp->len,
u_tmp->rx_buf ? "rx " : "",
u_tmp->tx_buf ? "tx " : "",
u_tmp->cs_change ? "cs " : "",
u_tmp->bits_per_word ? : spi->bits_per_word,
u_tmp->delay_usecs,
u_tmp->speed_hz ? : spi->max_speed_hz);
#endif
spi_message_add_tail(k_tmp, &msg);
}
status = spi_sync(spi, &msg);
if (status < 0)
goto done;
/* copy any rx data out of bounce buffer */
buf = spidev->buffer;
for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
if (u_tmp->rx_buf) {
if (__copy_to_user((u8 __user *)u_tmp->rx_buf, buf,
u_tmp->len)) {
status = -EFAULT;
goto done;
}
}
buf += u_tmp->len;
}
status = total;
done:
mutex_unlock(&spidev->buf_lock);
kfree(k_xfers);
return status;
}
static int
spidev_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
int err = 0;
int retval = 0;
struct spidev_data *spidev;
struct spi_device *spi;
u32 tmp;
unsigned n_ioc;
struct spi_ioc_transfer *ioc;
/* Check type and command number */
if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
return -ENOTTY;
/* Check access direction once here; don't repeat below.
* IOC_DIR is from the user perspective, while access_ok is
* from the kernel perspective; so they look reversed.
*/
if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE,
(void __user *)arg, _IOC_SIZE(cmd));
if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ,
(void __user *)arg, _IOC_SIZE(cmd));
if (err)
return -EFAULT;
spidev = filp->private_data;
spi = spidev->spi;
switch (cmd) {
/* read requests */
case SPI_IOC_RD_MODE:
retval = __put_user(spi->mode & SPI_MODE_MASK,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_LSB_FIRST:
retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_BITS_PER_WORD:
retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
break;
case SPI_IOC_RD_MAX_SPEED_HZ:
retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
break;
/* write requests */
case SPI_IOC_WR_MODE:
retval = __get_user(tmp, (u8 __user *)arg);
if (retval == 0) {
u8 save = spi->mode;
if (tmp & ~SPI_MODE_MASK) {
retval = -EINVAL;
break;
}
tmp |= spi->mode & ~SPI_MODE_MASK;
spi->mode = (u8)tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
}
break;
case SPI_IOC_WR_LSB_FIRST:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u8 save = spi->mode;
if (tmp)
spi->mode |= SPI_LSB_FIRST;
else
spi->mode &= ~SPI_LSB_FIRST;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "%csb first\n",
tmp ? 'l' : 'm');
}
break;
case SPI_IOC_WR_BITS_PER_WORD:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u8 save = spi->bits_per_word;
spi->bits_per_word = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->bits_per_word = save;
else
dev_dbg(&spi->dev, "%d bits per word\n", tmp);
}
break;
case SPI_IOC_WR_MAX_SPEED_HZ:
retval = __get_user(tmp, (__u32 __user *)arg);
if (retval == 0) {
u32 save = spi->max_speed_hz;
spi->max_speed_hz = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->max_speed_hz = save;
else
dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
}
break;
default:
/* segmented and/or full-duplex I/O request */
if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
|| _IOC_DIR(cmd) != _IOC_WRITE)
return -ENOTTY;
tmp = _IOC_SIZE(cmd);
if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
retval = -EINVAL;
break;
}
n_ioc = tmp / sizeof(struct spi_ioc_transfer);
if (n_ioc == 0)
break;
/* copy into scratch area */
ioc = kmalloc(tmp, GFP_KERNEL);
if (!ioc) {
retval = -ENOMEM;
break;
}
if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
retval = -EFAULT;
break;
}
/* translate to spi_message, execute */
retval = spidev_message(spidev, ioc, n_ioc);
kfree(ioc);
break;
}
return retval;
}
static int spidev_open(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = -ENXIO;
mutex_lock(&device_list_lock);
list_for_each_entry(spidev, &device_list, device_entry) {
if (spidev->dev.devt == inode->i_rdev) {
status = 0;
break;
}
}
if (status == 0) {
if (!spidev->buffer) {
spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!spidev->buffer) {
dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
status = -ENOMEM;
}
}
if (status == 0) {
spidev->users++;
filp->private_data = spidev;
nonseekable_open(inode, filp);
}
} else
pr_debug("spidev: nothing for minor %d\n", iminor(inode));
mutex_unlock(&device_list_lock);
return status;
}
static int spidev_release(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = 0;
mutex_lock(&device_list_lock);
spidev = filp->private_data;
filp->private_data = NULL;
spidev->users--;
if (!spidev->users) {
kfree(spidev->buffer);
spidev->buffer = NULL;
}
mutex_unlock(&device_list_lock);
return status;
}
static struct file_operations spidev_fops = {
.owner = THIS_MODULE,
/* REVISIT switch to aio primitives, so that userspace
* gets more complete API coverage. It'll simplify things
* too, except for the locking.
*/
.write = spidev_write,
.read = spidev_read,
.ioctl = spidev_ioctl,
.open = spidev_open,
.release = spidev_release,
};
/*-------------------------------------------------------------------------*/
/* The main reason to have this class is to make mdev/udev create the
* /dev/spidevB.C character device nodes exposing our userspace API.
* It also simplifies memory management.
*/
static void spidev_classdev_release(struct device *dev)
{
struct spidev_data *spidev;
spidev = container_of(dev, struct spidev_data, dev);
kfree(spidev);
}
static struct class spidev_class = {
.name = "spidev",
.owner = THIS_MODULE,
.dev_release = spidev_classdev_release,
};
/*-------------------------------------------------------------------------*/
static int spidev_probe(struct spi_device *spi)
{
struct spidev_data *spidev;
int status;
unsigned long minor;
/* Allocate driver data */
spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
if (!spidev)
return -ENOMEM;
/* Initialize the driver data */
spidev->spi = spi;
mutex_init(&spidev->buf_lock);
INIT_LIST_HEAD(&spidev->device_entry);
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, ARRAY_SIZE(minors));
if (minor < N_SPI_MINORS) {
spidev->dev.parent = &spi->dev;
spidev->dev.class = &spidev_class;
spidev->dev.devt = MKDEV(SPIDEV_MAJOR, minor);
snprintf(spidev->dev.bus_id, sizeof spidev->dev.bus_id,
"spidev%d.%d",
spi->master->bus_num, spi->chip_select);
status = device_register(&spidev->dev);
} else {
dev_dbg(&spi->dev, "no minor number available!\n");
status = -ENODEV;
}
if (status == 0) {
set_bit(minor, minors);
dev_set_drvdata(&spi->dev, spidev);
list_add(&spidev->device_entry, &device_list);
}
mutex_unlock(&device_list_lock);
if (status != 0)
kfree(spidev);
return status;
}
static int spidev_remove(struct spi_device *spi)
{
struct spidev_data *spidev = dev_get_drvdata(&spi->dev);
mutex_lock(&device_list_lock);
list_del(&spidev->device_entry);
dev_set_drvdata(&spi->dev, NULL);
clear_bit(MINOR(spidev->dev.devt), minors);
device_unregister(&spidev->dev);
mutex_unlock(&device_list_lock);
return 0;
}
static struct spi_driver spidev_spi = {
.driver = {
.name = "spidev",
.owner = THIS_MODULE,
},
.probe = spidev_probe,
.remove = __devexit_p(spidev_remove),
/* NOTE: suspend/resume methods are not necessary here.
* We don't do anything except pass the requests to/from
* the underlying controller. The refrigerator handles
* most issues; the controller driver handles the rest.
*/
};
/*-------------------------------------------------------------------------*/
static int __init spidev_init(void)
{
int status;
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
if (status < 0)
return status;
status = class_register(&spidev_class);
if (status < 0) {
unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
return status;
}
status = spi_register_driver(&spidev_spi);
if (status < 0) {
class_unregister(&spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
}
return status;
}
module_init(spidev_init);
static void __exit spidev_exit(void)
{
spi_unregister_driver(&spidev_spi);
class_unregister(&spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
}
module_exit(spidev_exit);
MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
MODULE_DESCRIPTION("User mode SPI device interface");
MODULE_LICENSE("GPL");
...@@ -4,6 +4,7 @@ header-y += hdlc/ ...@@ -4,6 +4,7 @@ header-y += hdlc/
header-y += isdn/ header-y += isdn/
header-y += nfsd/ header-y += nfsd/
header-y += raid/ header-y += raid/
header-y += spi/
header-y += sunrpc/ header-y += sunrpc/
header-y += tc_act/ header-y += tc_act/
header-y += netfilter/ header-y += netfilter/
......
header-y += spidev.h
/*
* include/linux/spi/spidev.h
*
* Copyright (C) 2006 SWAPP
* Andrea Paterniani <a.paterniani@swapp-eng.it>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef SPIDEV_H
#define SPIDEV_H
/* User space versions of kernel symbols for SPI clocking modes,
* matching <linux/spi/spi.h>
*/
#define SPI_CPHA 0x01
#define SPI_CPOL 0x02
#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
/*---------------------------------------------------------------------------*/
/* IOCTL commands */
#define SPI_IOC_MAGIC 'k'
/**
* struct spi_ioc_transfer - describes a single SPI transfer
* @tx_buf: Holds pointer to userspace buffer with transmit data, or null.
* If no data is provided, zeroes are shifted out.
* @rx_buf: Holds pointer to userspace buffer for receive data, or null.
* @len: Length of tx and rx buffers, in bytes.
* @speed_hz: Temporary override of the device's bitrate.
* @bits_per_word: Temporary override of the device's wordsize.
* @delay_usecs: If nonzero, how long to delay after the last bit transfer
* before optionally deselecting the device before the next transfer.
* @cs_change: True to deselect device before starting the next transfer.
*
* This structure is mapped directly to the kernel spi_transfer structure;
* the fields have the same meanings, except of course that the pointers
* are in a different address space (and may be of different sizes in some
* cases, such as 32-bit i386 userspace over a 64-bit x86_64 kernel).
* Zero-initialize the structure, including currently unused fields, to
* accomodate potential future updates.
*
* SPI_IOC_MESSAGE gives userspace the equivalent of kernel spi_sync().
* Pass it an array of related transfers, they'll execute together.
* Each transfer may be half duplex (either direction) or full duplex.
*
* struct spi_ioc_transfer mesg[4];
* ...
* status = ioctl(fd, SPI_IOC_MESSAGE(4), mesg);
*
* So for example one transfer might send a nine bit command (right aligned
* in a 16-bit word), the next could read a block of 8-bit data before
* terminating that command by temporarily deselecting the chip; the next
* could send a different nine bit command (re-selecting the chip), and the
* last transfer might write some register values.
*/
struct spi_ioc_transfer {
__u64 tx_buf;
__u64 rx_buf;
__u32 len;
__u32 speed_hz;
__u16 delay_usecs;
__u8 bits_per_word;
__u8 cs_change;
__u32 pad;
/* If the contents of 'struct spi_ioc_transfer' ever change
* incompatibly, then the ioctl number (currently 0) must change;
* ioctls with constant size fields get a bit more in the way of
* error checking than ones (like this) where that field varies.
*
* NOTE: struct layout is the same in 64bit and 32bit userspace.
*/
};
/* not all platforms use <asm-generic/ioctl.h> or _IOC_TYPECHECK() ... */
#define SPI_MSGSIZE(N) \
((((N)*(sizeof (struct spi_ioc_transfer))) < (1 << _IOC_SIZEBITS)) \
? ((N)*(sizeof (struct spi_ioc_transfer))) : 0)
#define SPI_IOC_MESSAGE(N) _IOW(SPI_IOC_MAGIC, 0, char[SPI_MSGSIZE(N)])
/* Read / Write of SPI mode (SPI_MODE_0..SPI_MODE_3) */
#define SPI_IOC_RD_MODE _IOR(SPI_IOC_MAGIC, 1, __u8)
#define SPI_IOC_WR_MODE _IOW(SPI_IOC_MAGIC, 1, __u8)
/* Read / Write SPI bit justification */
#define SPI_IOC_RD_LSB_FIRST _IOR(SPI_IOC_MAGIC, 2, __u8)
#define SPI_IOC_WR_LSB_FIRST _IOW(SPI_IOC_MAGIC, 2, __u8)
/* Read / Write SPI device word length (1..N) */
#define SPI_IOC_RD_BITS_PER_WORD _IOR(SPI_IOC_MAGIC, 3, __u8)
#define SPI_IOC_WR_BITS_PER_WORD _IOW(SPI_IOC_MAGIC, 3, __u8)
/* Read / Write SPI device default max speed hz */
#define SPI_IOC_RD_MAX_SPEED_HZ _IOR(SPI_IOC_MAGIC, 4, __u32)
#define SPI_IOC_WR_MAX_SPEED_HZ _IOW(SPI_IOC_MAGIC, 4, __u32)
#endif /* SPIDEV_H */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册