提交 7c526e1f 编写于 作者: I Ingo Molnar

Merge branches 'timers/new-apis', 'timers/ntp' and 'timers/urgent' into timers/core

...@@ -508,7 +508,7 @@ static void __spu_add_to_rq(struct spu_context *ctx) ...@@ -508,7 +508,7 @@ static void __spu_add_to_rq(struct spu_context *ctx)
list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
set_bit(ctx->prio, spu_prio->bitmap); set_bit(ctx->prio, spu_prio->bitmap);
if (!spu_prio->nr_waiting++) if (!spu_prio->nr_waiting++)
__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
} }
} }
......
...@@ -2715,7 +2715,7 @@ static void ipath_hol_signal_up(struct ipath_devdata *dd) ...@@ -2715,7 +2715,7 @@ static void ipath_hol_signal_up(struct ipath_devdata *dd)
* to prevent HoL blocking, then start the HoL timer that * to prevent HoL blocking, then start the HoL timer that
* periodically continues, then stop procs, so they can detect * periodically continues, then stop procs, so they can detect
* link down if they want, and do something about it. * link down if they want, and do something about it.
* Timer may already be running, so use __mod_timer, not add_timer. * Timer may already be running, so use mod_timer, not add_timer.
*/ */
void ipath_hol_down(struct ipath_devdata *dd) void ipath_hol_down(struct ipath_devdata *dd)
{ {
...@@ -2724,7 +2724,7 @@ void ipath_hol_down(struct ipath_devdata *dd) ...@@ -2724,7 +2724,7 @@ void ipath_hol_down(struct ipath_devdata *dd)
dd->ipath_hol_next = IPATH_HOL_DOWNCONT; dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
dd->ipath_hol_timer.expires = jiffies + dd->ipath_hol_timer.expires = jiffies +
msecs_to_jiffies(ipath_hol_timeout_ms); msecs_to_jiffies(ipath_hol_timeout_ms);
__mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires); mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
} }
/* /*
...@@ -2763,7 +2763,7 @@ void ipath_hol_event(unsigned long opaque) ...@@ -2763,7 +2763,7 @@ void ipath_hol_event(unsigned long opaque)
else { else {
dd->ipath_hol_timer.expires = jiffies + dd->ipath_hol_timer.expires = jiffies +
msecs_to_jiffies(ipath_hol_timeout_ms); msecs_to_jiffies(ipath_hol_timeout_ms);
__mod_timer(&dd->ipath_hol_timer, mod_timer(&dd->ipath_hol_timer,
dd->ipath_hol_timer.expires); dd->ipath_hol_timer.expires);
} }
} }
......
...@@ -86,8 +86,8 @@ static inline int timer_pending(const struct timer_list * timer) ...@@ -86,8 +86,8 @@ static inline int timer_pending(const struct timer_list * timer)
extern void add_timer_on(struct timer_list *timer, int cpu); extern void add_timer_on(struct timer_list *timer, int cpu);
extern int del_timer(struct timer_list * timer); extern int del_timer(struct timer_list * timer);
extern int __mod_timer(struct timer_list *timer, unsigned long expires);
extern int mod_timer(struct timer_list *timer, unsigned long expires); extern int mod_timer(struct timer_list *timer, unsigned long expires);
extern int mod_timer_pending(struct timer_list *timer, unsigned long expires);
/* /*
* The jiffies value which is added to now, when there is no timer * The jiffies value which is added to now, when there is no timer
...@@ -146,25 +146,7 @@ static inline void timer_stats_timer_clear_start_info(struct timer_list *timer) ...@@ -146,25 +146,7 @@ static inline void timer_stats_timer_clear_start_info(struct timer_list *timer)
} }
#endif #endif
/** extern void add_timer(struct timer_list *timer);
* add_timer - start a timer
* @timer: the timer to be added
*
* The kernel will do a ->function(->data) callback from the
* timer interrupt at the ->expires point in the future. The
* current time is 'jiffies'.
*
* The timer's ->expires, ->function (and if the handler uses it, ->data)
* fields must be set prior calling this function.
*
* Timers with an ->expires field in the past will be executed in the next
* timer tick.
*/
static inline void add_timer(struct timer_list *timer)
{
BUG_ON(timer_pending(timer));
__mod_timer(timer, timer->expires);
}
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
extern int try_to_del_timer_sync(struct timer_list *timer); extern int try_to_del_timer_sync(struct timer_list *timer);
......
...@@ -190,7 +190,7 @@ struct timex { ...@@ -190,7 +190,7 @@ struct timex {
* offset and maximum frequency tolerance. * offset and maximum frequency tolerance.
*/ */
#define SHIFT_USEC 16 /* frequency offset scale (shift) */ #define SHIFT_USEC 16 /* frequency offset scale (shift) */
#define PPM_SCALE (NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC)) #define PPM_SCALE ((s64)NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
#define PPM_SCALE_INV_SHIFT 19 #define PPM_SCALE_INV_SHIFT 19
#define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \ #define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \
PPM_SCALE + 1) PPM_SCALE + 1)
......
...@@ -1370,7 +1370,8 @@ static inline int fastpath_timer_check(struct task_struct *tsk) ...@@ -1370,7 +1370,8 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
if (task_cputime_expired(&group_sample, &sig->cputime_expires)) if (task_cputime_expired(&group_sample, &sig->cputime_expires))
return 1; return 1;
} }
return 0;
return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
} }
/* /*
......
...@@ -750,7 +750,7 @@ size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) ...@@ -750,7 +750,7 @@ size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
* from the scheduler (trying to re-grab * from the scheduler (trying to re-grab
* rq->lock), so defer it. * rq->lock), so defer it.
*/ */
__mod_timer(&buf->timer, jiffies + 1); mod_timer(&buf->timer, jiffies + 1);
} }
old = buf->data; old = buf->data;
......
/* /*
* linux/kernel/time/ntp.c
*
* NTP state machine interfaces and logic. * NTP state machine interfaces and logic.
* *
* This code was mainly moved from kernel/timer.c and kernel/time.c * This code was mainly moved from kernel/timer.c and kernel/time.c
* Please see those files for relevant copyright info and historical * Please see those files for relevant copyright info and historical
* changelogs. * changelogs.
*/ */
#include <linux/mm.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/hrtimer.h>
#include <linux/capability.h> #include <linux/capability.h>
#include <linux/math64.h>
#include <linux/clocksource.h> #include <linux/clocksource.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <asm/timex.h> #include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
/* /*
* Timekeeping variables * NTP timekeeping variables:
*/ */
unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
unsigned long tick_nsec; /* ACTHZ period (nsec) */ /* USER_HZ period (usecs): */
unsigned long tick_usec = TICK_USEC;
/* ACTHZ period (nsecs): */
unsigned long tick_nsec;
u64 tick_length; u64 tick_length;
static u64 tick_length_base; static u64 tick_length_base;
static struct hrtimer leap_timer; static struct hrtimer leap_timer;
#define MAX_TICKADJ 500 /* microsecs */ #define MAX_TICKADJ 500LL /* usecs */
#define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ #define MAX_TICKADJ_SCALED \
NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
/* /*
* phase-lock loop variables * phase-lock loop variables
*/ */
/* TIME_ERROR prevents overwriting the CMOS clock */
static int time_state = TIME_OK; /* clock synchronization status */ /*
int time_status = STA_UNSYNC; /* clock status bits */ * clock synchronization status
static long time_tai; /* TAI offset (s) */ *
static s64 time_offset; /* time adjustment (ns) */ * (TIME_ERROR prevents overwriting the CMOS clock)
static long time_constant = 2; /* pll time constant */ */
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ static int time_state = TIME_OK;
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
static s64 time_freq; /* frequency offset (scaled ns/s)*/ /* clock status bits: */
static long time_reftime; /* time at last adjustment (s) */ int time_status = STA_UNSYNC;
/* TAI offset (secs): */
static long time_tai;
/* time adjustment (nsecs): */
static s64 time_offset;
/* pll time constant: */
static long time_constant = 2;
/* maximum error (usecs): */
long time_maxerror = NTP_PHASE_LIMIT;
/* estimated error (usecs): */
long time_esterror = NTP_PHASE_LIMIT;
/* frequency offset (scaled nsecs/secs): */
static s64 time_freq;
/* time at last adjustment (secs): */
static long time_reftime;
long time_adjust; long time_adjust;
static long ntp_tick_adj;
/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
static s64 ntp_tick_adj;
/*
* NTP methods:
*/
/*
* Update (tick_length, tick_length_base, tick_nsec), based
* on (tick_usec, ntp_tick_adj, time_freq):
*/
static void ntp_update_frequency(void) static void ntp_update_frequency(void)
{ {
u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) u64 second_length;
u64 new_base;
second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
<< NTP_SCALE_SHIFT; << NTP_SCALE_SHIFT;
second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
second_length += time_freq;
tick_length_base = second_length; second_length += ntp_tick_adj;
second_length += time_freq;
tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
/*
* Don't wait for the next second_overflow, apply
* the change to the tick length immediately:
*/
tick_length += new_base - tick_length_base;
tick_length_base = new_base;
}
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
{
time_status &= ~STA_MODE;
if (secs < MINSEC)
return 0;
if (!(time_status & STA_FLL) && (secs <= MAXSEC))
return 0;
time_status |= STA_MODE;
return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
} }
static void ntp_update_offset(long offset) static void ntp_update_offset(long offset)
{ {
long mtemp;
s64 freq_adj; s64 freq_adj;
s64 offset64;
long secs;
if (!(time_status & STA_PLL)) if (!(time_status & STA_PLL))
return; return;
...@@ -84,24 +142,23 @@ static void ntp_update_offset(long offset) ...@@ -84,24 +142,23 @@ static void ntp_update_offset(long offset)
* Select how the frequency is to be controlled * Select how the frequency is to be controlled
* and in which mode (PLL or FLL). * and in which mode (PLL or FLL).
*/ */
if (time_status & STA_FREQHOLD || time_reftime == 0) secs = xtime.tv_sec - time_reftime;
time_reftime = xtime.tv_sec; if (unlikely(time_status & STA_FREQHOLD))
mtemp = xtime.tv_sec - time_reftime; secs = 0;
time_reftime = xtime.tv_sec; time_reftime = xtime.tv_sec;
freq_adj = (s64)offset * mtemp; offset64 = offset;
freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); freq_adj = (offset64 * secs) <<
time_status &= ~STA_MODE; (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), freq_adj += ntp_update_offset_fll(offset64, secs);
mtemp);
time_status |= STA_MODE; freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
}
freq_adj += time_freq;
freq_adj = min(freq_adj, MAXFREQ_SCALED);
time_freq = max(freq_adj, -MAXFREQ_SCALED); time_freq = max(freq_adj, -MAXFREQ_SCALED);
time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
} }
/** /**
...@@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) ...@@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
xtime.tv_sec--; xtime.tv_sec--;
wall_to_monotonic.tv_sec++; wall_to_monotonic.tv_sec++;
time_state = TIME_OOP; time_state = TIME_OOP;
printk(KERN_NOTICE "Clock: " printk(KERN_NOTICE
"inserting leap second 23:59:60 UTC\n"); "Clock: inserting leap second 23:59:60 UTC\n");
hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
res = HRTIMER_RESTART; res = HRTIMER_RESTART;
break; break;
...@@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) ...@@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
time_tai--; time_tai--;
wall_to_monotonic.tv_sec--; wall_to_monotonic.tv_sec--;
time_state = TIME_WAIT; time_state = TIME_WAIT;
printk(KERN_NOTICE "Clock: " printk(KERN_NOTICE
"deleting leap second 23:59:59 UTC\n"); "Clock: deleting leap second 23:59:59 UTC\n");
break; break;
case TIME_OOP: case TIME_OOP:
time_tai++; time_tai++;
...@@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) ...@@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
*/ */
void second_overflow(void) void second_overflow(void)
{ {
s64 time_adj; s64 delta;
/* Bump the maxerror field */ /* Bump the maxerror field */
time_maxerror += MAXFREQ / NSEC_PER_USEC; time_maxerror += MAXFREQ / NSEC_PER_USEC;
...@@ -193,23 +250,29 @@ void second_overflow(void) ...@@ -193,23 +250,29 @@ void second_overflow(void)
* reduced by a fixed factor times the time constant. * reduced by a fixed factor times the time constant.
*/ */
tick_length = tick_length_base; tick_length = tick_length_base;
time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
time_offset -= time_adj;
tick_length += time_adj;
if (unlikely(time_adjust)) { delta = shift_right(time_offset, SHIFT_PLL + time_constant);
time_offset -= delta;
tick_length += delta;
if (!time_adjust)
return;
if (time_adjust > MAX_TICKADJ) { if (time_adjust > MAX_TICKADJ) {
time_adjust -= MAX_TICKADJ; time_adjust -= MAX_TICKADJ;
tick_length += MAX_TICKADJ_SCALED; tick_length += MAX_TICKADJ_SCALED;
} else if (time_adjust < -MAX_TICKADJ) { return;
}
if (time_adjust < -MAX_TICKADJ) {
time_adjust += MAX_TICKADJ; time_adjust += MAX_TICKADJ;
tick_length -= MAX_TICKADJ_SCALED; tick_length -= MAX_TICKADJ_SCALED;
} else { return;
tick_length += (s64)(time_adjust * NSEC_PER_USEC /
NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
time_adjust = 0;
}
} }
tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
<< NTP_SCALE_SHIFT;
time_adjust = 0;
} }
#ifdef CONFIG_GENERIC_CMOS_UPDATE #ifdef CONFIG_GENERIC_CMOS_UPDATE
...@@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work) ...@@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work)
* This code is run on a timer. If the clock is set, that timer * This code is run on a timer. If the clock is set, that timer
* may not expire at the correct time. Thus, we adjust... * may not expire at the correct time. Thus, we adjust...
*/ */
if (!ntp_synced()) if (!ntp_synced()) {
/* /*
* Not synced, exit, do not restart a timer (if one is * Not synced, exit, do not restart a timer (if one is
* running, let it run out). * running, let it run out).
*/ */
return; return;
}
getnstimeofday(&now); getnstimeofday(&now);
if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
...@@ -270,85 +334,57 @@ static void notify_cmos_timer(void) ...@@ -270,85 +334,57 @@ static void notify_cmos_timer(void)
static inline void notify_cmos_timer(void) { } static inline void notify_cmos_timer(void) { }
#endif #endif
/* adjtimex mainly allows reading (and writing, if superuser) of /*
* kernel time-keeping variables. used by xntpd. * Start the leap seconds timer:
*/ */
int do_adjtimex(struct timex *txc) static inline void ntp_start_leap_timer(struct timespec *ts)
{ {
struct timespec ts; long now = ts->tv_sec;
int result;
/* Validate the data before disabling interrupts */ if (time_status & STA_INS) {
if (txc->modes & ADJ_ADJTIME) { time_state = TIME_INS;
/* singleshot must not be used with any other mode bits */ now += 86400 - now % 86400;
if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
return -EINVAL;
if (!(txc->modes & ADJ_OFFSET_READONLY) &&
!capable(CAP_SYS_TIME))
return -EPERM;
} else {
/* In order to modify anything, you gotta be super-user! */
if (txc->modes && !capable(CAP_SYS_TIME))
return -EPERM;
/* if the quartz is off by more than 10% something is VERY wrong! */
if (txc->modes & ADJ_TICK &&
(txc->tick < 900000/USER_HZ ||
txc->tick > 1100000/USER_HZ))
return -EINVAL;
if (txc->modes & ADJ_STATUS && time_state != TIME_OK) return;
hrtimer_cancel(&leap_timer);
} }
getnstimeofday(&ts); if (time_status & STA_DEL) {
time_state = TIME_DEL;
write_seqlock_irq(&xtime_lock); now += 86400 - (now + 1) % 86400;
hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
/* If there are input parameters, then process them */
if (txc->modes & ADJ_ADJTIME) {
long save_adjust = time_adjust;
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
/* adjtime() is independent from ntp_adjtime() */
time_adjust = txc->offset;
ntp_update_frequency();
}
txc->offset = save_adjust;
goto adj_done;
} }
if (txc->modes) { }
long sec;
if (txc->modes & ADJ_STATUS) { /*
if ((time_status & STA_PLL) && * Propagate a new txc->status value into the NTP state:
!(txc->status & STA_PLL)) { */
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
time_state = TIME_OK; time_state = TIME_OK;
time_status = STA_UNSYNC; time_status = STA_UNSYNC;
} }
/*
* If we turn on PLL adjustments then reset the
* reference time to current time.
*/
if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
time_reftime = xtime.tv_sec;
/* only set allowed bits */ /* only set allowed bits */
time_status &= STA_RONLY; time_status &= STA_RONLY;
time_status |= txc->status & ~STA_RONLY; time_status |= txc->status & ~STA_RONLY;
switch (time_state) { switch (time_state) {
case TIME_OK: case TIME_OK:
start_timer: ntp_start_leap_timer(ts);
sec = ts.tv_sec;
if (time_status & STA_INS) {
time_state = TIME_INS;
sec += 86400 - sec % 86400;
hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
} else if (time_status & STA_DEL) {
time_state = TIME_DEL;
sec += 86400 - (sec + 1) % 86400;
hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
}
break; break;
case TIME_INS: case TIME_INS:
case TIME_DEL: case TIME_DEL:
time_state = TIME_OK; time_state = TIME_OK;
goto start_timer; ntp_start_leap_timer(ts);
break;
case TIME_WAIT: case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL))) if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK; time_state = TIME_OK;
...@@ -357,21 +393,31 @@ int do_adjtimex(struct timex *txc) ...@@ -357,21 +393,31 @@ int do_adjtimex(struct timex *txc)
hrtimer_restart(&leap_timer); hrtimer_restart(&leap_timer);
break; break;
} }
} }
/*
* Called with the xtime lock held, so we can access and modify
* all the global NTP state:
*/
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
{
if (txc->modes & ADJ_STATUS)
process_adj_status(txc, ts);
if (txc->modes & ADJ_NANO) if (txc->modes & ADJ_NANO)
time_status |= STA_NANO; time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO) if (txc->modes & ADJ_MICRO)
time_status &= ~STA_NANO; time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) { if (txc->modes & ADJ_FREQUENCY) {
time_freq = (s64)txc->freq * PPM_SCALE; time_freq = txc->freq * PPM_SCALE;
time_freq = min(time_freq, MAXFREQ_SCALED); time_freq = min(time_freq, MAXFREQ_SCALED);
time_freq = max(time_freq, -MAXFREQ_SCALED); time_freq = max(time_freq, -MAXFREQ_SCALED);
} }
if (txc->modes & ADJ_MAXERROR) if (txc->modes & ADJ_MAXERROR)
time_maxerror = txc->maxerror; time_maxerror = txc->maxerror;
if (txc->modes & ADJ_ESTERROR) if (txc->modes & ADJ_ESTERROR)
time_esterror = txc->esterror; time_esterror = txc->esterror;
...@@ -388,25 +434,80 @@ int do_adjtimex(struct timex *txc) ...@@ -388,25 +434,80 @@ int do_adjtimex(struct timex *txc)
if (txc->modes & ADJ_OFFSET) if (txc->modes & ADJ_OFFSET)
ntp_update_offset(txc->offset); ntp_update_offset(txc->offset);
if (txc->modes & ADJ_TICK) if (txc->modes & ADJ_TICK)
tick_usec = txc->tick; tick_usec = txc->tick;
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
ntp_update_frequency(); ntp_update_frequency();
}
/*
* adjtimex mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int do_adjtimex(struct timex *txc)
{
struct timespec ts;
int result;
/* Validate the data before disabling interrupts */
if (txc->modes & ADJ_ADJTIME) {
/* singleshot must not be used with any other mode bits */
if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
return -EINVAL;
if (!(txc->modes & ADJ_OFFSET_READONLY) &&
!capable(CAP_SYS_TIME))
return -EPERM;
} else {
/* In order to modify anything, you gotta be super-user! */
if (txc->modes && !capable(CAP_SYS_TIME))
return -EPERM;
/*
* if the quartz is off by more than 10% then
* something is VERY wrong!
*/
if (txc->modes & ADJ_TICK &&
(txc->tick < 900000/USER_HZ ||
txc->tick > 1100000/USER_HZ))
return -EINVAL;
if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
hrtimer_cancel(&leap_timer);
} }
getnstimeofday(&ts);
write_seqlock_irq(&xtime_lock);
if (txc->modes & ADJ_ADJTIME) {
long save_adjust = time_adjust;
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
/* adjtime() is independent from ntp_adjtime() */
time_adjust = txc->offset;
ntp_update_frequency();
}
txc->offset = save_adjust;
} else {
/* If there are input parameters, then process them: */
if (txc->modes)
process_adjtimex_modes(txc, &ts);
txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
NTP_SCALE_SHIFT); NTP_SCALE_SHIFT);
if (!(time_status & STA_NANO)) if (!(time_status & STA_NANO))
txc->offset /= NSEC_PER_USEC; txc->offset /= NSEC_PER_USEC;
}
adj_done:
result = time_state; /* mostly `TIME_OK' */ result = time_state; /* mostly `TIME_OK' */
if (time_status & (STA_UNSYNC|STA_CLOCKERR)) if (time_status & (STA_UNSYNC|STA_CLOCKERR))
result = TIME_ERROR; result = TIME_ERROR;
txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
(s64)PPM_SCALE_INV, NTP_SCALE_SHIFT); PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->maxerror = time_maxerror; txc->maxerror = time_maxerror;
txc->esterror = time_esterror; txc->esterror = time_esterror;
txc->status = time_status; txc->status = time_status;
...@@ -425,6 +526,7 @@ int do_adjtimex(struct timex *txc) ...@@ -425,6 +526,7 @@ int do_adjtimex(struct timex *txc)
txc->calcnt = 0; txc->calcnt = 0;
txc->errcnt = 0; txc->errcnt = 0;
txc->stbcnt = 0; txc->stbcnt = 0;
write_sequnlock_irq(&xtime_lock); write_sequnlock_irq(&xtime_lock);
txc->time.tv_sec = ts.tv_sec; txc->time.tv_sec = ts.tv_sec;
...@@ -440,6 +542,8 @@ int do_adjtimex(struct timex *txc) ...@@ -440,6 +542,8 @@ int do_adjtimex(struct timex *txc)
static int __init ntp_tick_adj_setup(char *str) static int __init ntp_tick_adj_setup(char *str)
{ {
ntp_tick_adj = simple_strtol(str, NULL, 0); ntp_tick_adj = simple_strtol(str, NULL, 0);
ntp_tick_adj <<= NTP_SCALE_SHIFT;
return 1; return 1;
} }
......
...@@ -589,11 +589,14 @@ static struct tvec_base *lock_timer_base(struct timer_list *timer, ...@@ -589,11 +589,14 @@ static struct tvec_base *lock_timer_base(struct timer_list *timer,
} }
} }
int __mod_timer(struct timer_list *timer, unsigned long expires) static inline int
__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
{ {
struct tvec_base *base, *new_base; struct tvec_base *base, *new_base;
unsigned long flags; unsigned long flags;
int ret = 0; int ret;
ret = 0;
timer_stats_timer_set_start_info(timer); timer_stats_timer_set_start_info(timer);
BUG_ON(!timer->function); BUG_ON(!timer->function);
...@@ -603,6 +606,9 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) ...@@ -603,6 +606,9 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
if (timer_pending(timer)) { if (timer_pending(timer)) {
detach_timer(timer, 0); detach_timer(timer, 0);
ret = 1; ret = 1;
} else {
if (pending_only)
goto out_unlock;
} }
debug_timer_activate(timer); debug_timer_activate(timer);
...@@ -629,42 +635,28 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) ...@@ -629,42 +635,28 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
timer->expires = expires; timer->expires = expires;
internal_add_timer(base, timer); internal_add_timer(base, timer);
out_unlock:
spin_unlock_irqrestore(&base->lock, flags); spin_unlock_irqrestore(&base->lock, flags);
return ret; return ret;
} }
EXPORT_SYMBOL(__mod_timer);
/** /**
* add_timer_on - start a timer on a particular CPU * mod_timer_pending - modify a pending timer's timeout
* @timer: the timer to be added * @timer: the pending timer to be modified
* @cpu: the CPU to start it on * @expires: new timeout in jiffies
* *
* This is not very scalable on SMP. Double adds are not possible. * mod_timer_pending() is the same for pending timers as mod_timer(),
* but will not re-activate and modify already deleted timers.
*
* It is useful for unserialized use of timers.
*/ */
void add_timer_on(struct timer_list *timer, int cpu) int mod_timer_pending(struct timer_list *timer, unsigned long expires)
{ {
struct tvec_base *base = per_cpu(tvec_bases, cpu); return __mod_timer(timer, expires, true);
unsigned long flags;
timer_stats_timer_set_start_info(timer);
BUG_ON(timer_pending(timer) || !timer->function);
spin_lock_irqsave(&base->lock, flags);
timer_set_base(timer, base);
debug_timer_activate(timer);
internal_add_timer(base, timer);
/*
* Check whether the other CPU is idle and needs to be
* triggered to reevaluate the timer wheel when nohz is
* active. We are protected against the other CPU fiddling
* with the timer by holding the timer base lock. This also
* makes sure that a CPU on the way to idle can not evaluate
* the timer wheel.
*/
wake_up_idle_cpu(cpu);
spin_unlock_irqrestore(&base->lock, flags);
} }
EXPORT_SYMBOL(mod_timer_pending);
/** /**
* mod_timer - modify a timer's timeout * mod_timer - modify a timer's timeout
...@@ -688,9 +680,6 @@ void add_timer_on(struct timer_list *timer, int cpu) ...@@ -688,9 +680,6 @@ void add_timer_on(struct timer_list *timer, int cpu)
*/ */
int mod_timer(struct timer_list *timer, unsigned long expires) int mod_timer(struct timer_list *timer, unsigned long expires)
{ {
BUG_ON(!timer->function);
timer_stats_timer_set_start_info(timer);
/* /*
* This is a common optimization triggered by the * This is a common optimization triggered by the
* networking code - if the timer is re-modified * networking code - if the timer is re-modified
...@@ -699,11 +688,61 @@ int mod_timer(struct timer_list *timer, unsigned long expires) ...@@ -699,11 +688,61 @@ int mod_timer(struct timer_list *timer, unsigned long expires)
if (timer->expires == expires && timer_pending(timer)) if (timer->expires == expires && timer_pending(timer))
return 1; return 1;
return __mod_timer(timer, expires); return __mod_timer(timer, expires, false);
} }
EXPORT_SYMBOL(mod_timer); EXPORT_SYMBOL(mod_timer);
/**
* add_timer - start a timer
* @timer: the timer to be added
*
* The kernel will do a ->function(->data) callback from the
* timer interrupt at the ->expires point in the future. The
* current time is 'jiffies'.
*
* The timer's ->expires, ->function (and if the handler uses it, ->data)
* fields must be set prior calling this function.
*
* Timers with an ->expires field in the past will be executed in the next
* timer tick.
*/
void add_timer(struct timer_list *timer)
{
BUG_ON(timer_pending(timer));
mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);
/**
* add_timer_on - start a timer on a particular CPU
* @timer: the timer to be added
* @cpu: the CPU to start it on
*
* This is not very scalable on SMP. Double adds are not possible.
*/
void add_timer_on(struct timer_list *timer, int cpu)
{
struct tvec_base *base = per_cpu(tvec_bases, cpu);
unsigned long flags;
timer_stats_timer_set_start_info(timer);
BUG_ON(timer_pending(timer) || !timer->function);
spin_lock_irqsave(&base->lock, flags);
timer_set_base(timer, base);
debug_timer_activate(timer);
internal_add_timer(base, timer);
/*
* Check whether the other CPU is idle and needs to be
* triggered to reevaluate the timer wheel when nohz is
* active. We are protected against the other CPU fiddling
* with the timer by holding the timer base lock. This also
* makes sure that a CPU on the way to idle can not evaluate
* the timer wheel.
*/
wake_up_idle_cpu(cpu);
spin_unlock_irqrestore(&base->lock, flags);
}
/** /**
* del_timer - deactive a timer. * del_timer - deactive a timer.
* @timer: the timer to be deactivated * @timer: the timer to be deactivated
...@@ -733,7 +772,6 @@ int del_timer(struct timer_list *timer) ...@@ -733,7 +772,6 @@ int del_timer(struct timer_list *timer)
return ret; return ret;
} }
EXPORT_SYMBOL(del_timer); EXPORT_SYMBOL(del_timer);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
...@@ -767,7 +805,6 @@ int try_to_del_timer_sync(struct timer_list *timer) ...@@ -767,7 +805,6 @@ int try_to_del_timer_sync(struct timer_list *timer)
return ret; return ret;
} }
EXPORT_SYMBOL(try_to_del_timer_sync); EXPORT_SYMBOL(try_to_del_timer_sync);
/** /**
...@@ -796,7 +833,6 @@ int del_timer_sync(struct timer_list *timer) ...@@ -796,7 +833,6 @@ int del_timer_sync(struct timer_list *timer)
cpu_relax(); cpu_relax();
} }
} }
EXPORT_SYMBOL(del_timer_sync); EXPORT_SYMBOL(del_timer_sync);
#endif #endif
...@@ -1268,7 +1304,7 @@ signed long __sched schedule_timeout(signed long timeout) ...@@ -1268,7 +1304,7 @@ signed long __sched schedule_timeout(signed long timeout)
expire = timeout + jiffies; expire = timeout + jiffies;
setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
__mod_timer(&timer, expire); __mod_timer(&timer, expire, false);
schedule(); schedule();
del_singleshot_timer_sync(&timer); del_singleshot_timer_sync(&timer);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册