未验证 提交 7a8fceb7 编写于 作者: N Nicolin Chen 提交者: Mark Brown

ASoC: fsl_ssi: Refine all comments

This patch refines the comments by:
1) Removing all out-of-date comments
2) Removing all not-so-useful comments
3) Unifying the styles of all comments
4) Shortening comments to be more conise
5) Adding comments to improve code readablity
6) Moving all register related comments to fsl_ssi.h
7) Adding comments to all register and field defines
Signed-off-by: NNicolin Chen <nicoleotsuka@gmail.com>
Tested-by: NMaciej S. Szmigiero <mail@maciej.szmigiero.name>
Reviewed-by: NMaciej S. Szmigiero <mail@maciej.szmigiero.name>
Acked-by: NTimur Tabi <timur@tabi.org>
Signed-off-by: NMark Brown <broonie@kernel.org>
上级 8483c067
......@@ -187,42 +187,48 @@ struct fsl_ssi_soc_data {
/**
* fsl_ssi: per-SSI private data
*
* @reg: Pointer to the regmap registers
* @regs: Pointer to the regmap registers
* @irq: IRQ of this SSI
* @cpu_dai_drv: CPU DAI driver for this device
*
* @dai_fmt: DAI configuration this device is currently used with
* @i2s_mode: i2s and network mode configuration of the device. Is used to
* switch between normal and i2s/network mode
* mode depending on the number of channels
* @i2s_mode: I2S and Network mode configuration of SCR register
* @use_dma: DMA is used or FIQ with stream filter
* @use_dual_fifo: DMA with support for both FIFOs used
* @fifo_deph: Depth of the SSI FIFOs
* @slot_width: width of each DAI slot
* @slots: number of slots
* @rxtx_reg_val: Specific register settings for receive/transmit configuration
* @use_dual_fifo: DMA with support for dual FIFO mode
* @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
* @fifo_depth: Depth of the SSI FIFOs
* @slot_width: Width of each DAI slot
* @slots: Number of slots
* @rxtx_reg_val: Specific RX/TX register settings
*
* @clk: SSI clock
* @baudclk: SSI baud clock for master mode
* @clk: Clock source to access register
* @baudclk: Clock source to generate bit and frame-sync clocks
* @baudclk_streams: Active streams that are using baudclk
*
* @regcache_sfcsr: Cache sfcsr register value during suspend and resume
* @regcache_sacnt: Cache sacnt register value during suspend and resume
*
* @dma_params_tx: DMA transmit parameters
* @dma_params_rx: DMA receive parameters
* @ssi_phys: physical address of the SSI registers
*
* @fiq_params: FIQ stream filtering parameters
*
* @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
* @pdev: Pointer to pdev when using fsl-ssi as sound card (ppc only)
* TODO: Should be replaced with simple-sound-card
*
* @dbg_stats: Debugging statistics
*
* @soc: SoC specific data
* @dev: Pointer to &pdev->dev
*
* @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
* @fifo_watermark or fewer words in TX fifo or
* @fifo_watermark or more empty words in RX fifo.
* @dma_maxburst: Max number of words to transfer in one go. So far,
* this is always the same as fifo_watermark.
*
* @fifo_watermark: the FIFO watermark setting. Notifies DMA when
* there are @fifo_watermark or fewer words in TX fifo or
* @fifo_watermark or more empty words in RX fifo.
* @dma_maxburst: max number of words to transfer in one go. So far,
* this is always the same as fifo_watermark.
* @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
*/
struct fsl_ssi {
struct regmap *regs;
......@@ -243,20 +249,15 @@ struct fsl_ssi {
struct clk *baudclk;
unsigned int baudclk_streams;
/* regcache for volatile regs */
u32 regcache_sfcsr;
u32 regcache_sacnt;
/* DMA params */
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct snd_dmaengine_dai_dma_data dma_params_rx;
dma_addr_t ssi_phys;
/* params for non-dma FIQ stream filtered mode */
struct imx_pcm_fiq_params fiq_params;
/* Used when using fsl-ssi as sound-card. This is only used by ppc and
* should be replaced with simple-sound-card. */
struct platform_device *pdev;
struct fsl_ssi_dbg dbg_stats;
......@@ -271,19 +272,19 @@ struct fsl_ssi {
};
/*
* imx51 and later SoCs have a slightly different IP that allows the
* SSI configuration while the SSI unit is running.
*
* More important, it is necessary on those SoCs to configure the
* sperate TX/RX DMA bits just before starting the stream
* (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
* sends any DMA requests to the SDMA unit, otherwise it is not defined
* how the SDMA unit handles the DMA request.
* SoC specific data
*
* SDMA units are present on devices starting at imx35 but the imx35
* reference manual states that the DMA bits should not be changed
* while the SSI unit is running (SSIEN). So we support the necessary
* online configuration of fsl-ssi starting at imx51.
* Notes:
* 1) SSI in earlier SoCS has critical bits in control registers that
* cannot be changed after SSI starts running -- a software reset
* (set SSIEN to 0) is required to change their values. So adding
* an offline_config flag for these SoCs.
* 2) SDMA is available since imx35. However, imx35 does not support
* DMA bits changing when SSI is running, so set offline_config.
* 3) imx51 and later versions support register configurations when
* SSI is running (SSIEN); For these versions, DMA needs to be
* configured before SSI sends DMA request to avoid an undefined
* DMA request on the SDMA side.
*/
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
......@@ -342,17 +343,9 @@ static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
SND_SOC_DAIFMT_CBM_CFS;
}
/**
* fsl_ssi_isr: SSI interrupt handler
*
* Although it's possible to use the interrupt handler to send and receive
* data to/from the SSI, we use the DMA instead. Programming is more
* complicated, but the performance is much better.
*
* This interrupt handler is used only to gather statistics.
*
* @irq: IRQ of the SSI device
* @dev_id: pointer to the fsl_ssi structure for this SSI device
* Interrupt handler to gather states
*/
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
......@@ -361,10 +354,6 @@ static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
__be32 sisr;
__be32 sisr2;
/* We got an interrupt, so read the status register to see what we
were interrupted for. We mask it with the Interrupt Enable register
so that we only check for events that we're interested in.
*/
regmap_read(regs, CCSR_SSI_SISR, &sisr);
sisr2 = sisr & ssi->soc->sisr_write_mask;
......@@ -377,8 +366,8 @@ static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
return IRQ_HANDLED;
}
/*
* Enable/Disable all rx/tx config flags at once.
/**
* Enable or disable all rx/tx config flags at once
*/
static void fsl_ssi_rxtx_config(struct fsl_ssi *ssi, bool enable)
{
......@@ -405,13 +394,8 @@ static void fsl_ssi_rxtx_config(struct fsl_ssi *ssi, bool enable)
}
}
/*
* Clear RX or TX FIFO to remove samples from the previous
* stream session which may be still present in the FIFO and
* may introduce bad samples and/or channel slipping.
*
* Note: The SOR is not documented in recent IMX datasheet, but
* is described in IMX51 reference manual at section 56.3.3.15.
/**
* Clear remaining data in the FIFO to avoid dirty data or channel slipping
*/
static void fsl_ssi_fifo_clear(struct fsl_ssi *ssi, bool is_rx)
{
......@@ -424,7 +408,7 @@ static void fsl_ssi_fifo_clear(struct fsl_ssi *ssi, bool is_rx)
}
}
/*
/**
* Calculate the bits that have to be disabled for the current stream that is
* getting disabled. This keeps the bits enabled that are necessary for the
* second stream to work if 'stream_active' is true.
......@@ -444,9 +428,8 @@ static void fsl_ssi_fifo_clear(struct fsl_ssi *ssi, bool is_rx)
((vals_disable) & \
((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
/*
* Enable/Disable a ssi configuration. You have to pass either
* ssi->rxtx_reg_val.rx or tx as vals parameter.
/**
* Enable or disable SSI configuration.
*/
static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
struct fsl_ssi_reg_val *vals)
......@@ -467,24 +450,28 @@ static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
else
keep_active = 0;
/* Find the other direction values rx or tx which we do not want to
* modify */
/* Get the opposite direction to keep its values untouched */
if (&ssi->rxtx_reg_val.rx == vals)
avals = &ssi->rxtx_reg_val.tx;
else
avals = &ssi->rxtx_reg_val.rx;
/* If vals should be disabled, start with disabling the unit */
if (!enable) {
/*
* To keep the other stream safe, exclude shared bits between
* both streams, and get safe bits to disable current stream
*/
u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
keep_active);
/* Safely disable SCR register for the stream */
regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
}
/*
* We are running on a SoC which does not support online SSI
* reconfiguration, so we have to enable all necessary flags at once
* even if we do not use them later (capture and playback configuration)
* For cases where online configuration is not supported,
* 1) Enable all necessary bits of both streams when 1st stream starts
* even if the opposite stream will not start
* 2) Disable all remaining bits of both streams when last stream ends
*/
if (ssi->soc->offline_config) {
if ((enable && !nr_active_streams) ||
......@@ -494,10 +481,7 @@ static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
goto config_done;
}
/*
* Configure single direction units while the SSI unit is running
* (online configuration)
*/
/* Online configure single direction while SSI is running */
if (enable) {
fsl_ssi_fifo_clear(ssi, vals->scr & CCSR_SSI_SCR_RE);
......@@ -510,15 +494,9 @@ static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
u32 stcr;
/*
* Disabling the necessary flags for one of rx/tx while the
* other stream is active is a little bit more difficult. We
* have to disable only those flags that differ between both
* streams (rx XOR tx) and that are set in the stream that is
* disabled now. Otherwise we could alter flags of the other
* stream
* To keep the other stream safe, exclude shared bits between
* both streams, and get safe bits to disable current stream
*/
/* These assignments are simply vals without bits set in avals*/
sier = fsl_ssi_disable_val(vals->sier, avals->sier,
keep_active);
srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
......@@ -526,6 +504,7 @@ static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
keep_active);
/* Safely disable other control registers for the stream */
regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
......@@ -534,26 +513,21 @@ static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
config_done:
/* Enabling of subunits is done after configuration */
if (enable) {
/*
* Start DMA before setting TE to avoid FIFO underrun
* which may cause a channel slip or a channel swap
*
* TODO: FIQ cases might also need this upon testing
*/
if (ssi->use_dma && (vals->scr & CCSR_SSI_SCR_TE)) {
/*
* Be sure the Tx FIFO is filled when TE is set.
* Otherwise, there are some chances to start the
* playback with some void samples inserted first,
* generating a channel slip.
*
* First, SSIEN must be set, to let the FIFO be filled.
*
* Notes:
* - Limit this fix to the DMA case until FIQ cases can
* be tested.
* - Limit the length of the busy loop to not lock the
* system too long, even if 1-2 loops are sufficient
* in general.
*/
int i;
int max_loop = 100;
/* Enable SSI first to send TX DMA request */
regmap_update_bits(regs, CCSR_SSI_SCR,
CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);
/* Busy wait until TX FIFO not empty -- DMA working */
for (i = 0; i < max_loop; i++) {
u32 sfcsr;
regmap_read(regs, CCSR_SSI_SFCSR, &sfcsr);
......@@ -565,6 +539,7 @@ static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
"Timeout waiting TX FIFO filling\n");
}
}
/* Enable all remaining bits */
regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
}
}
......@@ -581,20 +556,9 @@ static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
if (!ssi->soc->imx21regs) {
/*
* Note that these below aren't just normal registers.
* They are a way to disable or enable bits in SACCST
* register:
* - writing a '1' bit at some position in SACCEN sets the
* relevant bit in SACCST,
* - writing a '1' bit at some position in SACCDIS unsets
* the relevant bit in SACCST register.
*
* The two writes below first disable all channels slots,
* then enable just slots 3 & 4 ("PCM Playback Left Channel"
* and "PCM Playback Right Channel").
*/
/* Disable all channel slots */
regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
}
}
......@@ -602,23 +566,11 @@ static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
static void fsl_ssi_tx_config(struct fsl_ssi *ssi, bool enable)
{
/*
* Why are we setting up SACCST everytime we are starting a
* playback?
* Some CODECs (like VT1613 CODEC on UDOO board) like to
* (sometimes) set extra bits in their SLOTREQ requests.
* When a bit is set in a SLOTREQ request then SSI sets the
* relevant bit in SACCST automatically (it is enough if a bit was
* set in a SLOTREQ just once, bits in SACCST are 'sticky').
* If an extra slot gets enabled that's a disaster for playback
* because some of normal left or right channel samples are
* redirected instead to this extra slot.
* SACCST might be modified via AC Link by a CODEC if it sends
* extra bits in their SLOTREQ requests, which'll accidentally
* send valid data to slots other than normal playback slots.
*
* A workaround implemented in fsl-asoc-card of setting an
* appropriate CODEC register so that slots 3 & 4 (the normal
* stereo playback slots) are used for S/PDIF seems to mostly fix
* this issue on the UDOO board but since this CODEC is so
* untrustworthy let's play safe here and make sure that no extra
* slots are enabled every time a playback is started.
* To be safe, configure SACCST right before TX starts.
*/
if (enable && fsl_ssi_is_ac97(ssi))
fsl_ssi_tx_ac97_saccst_setup(ssi);
......@@ -626,10 +578,8 @@ static void fsl_ssi_tx_config(struct fsl_ssi *ssi, bool enable)
fsl_ssi_config(ssi, enable, &ssi->rxtx_reg_val.tx);
}
/*
* Setup rx/tx register values used to enable/disable the streams. These will
* be used later in fsl_ssi_config to setup the streams without the need to
* check for all different SSI modes.
/**
* Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
*/
static void fsl_ssi_setup_reg_vals(struct fsl_ssi *ssi)
{
......@@ -642,6 +592,7 @@ static void fsl_ssi_setup_reg_vals(struct fsl_ssi *ssi)
reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
reg->tx.scr = 0;
/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
if (!fsl_ssi_is_ac97(ssi)) {
reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
......@@ -663,24 +614,17 @@ static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
{
struct regmap *regs = ssi->regs;
/*
* Setup the clock control register
*/
/* Setup the clock control register */
regmap_write(regs, CCSR_SSI_STCCR,
CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
regmap_write(regs, CCSR_SSI_SRCCR,
CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
/*
* Enable AC97 mode and startup the SSI
*/
/* Enable AC97 mode and startup the SSI */
regmap_write(regs, CCSR_SSI_SACNT,
CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
/*
* Enable SSI, Transmit and Receive. AC97 has to communicate with the
* codec before a stream is started.
*/
/* AC97 has to communicate with codec before starting a stream */
regmap_update_bits(regs, CCSR_SSI_SCR,
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
......@@ -688,14 +632,6 @@ static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
}
/**
* fsl_ssi_startup: create a new substream
*
* This is the first function called when a stream is opened.
*
* If this is the first stream open, then grab the IRQ and program most of
* the SSI registers.
*/
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
......@@ -707,7 +643,8 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
if (ret)
return ret;
/* When using dual fifo mode, it is safer to ensure an even period
/*
* When using dual fifo mode, it is safer to ensure an even period
* size. If appearing to an odd number while DMA always starts its
* task from fifo0, fifo1 would be neglected at the end of each
* period. But SSI would still access fifo1 with an invalid data.
......@@ -719,10 +656,6 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
return 0;
}
/**
* fsl_ssi_shutdown: shutdown the SSI
*
*/
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
......@@ -734,7 +667,7 @@ static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
}
/**
* fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
* Configure Digital Audio Interface bit clock
*
* Note: This function can be only called when using SSI as DAI master
*
......@@ -851,17 +784,15 @@ static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
}
/**
* fsl_ssi_hw_params - program the sample size
*
* Most of the SSI registers have been programmed in the startup function,
* but the word length must be programmed here. Unfortunately, programming
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
* cause a problem with supporting simultaneous playback and capture. If
* the SSI is already playing a stream, then that stream may be temporarily
* stopped when you start capture.
* Configure SSI based on PCM hardware parameters
*
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
* clock master.
* Notes:
* 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
* disabled on offline_config SoCs. Even for online configurable SoCs
* running in synchronous mode (both TX and RX use STCCR), it is not
* safe to re-configure them when both two streams start running.
* 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
* fsl_ssi_set_bclk() if SSI is the DAI clock master.
*/
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
......@@ -879,8 +810,10 @@ static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
enabled = scr_val & CCSR_SSI_SCR_SSIEN;
/*
* If we're in synchronous mode, and the SSI is already enabled,
* then STCCR is already set properly.
* SSI is properly configured if it is enabled and running in
* the synchronous mode; Note that AC97 mode is an exception
* that should set separate configurations for STCCR and SRCCR
* despite running in the synchronous mode.
*/
if (enabled && ssi->cpu_dai_drv.symmetric_rates)
return 0;
......@@ -902,10 +835,7 @@ static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
if (!fsl_ssi_is_ac97(ssi)) {
u8 i2smode;
/*
* Switch to normal net mode in order to have a frame sync
* signal every 32 bits instead of 16 bits
*/
/* Normal + Network mode to send 16-bit data in 32-bit frames */
if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
CCSR_SSI_SCR_NET;
......@@ -917,16 +847,6 @@ static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
channels == 1 ? 0 : i2smode);
}
/*
* FIXME: The documentation says that SxCCR[WL] should not be
* modified while the SSI is enabled. The only time this can
* happen is if we're trying to do simultaneous playback and
* capture in asynchronous mode. Unfortunately, I have been enable
* to get that to work at all on the P1022DS. Therefore, we don't
* bother to disable/enable the SSI when setting SxCCR[WL], because
* the SSI will stop anyway. Maybe one day, this will get fixed.
*/
/* In synchronous mode, the SSI uses STCCR for capture */
if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
ssi->cpu_dai_drv.symmetric_rates)
......@@ -972,6 +892,7 @@ static int _fsl_ssi_set_dai_fmt(struct device *dev,
regmap_read(regs, CCSR_SSI_SCR, &scr);
scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
/* Synchronize frame sync clock for TE to avoid data slipping */
scr |= CCSR_SSI_SCR_SYNC_TX_FS;
mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
......@@ -982,6 +903,7 @@ static int _fsl_ssi_set_dai_fmt(struct device *dev,
stcr &= ~mask;
srcr &= ~mask;
/* Use Network mode as default */
ssi->i2s_mode = CCSR_SSI_SCR_NET;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
......@@ -1022,6 +944,7 @@ static int _fsl_ssi_set_dai_fmt(struct device *dev,
CCSR_SSI_STCR_TXBIT0;
break;
case SND_SOC_DAIFMT_AC97:
/* Data on falling edge of bclk, frame high, 1clk before data */
ssi->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
break;
default:
......@@ -1054,13 +977,16 @@ static int _fsl_ssi_set_dai_fmt(struct device *dev,
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* Output bit and frame sync clocks */
strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
scr |= CCSR_SSI_SCR_SYS_CLK_EN;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* Input bit or frame sync clocks */
scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
break;
case SND_SOC_DAIFMT_CBM_CFS:
/* Input bit clock but output frame sync clock */
strcr &= ~CCSR_SSI_STCR_TXDIR;
strcr |= CCSR_SSI_STCR_TFDIR;
scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
......@@ -1073,8 +999,8 @@ static int _fsl_ssi_set_dai_fmt(struct device *dev,
stcr |= strcr;
srcr |= strcr;
/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
if (ssi->cpu_dai_drv.symmetric_rates || fsl_ssi_is_ac97(ssi)) {
/* Need to clear RXDIR when using SYNC or AC97 mode */
srcr &= ~CCSR_SSI_SRCR_RXDIR;
scr |= CCSR_SSI_SCR_SYN;
}
......@@ -1106,12 +1032,13 @@ static int _fsl_ssi_set_dai_fmt(struct device *dev,
}
/**
* fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
* Configure Digital Audio Interface (DAI) Format
*/
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(cpu_dai);
/* AC97 configured DAIFMT earlier in the probe() */
if (fsl_ssi_is_ac97(ssi))
return 0;
......@@ -1119,9 +1046,7 @@ static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
}
/**
* fsl_ssi_set_dai_tdm_slot - set TDM slot number
*
* Note: This function can be only called when using SSI as DAI master
* Set TDM slot number and slot width
*/
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
......@@ -1149,17 +1074,17 @@ static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
CCSR_SSI_SxCCR_DC(slots));
/* The register SxMSKs needs SSI to provide essential clock due to
* hardware design. So we here temporarily enable SSI to set them.
*/
/* Save SSIEN bit of the SCR register */
regmap_read(regs, CCSR_SSI_SCR, &val);
val &= CCSR_SSI_SCR_SSIEN;
/* Temporarily enable SSI to allow SxMSKs to be configurable */
regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
CCSR_SSI_SCR_SSIEN);
regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
/* Restore the value of SSIEN bit */
regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
ssi->slot_width = slot_width;
......@@ -1169,10 +1094,7 @@ static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
}
/**
* fsl_ssi_trigger: start and stop the DMA transfer.
*
* This function is called by ALSA to start, stop, pause, and resume the DMA
* transfer of data.
* Start or stop SSI and corresponding DMA transaction.
*
* The DMA channel is in external master start and pause mode, which
* means the SSI completely controls the flow of data.
......@@ -1207,6 +1129,7 @@ static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
return -EINVAL;
}
/* Clear corresponding FIFO */
if (fsl_ssi_is_ac97(ssi)) {
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
......@@ -1239,7 +1162,6 @@ static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
.trigger = fsl_ssi_trigger,
};
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
.probe = fsl_ssi_dai_probe,
.playback = {
......@@ -1383,6 +1305,7 @@ static int fsl_ssi_imx_probe(struct platform_device *pdev,
u32 dmas[4];
int ret;
/* Backward compatible for a DT without ipg clock name assigned */
if (ssi->has_ipg_clk_name)
ssi->clk = devm_clk_get(dev, "ipg");
else
......@@ -1393,6 +1316,7 @@ static int fsl_ssi_imx_probe(struct platform_device *pdev,
return ret;
}
/* Enable the clock since regmap will not handle it in this case */
if (!ssi->has_ipg_clk_name) {
ret = clk_prepare_enable(ssi->clk);
if (ret) {
......@@ -1401,9 +1325,7 @@ static int fsl_ssi_imx_probe(struct platform_device *pdev,
}
}
/* For those SLAVE implementations, we ignore non-baudclk cases
* and, instead, abandon MASTER mode that needs baud clock.
*/
/* Do not error out for slave cases that live without a baud clock */
ssi->baudclk = devm_clk_get(dev, "baud");
if (IS_ERR(ssi->baudclk))
dev_dbg(dev, "could not get baud clock: %ld\n",
......@@ -1414,25 +1336,23 @@ static int fsl_ssi_imx_probe(struct platform_device *pdev,
ssi->dma_params_tx.addr = ssi->ssi_phys + CCSR_SSI_STX0;
ssi->dma_params_rx.addr = ssi->ssi_phys + CCSR_SSI_SRX0;
/* Set to dual FIFO mode according to the SDMA sciprt */
ret = of_property_read_u32_array(np, "dmas", dmas, 4);
if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
ssi->use_dual_fifo = true;
/* When using dual fifo mode, we need to keep watermark
* as even numbers due to dma script limitation.
/*
* Use even numbers to avoid channel swap due to SDMA
* script design
*/
ssi->dma_params_tx.maxburst &= ~0x1;
ssi->dma_params_rx.maxburst &= ~0x1;
}
if (!ssi->use_dma) {
/*
* Some boards use an incompatible codec. To get it
* working, we are using imx-fiq-pcm-audio, that
* can handle those codecs. DMA is not possible in this
* situation.
* Some boards use an incompatible codec. Use imx-fiq-pcm-audio
* to get it working, as DMA is not possible in this situation.
*/
ssi->fiq_params.irq = ssi->irq;
ssi->fiq_params.base = iomem;
ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
......@@ -1490,12 +1410,14 @@ static int fsl_ssi_probe(struct platform_device *pdev)
ssi->soc = of_id->data;
ssi->dev = dev;
/* Check if being used in AC97 mode */
sprop = of_get_property(np, "fsl,mode", NULL);
if (sprop) {
if (!strcmp(sprop, "ac97-slave"))
ssi->dai_fmt = SND_SOC_DAIFMT_AC97;
}
/* Select DMA or FIQ */
ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
if (fsl_ssi_is_ac97(ssi)) {
......@@ -1504,7 +1426,6 @@ static int fsl_ssi_probe(struct platform_device *pdev)
fsl_ac97_data = ssi;
} else {
/* Initialize this copy of the CPU DAI driver structure */
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
sizeof(fsl_ssi_dai_template));
}
......@@ -1517,10 +1438,7 @@ static int fsl_ssi_probe(struct platform_device *pdev)
ssi->ssi_phys = res->start;
if (ssi->soc->imx21regs) {
/*
* According to datasheet imx21-class SSI
* don't have SACC{ST,EN,DIS} regs.
*/
/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
regconfig.max_register = CCSR_SSI_SRMSK;
regconfig.num_reg_defaults_raw =
CCSR_SSI_SRMSK / sizeof(uint32_t) + 1;
......@@ -1546,7 +1464,7 @@ static int fsl_ssi_probe(struct platform_device *pdev)
return ssi->irq;
}
/* Are the RX and the TX clocks locked? */
/* Set software limitations for synchronous mode */
if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
if (!fsl_ssi_is_ac97(ssi)) {
ssi->cpu_dai_drv.symmetric_rates = 1;
......@@ -1556,50 +1474,35 @@ static int fsl_ssi_probe(struct platform_device *pdev)
ssi->cpu_dai_drv.symmetric_channels = 1;
}
/* Determine the FIFO depth. */
/* Fetch FIFO depth; Set to 8 for older DT without this property */
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
if (iprop)
ssi->fifo_depth = be32_to_cpup(iprop);
else
/* Older 8610 DTs didn't have the fifo-depth property */
ssi->fifo_depth = 8;
/*
* Set the watermark for transmit FIFO 0 and receive FIFO 0. We don't
* use FIFO 1 but set the watermark appropriately nontheless.
* We program the transmit water to signal a DMA transfer
* if there are N elements left in the FIFO. For chips with 15-deep
* FIFOs, set watermark to 8. This allows the SSI to operate at a
* high data rate without channel slipping. Behavior is unchanged
* for the older chips with a fifo depth of only 8. A value of 4
* might be appropriate for the older chips, but is left at
* fifo_depth-2 until sombody has a chance to test.
* Configure TX and RX DMA watermarks -- when to send a DMA request
*
* We set the watermark on the same level as the DMA burstsize. For
* fiq it is probably better to use the biggest possible watermark
* size.
* Values should be tested to avoid FIFO under/over run. Set maxburst
* to fifo_watermark to maxiumize DMA transaction to reduce overhead.
*/
switch (ssi->fifo_depth) {
case 15:
/*
* 2 samples is not enough when running at high data
* rates (like 48kHz @ 16 bits/channel, 16 channels)
* 8 seems to split things evenly and leave enough time
* for the DMA to fill the FIFO before it's over/under
* run.
* Set to 8 as a balanced configuration -- When TX FIFO has 8
* empty slots, send a DMA request to fill these 8 slots. The
* remaining 7 slots should be able to allow DMA to finish the
* transaction before TX FIFO underruns; Same applies to RX.
*
* Tested with cases running at 48kHz @ 16 bits x 16 channels
*/
ssi->fifo_watermark = 8;
ssi->dma_maxburst = 8;
break;
case 8:
default:
/*
* maintain old behavior for older chips.
* Keeping it the same because I don't have an older
* board to test with.
* I suspect this could be changed to be something to
* leave some more space in the fifo.
*/
/* Safely use old watermark configurations for older chips */
ssi->fifo_watermark = ssi->fifo_depth - 2;
ssi->dma_maxburst = ssi->fifo_depth - 2;
break;
......@@ -1642,18 +1545,14 @@ static int fsl_ssi_probe(struct platform_device *pdev)
if (ret)
goto error_asoc_register;
/*
* If codec-handle property is missing from SSI node, we assume
* that the machine driver uses new binding which does not require
* SSI driver to trigger machine driver's probe.
*/
/* Bypass it if using newer DT bindings of ASoC machine drivers */
if (!of_get_property(np, "codec-handle", NULL))
goto done;
/* Trigger the machine driver's probe function. The platform driver
* name of the machine driver is taken from /compatible property of the
* device tree. We also pass the address of the CPU DAI driver
* structure.
/*
* Backward compatible for older bindings by manually triggering the
* machine driver's probe(). Use /compatible property, including the
* address of CPU DAI driver structure, as the name of machine driver.
*/
sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
......
/*
* fsl_ssi.h - ALSA SSI interface for the Freescale MPC8610 SoC
* fsl_ssi.h - ALSA SSI interface for the Freescale MPC8610 and i.MX SoC
*
* Author: Timur Tabi <timur@freescale.com>
*
......@@ -12,31 +12,75 @@
#ifndef _MPC8610_I2S_H
#define _MPC8610_I2S_H
/* SSI registers */
/* -- SSI Register Map -- */
/* SSI Transmit Data Register 0 */
#define CCSR_SSI_STX0 0x00
/* SSI Transmit Data Register 1 */
#define CCSR_SSI_STX1 0x04
/* SSI Receive Data Register 0 */
#define CCSR_SSI_SRX0 0x08
/* SSI Receive Data Register 1 */
#define CCSR_SSI_SRX1 0x0c
/* SSI Control Register */
#define CCSR_SSI_SCR 0x10
/* SSI Interrupt Status Register */
#define CCSR_SSI_SISR 0x14
/* SSI Interrupt Enable Register */
#define CCSR_SSI_SIER 0x18
/* SSI Transmit Configuration Register */
#define CCSR_SSI_STCR 0x1c
/* SSI Receive Configuration Register */
#define CCSR_SSI_SRCR 0x20
/* SSI Transmit Clock Control Register */
#define CCSR_SSI_STCCR 0x24
/* SSI Receive Clock Control Register */
#define CCSR_SSI_SRCCR 0x28
/* SSI FIFO Control/Status Register */
#define CCSR_SSI_SFCSR 0x2c
/*
* SSI Test Register (Intended for debugging purposes only)
*
* Note: STR is not documented in recent IMX datasheet, but
* is described in IMX51 reference manual at section 56.3.3.14
*/
#define CCSR_SSI_STR 0x30
/*
* SSI Option Register (Intended for internal use only)
*
* Note: SOR is not documented in recent IMX datasheet, but
* is described in IMX51 reference manual at section 56.3.3.15
*/
#define CCSR_SSI_SOR 0x34
/* SSI AC97 Control Register */
#define CCSR_SSI_SACNT 0x38
/* SSI AC97 Command Address Register */
#define CCSR_SSI_SACADD 0x3c
/* SSI AC97 Command Data Register */
#define CCSR_SSI_SACDAT 0x40
/* SSI AC97 Tag Register */
#define CCSR_SSI_SATAG 0x44
/* SSI Transmit Time Slot Mask Register */
#define CCSR_SSI_STMSK 0x48
/* SSI Receive Time Slot Mask Register */
#define CCSR_SSI_SRMSK 0x4c
/*
* SSI AC97 Channel Status Register
*
* The status could be changed by:
* 1) Writing a '1' bit at some position in SACCEN sets relevant bit in SACCST
* 2) Writing a '1' bit at some position in SACCDIS unsets the relevant bit
* 3) Receivng a '1' in SLOTREQ bit from external CODEC via AC Link
*/
#define CCSR_SSI_SACCST 0x50
/* SSI AC97 Channel Enable Register -- Set bits in SACCST */
#define CCSR_SSI_SACCEN 0x54
/* SSI AC97 Channel Disable Register -- Clear bits in SACCST */
#define CCSR_SSI_SACCDIS 0x58
/* -- SSI Register Field Maps -- */
/* SSI Control Register -- CCSR_SSI_SCR 0x10 */
#define CCSR_SSI_SCR_SYNC_TX_FS 0x00001000
#define CCSR_SSI_SCR_RFR_CLK_DIS 0x00000800
#define CCSR_SSI_SCR_TFR_CLK_DIS 0x00000400
......@@ -52,6 +96,7 @@
#define CCSR_SSI_SCR_TE 0x00000002
#define CCSR_SSI_SCR_SSIEN 0x00000001
/* SSI Interrupt Status Register -- CCSR_SSI_SISR 0x14 */
#define CCSR_SSI_SISR_RFRC 0x01000000
#define CCSR_SSI_SISR_TFRC 0x00800000
#define CCSR_SSI_SISR_CMDAU 0x00040000
......@@ -74,6 +119,7 @@
#define CCSR_SSI_SISR_TFE1 0x00000002
#define CCSR_SSI_SISR_TFE0 0x00000001
/* SSI Interrupt Enable Register -- CCSR_SSI_SIER 0x18 */
#define CCSR_SSI_SIER_RFRC_EN 0x01000000
#define CCSR_SSI_SIER_TFRC_EN 0x00800000
#define CCSR_SSI_SIER_RDMAE 0x00400000
......@@ -100,6 +146,7 @@
#define CCSR_SSI_SIER_TFE1_EN 0x00000002
#define CCSR_SSI_SIER_TFE0_EN 0x00000001
/* SSI Transmit Configuration Register -- CCSR_SSI_STCR 0x1C */
#define CCSR_SSI_STCR_TXBIT0 0x00000200
#define CCSR_SSI_STCR_TFEN1 0x00000100
#define CCSR_SSI_STCR_TFEN0 0x00000080
......@@ -111,6 +158,7 @@
#define CCSR_SSI_STCR_TFSL 0x00000002
#define CCSR_SSI_STCR_TEFS 0x00000001
/* SSI Receive Configuration Register -- CCSR_SSI_SRCR 0x20 */
#define CCSR_SSI_SRCR_RXEXT 0x00000400
#define CCSR_SSI_SRCR_RXBIT0 0x00000200
#define CCSR_SSI_SRCR_RFEN1 0x00000100
......@@ -123,7 +171,10 @@
#define CCSR_SSI_SRCR_RFSL 0x00000002
#define CCSR_SSI_SRCR_REFS 0x00000001
/* STCCR and SRCCR */
/*
* SSI Transmit Clock Control Register -- CCSR_SSI_STCCR 0x24
* SSI Receive Clock Control Register -- CCSR_SSI_SRCCR 0x28
*/
#define CCSR_SSI_SxCCR_DIV2_SHIFT 18
#define CCSR_SSI_SxCCR_DIV2 0x00040000
#define CCSR_SSI_SxCCR_PSR_SHIFT 17
......@@ -142,9 +193,10 @@
((((x) - 1) << CCSR_SSI_SxCCR_PM_SHIFT) & CCSR_SSI_SxCCR_PM_MASK)
/*
* The xFCNT bits are read-only, and the xFWM bits are read/write. Use the
* CCSR_SSI_SFCSR_xFCNTy() macros to read the FIFO counters, and use the
* CCSR_SSI_SFCSR_xFWMy() macros to set the watermarks.
* SSI FIFO Control/Status Register -- CCSR_SSI_SFCSR 0x2c
*
* Tx or Rx FIFO Counter -- CCSR_SSI_SFCSR_xFCNTy Read-Only
* Tx or Rx FIFO Watermarks -- CCSR_SSI_SFCSR_xFWMy Read/Write
*/
#define CCSR_SSI_SFCSR_RFCNT1_SHIFT 28
#define CCSR_SSI_SFCSR_RFCNT1_MASK 0xF0000000
......@@ -179,6 +231,7 @@
#define CCSR_SSI_SFCSR_TFWM0(x) \
(((x) << CCSR_SSI_SFCSR_TFWM0_SHIFT) & CCSR_SSI_SFCSR_TFWM0_MASK)
/* SSI Test Register -- CCSR_SSI_STR 0x30 */
#define CCSR_SSI_STR_TEST 0x00008000
#define CCSR_SSI_STR_RCK2TCK 0x00004000
#define CCSR_SSI_STR_RFS2TFS 0x00002000
......@@ -188,6 +241,7 @@
#define CCSR_SSI_STR_TFS2RFS 0x00000020
#define CCSR_SSI_STR_TXSTATE(x) ((x) & 0x1F)
/* SSI Option Register -- CCSR_SSI_SOR 0x34 */
#define CCSR_SSI_SOR_CLKOFF 0x00000040
#define CCSR_SSI_SOR_RX_CLR 0x00000020
#define CCSR_SSI_SOR_TX_CLR 0x00000010
......@@ -197,6 +251,7 @@
#define CCSR_SSI_SOR_WAIT(x) (((x) & 3) << CCSR_SSI_SOR_WAIT_SHIFT)
#define CCSR_SSI_SOR_SYNRST 0x00000001
/* SSI AC97 Control Register -- CCSR_SSI_SACNT 0x38 */
#define CCSR_SSI_SACNT_FRDIV(x) (((x) & 0x3f) << 5)
#define CCSR_SSI_SACNT_WR 0x00000010
#define CCSR_SSI_SACNT_RD 0x00000008
......
......@@ -82,9 +82,10 @@ void fsl_ssi_dbg_isr(struct fsl_ssi_dbg *dbg, u32 sisr)
dbg->stats.tfe0++;
}
/* Show the statistics of a flag only if its interrupt is enabled. The
* compiler will optimze this code to a no-op if the interrupt is not
* enabled.
/**
* Show the statistics of a flag only if its interrupt is enabled
*
* Compilers will optimize it to a no-op if the interrupt is disabled
*/
#define SIER_SHOW(flag, name) \
do { \
......@@ -94,10 +95,9 @@ void fsl_ssi_dbg_isr(struct fsl_ssi_dbg *dbg, u32 sisr)
/**
* fsl_sysfs_ssi_show: display SSI statistics
* Display the statistics for the current SSI device
*
* Display the statistics for the current SSI device. To avoid confusion,
* we only show those counts that are enabled.
* To avoid confusion, only show those counts that are enabled
*/
static int fsl_ssi_stats_show(struct seq_file *s, void *unused)
{
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册