From 8110dd281e155e5010ffd657bba4742ebef7a93f Mon Sep 17 00:00:00 2001 From: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Date: Fri, 23 Jun 2017 15:24:32 +0200 Subject: [PATCH] ACPI / sleep: EC-based wakeup from suspend-to-idle on recent systems Some recent Dell laptops, including the XPS13 model numbers 9360 and 9365, cannot be woken up from suspend-to-idle by pressing the power button which is unexpected and makes that feature less usable on those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is not expected to be used at all (the OS these systems ship with never exercises the ACPI S3 path in the firmware) and suspend-to-idle is the only viable system suspend mechanism there. The reason why the power button wakeup from suspend-to-idle doesn't work on those systems is because their power button events are signaled by the EC (Embedded Controller), whose GPE (General Purpose Event) line is disabled during suspend-to-idle transitions in Linux. That is done on purpose, because in general the EC tends to be noisy for various reasons (battery and thermal updates and similar, for example) and all events signaled by it would kick the CPUs out of deep idle states while in suspend-to-idle, which effectively might defeat its purpose. Of course, on the Dell systems in question the EC GPE must be enabled during suspend-to-idle transitions for the button press events to be signaled while suspended at all, but fortunately there is a way out of this puzzle. First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set in their ACPI tables, which means that the OS is expected to prefer the "low power S0 idle" system state over ACPI S3 on them. That causes the most recent versions of other OSes to simply ignore ACPI S3 on those systems, so it is reasonable to expect that it should not be necessary to block GPEs during suspend-to-idle on them. Second, in addition to that, the systems in question provide a special firmware interface that can be used to indicate to the platform that the OS is transitioning into a system-wide low-power state in which certain types of activity are not desirable or that it is leaving such a state and that (in principle) should allow the platform to adjust its operation mode accordingly. That interface is a special _DSM object under a System Power Management Controller device (PNP0D80). The expected way to use it is to invoke function 0 from it on system initialization, functions 3 and 5 during suspend transitions and functions 4 and 6 during resume transitions (to reverse the actions carried out by the former). In particular, function 5 from the "Low-Power S0" device _DSM is expected to cause the platform to put itself into a low-power operation mode which should include making the EC less verbose (so to speak). Next, on resume, function 6 switches the platform back to the "working-state" operation mode. In accordance with the above, modify the ACPI suspend-to-idle code to look for the "Low-Power S0" _DSM interface on platforms with the ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there, use it during suspend-to-idle transitions as prescribed and avoid changing the GPE configuration in that case. [That should reflect what the most recent versions of other OSes do.] Also modify the ACPI EC driver to make it handle events during suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface is going to be used to make the power button events work while suspended on the Dell machines mentioned above Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> --- drivers/acpi/ec.c | 2 +- drivers/acpi/internal.h | 2 + drivers/acpi/sleep.c | 113 ++++++++++++++++++++++++++++++++++++++-- 3 files changed, 112 insertions(+), 5 deletions(-) diff --git a/drivers/acpi/ec.c b/drivers/acpi/ec.c index c24235d8fb52..156e15c35ffa 100644 --- a/drivers/acpi/ec.c +++ b/drivers/acpi/ec.c @@ -1835,7 +1835,7 @@ static int acpi_ec_suspend(struct device *dev) struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); - if (ec_freeze_events) + if (acpi_sleep_no_ec_events() && ec_freeze_events) acpi_ec_disable_event(ec); return 0; } diff --git a/drivers/acpi/internal.h b/drivers/acpi/internal.h index 75924ea69071..be79f7db1850 100644 --- a/drivers/acpi/internal.h +++ b/drivers/acpi/internal.h @@ -199,9 +199,11 @@ void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit); -------------------------------------------------------------------------- */ #ifdef CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT extern bool acpi_s2idle_wakeup(void); +extern bool acpi_sleep_no_ec_events(void); extern int acpi_sleep_init(void); #else static inline bool acpi_s2idle_wakeup(void) { return false; } +static inline bool acpi_sleep_no_ec_events(void) { return true; } static inline int acpi_sleep_init(void) { return -ENXIO; } #endif diff --git a/drivers/acpi/sleep.c b/drivers/acpi/sleep.c index 555de11a56b6..be17664736b2 100644 --- a/drivers/acpi/sleep.c +++ b/drivers/acpi/sleep.c @@ -650,18 +650,108 @@ static const struct platform_suspend_ops acpi_suspend_ops_old = { .recover = acpi_pm_finish, }; +static bool s2idle_in_progress; static bool s2idle_wakeup; +/* + * On platforms supporting the Low Power S0 Idle interface there is an ACPI + * device object with the PNP0D80 compatible device ID (System Power Management + * Controller) and a specific _DSM method under it. That method, if present, + * can be used to indicate to the platform that the OS is transitioning into a + * low-power state in which certain types of activity are not desirable or that + * it is leaving such a state, which allows the platform to adjust its operation + * mode accordingly. + */ +static const struct acpi_device_id lps0_device_ids[] = { + {"PNP0D80", }, + {"", }, +}; + +#define ACPI_LPS0_DSM_UUID "c4eb40a0-6cd2-11e2-bcfd-0800200c9a66" + +#define ACPI_LPS0_SCREEN_OFF 3 +#define ACPI_LPS0_SCREEN_ON 4 +#define ACPI_LPS0_ENTRY 5 +#define ACPI_LPS0_EXIT 6 + +#define ACPI_S2IDLE_FUNC_MASK ((1 << ACPI_LPS0_ENTRY) | (1 << ACPI_LPS0_EXIT)) + +static acpi_handle lps0_device_handle; +static guid_t lps0_dsm_guid; +static char lps0_dsm_func_mask; + +static void acpi_sleep_run_lps0_dsm(unsigned int func) +{ + union acpi_object *out_obj; + + if (!(lps0_dsm_func_mask & (1 << func))) + return; + + out_obj = acpi_evaluate_dsm(lps0_device_handle, &lps0_dsm_guid, 1, func, NULL); + ACPI_FREE(out_obj); + + acpi_handle_debug(lps0_device_handle, "_DSM function %u evaluation %s\n", + func, out_obj ? "successful" : "failed"); +} + +static int lps0_device_attach(struct acpi_device *adev, + const struct acpi_device_id *not_used) +{ + union acpi_object *out_obj; + + if (lps0_device_handle) + return 0; + + if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)) + return 0; + + guid_parse(ACPI_LPS0_DSM_UUID, &lps0_dsm_guid); + /* Check if the _DSM is present and as expected. */ + out_obj = acpi_evaluate_dsm(adev->handle, &lps0_dsm_guid, 1, 0, NULL); + if (out_obj && out_obj->type == ACPI_TYPE_BUFFER) { + char bitmask = *(char *)out_obj->buffer.pointer; + + if ((bitmask & ACPI_S2IDLE_FUNC_MASK) == ACPI_S2IDLE_FUNC_MASK) { + lps0_dsm_func_mask = bitmask; + lps0_device_handle = adev->handle; + } + + acpi_handle_debug(adev->handle, "_DSM function mask: 0x%x\n", + bitmask); + } else { + acpi_handle_debug(adev->handle, + "_DSM function 0 evaluation failed\n"); + } + ACPI_FREE(out_obj); + return 0; +} + +static struct acpi_scan_handler lps0_handler = { + .ids = lps0_device_ids, + .attach = lps0_device_attach, +}; + static int acpi_freeze_begin(void) { acpi_scan_lock_acquire(); + s2idle_in_progress = true; return 0; } static int acpi_freeze_prepare(void) { - acpi_enable_all_wakeup_gpes(); - acpi_os_wait_events_complete(); + if (lps0_device_handle) { + acpi_sleep_run_lps0_dsm(ACPI_LPS0_SCREEN_OFF); + acpi_sleep_run_lps0_dsm(ACPI_LPS0_ENTRY); + } else { + /* + * The configuration of GPEs is changed here to avoid spurious + * wakeups, but that should not be necessary if this is a + * "low-power S0" platform and the low-power S0 _DSM is present. + */ + acpi_enable_all_wakeup_gpes(); + acpi_os_wait_events_complete(); + } if (acpi_sci_irq_valid()) enable_irq_wake(acpi_sci_irq); @@ -700,11 +790,17 @@ static void acpi_freeze_restore(void) if (acpi_sci_irq_valid()) disable_irq_wake(acpi_sci_irq); - acpi_enable_all_runtime_gpes(); + if (lps0_device_handle) { + acpi_sleep_run_lps0_dsm(ACPI_LPS0_EXIT); + acpi_sleep_run_lps0_dsm(ACPI_LPS0_SCREEN_ON); + } else { + acpi_enable_all_runtime_gpes(); + } } static void acpi_freeze_end(void) { + s2idle_in_progress = false; acpi_scan_lock_release(); } @@ -727,11 +823,15 @@ static void acpi_sleep_suspend_setup(void) suspend_set_ops(old_suspend_ordering ? &acpi_suspend_ops_old : &acpi_suspend_ops); + + acpi_scan_add_handler(&lps0_handler); freeze_set_ops(&acpi_freeze_ops); } #else /* !CONFIG_SUSPEND */ -#define s2idle_wakeup (false) +#define s2idle_in_progress (false) +#define s2idle_wakeup (false) +#define lps0_device_handle (NULL) static inline void acpi_sleep_suspend_setup(void) {} #endif /* !CONFIG_SUSPEND */ @@ -740,6 +840,11 @@ bool acpi_s2idle_wakeup(void) return s2idle_wakeup; } +bool acpi_sleep_no_ec_events(void) +{ + return !s2idle_in_progress || !lps0_device_handle; +} + #ifdef CONFIG_PM_SLEEP static u32 saved_bm_rld; -- GitLab