提交 6b0c1480 编写于 作者: S Stephen Hemminger 提交者: Jeff Garzik

[PATCH] skge: function amd macro name change

The inlines and macro's needed some cleanup's and fixes:
 * change name of macro SKGEMAC_REG to SK_REG to better reflect usage
   and fix comments
 * ditto for SK_GEXM_REG -> SK_XMAC_REG and SKGEGMA_REG -> SK_GMA_REG

 * change skge_gm_ to just gm_ since it is just a local function and long
   names look ugly.
 * change skge_xm_ to just xm_
 * fix xm_write32 to write as two u16's with correct byte order
 * fix xm_outaddr to correctly use offset
Signed-off-by: NStephen Hemminger <shemminger@osdl.org>
上级 275834d1
...@@ -88,8 +88,8 @@ MODULE_DEVICE_TABLE(pci, skge_id_table); ...@@ -88,8 +88,8 @@ MODULE_DEVICE_TABLE(pci, skge_id_table);
static int skge_up(struct net_device *dev); static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev); static int skge_down(struct net_device *dev);
static void skge_tx_clean(struct skge_port *skge); static void skge_tx_clean(struct skge_port *skge);
static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void genesis_get_stats(struct skge_port *skge, u64 *data); static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data); static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port); static void yukon_init(struct skge_hw *hw, int port);
...@@ -632,30 +632,30 @@ static int skge_set_coalesce(struct net_device *dev, ...@@ -632,30 +632,30 @@ static int skge_set_coalesce(struct net_device *dev,
static void skge_led_on(struct skge_hw *hw, int port) static void skge_led_on(struct skge_hw *hw, int port)
{ {
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, B0_LED, LED_STAT_ON); skge_write8(hw, B0_LED, LED_STAT_ON);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON); skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100); skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
switch (hw->phy_type) { switch (hw->phy_type) {
case SK_PHY_BCOM: case SK_PHY_BCOM:
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
PHY_B_PEC_LED_ON); PHY_B_PEC_LED_ON);
break; break;
case SK_PHY_LONE: case SK_PHY_LONE:
skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG, xm_phy_write(hw, port, PHY_LONE_LED_CFG,
0x0800); 0x0800);
break; break;
default: default:
skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON); skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100); skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
} }
} else { } else {
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_ON) | PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) | PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) | PHY_M_LED_MO_100(MO_LED_ON) |
...@@ -667,28 +667,28 @@ static void skge_led_on(struct skge_hw *hw, int port) ...@@ -667,28 +667,28 @@ static void skge_led_on(struct skge_hw *hw, int port)
static void skge_led_off(struct skge_hw *hw, int port) static void skge_led_off(struct skge_hw *hw, int port)
{ {
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
skge_write8(hw, B0_LED, LED_STAT_OFF); skge_write8(hw, B0_LED, LED_STAT_OFF);
skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0); skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
switch (hw->phy_type) { switch (hw->phy_type) {
case SK_PHY_BCOM: case SK_PHY_BCOM:
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
PHY_B_PEC_LED_OFF); PHY_B_PEC_LED_OFF);
break; break;
case SK_PHY_LONE: case SK_PHY_LONE:
skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG, xm_phy_write(hw, port, PHY_LONE_LED_CFG,
PHY_L_LC_LEDT); PHY_L_LC_LEDT);
break; break;
default: default:
skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0); skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
} }
} else { } else {
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_OFF) | PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) | PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) | PHY_M_LED_MO_100(MO_LED_OFF) |
...@@ -908,17 +908,17 @@ static void skge_link_down(struct skge_port *skge) ...@@ -908,17 +908,17 @@ static void skge_link_down(struct skge_port *skge)
printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
} }
static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg) static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{ {
int i; int i;
u16 v; u16 v;
skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
v = skge_xm_read16(hw, port, XM_PHY_DATA); v = xm_read16(hw, port, XM_PHY_DATA);
if (hw->phy_type != SK_PHY_XMAC) { if (hw->phy_type != SK_PHY_XMAC) {
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (skge_xm_read16(hw, port, XM_MMU_CMD) if (xm_read16(hw, port, XM_MMU_CMD)
& XM_MMU_PHY_RDY) & XM_MMU_PHY_RDY)
goto ready; goto ready;
} }
...@@ -927,19 +927,19 @@ static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg) ...@@ -927,19 +927,19 @@ static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg)
hw->dev[port]->name); hw->dev[port]->name);
return 0; return 0;
ready: ready:
v = skge_xm_read16(hw, port, XM_PHY_DATA); v = xm_read16(hw, port, XM_PHY_DATA);
} }
return v; return v;
} }
static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{ {
int i; int i;
skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
goto ready; goto ready;
cpu_relax(); cpu_relax();
} }
...@@ -948,10 +948,10 @@ static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) ...@@ -948,10 +948,10 @@ static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
ready: ready:
skge_xm_write16(hw, port, XM_PHY_DATA, val); xm_write16(hw, port, XM_PHY_DATA, val);
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
return; return;
} }
printk(KERN_WARNING PFX "%s: phy write timed out\n", printk(KERN_WARNING PFX "%s: phy write timed out\n",
...@@ -992,20 +992,20 @@ static void genesis_reset(struct skge_hw *hw, int port) ...@@ -992,20 +992,20 @@ static void genesis_reset(struct skge_hw *hw, int port)
u64 zero = 0; u64 zero = 0;
/* reset the statistics module */ /* reset the statistics module */
skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */ xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable all PHY IRQs */ /* disable all PHY IRQs */
if (hw->phy_type == SK_PHY_BCOM) if (hw->phy_type == SK_PHY_BCOM)
skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero); xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
for (i = 0; i < 15; i++) for (i = 0; i < 15; i++)
skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero); xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero); xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
} }
...@@ -1033,14 +1033,14 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1033,14 +1033,14 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
/* initialize Rx, Tx and Link LED */ /* initialize Rx, Tx and Link LED */
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
/* Unreset the XMAC. */ /* Unreset the XMAC. */
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
/* /*
* Perform additional initialization for external PHYs, * Perform additional initialization for external PHYs,
...@@ -1060,13 +1060,13 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1060,13 +1060,13 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
skge_read32(hw, B2_GP_IO); skge_read32(hw, B2_GP_IO);
/* Enable GMII mode on the XMAC. */ /* Enable GMII mode on the XMAC. */
skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1); id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */ /* Optimize MDIO transfer by suppressing preamble. */
skge_xm_write16(hw, port, XM_MMU_CMD, xm_write16(hw, port, XM_MMU_CMD,
skge_xm_read16(hw, port, XM_MMU_CMD) xm_read16(hw, port, XM_MMU_CMD)
| XM_MMU_NO_PRE); | XM_MMU_NO_PRE);
if (id1 == PHY_BCOM_ID1_C0) { if (id1 == PHY_BCOM_ID1_C0) {
...@@ -1075,7 +1075,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1075,7 +1075,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
* Write magic patterns to reserved registers. * Write magic patterns to reserved registers.
*/ */
for (i = 0; i < ARRAY_SIZE(C0hack); i++) for (i = 0; i < ARRAY_SIZE(C0hack); i++)
skge_xm_phy_write(hw, port, xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val); C0hack[i].reg, C0hack[i].val);
} else if (id1 == PHY_BCOM_ID1_A1) { } else if (id1 == PHY_BCOM_ID1_A1) {
...@@ -1084,7 +1084,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1084,7 +1084,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
* Write magic patterns to reserved registers. * Write magic patterns to reserved registers.
*/ */
for (i = 0; i < ARRAY_SIZE(A1hack); i++) for (i = 0; i < ARRAY_SIZE(A1hack); i++)
skge_xm_phy_write(hw, port, xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val); A1hack[i].reg, A1hack[i].val);
} }
...@@ -1092,23 +1092,23 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1092,23 +1092,23 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
* Workaround BCOM Errata (#10523) for all BCom PHYs. * Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset. * Disable Power Management after reset.
*/ */
r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM); xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
} }
/* Dummy read */ /* Dummy read */
skge_xm_read16(hw, port, XM_ISRC); xm_read16(hw, port, XM_ISRC);
r = skge_xm_read32(hw, port, XM_MODE); r = xm_read32(hw, port, XM_MODE);
skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA); xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
/* We don't need the FCS appended to the packet. */ /* We don't need the FCS appended to the packet. */
r = skge_xm_read16(hw, port, XM_RX_CMD); r = xm_read16(hw, port, XM_RX_CMD);
skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS); xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
/* We want short frames padded to 60 bytes. */ /* We want short frames padded to 60 bytes. */
r = skge_xm_read16(hw, port, XM_TX_CMD); r = xm_read16(hw, port, XM_TX_CMD);
skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD); xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
/* /*
* Enable the reception of all error frames. This is is * Enable the reception of all error frames. This is is
...@@ -1124,19 +1124,19 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1124,19 +1124,19 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
* case the XMAC will start transfering frames out of the * case the XMAC will start transfering frames out of the
* RX FIFO as soon as the FIFO threshold is reached. * RX FIFO as soon as the FIFO threshold is reached.
*/ */
r = skge_xm_read32(hw, port, XM_MODE); r = xm_read32(hw, port, XM_MODE);
skge_xm_write32(hw, port, XM_MODE, xm_write32(hw, port, XM_MODE,
XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT| XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
XM_MD_RX_ERR|XM_MD_RX_IRLE); XM_MD_RX_ERR|XM_MD_RX_IRLE);
skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr); xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr); xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
/* /*
* Bump up the transmit threshold. This helps hold off transmit * Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once. * underruns when we're blasting traffic from both ports at once.
*/ */
skge_xm_write16(hw, port, XM_TX_THR, 512); xm_write16(hw, port, XM_TX_THR, 512);
/* Configure MAC arbiter */ /* Configure MAC arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
...@@ -1153,18 +1153,18 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1153,18 +1153,18 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
skge_write8(hw, B3_MA_RCINI_TX2, 0); skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* Configure Rx MAC FIFO */ /* Configure Rx MAC FIFO */
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */ /* Configure Tx MAC FIFO */
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
if (hw->dev[port]->mtu > ETH_DATA_LEN) { if (hw->dev[port]->mtu > ETH_DATA_LEN) {
/* Enable frame flushing if jumbo frames used */ /* Enable frame flushing if jumbo frames used */
skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
} else { } else {
/* enable timeout timers if normal frames */ /* enable timeout timers if normal frames */
skge_write16(hw, B3_PA_CTRL, skge_write16(hw, B3_PA_CTRL,
...@@ -1172,11 +1172,11 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1172,11 +1172,11 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
} }
r = skge_xm_read16(hw, port, XM_RX_CMD); r = xm_read16(hw, port, XM_RX_CMD);
if (hw->dev[port]->mtu > ETH_DATA_LEN) if (hw->dev[port]->mtu > ETH_DATA_LEN)
skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK); xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
else else
skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK)); xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
switch (hw->phy_type) { switch (hw->phy_type) {
case SK_PHY_XMAC: case SK_PHY_XMAC:
...@@ -1198,7 +1198,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1198,7 +1198,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
break; break;
} }
skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1); xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG; ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
} else { } else {
ctrl2 = 0; ctrl2 = 0;
...@@ -1206,7 +1206,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1206,7 +1206,7 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
ctrl2 |= PHY_CT_DUP_MD; ctrl2 |= PHY_CT_DUP_MD;
} }
skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2); xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
break; break;
case SK_PHY_BCOM: case SK_PHY_BCOM:
...@@ -1253,27 +1253,27 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1253,27 +1253,27 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */ ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
} }
skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2); xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3); xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
if (skge->netdev->mtu > ETH_DATA_LEN) { if (skge->netdev->mtu > ETH_DATA_LEN) {
ctrl4 |= PHY_B_PEC_HIGH_LA; ctrl4 |= PHY_B_PEC_HIGH_LA;
ctrl5 |= PHY_B_AC_LONG_PACK; ctrl5 |= PHY_B_AC_LONG_PACK;
skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5); xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
} }
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4); xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1); xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
break; break;
} }
spin_unlock_bh(&hw->phy_lock); spin_unlock_bh(&hw->phy_lock);
/* Clear MIB counters */ /* Clear MIB counters */
skge_xm_write16(hw, port, XM_STAT_CMD, xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC); XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */ /* Clear two times according to Errata #3 */
skge_xm_write16(hw, port, XM_STAT_CMD, xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC); XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Start polling for link status */ /* Start polling for link status */
...@@ -1293,12 +1293,12 @@ static void genesis_stop(struct skge_port *skge) ...@@ -1293,12 +1293,12 @@ static void genesis_stop(struct skge_port *skge)
* If the transfer stucks at the MAC the STOP command will not * If the transfer stucks at the MAC the STOP command will not
* terminate if we don't flush the XMAC's transmit FIFO ! * terminate if we don't flush the XMAC's transmit FIFO !
*/ */
skge_xm_write32(hw, port, XM_MODE, xm_write32(hw, port, XM_MODE,
skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF); xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
/* Reset the MAC */ /* Reset the MAC */
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
/* For external PHYs there must be special handling */ /* For external PHYs there must be special handling */
if (hw->phy_type != SK_PHY_XMAC) { if (hw->phy_type != SK_PHY_XMAC) {
...@@ -1315,11 +1315,11 @@ static void genesis_stop(struct skge_port *skge) ...@@ -1315,11 +1315,11 @@ static void genesis_stop(struct skge_port *skge)
skge_read32(hw, B2_GP_IO); skge_read32(hw, B2_GP_IO);
} }
skge_xm_write16(hw, port, XM_MMU_CMD, xm_write16(hw, port, XM_MMU_CMD,
skge_xm_read16(hw, port, XM_MMU_CMD) xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
skge_xm_read16(hw, port, XM_MMU_CMD); xm_read16(hw, port, XM_MMU_CMD);
} }
...@@ -1330,11 +1330,11 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data) ...@@ -1330,11 +1330,11 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data)
int i; int i;
unsigned long timeout = jiffies + HZ; unsigned long timeout = jiffies + HZ;
skge_xm_write16(hw, port, xm_write16(hw, port,
XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
/* wait for update to complete */ /* wait for update to complete */
while (skge_xm_read16(hw, port, XM_STAT_CMD) while (xm_read16(hw, port, XM_STAT_CMD)
& (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
if (time_after(jiffies, timeout)) if (time_after(jiffies, timeout))
break; break;
...@@ -1342,26 +1342,26 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data) ...@@ -1342,26 +1342,26 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data)
} }
/* special case for 64 bit octet counter */ /* special case for 64 bit octet counter */
data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
| skge_xm_read32(hw, port, XM_TXO_OK_LO); | xm_read32(hw, port, XM_TXO_OK_LO);
data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
| skge_xm_read32(hw, port, XM_RXO_OK_LO); | xm_read32(hw, port, XM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++) for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset); data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
} }
static void genesis_mac_intr(struct skge_hw *hw, int port) static void genesis_mac_intr(struct skge_hw *hw, int port)
{ {
struct skge_port *skge = netdev_priv(hw->dev[port]); struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 status = skge_xm_read16(hw, port, XM_ISRC); u16 status = xm_read16(hw, port, XM_ISRC);
pr_debug("genesis_intr status %x\n", status); pr_debug("genesis_intr status %x\n", status);
if (hw->phy_type == SK_PHY_XMAC) { if (hw->phy_type == SK_PHY_XMAC) {
/* LInk down, start polling for state change */ /* LInk down, start polling for state change */
if (status & XM_IS_INP_ASS) { if (status & XM_IS_INP_ASS) {
skge_xm_write16(hw, port, XM_IMSK, xm_write16(hw, port, XM_IMSK,
skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS); xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ); mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
} }
else if (status & XM_IS_AND) else if (status & XM_IS_AND)
...@@ -1369,41 +1369,41 @@ static void genesis_mac_intr(struct skge_hw *hw, int port) ...@@ -1369,41 +1369,41 @@ static void genesis_mac_intr(struct skge_hw *hw, int port)
} }
if (status & XM_IS_TXF_UR) { if (status & XM_IS_TXF_UR) {
skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF); xm_write32(hw, port, XM_MODE, XM_MD_FTF);
++skge->net_stats.tx_fifo_errors; ++skge->net_stats.tx_fifo_errors;
} }
if (status & XM_IS_RXF_OV) { if (status & XM_IS_RXF_OV) {
skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF); xm_write32(hw, port, XM_MODE, XM_MD_FRF);
++skge->net_stats.rx_fifo_errors; ++skge->net_stats.rx_fifo_errors;
} }
} }
static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{ {
int i; int i;
skge_gma_write16(hw, port, GM_SMI_DATA, val); gma_write16(hw, port, GM_SMI_DATA, val);
skge_gma_write16(hw, port, GM_SMI_CTRL, gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
break; break;
} }
} }
static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg) static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{ {
int i; int i;
skge_gma_write16(hw, port, GM_SMI_CTRL, gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) GM_SMI_CT_PHY_AD(hw->phy_addr)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
goto ready; goto ready;
} }
...@@ -1411,7 +1411,7 @@ static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg) ...@@ -1411,7 +1411,7 @@ static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
hw->dev[port]->name); hw->dev[port]->name);
return 0; return 0;
ready: ready:
return skge_gma_read16(hw, port, GM_SMI_DATA); return gma_read16(hw, port, GM_SMI_DATA);
} }
static void genesis_link_down(struct skge_port *skge) static void genesis_link_down(struct skge_port *skge)
...@@ -1421,12 +1421,12 @@ static void genesis_link_down(struct skge_port *skge) ...@@ -1421,12 +1421,12 @@ static void genesis_link_down(struct skge_port *skge)
pr_debug("genesis_link_down\n"); pr_debug("genesis_link_down\n");
skge_xm_write16(hw, port, XM_MMU_CMD, xm_write16(hw, port, XM_MMU_CMD,
skge_xm_read16(hw, port, XM_MMU_CMD) xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
/* dummy read to ensure writing */ /* dummy read to ensure writing */
(void) skge_xm_read16(hw, port, XM_MMU_CMD); (void) xm_read16(hw, port, XM_MMU_CMD);
skge_link_down(skge); skge_link_down(skge);
} }
...@@ -1439,7 +1439,7 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1439,7 +1439,7 @@ static void genesis_link_up(struct skge_port *skge)
u32 mode, msk; u32 mode, msk;
pr_debug("genesis_link_up\n"); pr_debug("genesis_link_up\n");
cmd = skge_xm_read16(hw, port, XM_MMU_CMD); cmd = xm_read16(hw, port, XM_MMU_CMD);
/* /*
* enabling pause frame reception is required for 1000BT * enabling pause frame reception is required for 1000BT
...@@ -1452,9 +1452,9 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1452,9 +1452,9 @@ static void genesis_link_up(struct skge_port *skge)
/* Enable Pause Frame Reception */ /* Enable Pause Frame Reception */
cmd &= ~XM_MMU_IGN_PF; cmd &= ~XM_MMU_IGN_PF;
skge_xm_write16(hw, port, XM_MMU_CMD, cmd); xm_write16(hw, port, XM_MMU_CMD, cmd);
mode = skge_xm_read32(hw, port, XM_MODE); mode = xm_read32(hw, port, XM_MODE);
if (skge->flow_control == FLOW_MODE_SYMMETRIC || if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
skge->flow_control == FLOW_MODE_LOC_SEND) { skge->flow_control == FLOW_MODE_LOC_SEND) {
/* /*
...@@ -1468,10 +1468,10 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1468,10 +1468,10 @@ static void genesis_link_up(struct skge_port *skge)
/* XM_PAUSE_DA = '010000C28001' (default) */ /* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */ /* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */ /* remember this value is defined in big endian (!) */
skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff); xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
mode |= XM_PAUSE_MODE; mode |= XM_PAUSE_MODE;
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
} else { } else {
/* /*
* disable pause frame generation is required for 1000BT * disable pause frame generation is required for 1000BT
...@@ -1480,20 +1480,20 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1480,20 +1480,20 @@ static void genesis_link_up(struct skge_port *skge)
/* Disable Pause Mode in Mode Register */ /* Disable Pause Mode in Mode Register */
mode &= ~XM_PAUSE_MODE; mode &= ~XM_PAUSE_MODE;
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
} }
skge_xm_write32(hw, port, XM_MODE, mode); xm_write32(hw, port, XM_MODE, mode);
msk = XM_DEF_MSK; msk = XM_DEF_MSK;
if (hw->phy_type != SK_PHY_XMAC) if (hw->phy_type != SK_PHY_XMAC)
msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */ msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
skge_xm_write16(hw, port, XM_IMSK, msk); xm_write16(hw, port, XM_IMSK, msk);
skge_xm_read16(hw, port, XM_ISRC); xm_read16(hw, port, XM_ISRC);
/* get MMU Command Reg. */ /* get MMU Command Reg. */
cmd = skge_xm_read16(hw, port, XM_MMU_CMD); cmd = xm_read16(hw, port, XM_MMU_CMD);
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
cmd |= XM_MMU_GMII_FD; cmd |= XM_MMU_GMII_FD;
...@@ -1502,15 +1502,15 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1502,15 +1502,15 @@ static void genesis_link_up(struct skge_port *skge)
* Workaround BCOM Errata (#10523) for all BCom Phys * Workaround BCOM Errata (#10523) for all BCom Phys
* Enable Power Management after link up * Enable Power Management after link up
*/ */
skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
& ~PHY_B_AC_DIS_PM); & ~PHY_B_AC_DIS_PM);
skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK, xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
PHY_B_DEF_MSK); PHY_B_DEF_MSK);
} }
/* enable Rx/Tx */ /* enable Rx/Tx */
skge_xm_write16(hw, port, XM_MMU_CMD, xm_write16(hw, port, XM_MMU_CMD,
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
skge_link_up(skge); skge_link_up(skge);
} }
...@@ -1520,7 +1520,7 @@ static void genesis_bcom_intr(struct skge_port *skge) ...@@ -1520,7 +1520,7 @@ static void genesis_bcom_intr(struct skge_port *skge)
{ {
struct skge_hw *hw = skge->hw; struct skge_hw *hw = skge->hw;
int port = skge->port; int port = skge->port;
u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT); u16 stat = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
pr_debug("genesis_bcom intr stat=%x\n", stat); pr_debug("genesis_bcom intr stat=%x\n", stat);
...@@ -1528,16 +1528,16 @@ static void genesis_bcom_intr(struct skge_port *skge) ...@@ -1528,16 +1528,16 @@ static void genesis_bcom_intr(struct skge_port *skge)
* enable and disable loopback mode if "NO HCD" occurs. * enable and disable loopback mode if "NO HCD" occurs.
*/ */
if (stat & PHY_B_IS_NO_HDCL) { if (stat & PHY_B_IS_NO_HDCL) {
u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL); u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl | PHY_CT_LOOP); ctrl | PHY_CT_LOOP);
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl & ~PHY_CT_LOOP); ctrl & ~PHY_CT_LOOP);
} }
stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT); stat = xm_phy_read(hw, port, PHY_BCOM_STAT);
if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) { if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev)) if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
genesis_link_down(skge); genesis_link_down(skge);
...@@ -1590,7 +1590,7 @@ static void skge_link_timer(unsigned long __arg) ...@@ -1590,7 +1590,7 @@ static void skge_link_timer(unsigned long __arg)
else { else {
int i; int i;
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS) if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
break; break;
if (i == 3) if (i == 3)
...@@ -1610,7 +1610,7 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1610,7 +1610,7 @@ static void yukon_init(struct skge_hw *hw, int port)
pr_debug("yukon_init\n"); pr_debug("yukon_init\n");
if (skge->autoneg == AUTONEG_ENABLE) { if (skge->autoneg == AUTONEG_ENABLE) {
u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK); PHY_M_EC_MAC_S_MSK);
...@@ -1622,15 +1622,15 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1622,15 +1622,15 @@ static void yukon_init(struct skge_hw *hw, int port)
else else
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
} }
ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL); ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (skge->autoneg == AUTONEG_DISABLE) if (skge->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE; ctrl &= ~PHY_CT_ANE;
ctrl |= PHY_CT_RESET; ctrl |= PHY_CT_RESET;
skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0; ctrl = 0;
ct1000 = 0; ct1000 = 0;
...@@ -1707,10 +1707,10 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1707,10 +1707,10 @@ static void yukon_init(struct skge_hw *hw, int port)
} }
if (hw->chip_id != CHIP_ID_YUKON_FE) if (hw->chip_id != CHIP_ID_YUKON_FE)
skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Setup Phy LED's */ /* Setup Phy LED's */
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS); ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
...@@ -1720,8 +1720,8 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1720,8 +1720,8 @@ static void yukon_init(struct skge_hw *hw, int port)
/* on 88E3082 these bits are at 11..9 (shifted left) */ /* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1; ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR) ((gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
& ~PHY_M_FELP_LED1_MSK) & ~PHY_M_FELP_LED1_MSK)
| PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL))); | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
...@@ -1735,7 +1735,7 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1735,7 +1735,7 @@ static void yukon_init(struct skge_hw *hw, int port)
/* disable blink mode (LED_DUPLEX) on collisions */ /* disable blink mode (LED_DUPLEX) on collisions */
ctrl |= PHY_M_LEDC_DP_CTRL; ctrl |= PHY_M_LEDC_DP_CTRL;
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) { if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */ /* turn on 100 Mbps LED (LED_LINK100) */
...@@ -1743,25 +1743,25 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1743,25 +1743,25 @@ static void yukon_init(struct skge_hw *hw, int port)
} }
if (ledover) if (ledover)
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
/* Enable phy interrupt on autonegotiation complete (or link up) */ /* Enable phy interrupt on autonegotiation complete (or link up) */
if (skge->autoneg == AUTONEG_ENABLE) if (skge->autoneg == AUTONEG_ENABLE)
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
else else
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
} }
static void yukon_reset(struct skge_hw *hw, int port) static void yukon_reset(struct skge_hw *hw, int port)
{ {
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0); gma_write16(hw, port, GM_MC_ADDR_H2, 0);
skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0); gma_write16(hw, port, GM_MC_ADDR_H3, 0);
skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0); gma_write16(hw, port, GM_MC_ADDR_H4, 0);
skge_gma_write16(hw, port, GM_RX_CTRL, gma_write16(hw, port, GM_RX_CTRL,
skge_gma_read16(hw, port, GM_RX_CTRL) gma_read16(hw, port, GM_RX_CTRL)
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
} }
...@@ -1779,8 +1779,8 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1779,8 +1779,8 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
(skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9)); (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
/* hard reset */ /* hard reset */
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET); skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* WA code for COMA mode -- clear PHY reset */ /* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE && if (hw->chip_id == CHIP_ID_YUKON_LITE &&
...@@ -1795,13 +1795,13 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1795,13 +1795,13 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
/* Clear GMC reset */ /* Clear GMC reset */
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET); skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
if (skge->autoneg == AUTONEG_DISABLE) { if (skge->autoneg == AUTONEG_DISABLE) {
reg = GM_GPCR_AU_ALL_DIS; reg = GM_GPCR_AU_ALL_DIS;
skge_gma_write16(hw, port, GM_GP_CTRL, gma_write16(hw, port, GM_GP_CTRL,
skge_gma_read16(hw, port, GM_GP_CTRL) | reg); gma_read16(hw, port, GM_GP_CTRL) | reg);
switch (skge->speed) { switch (skge->speed) {
case SPEED_1000: case SPEED_1000:
...@@ -1817,7 +1817,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1817,7 +1817,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
switch (skge->flow_control) { switch (skge->flow_control) {
case FLOW_MODE_NONE: case FLOW_MODE_NONE:
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break; break;
case FLOW_MODE_LOC_SEND: case FLOW_MODE_LOC_SEND:
...@@ -1825,7 +1825,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1825,7 +1825,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
} }
skge_gma_write16(hw, port, GM_GP_CTRL, reg); gma_write16(hw, port, GM_GP_CTRL, reg);
skge_read16(hw, GMAC_IRQ_SRC); skge_read16(hw, GMAC_IRQ_SRC);
spin_lock_bh(&hw->phy_lock); spin_lock_bh(&hw->phy_lock);
...@@ -1833,25 +1833,25 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1833,25 +1833,25 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
spin_unlock_bh(&hw->phy_lock); spin_unlock_bh(&hw->phy_lock);
/* MIB clear */ /* MIB clear */
reg = skge_gma_read16(hw, port, GM_PHY_ADDR); reg = gma_read16(hw, port, GM_PHY_ADDR);
skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = 0; i < GM_MIB_CNT_SIZE; i++) for (i = 0; i < GM_MIB_CNT_SIZE; i++)
skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
skge_gma_write16(hw, port, GM_PHY_ADDR, reg); gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */ /* transmit control */
skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */ /* receive control reg: unicast + multicast + no FCS */
skge_gma_write16(hw, port, GM_RX_CTRL, gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */ /* transmit flow control */
skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */ /* transmit parameter */
skge_gma_write16(hw, port, GM_TX_PARAM, gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
...@@ -1861,33 +1861,33 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1861,33 +1861,33 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
if (hw->dev[port]->mtu > 1500) if (hw->dev[port]->mtu > 1500)
reg |= GM_SMOD_JUMBO_ENA; reg |= GM_SMOD_JUMBO_ENA;
skge_gma_write16(hw, port, GM_SERIAL_MODE, reg); gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* physical address: used for pause frames */ /* physical address: used for pause frames */
skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr); gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* virtual address for data */ /* virtual address for data */
skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr); gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* enable interrupt mask for counter overflows */ /* enable interrupt mask for counter overflows */
skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0); gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0); gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0); gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Initialize Mac Fifo */ /* Initialize Mac Fifo */
/* Configure Rx MAC FIFO */ /* Configure Rx MAC FIFO */
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON; reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
if (hw->chip_id == CHIP_ID_YUKON_LITE && if (hw->chip_id == CHIP_ID_YUKON_LITE &&
chip_rev(hw) == CHIP_REV_YU_LITE_A3) chip_rev(hw) == CHIP_REV_YU_LITE_A3)
reg &= ~GMF_RX_F_FL_ON; reg &= ~GMF_RX_F_FL_ON;
skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg); skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
/* Configure Tx MAC FIFO */ /* Configure Tx MAC FIFO */
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
} }
static void yukon_stop(struct skge_port *skge) static void yukon_stop(struct skge_port *skge)
...@@ -1901,14 +1901,14 @@ static void yukon_stop(struct skge_port *skge) ...@@ -1901,14 +1901,14 @@ static void yukon_stop(struct skge_port *skge)
skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9); skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
} }
skge_gma_write16(hw, port, GM_GP_CTRL, gma_write16(hw, port, GM_GP_CTRL,
skge_gma_read16(hw, port, GM_GP_CTRL) gma_read16(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA)); & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
skge_gma_read16(hw, port, GM_GP_CTRL); gma_read16(hw, port, GM_GP_CTRL);
/* set GPHY Control reset */ /* set GPHY Control reset */
skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET); gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET); gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
} }
static void yukon_get_stats(struct skge_port *skge, u64 *data) static void yukon_get_stats(struct skge_port *skge, u64 *data)
...@@ -1917,29 +1917,29 @@ static void yukon_get_stats(struct skge_port *skge, u64 *data) ...@@ -1917,29 +1917,29 @@ static void yukon_get_stats(struct skge_port *skge, u64 *data)
int port = skge->port; int port = skge->port;
int i; int i;
data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| skge_gma_read32(hw, port, GM_TXO_OK_LO); | gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| skge_gma_read32(hw, port, GM_RXO_OK_LO); | gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++) for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = skge_gma_read32(hw, port, data[i] = gma_read32(hw, port,
skge_stats[i].gma_offset); skge_stats[i].gma_offset);
} }
static void yukon_mac_intr(struct skge_hw *hw, int port) static void yukon_mac_intr(struct skge_hw *hw, int port)
{ {
struct skge_port *skge = netdev_priv(hw->dev[port]); struct skge_port *skge = netdev_priv(hw->dev[port]);
u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC)); u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
pr_debug("yukon_intr status %x\n", status); pr_debug("yukon_intr status %x\n", status);
if (status & GM_IS_RX_FF_OR) { if (status & GM_IS_RX_FF_OR) {
++skge->net_stats.rx_fifo_errors; ++skge->net_stats.rx_fifo_errors;
skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO); gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
} }
if (status & GM_IS_TX_FF_UR) { if (status & GM_IS_TX_FF_UR) {
++skge->net_stats.tx_fifo_errors; ++skge->net_stats.tx_fifo_errors;
skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU); gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
} }
} }
...@@ -1970,15 +1970,15 @@ static void yukon_link_up(struct skge_port *skge) ...@@ -1970,15 +1970,15 @@ static void yukon_link_up(struct skge_port *skge)
/* Enable Transmit FIFO Underrun */ /* Enable Transmit FIFO Underrun */
skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK); skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
reg = skge_gma_read16(hw, port, GM_GP_CTRL); reg = gma_read16(hw, port, GM_GP_CTRL);
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL; reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */ /* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
skge_gma_write16(hw, port, GM_GP_CTRL, reg); gma_write16(hw, port, GM_GP_CTRL, reg);
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
skge_link_up(skge); skge_link_up(skge);
} }
...@@ -1988,16 +1988,16 @@ static void yukon_link_down(struct skge_port *skge) ...@@ -1988,16 +1988,16 @@ static void yukon_link_down(struct skge_port *skge)
int port = skge->port; int port = skge->port;
pr_debug("yukon_link_down\n"); pr_debug("yukon_link_down\n");
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
skge_gm_phy_write(hw, port, GM_GP_CTRL, gm_phy_write(hw, port, GM_GP_CTRL,
skge_gm_phy_read(hw, port, GM_GP_CTRL) gm_phy_read(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)); & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
if (hw->chip_id != CHIP_ID_YUKON_FE && if (hw->chip_id != CHIP_ID_YUKON_FE &&
skge->flow_control == FLOW_MODE_REM_SEND) { skge->flow_control == FLOW_MODE_REM_SEND) {
/* restore Asymmetric Pause bit */ /* restore Asymmetric Pause bit */
skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
skge_gm_phy_read(hw, port, gm_phy_read(hw, port,
PHY_MARV_AUNE_ADV) PHY_MARV_AUNE_ADV)
| PHY_M_AN_ASP); | PHY_M_AN_ASP);
...@@ -2016,19 +2016,19 @@ static void yukon_phy_intr(struct skge_port *skge) ...@@ -2016,19 +2016,19 @@ static void yukon_phy_intr(struct skge_port *skge)
const char *reason = NULL; const char *reason = NULL;
u16 istatus, phystat; u16 istatus, phystat;
istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT); istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT); phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat); pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) { if (istatus & PHY_M_IS_AN_COMPL) {
if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP) if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
& PHY_M_AN_RF) { & PHY_M_AN_RF) {
reason = "remote fault"; reason = "remote fault";
goto failed; goto failed;
} }
if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC) if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
&& (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT) && (gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
& PHY_B_1000S_MSF)) { & PHY_B_1000S_MSF)) {
reason = "master/slave fault"; reason = "master/slave fault";
goto failed; goto failed;
...@@ -2064,9 +2064,9 @@ static void yukon_phy_intr(struct skge_port *skge) ...@@ -2064,9 +2064,9 @@ static void yukon_phy_intr(struct skge_port *skge)
if (skge->flow_control == FLOW_MODE_NONE || if (skge->flow_control == FLOW_MODE_NONE ||
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
else else
skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON); skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
yukon_link_up(skge); yukon_link_up(skge);
return; return;
} }
...@@ -2229,12 +2229,12 @@ static int skge_down(struct net_device *dev) ...@@ -2229,12 +2229,12 @@ static int skge_down(struct net_device *dev)
yukon_stop(skge); yukon_stop(skge);
/* Disable Force Sync bit and Enable Alloc bit */ /* Disable Force Sync bit and Enable Alloc bit */
skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL), skge_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */ /* Stop Interval Timer and Limit Counter of Tx Arbiter */
skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L); skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L); skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset PCI FIFO */ /* Reset PCI FIFO */
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
...@@ -2249,13 +2249,13 @@ static int skge_down(struct net_device *dev) ...@@ -2249,13 +2249,13 @@ static int skge_down(struct net_device *dev)
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
} else { } else {
skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
} }
/* turn off led's */ /* turn off led's */
...@@ -2451,7 +2451,7 @@ static void genesis_set_multicast(struct net_device *dev) ...@@ -2451,7 +2451,7 @@ static void genesis_set_multicast(struct net_device *dev)
u32 mode; u32 mode;
u8 filter[8]; u8 filter[8];
mode = skge_xm_read32(hw, port, XM_MODE); mode = xm_read32(hw, port, XM_MODE);
mode |= XM_MD_ENA_HASH; mode |= XM_MD_ENA_HASH;
if (dev->flags & IFF_PROMISC) if (dev->flags & IFF_PROMISC)
mode |= XM_MD_ENA_PROM; mode |= XM_MD_ENA_PROM;
...@@ -2470,9 +2470,9 @@ static void genesis_set_multicast(struct net_device *dev) ...@@ -2470,9 +2470,9 @@ static void genesis_set_multicast(struct net_device *dev)
} }
} }
skge_xm_outhash(hw, port, XM_HSM, filter); xm_outhash(hw, port, XM_HSM, filter);
skge_xm_write32(hw, port, XM_MODE, mode); xm_write32(hw, port, XM_MODE, mode);
} }
static void yukon_set_multicast(struct net_device *dev) static void yukon_set_multicast(struct net_device *dev)
...@@ -2486,7 +2486,7 @@ static void yukon_set_multicast(struct net_device *dev) ...@@ -2486,7 +2486,7 @@ static void yukon_set_multicast(struct net_device *dev)
memset(filter, 0, sizeof(filter)); memset(filter, 0, sizeof(filter));
reg = skge_gma_read16(hw, port, GM_RX_CTRL); reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA; reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscious */ if (dev->flags & IFF_PROMISC) /* promiscious */
...@@ -2506,16 +2506,16 @@ static void yukon_set_multicast(struct net_device *dev) ...@@ -2506,16 +2506,16 @@ static void yukon_set_multicast(struct net_device *dev)
} }
skge_gma_write16(hw, port, GM_MC_ADDR_H1, gma_write16(hw, port, GM_MC_ADDR_H1,
(u16)filter[0] | ((u16)filter[1] << 8)); (u16)filter[0] | ((u16)filter[1] << 8));
skge_gma_write16(hw, port, GM_MC_ADDR_H2, gma_write16(hw, port, GM_MC_ADDR_H2,
(u16)filter[2] | ((u16)filter[3] << 8)); (u16)filter[2] | ((u16)filter[3] << 8));
skge_gma_write16(hw, port, GM_MC_ADDR_H3, gma_write16(hw, port, GM_MC_ADDR_H3,
(u16)filter[4] | ((u16)filter[5] << 8)); (u16)filter[4] | ((u16)filter[5] << 8));
skge_gma_write16(hw, port, GM_MC_ADDR_H4, gma_write16(hw, port, GM_MC_ADDR_H4,
(u16)filter[6] | ((u16)filter[7] << 8)); (u16)filter[6] | ((u16)filter[7] << 8));
skge_gma_write16(hw, port, GM_RX_CTRL, reg); gma_write16(hw, port, GM_RX_CTRL, reg);
} }
static inline int bad_phy_status(const struct skge_hw *hw, u32 status) static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
...@@ -2679,11 +2679,11 @@ static void skge_mac_parity(struct skge_hw *hw, int port) ...@@ -2679,11 +2679,11 @@ static void skge_mac_parity(struct skge_hw *hw, int port)
: (port == 0 ? "(port A)": "(port B")); : (port == 0 ? "(port A)": "(port B"));
if (hw->chip_id == CHIP_ID_GENESIS) if (hw->chip_id == CHIP_ID_GENESIS)
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_CLR_PERR); MFF_CLR_PERR);
else else
/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
(hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0) (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
? GMF_CLI_TX_FC : GMF_CLI_TX_PE); ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
} }
...@@ -2715,9 +2715,9 @@ static void skge_error_irq(struct skge_hw *hw) ...@@ -2715,9 +2715,9 @@ static void skge_error_irq(struct skge_hw *hw)
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
/* clear xmac errors */ /* clear xmac errors */
if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT); skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT); skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
} else { } else {
/* Timestamp (unused) overflow */ /* Timestamp (unused) overflow */
if (hwstatus & IS_IRQ_TIST_OV) if (hwstatus & IS_IRQ_TIST_OV)
...@@ -3000,8 +3000,8 @@ static int skge_reset(struct skge_hw *hw) ...@@ -3000,8 +3000,8 @@ static int skge_reset(struct skge_hw *hw)
skge_write8(hw, B0_POWER_CTRL, skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
for (i = 0; i < ports; i++) { for (i = 0; i < ports; i++) {
skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
} }
} }
...@@ -3012,7 +3012,7 @@ static int skge_reset(struct skge_hw *hw) ...@@ -3012,7 +3012,7 @@ static int skge_reset(struct skge_hw *hw)
/* enable the Tx Arbiters */ /* enable the Tx Arbiters */
for (i = 0; i < ports; i++) for (i = 0; i < ports; i++)
skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB); skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */ /* Initialize ram interface */
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
......
...@@ -488,7 +488,7 @@ enum { ...@@ -488,7 +488,7 @@ enum {
PA_ENA_TO_TX1 | PA_ENA_TO_TX2) PA_ENA_TO_TX1 | PA_ENA_TO_TX2)
/* Transmit Arbiter Registers MAC 1 and 2, use MR_ADDR() to access */ /* Transmit Arbiter Registers MAC 1 and 2, use SK_REG() to access */
/* TXA_ITI_INI 32 bit Tx Arb Interval Timer Init Val */ /* TXA_ITI_INI 32 bit Tx Arb Interval Timer Init Val */
/* TXA_ITI_VAL 32 bit Tx Arb Interval Timer Value */ /* TXA_ITI_VAL 32 bit Tx Arb Interval Timer Value */
/* TXA_LIM_INI 32 bit Tx Arb Limit Counter Init Val */ /* TXA_LIM_INI 32 bit Tx Arb Limit Counter Init Val */
...@@ -511,7 +511,7 @@ enum { ...@@ -511,7 +511,7 @@ enum {
/* /*
* Bank 4 - 5 * Bank 4 - 5
*/ */
/* Transmit Arbiter Registers MAC 1 and 2, use MR_ADDR() to access */ /* Transmit Arbiter Registers MAC 1 and 2, use SK_REG() to access */
enum { enum {
TXA_ITI_INI = 0x0200,/* 32 bit Tx Arb Interval Timer Init Val*/ TXA_ITI_INI = 0x0200,/* 32 bit Tx Arb Interval Timer Init Val*/
TXA_ITI_VAL = 0x0204,/* 32 bit Tx Arb Interval Timer Value */ TXA_ITI_VAL = 0x0204,/* 32 bit Tx Arb Interval Timer Value */
...@@ -2892,114 +2892,87 @@ static inline void skge_write8(const struct skge_hw *hw, int reg, u8 val) ...@@ -2892,114 +2892,87 @@ static inline void skge_write8(const struct skge_hw *hw, int reg, u8 val)
} }
/* MAC Related Registers inside the device. */ /* MAC Related Registers inside the device. */
#define SKGEMAC_REG(port,reg) (((port)<<7)+(reg)) #define SK_REG(port,reg) (((port)<<7)+(reg))
#define SK_XMAC_REG(port, reg) \
/* PCI config space can be accessed via memory mapped space */
#define SKGEPCI_REG(reg) ((reg)+ 0x380)
#define SKGEXM_REG(port, reg) \
((BASE_XMAC_1 + (port) * (BASE_XMAC_2 - BASE_XMAC_1)) | (reg) << 1) ((BASE_XMAC_1 + (port) * (BASE_XMAC_2 - BASE_XMAC_1)) | (reg) << 1)
static inline u32 skge_xm_read32(const struct skge_hw *hw, int port, int reg) static inline u32 xm_read32(const struct skge_hw *hw, int port, int reg)
{
return skge_read32(hw, SKGEXM_REG(port,reg));
}
static inline u16 skge_xm_read16(const struct skge_hw *hw, int port, int reg)
{
return skge_read16(hw, SKGEXM_REG(port,reg));
}
static inline u8 skge_xm_read8(const struct skge_hw *hw, int port, int reg)
{ {
return skge_read8(hw, SKGEXM_REG(port,reg)); u32 v;
v = skge_read16(hw, SK_XMAC_REG(port, reg));
v |= (u32)skge_read16(hw, SK_XMAC_REG(port, reg+2)) << 16;
return v;
} }
static inline void skge_xm_write32(const struct skge_hw *hw, int port, int r, u32 v) static inline u16 xm_read16(const struct skge_hw *hw, int port, int reg)
{ {
skge_write32(hw, SKGEXM_REG(port,r), v); return skge_read16(hw, SK_XMAC_REG(port,reg));
} }
static inline void skge_xm_write16(const struct skge_hw *hw, int port, int r, u16 v) static inline void xm_write32(const struct skge_hw *hw, int port, int r, u32 v)
{ {
skge_write16(hw, SKGEXM_REG(port,r), v); skge_write16(hw, SK_XMAC_REG(port,r), v & 0xffff);
skge_write16(hw, SK_XMAC_REG(port,r+2), v >> 16);
} }
static inline void skge_xm_write8(const struct skge_hw *hw, int port, int r, u8 v) static inline void xm_write16(const struct skge_hw *hw, int port, int r, u16 v)
{ {
skge_write8(hw, SKGEXM_REG(port,r), v); skge_write16(hw, SK_XMAC_REG(port,r), v);
} }
static inline void skge_xm_outhash(const struct skge_hw *hw, int port, int reg, static inline void xm_outhash(const struct skge_hw *hw, int port, int reg,
const u8 *hash) const u8 *hash)
{ {
skge_xm_write16(hw, port, reg, xm_write16(hw, port, reg, (u16)hash[0] | ((u16)hash[1] << 8));
(u16)hash[0] | ((u16)hash[1] << 8)); xm_write16(hw, port, reg+2, (u16)hash[2] | ((u16)hash[3] << 8));
skge_xm_write16(hw, port, reg+2, xm_write16(hw, port, reg+4, (u16)hash[4] | ((u16)hash[5] << 8));
(u16)hash[2] | ((u16)hash[3] << 8)); xm_write16(hw, port, reg+6, (u16)hash[6] | ((u16)hash[7] << 8));
skge_xm_write16(hw, port, reg+4,
(u16)hash[4] | ((u16)hash[5] << 8));
skge_xm_write16(hw, port, reg+6,
(u16)hash[6] | ((u16)hash[7] << 8));
} }
static inline void skge_xm_outaddr(const struct skge_hw *hw, int port, int reg, static inline void xm_outaddr(const struct skge_hw *hw, int port, int reg,
const u8 *addr) const u8 *addr)
{ {
skge_xm_write16(hw, port, reg, xm_write16(hw, port, reg, (u16)addr[0] | ((u16)addr[1] << 8));
(u16)addr[0] | ((u16)addr[1] << 8)); xm_write16(hw, port, reg+2, (u16)addr[2] | ((u16)addr[3] << 8));
skge_xm_write16(hw, port, reg, xm_write16(hw, port, reg+4, (u16)addr[4] | ((u16)addr[5] << 8));
(u16)addr[2] | ((u16)addr[3] << 8));
skge_xm_write16(hw, port, reg,
(u16)addr[4] | ((u16)addr[5] << 8));
} }
#define SK_GMAC_REG(port,reg) \
(BASE_GMAC_1 + (port) * (BASE_GMAC_2-BASE_GMAC_1) + (reg))
#define SKGEGMA_REG(port,reg) \ static inline u16 gma_read16(const struct skge_hw *hw, int port, int reg)
((reg) + BASE_GMAC_1 + \
(port) * (BASE_GMAC_2-BASE_GMAC_1))
static inline u16 skge_gma_read16(const struct skge_hw *hw, int port, int reg)
{
return skge_read16(hw, SKGEGMA_REG(port,reg));
}
static inline u32 skge_gma_read32(const struct skge_hw *hw, int port, int reg)
{ {
return (u32) skge_read16(hw, SKGEGMA_REG(port,reg)) return skge_read16(hw, SK_GMAC_REG(port,reg));
| ((u32)skge_read16(hw, SKGEGMA_REG(port,reg+4)) << 16);
} }
static inline u8 skge_gma_read8(const struct skge_hw *hw, int port, int reg) static inline u32 gma_read32(const struct skge_hw *hw, int port, int reg)
{ {
return skge_read8(hw, SKGEGMA_REG(port,reg)); return (u32) skge_read16(hw, SK_GMAC_REG(port,reg))
| ((u32)skge_read16(hw, SK_GMAC_REG(port,reg+4)) << 16);
} }
static inline void skge_gma_write16(const struct skge_hw *hw, int port, int r, u16 v) static inline void gma_write16(const struct skge_hw *hw, int port, int r, u16 v)
{ {
skge_write16(hw, SKGEGMA_REG(port,r), v); skge_write16(hw, SK_GMAC_REG(port,r), v);
} }
static inline void skge_gma_write32(const struct skge_hw *hw, int port, int r, u32 v) static inline void gma_write32(const struct skge_hw *hw, int port, int r, u32 v)
{ {
skge_write16(hw, SKGEGMA_REG(port, r), (u16) v); skge_write16(hw, SK_GMAC_REG(port, r), (u16) v);
skge_write32(hw, SKGEGMA_REG(port, r+4), (u16)(v >> 16)); skge_write32(hw, SK_GMAC_REG(port, r+4), (u16)(v >> 16));
} }
static inline void skge_gma_write8(const struct skge_hw *hw, int port, int r, u8 v) static inline void gma_write8(const struct skge_hw *hw, int port, int r, u8 v)
{ {
skge_write8(hw, SKGEGMA_REG(port,r), v); skge_write8(hw, SK_GMAC_REG(port,r), v);
} }
static inline void skge_gm_set_addr(struct skge_hw *hw, int port, int reg, static inline void gma_set_addr(struct skge_hw *hw, int port, int reg,
const u8 *addr) const u8 *addr)
{ {
skge_gma_write16(hw, port, reg, gma_write16(hw, port, reg, (u16) addr[0] | ((u16) addr[1] << 8));
(u16) addr[0] | ((u16) addr[1] << 8)); gma_write16(hw, port, reg+4,(u16) addr[2] | ((u16) addr[3] << 8));
skge_gma_write16(hw, port, reg+4, gma_write16(hw, port, reg+8,(u16) addr[4] | ((u16) addr[5] << 8));
(u16) addr[2] | ((u16) addr[3] << 8));
skge_gma_write16(hw, port, reg+8,
(u16) addr[4] | ((u16) addr[5] << 8));
} }
#endif #endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册