From 4710b752e029f3f82dd4a84d9dc61fe72c97bf82 Mon Sep 17 00:00:00 2001 From: Kieran Bingham Date: Thu, 30 Jun 2016 10:41:23 -0300 Subject: [PATCH] [media] v4l: Add Renesas R-Car FDP1 Driver The FDP1 driver performs advanced de-interlacing on a memory 2 memory based video stream, and supports conversion from YCbCr/YUV to RGB pixel formats Signed-off-by: Kieran Bingham Reviewed-by: Laurent Pinchart Signed-off-by: Laurent Pinchart Signed-off-by: Mauro Carvalho Chehab --- Documentation/media/v4l-drivers/index.rst | 1 + Documentation/media/v4l-drivers/rcar-fdp1.rst | 37 + MAINTAINERS | 9 + drivers/media/platform/Kconfig | 13 + drivers/media/platform/Makefile | 1 + drivers/media/platform/rcar_fdp1.c | 2445 +++++++++++++++++ 6 files changed, 2506 insertions(+) create mode 100644 Documentation/media/v4l-drivers/rcar-fdp1.rst create mode 100644 drivers/media/platform/rcar_fdp1.c diff --git a/Documentation/media/v4l-drivers/index.rst b/Documentation/media/v4l-drivers/index.rst index acde3ed7860f..a606d1cdac13 100644 --- a/Documentation/media/v4l-drivers/index.rst +++ b/Documentation/media/v4l-drivers/index.rst @@ -48,6 +48,7 @@ For more details see the file COPYING in the source distribution of Linux. pvrusb2 pxa_camera radiotrack + rcar-fdp1 saa7134 sh_mobile_ceu_camera si470x diff --git a/Documentation/media/v4l-drivers/rcar-fdp1.rst b/Documentation/media/v4l-drivers/rcar-fdp1.rst new file mode 100644 index 000000000000..a59b1e8e3e9c --- /dev/null +++ b/Documentation/media/v4l-drivers/rcar-fdp1.rst @@ -0,0 +1,37 @@ +Renesas R-Car Fine Display Processor (FDP1) Driver +================================================== + +The R-Car FDP1 driver implements driver-specific controls as follows. + +``V4L2_CID_DEINTERLACING_MODE (menu)`` + The video deinterlacing mode (such as Bob, Weave, ...). The R-Car FDP1 + driver implements the following modes. + +.. flat-table:: + :header-rows: 0 + :stub-columns: 0 + :widths: 1 4 + + * - ``"Progressive" (0)`` + - The input image video stream is progressive (not interlaced). No + deinterlacing is performed. Apart from (optional) format and encoding + conversion output frames are identical to the input frames. + * - ``"Adaptive 2D/3D" (1)`` + - Motion adaptive version of 2D and 3D deinterlacing. Use 3D deinterlacing + in the presence of fast motion and 2D deinterlacing with diagonal + interpolation otherwise. + * - ``"Fixed 2D" (2)`` + - The current field is scaled vertically by averaging adjacent lines to + recover missing lines. This method is also known as blending or Line + Averaging (LAV). + * - ``"Fixed 3D" (3)`` + - The previous and next fields are averaged to recover lines missing from + the current field. This method is also known as Field Averaging (FAV). + * - ``"Previous field" (4)`` + - The current field is weaved with the previous field, i.e. the previous + field is used to fill missing lines from the current field. This method + is also known as weave deinterlacing. + * - ``"Next field" (5)`` + - The current field is weaved with the next field, i.e. the next field is + used to fill missing lines from the current field. This method is also + known as weave deinterlacing. diff --git a/MAINTAINERS b/MAINTAINERS index 5106590190f5..78ec26e84c5b 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -7712,6 +7712,15 @@ F: Documentation/devicetree/bindings/media/renesas,fcp.txt F: drivers/media/platform/rcar-fcp.c F: include/media/rcar-fcp.h +MEDIA DRIVERS FOR RENESAS - FDP1 +M: Kieran Bingham +L: linux-media@vger.kernel.org +L: linux-renesas-soc@vger.kernel.org +T: git git://linuxtv.org/media_tree.git +S: Supported +F: Documentation/devicetree/bindings/media/renesas,fdp1.txt +F: drivers/media/platform/rcar_fdp1.c + MEDIA DRIVERS FOR RENESAS - VIN M: Niklas Söderlund L: linux-media@vger.kernel.org diff --git a/drivers/media/platform/Kconfig b/drivers/media/platform/Kconfig index 754edbf1a326..84f44098dc99 100644 --- a/drivers/media/platform/Kconfig +++ b/drivers/media/platform/Kconfig @@ -307,6 +307,19 @@ config VIDEO_SH_VEU Support for the Video Engine Unit (VEU) on SuperH and SH-Mobile SoCs. +config VIDEO_RENESAS_FDP1 + tristate "Renesas Fine Display Processor" + depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA + depends on ARCH_SHMOBILE || COMPILE_TEST + select VIDEOBUF2_DMA_CONTIG + select V4L2_MEM2MEM_DEV + ---help--- + This is a V4L2 driver for the Renesas Fine Display Processor + providing colour space conversion, and de-interlacing features. + + To compile this driver as a module, choose M here: the module + will be called rcar_fdp1. + config VIDEO_RENESAS_JPU tristate "Renesas JPEG Processing Unit" depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA diff --git a/drivers/media/platform/Makefile b/drivers/media/platform/Makefile index f842933d17de..5b3cb271d2b8 100644 --- a/drivers/media/platform/Makefile +++ b/drivers/media/platform/Makefile @@ -48,6 +48,7 @@ obj-$(CONFIG_VIDEO_SH_VOU) += sh_vou.o obj-$(CONFIG_SOC_CAMERA) += soc_camera/ obj-$(CONFIG_VIDEO_RENESAS_FCP) += rcar-fcp.o +obj-$(CONFIG_VIDEO_RENESAS_FDP1) += rcar_fdp1.o obj-$(CONFIG_VIDEO_RENESAS_JPU) += rcar_jpu.o obj-$(CONFIG_VIDEO_RENESAS_VSP1) += vsp1/ diff --git a/drivers/media/platform/rcar_fdp1.c b/drivers/media/platform/rcar_fdp1.c new file mode 100644 index 000000000000..dd1a6ea17f22 --- /dev/null +++ b/drivers/media/platform/rcar_fdp1.c @@ -0,0 +1,2445 @@ +/* + * Renesas RCar Fine Display Processor + * + * Video format converter and frame deinterlacer device. + * + * Author: Kieran Bingham, + * Copyright (c) 2016 Renesas Electronics Corporation. + * + * This code is developed and inspired from the vim2m, rcar_jpu, + * m2m-deinterlace, and vsp1 drivers. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the + * License, or (at your option) any later version + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +static unsigned int debug; +module_param(debug, uint, 0644); +MODULE_PARM_DESC(debug, "activate debug info"); + +/* Minimum and maximum frame width/height */ +#define FDP1_MIN_W 80U +#define FDP1_MIN_H 80U + +#define FDP1_MAX_W 3840U +#define FDP1_MAX_H 2160U + +#define FDP1_MAX_PLANES 3U +#define FDP1_MAX_STRIDE 8190U + +/* Flags that indicate a format can be used for capture/output */ +#define FDP1_CAPTURE BIT(0) +#define FDP1_OUTPUT BIT(1) + +#define DRIVER_NAME "rcar_fdp1" + +/* Number of Job's to have available on the processing queue */ +#define FDP1_NUMBER_JOBS 8 + +#define dprintk(fdp1, fmt, arg...) \ + v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg) + +/* + * FDP1 registers and bits + */ + +/* FDP1 start register - Imm */ +#define FD1_CTL_CMD 0x0000 +#define FD1_CTL_CMD_STRCMD BIT(0) + +/* Sync generator register - Imm */ +#define FD1_CTL_SGCMD 0x0004 +#define FD1_CTL_SGCMD_SGEN BIT(0) + +/* Register set end register - Imm */ +#define FD1_CTL_REGEND 0x0008 +#define FD1_CTL_REGEND_REGEND BIT(0) + +/* Channel activation register - Vupdt */ +#define FD1_CTL_CHACT 0x000c +#define FD1_CTL_CHACT_SMW BIT(9) +#define FD1_CTL_CHACT_WR BIT(8) +#define FD1_CTL_CHACT_SMR BIT(3) +#define FD1_CTL_CHACT_RD2 BIT(2) +#define FD1_CTL_CHACT_RD1 BIT(1) +#define FD1_CTL_CHACT_RD0 BIT(0) + +/* Operation Mode Register - Vupdt */ +#define FD1_CTL_OPMODE 0x0010 +#define FD1_CTL_OPMODE_PRG BIT(4) +#define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0) +#define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0) +#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0) + +#define FD1_CTL_VPERIOD 0x0014 +#define FD1_CTL_CLKCTRL 0x0018 +#define FD1_CTL_CLKCTRL_CSTP_N BIT(0) + +/* Software reset register */ +#define FD1_CTL_SRESET 0x001c +#define FD1_CTL_SRESET_SRST BIT(0) + +/* Control status register (V-update-status) */ +#define FD1_CTL_STATUS 0x0024 +#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16) +#define FD1_CTL_STATUS_VINT_CNT_SHIFT 16 +#define FD1_CTL_STATUS_SGREGSET BIT(10) +#define FD1_CTL_STATUS_SGVERR BIT(9) +#define FD1_CTL_STATUS_SGFREND BIT(8) +#define FD1_CTL_STATUS_BSY BIT(0) + +#define FD1_CTL_VCYCLE_STAT 0x0028 + +/* Interrupt enable register */ +#define FD1_CTL_IRQENB 0x0038 +/* Interrupt status register */ +#define FD1_CTL_IRQSTA 0x003c +/* Interrupt control register */ +#define FD1_CTL_IRQFSET 0x0040 + +/* Common IRQ Bit settings */ +#define FD1_CTL_IRQ_VERE BIT(16) +#define FD1_CTL_IRQ_VINTE BIT(4) +#define FD1_CTL_IRQ_FREE BIT(0) +#define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \ + FD1_CTL_IRQ_VINTE | \ + FD1_CTL_IRQ_FREE) + +/* RPF */ +#define FD1_RPF_SIZE 0x0060 +#define FD1_RPF_SIZE_MASK GENMASK(12, 0) +#define FD1_RPF_SIZE_H_SHIFT 16 +#define FD1_RPF_SIZE_V_SHIFT 0 + +#define FD1_RPF_FORMAT 0x0064 +#define FD1_RPF_FORMAT_CIPM BIT(16) +#define FD1_RPF_FORMAT_RSPYCS BIT(13) +#define FD1_RPF_FORMAT_RSPUVS BIT(12) +#define FD1_RPF_FORMAT_CF BIT(8) + +#define FD1_RPF_PSTRIDE 0x0068 +#define FD1_RPF_PSTRIDE_Y_SHIFT 16 +#define FD1_RPF_PSTRIDE_C_SHIFT 0 + +/* RPF0 Source Component Y Address register */ +#define FD1_RPF0_ADDR_Y 0x006c + +/* RPF1 Current Picture Registers */ +#define FD1_RPF1_ADDR_Y 0x0078 +#define FD1_RPF1_ADDR_C0 0x007c +#define FD1_RPF1_ADDR_C1 0x0080 + +/* RPF2 next picture register */ +#define FD1_RPF2_ADDR_Y 0x0084 + +#define FD1_RPF_SMSK_ADDR 0x0090 +#define FD1_RPF_SWAP 0x0094 + +/* WPF */ +#define FD1_WPF_FORMAT 0x00c0 +#define FD1_WPF_FORMAT_PDV_SHIFT 24 +#define FD1_WPF_FORMAT_FCNL BIT(20) +#define FD1_WPF_FORMAT_WSPYCS BIT(15) +#define FD1_WPF_FORMAT_WSPUVS BIT(14) +#define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9) +#define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9) +#define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9) +#define FD1_WPF_FORMAT_CSC BIT(8) + +#define FD1_WPF_RNDCTL 0x00c4 +#define FD1_WPF_RNDCTL_CBRM BIT(28) +#define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12) +#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12) +#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12) + +#define FD1_WPF_PSTRIDE 0x00c8 +#define FD1_WPF_PSTRIDE_Y_SHIFT 16 +#define FD1_WPF_PSTRIDE_C_SHIFT 0 + +/* WPF Destination picture */ +#define FD1_WPF_ADDR_Y 0x00cc +#define FD1_WPF_ADDR_C0 0x00d0 +#define FD1_WPF_ADDR_C1 0x00d4 +#define FD1_WPF_SWAP 0x00d8 +#define FD1_WPF_SWAP_OSWAP_SHIFT 0 +#define FD1_WPF_SWAP_SSWAP_SHIFT 4 + +/* WPF/RPF Common */ +#define FD1_RWPF_SWAP_BYTE BIT(0) +#define FD1_RWPF_SWAP_WORD BIT(1) +#define FD1_RWPF_SWAP_LWRD BIT(2) +#define FD1_RWPF_SWAP_LLWD BIT(3) + +/* IPC */ +#define FD1_IPC_MODE 0x0100 +#define FD1_IPC_MODE_DLI BIT(8) +#define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0) +#define FD1_IPC_MODE_DIM_FIXED2D (1 << 0) +#define FD1_IPC_MODE_DIM_FIXED3D (2 << 0) +#define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0) +#define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0) + +#define FD1_IPC_SMSK_THRESH 0x0104 +#define FD1_IPC_SMSK_THRESH_CONST 0x00010002 + +#define FD1_IPC_COMB_DET 0x0108 +#define FD1_IPC_COMB_DET_CONST 0x00200040 + +#define FD1_IPC_MOTDEC 0x010c +#define FD1_IPC_MOTDEC_CONST 0x00008020 + +/* DLI registers */ +#define FD1_IPC_DLI_BLEND 0x0120 +#define FD1_IPC_DLI_BLEND_CONST 0x0080ff02 + +#define FD1_IPC_DLI_HGAIN 0x0124 +#define FD1_IPC_DLI_HGAIN_CONST 0x001000ff + +#define FD1_IPC_DLI_SPRS 0x0128 +#define FD1_IPC_DLI_SPRS_CONST 0x009004ff + +#define FD1_IPC_DLI_ANGLE 0x012c +#define FD1_IPC_DLI_ANGLE_CONST 0x0004080c + +#define FD1_IPC_DLI_ISOPIX0 0x0130 +#define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10 + +#define FD1_IPC_DLI_ISOPIX1 0x0134 +#define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10 + +/* Sensor registers */ +#define FD1_IPC_SENSOR_TH0 0x0140 +#define FD1_IPC_SENSOR_TH0_CONST 0x20208080 + +#define FD1_IPC_SENSOR_TH1 0x0144 +#define FD1_IPC_SENSOR_TH1_CONST 0 + +#define FD1_IPC_SENSOR_CTL0 0x0170 +#define FD1_IPC_SENSOR_CTL0_CONST 0x00002201 + +#define FD1_IPC_SENSOR_CTL1 0x0174 +#define FD1_IPC_SENSOR_CTL1_CONST 0 + +#define FD1_IPC_SENSOR_CTL2 0x0178 +#define FD1_IPC_SENSOR_CTL2_X_SHIFT 16 +#define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0 + +#define FD1_IPC_SENSOR_CTL3 0x017c +#define FD1_IPC_SENSOR_CTL3_0_SHIFT 16 +#define FD1_IPC_SENSOR_CTL3_1_SHIFT 0 + +/* Line memory pixel number register */ +#define FD1_IPC_LMEM 0x01e0 +#define FD1_IPC_LMEM_LINEAR 1024 +#define FD1_IPC_LMEM_TILE 960 + +/* Internal Data (HW Version) */ +#define FD1_IP_INTDATA 0x0800 +#define FD1_IP_H3 0x02010101 +#define FD1_IP_M3W 0x02010202 + +/* LUTs */ +#define FD1_LUT_DIF_ADJ 0x1000 +#define FD1_LUT_SAD_ADJ 0x1400 +#define FD1_LUT_BLD_GAIN 0x1800 +#define FD1_LUT_DIF_GAIN 0x1c00 +#define FD1_LUT_MDET 0x2000 + +/** + * struct fdp1_fmt - The FDP1 internal format data + * @fourcc: the fourcc code, to match the V4L2 API + * @bpp: bits per pixel per plane + * @num_planes: number of planes + * @hsub: horizontal subsampling factor + * @vsub: vertical subsampling factor + * @fmt: 7-bit format code for the fdp1 hardware + * @swap_yc: the Y and C components are swapped (Y comes before C) + * @swap_uv: the U and V components are swapped (V comes before U) + * @swap: swap register control + * @types: types of queue this format is applicable to + */ +struct fdp1_fmt { + u32 fourcc; + u8 bpp[3]; + u8 num_planes; + u8 hsub; + u8 vsub; + u8 fmt; + bool swap_yc; + bool swap_uv; + u8 swap; + u8 types; +}; + +static const struct fdp1_fmt fdp1_formats[] = { + /* RGB formats are only supported by the Write Pixel Formatter */ + + { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD, + FDP1_CAPTURE }, + { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD, + FDP1_CAPTURE }, + + /* YUV Formats are supported by Read and Write Pixel Formatters */ + + { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, + { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true, + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, + FDP1_CAPTURE | FDP1_OUTPUT }, +}; + +static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt) +{ + return fmt->fmt <= 0x1b; /* Last RGB code */ +} + +/* + * FDP1 Lookup tables range from 0...255 only + * + * Each table must be less than 256 entries, and all tables + * are padded out to 256 entries by duplicating the last value. + */ +static const u8 fdp1_diff_adj[] = { + 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, + 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, + 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, +}; + +static const u8 fdp1_sad_adj[] = { + 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, + 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, + 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, +}; + +static const u8 fdp1_bld_gain[] = { + 0x80, +}; + +static const u8 fdp1_dif_gain[] = { + 0x80, +}; + +static const u8 fdp1_mdet[] = { + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, + 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, + 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, + 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, + 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, + 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, + 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, + 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, + 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, + 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, + 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, + 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, + 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, + 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, + 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, + 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, + 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, + 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, + 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, + 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, + 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, + 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, + 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, + 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, + 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, + 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, + 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, + 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, + 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff +}; + +/* Per-queue, driver-specific private data */ +struct fdp1_q_data { + const struct fdp1_fmt *fmt; + struct v4l2_pix_format_mplane format; + + unsigned int vsize; + unsigned int stride_y; + unsigned int stride_c; +}; + +static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat) +{ + const struct fdp1_fmt *fmt; + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) { + fmt = &fdp1_formats[i]; + if (fmt->fourcc == pixelformat) + return fmt; + } + + return NULL; +} + +enum fdp1_deint_mode { + FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */ + FDP1_ADAPT2D3D, + FDP1_FIXED2D, + FDP1_FIXED3D, + FDP1_PREVFIELD, + FDP1_NEXTFIELD, +}; + +#define FDP1_DEINT_MODE_USES_NEXT(mode) \ + (mode == FDP1_ADAPT2D3D || \ + mode == FDP1_FIXED3D || \ + mode == FDP1_NEXTFIELD) + +#define FDP1_DEINT_MODE_USES_PREV(mode) \ + (mode == FDP1_ADAPT2D3D || \ + mode == FDP1_FIXED3D || \ + mode == FDP1_PREVFIELD) + +/* + * FDP1 operates on potentially 3 fields, which are tracked + * from the VB buffers using this context structure. + * Will always be a field or a full frame, never two fields. + */ +struct fdp1_field_buffer { + struct vb2_v4l2_buffer *vb; + dma_addr_t addrs[3]; + + /* Should be NONE:TOP:BOTTOM only */ + enum v4l2_field field; + + /* Flag to indicate this is the last field in the vb */ + bool last_field; + + /* Buffer queue lists */ + struct list_head list; +}; + +struct fdp1_buffer { + struct v4l2_m2m_buffer m2m_buf; + struct fdp1_field_buffer fields[2]; + unsigned int num_fields; +}; + +static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb) +{ + return container_of(vb, struct fdp1_buffer, m2m_buf.vb); +} + +struct fdp1_job { + struct fdp1_field_buffer *previous; + struct fdp1_field_buffer *active; + struct fdp1_field_buffer *next; + struct fdp1_field_buffer *dst; + + /* A job can only be on one list at a time */ + struct list_head list; +}; + +struct fdp1_dev { + struct v4l2_device v4l2_dev; + struct video_device vfd; + + struct mutex dev_mutex; + spinlock_t irqlock; + spinlock_t device_process_lock; + + void __iomem *regs; + unsigned int irq; + struct device *dev; + + /* Job Queues */ + struct fdp1_job jobs[FDP1_NUMBER_JOBS]; + struct list_head free_job_list; + struct list_head queued_job_list; + struct list_head hw_job_list; + + unsigned int clk_rate; + + struct rcar_fcp_device *fcp; + struct v4l2_m2m_dev *m2m_dev; +}; + +struct fdp1_ctx { + struct v4l2_fh fh; + struct fdp1_dev *fdp1; + + struct v4l2_ctrl_handler hdl; + unsigned int sequence; + + /* Processed buffers in this transaction */ + u8 num_processed; + + /* Transaction length (i.e. how many buffers per transaction) */ + u32 translen; + + /* Abort requested by m2m */ + int aborting; + + /* Deinterlace processing mode */ + enum fdp1_deint_mode deint_mode; + + /* + * Adaptive 2D/3D mode uses a shared mask + * This is allocated at streamon, if the ADAPT2D3D mode + * is requested + */ + unsigned int smsk_size; + dma_addr_t smsk_addr[2]; + void *smsk_cpu; + + /* Capture pipeline, can specify an alpha value + * for supported formats. 0-255 only + */ + unsigned char alpha; + + /* Source and destination queue data */ + struct fdp1_q_data out_q; /* HW Source */ + struct fdp1_q_data cap_q; /* HW Destination */ + + /* + * Field Queues + * Interlaced fields are used on 3 occasions, and tracked in this list. + * + * V4L2 Buffers are tracked inside the fdp1_buffer + * and released when the last 'field' completes + */ + struct list_head fields_queue; + unsigned int buffers_queued; + + /* + * For de-interlacing we need to track our previous buffer + * while preparing our job lists. + */ + struct fdp1_field_buffer *previous; +}; + +static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh) +{ + return container_of(fh, struct fdp1_ctx, fh); +} + +static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx, + enum v4l2_buf_type type) +{ + if (V4L2_TYPE_IS_OUTPUT(type)) + return &ctx->out_q; + else + return &ctx->cap_q; +} + +/* + * list_remove_job: Take the first item off the specified job list + * + * Returns: pointer to a job, or NULL if the list is empty. + */ +static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1, + struct list_head *list) +{ + struct fdp1_job *job; + unsigned long flags; + + spin_lock_irqsave(&fdp1->irqlock, flags); + job = list_first_entry_or_null(list, struct fdp1_job, list); + if (job) + list_del(&job->list); + spin_unlock_irqrestore(&fdp1->irqlock, flags); + + return job; +} + +/* + * list_add_job: Add a job to the specified job list + * + * Returns: void - always succeeds + */ +static void list_add_job(struct fdp1_dev *fdp1, + struct list_head *list, + struct fdp1_job *job) +{ + unsigned long flags; + + spin_lock_irqsave(&fdp1->irqlock, flags); + list_add_tail(&job->list, list); + spin_unlock_irqrestore(&fdp1->irqlock, flags); +} + +static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1) +{ + return list_remove_job(fdp1, &fdp1->free_job_list); +} + +static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job) +{ + /* Ensure that all residue from previous jobs is gone */ + memset(job, 0, sizeof(struct fdp1_job)); + + list_add_job(fdp1, &fdp1->free_job_list, job); +} + +static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job) +{ + list_add_job(fdp1, &fdp1->queued_job_list, job); +} + +static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1) +{ + return list_remove_job(fdp1, &fdp1->queued_job_list); +} + +static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job) +{ + list_add_job(fdp1, &fdp1->hw_job_list, job); +} + +static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1) +{ + return list_remove_job(fdp1, &fdp1->hw_job_list); +} + +/* + * Buffer lists handling + */ +static void fdp1_field_complete(struct fdp1_ctx *ctx, + struct fdp1_field_buffer *fbuf) +{ + /* job->previous may be on the first field */ + if (!fbuf) + return; + + if (fbuf->last_field) + v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE); +} + +static void fdp1_queue_field(struct fdp1_ctx *ctx, + struct fdp1_field_buffer *fbuf) +{ + unsigned long flags; + + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); + list_add_tail(&fbuf->list, &ctx->fields_queue); + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); + + ctx->buffers_queued++; +} + +static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx) +{ + struct fdp1_field_buffer *fbuf; + unsigned long flags; + + ctx->buffers_queued--; + + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); + fbuf = list_first_entry_or_null(&ctx->fields_queue, + struct fdp1_field_buffer, list); + if (fbuf) + list_del(&fbuf->list); + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); + + return fbuf; +} + +/* + * Return the next field in the queue - or NULL, + * without removing the item from the list + */ +static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx) +{ + struct fdp1_field_buffer *fbuf; + unsigned long flags; + + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); + fbuf = list_first_entry_or_null(&ctx->fields_queue, + struct fdp1_field_buffer, list); + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); + + return fbuf; +} + +static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg) +{ + u32 value = ioread32(fdp1->regs + reg); + + if (debug >= 2) + dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg); + + return value; +} + +static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg) +{ + if (debug >= 2) + dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg); + + iowrite32(val, fdp1->regs + reg); +} + +/* IPC registers are to be programmed with constant values */ +static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx) +{ + struct fdp1_dev *fdp1 = ctx->fdp1; + + fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH); + fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET); + fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC); + + fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND); + fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN); + fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS); + fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE); + fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0); + fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1); +} + + +static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx) +{ + struct fdp1_dev *fdp1 = ctx->fdp1; + struct fdp1_q_data *src_q_data = &ctx->out_q; + unsigned int x0, x1; + unsigned int hsize = src_q_data->format.width; + unsigned int vsize = src_q_data->format.height; + + x0 = hsize / 3; + x1 = 2 * hsize / 3; + + fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0); + fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1); + fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0); + fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1); + + fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) | + ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT), + FD1_IPC_SENSOR_CTL2); + + fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) | + (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT), + FD1_IPC_SENSOR_CTL3); +} + +/* + * fdp1_write_lut: Write a padded LUT to the hw + * + * FDP1 uses constant data for de-interlacing processing, + * with large tables. These hardware tables are all 256 bytes + * long, however they often contain repeated data at the end. + * + * The last byte of the table is written to all remaining entries. + */ +static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut, + unsigned int len, unsigned int base) +{ + unsigned int i; + u8 pad; + + /* Tables larger than the hw are clipped */ + len = min(len, 256u); + + for (i = 0; i < len; i++) + fdp1_write(fdp1, lut[i], base + (i*4)); + + /* Tables are padded with the last entry */ + pad = lut[i-1]; + + for (; i < 256; i++) + fdp1_write(fdp1, pad, base + (i*4)); +} + +static void fdp1_set_lut(struct fdp1_dev *fdp1) +{ + fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj), + FD1_LUT_DIF_ADJ); + fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj), + FD1_LUT_SAD_ADJ); + fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain), + FD1_LUT_BLD_GAIN); + fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain), + FD1_LUT_DIF_GAIN); + fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet), + FD1_LUT_MDET); +} + +static void fdp1_configure_rpf(struct fdp1_ctx *ctx, + struct fdp1_job *job) +{ + struct fdp1_dev *fdp1 = ctx->fdp1; + u32 picture_size; + u32 pstride; + u32 format; + u32 smsk_addr; + + struct fdp1_q_data *q_data = &ctx->out_q; + + /* Picture size is common to Source and Destination frames */ + picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT) + | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT); + + /* Strides */ + pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT; + if (q_data->format.num_planes > 1) + pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT; + + /* Format control */ + format = q_data->fmt->fmt; + if (q_data->fmt->swap_yc) + format |= FD1_RPF_FORMAT_RSPYCS; + + if (q_data->fmt->swap_uv) + format |= FD1_RPF_FORMAT_RSPUVS; + + if (job->active->field == V4L2_FIELD_BOTTOM) { + format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */ + smsk_addr = ctx->smsk_addr[0]; + } else { + smsk_addr = ctx->smsk_addr[1]; + } + + /* Deint mode is non-zero when deinterlacing */ + if (ctx->deint_mode) + format |= FD1_RPF_FORMAT_CIPM; + + fdp1_write(fdp1, format, FD1_RPF_FORMAT); + fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP); + fdp1_write(fdp1, picture_size, FD1_RPF_SIZE); + fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE); + fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR); + + /* Previous Field Channel (CH0) */ + if (job->previous) + fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y); + + /* Current Field Channel (CH1) */ + fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y); + fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0); + fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1); + + /* Next Field Channel (CH2) */ + if (job->next) + fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y); +} + +static void fdp1_configure_wpf(struct fdp1_ctx *ctx, + struct fdp1_job *job) +{ + struct fdp1_dev *fdp1 = ctx->fdp1; + struct fdp1_q_data *src_q_data = &ctx->out_q; + struct fdp1_q_data *q_data = &ctx->cap_q; + u32 pstride; + u32 format; + u32 swap; + u32 rndctl; + + pstride = q_data->format.plane_fmt[0].bytesperline + << FD1_WPF_PSTRIDE_Y_SHIFT; + + if (q_data->format.num_planes > 1) + pstride |= q_data->format.plane_fmt[1].bytesperline + << FD1_WPF_PSTRIDE_C_SHIFT; + + format = q_data->fmt->fmt; /* Output Format Code */ + + if (q_data->fmt->swap_yc) + format |= FD1_WPF_FORMAT_WSPYCS; + + if (q_data->fmt->swap_uv) + format |= FD1_WPF_FORMAT_WSPUVS; + + if (fdp1_fmt_is_rgb(q_data->fmt)) { + /* Enable Colour Space conversion */ + format |= FD1_WPF_FORMAT_CSC; + + /* Set WRTM */ + if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709) + format |= FD1_WPF_FORMAT_WRTM_709_16; + else if (src_q_data->format.quantization == + V4L2_QUANTIZATION_FULL_RANGE) + format |= FD1_WPF_FORMAT_WRTM_601_0; + else + format |= FD1_WPF_FORMAT_WRTM_601_16; + } + + /* Set an alpha value into the Pad Value */ + format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT; + + /* Determine picture rounding and clipping */ + rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */ + rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP; + + /* WPF Swap needs both ISWAP and OSWAP setting */ + swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT; + swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT; + + fdp1_write(fdp1, format, FD1_WPF_FORMAT); + fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL); + fdp1_write(fdp1, swap, FD1_WPF_SWAP); + fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE); + + fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y); + fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0); + fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1); +} + +static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx, + struct fdp1_job *job) +{ + struct fdp1_dev *fdp1 = ctx->fdp1; + u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT; + u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */ + u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */ + + /* De-interlacing Mode */ + switch (ctx->deint_mode) { + default: + case FDP1_PROGRESSIVE: + dprintk(fdp1, "Progressive Mode\n"); + opmode |= FD1_CTL_OPMODE_PRG; + ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; + break; + case FDP1_ADAPT2D3D: + dprintk(fdp1, "Adapt2D3D Mode\n"); + if (ctx->sequence == 0 || ctx->aborting) + ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; + else + ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D; + + if (ctx->sequence > 1) { + channels |= FD1_CTL_CHACT_SMW; + channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; + } + + if (ctx->sequence > 2) + channels |= FD1_CTL_CHACT_SMR; + + break; + case FDP1_FIXED3D: + dprintk(fdp1, "Fixed 3D Mode\n"); + ipcmode |= FD1_IPC_MODE_DIM_FIXED3D; + /* Except for first and last frame, enable all channels */ + if (!(ctx->sequence == 0 || ctx->aborting)) + channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; + break; + case FDP1_FIXED2D: + dprintk(fdp1, "Fixed 2D Mode\n"); + ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; + /* No extra channels enabled */ + break; + case FDP1_PREVFIELD: + dprintk(fdp1, "Previous Field Mode\n"); + ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD; + channels |= FD1_CTL_CHACT_RD0; /* Previous */ + break; + case FDP1_NEXTFIELD: + dprintk(fdp1, "Next Field Mode\n"); + ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD; + channels |= FD1_CTL_CHACT_RD2; /* Next */ + break; + } + + fdp1_write(fdp1, channels, FD1_CTL_CHACT); + fdp1_write(fdp1, opmode, FD1_CTL_OPMODE); + fdp1_write(fdp1, ipcmode, FD1_IPC_MODE); +} + +/* + * fdp1_device_process() - Run the hardware + * + * Configure and start the hardware to generate a single frame + * of output given our input parameters. + */ +static int fdp1_device_process(struct fdp1_ctx *ctx) + +{ + struct fdp1_dev *fdp1 = ctx->fdp1; + struct fdp1_job *job; + unsigned long flags; + + spin_lock_irqsave(&fdp1->device_process_lock, flags); + + /* Get a job to process */ + job = get_queued_job(fdp1); + if (!job) { + /* + * VINT can call us to see if we can queue another job. + * If we have no work to do, we simply return. + */ + spin_unlock_irqrestore(&fdp1->device_process_lock, flags); + return 0; + } + + /* First Frame only? ... */ + fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL); + + /* Set the mode, and configuration */ + fdp1_configure_deint_mode(ctx, job); + + /* DLI Static Configuration */ + fdp1_set_ipc_dli(ctx); + + /* Sensor Configuration */ + fdp1_set_ipc_sensor(ctx); + + /* Setup the source picture */ + fdp1_configure_rpf(ctx, job); + + /* Setup the destination picture */ + fdp1_configure_wpf(ctx, job); + + /* Line Memory Pixel Number Register for linear access */ + fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM); + + /* Enable Interrupts */ + fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB); + + /* Finally, the Immediate Registers */ + + /* This job is now in the HW queue */ + queue_hw_job(fdp1, job); + + /* Start the command */ + fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD); + + /* Registers will update to HW at next VINT */ + fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND); + + /* Enable VINT Generator */ + fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD); + + spin_unlock_irqrestore(&fdp1->device_process_lock, flags); + + return 0; +} + +/* + * mem2mem callbacks + */ + +/** + * job_ready() - check whether an instance is ready to be scheduled to run + */ +static int fdp1_m2m_job_ready(void *priv) +{ + struct fdp1_ctx *ctx = priv; + struct fdp1_q_data *src_q_data = &ctx->out_q; + int srcbufs = 1; + int dstbufs = 1; + + dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n", + v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx), + v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)); + + /* One output buffer is required for each field */ + if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) + dstbufs = 2; + + if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs + || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) { + dprintk(ctx->fdp1, "Not enough buffers available\n"); + return 0; + } + + return 1; +} + +static void fdp1_m2m_job_abort(void *priv) +{ + struct fdp1_ctx *ctx = priv; + + dprintk(ctx->fdp1, "+\n"); + + /* Will cancel the transaction in the next interrupt handler */ + ctx->aborting = 1; + + /* Immediate abort sequence */ + fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD); + fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET); +} + +/* + * fdp1_prepare_job: Prepare and queue a new job for a single action of work + * + * Prepare the next field, (or frame in progressive) and an output + * buffer for the hardware to perform a single operation. + */ +static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx) +{ + struct vb2_v4l2_buffer *vbuf; + struct fdp1_buffer *fbuf; + struct fdp1_dev *fdp1 = ctx->fdp1; + struct fdp1_job *job; + unsigned int buffers_required = 1; + + dprintk(fdp1, "+\n"); + + if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) + buffers_required = 2; + + if (ctx->buffers_queued < buffers_required) + return NULL; + + job = fdp1_job_alloc(fdp1); + if (!job) { + dprintk(fdp1, "No free jobs currently available\n"); + return NULL; + } + + job->active = fdp1_dequeue_field(ctx); + if (!job->active) { + /* Buffer check should prevent this ever happening */ + dprintk(fdp1, "No input buffers currently available\n"); + + fdp1_job_free(fdp1, job); + return NULL; + } + + dprintk(fdp1, "+ Buffer en-route...\n"); + + /* Source buffers have been prepared on our buffer_queue + * Prepare our Output buffer + */ + vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); + fbuf = to_fdp1_buffer(vbuf); + job->dst = &fbuf->fields[0]; + + job->active->vb->sequence = ctx->sequence; + job->dst->vb->sequence = ctx->sequence; + ctx->sequence++; + + if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) { + job->previous = ctx->previous; + + /* Active buffer becomes the next job's previous buffer */ + ctx->previous = job->active; + } + + if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) { + /* Must be called after 'active' is dequeued */ + job->next = fdp1_peek_queued_field(ctx); + } + + /* Transfer timestamps and flags from src->dst */ + + job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp; + + job->dst->vb->flags = job->active->vb->flags & + V4L2_BUF_FLAG_TSTAMP_SRC_MASK; + + /* Ideally, the frame-end function will just 'check' to see + * if there are more jobs instead + */ + ctx->translen++; + + /* Finally, Put this job on the processing queue */ + queue_job(fdp1, job); + + dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen); + + return job; +} + +/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task + * + * A single input buffer is taken and serialised into our fdp1_buffer + * queue. The queue is then processed to create as many jobs as possible + * from our available input. + */ +static void fdp1_m2m_device_run(void *priv) +{ + struct fdp1_ctx *ctx = priv; + struct fdp1_dev *fdp1 = ctx->fdp1; + struct vb2_v4l2_buffer *src_vb; + struct fdp1_buffer *buf; + unsigned int i; + + dprintk(fdp1, "+\n"); + + ctx->translen = 0; + + /* Get our incoming buffer of either one or two fields, or one frame */ + src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); + buf = to_fdp1_buffer(src_vb); + + for (i = 0; i < buf->num_fields; i++) { + struct fdp1_field_buffer *fbuf = &buf->fields[i]; + + fdp1_queue_field(ctx, fbuf); + dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n", + i, fbuf->last_field); + } + + /* Queue as many jobs as our data provides for */ + while (fdp1_prepare_job(ctx)) + ; + + if (ctx->translen == 0) { + dprintk(fdp1, "No jobs were processed. M2M action complete\n"); + v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); + return; + } + + /* Kick the job processing action */ + fdp1_device_process(ctx); +} + +/* + * device_frame_end: + * + * Handles the M2M level after a buffer completion event. + */ +static void device_frame_end(struct fdp1_dev *fdp1, + enum vb2_buffer_state state) +{ + struct fdp1_ctx *ctx; + unsigned long flags; + struct fdp1_job *job = get_hw_queued_job(fdp1); + + dprintk(fdp1, "+\n"); + + ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev); + + if (ctx == NULL) { + v4l2_err(&fdp1->v4l2_dev, + "Instance released before the end of transaction\n"); + return; + } + + ctx->num_processed++; + + /* + * fdp1_field_complete will call buf_done only when the last vb2_buffer + * reference is complete + */ + if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) + fdp1_field_complete(ctx, job->previous); + else + fdp1_field_complete(ctx, job->active); + + spin_lock_irqsave(&fdp1->irqlock, flags); + v4l2_m2m_buf_done(job->dst->vb, state); + job->dst = NULL; + spin_unlock_irqrestore(&fdp1->irqlock, flags); + + /* Move this job back to the free job list */ + fdp1_job_free(fdp1, job); + + dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n", + ctx->num_processed, ctx->translen); + + if (ctx->num_processed == ctx->translen || + ctx->aborting) { + dprintk(ctx->fdp1, "Finishing transaction\n"); + ctx->num_processed = 0; + v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); + } else { + /* + * For pipelined performance support, this would + * be called from a VINT handler + */ + fdp1_device_process(ctx); + } +} + +/* + * video ioctls + */ +static int fdp1_vidioc_querycap(struct file *file, void *priv, + struct v4l2_capability *cap) +{ + strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver)); + strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card)); + snprintf(cap->bus_info, sizeof(cap->bus_info), + "platform:%s", DRIVER_NAME); + return 0; +} + +static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type) +{ + unsigned int i, num; + + num = 0; + + for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) { + if (fdp1_formats[i].types & type) { + if (num == f->index) + break; + ++num; + } + } + + /* Format not found */ + if (i >= ARRAY_SIZE(fdp1_formats)) + return -EINVAL; + + /* Format found */ + f->pixelformat = fdp1_formats[i].fourcc; + + return 0; +} + +static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv, + struct v4l2_fmtdesc *f) +{ + return fdp1_enum_fmt(f, FDP1_CAPTURE); +} + +static int fdp1_enum_fmt_vid_out(struct file *file, void *priv, + struct v4l2_fmtdesc *f) +{ + return fdp1_enum_fmt(f, FDP1_OUTPUT); +} + +static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f) +{ + struct fdp1_q_data *q_data; + struct fdp1_ctx *ctx = fh_to_ctx(priv); + + if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type)) + return -EINVAL; + + q_data = get_q_data(ctx, f->type); + f->fmt.pix_mp = q_data->format; + + return 0; +} + +static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix, + const struct fdp1_fmt *fmt) +{ + unsigned int i; + + /* Compute and clamp the stride and image size. */ + for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) { + unsigned int hsub = i > 0 ? fmt->hsub : 1; + unsigned int vsub = i > 0 ? fmt->vsub : 1; + /* From VSP : TODO: Confirm alignment limits for FDP1 */ + unsigned int align = 128; + unsigned int bpl; + + bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline, + pix->width / hsub * fmt->bpp[i] / 8, + round_down(FDP1_MAX_STRIDE, align)); + + pix->plane_fmt[i].bytesperline = round_up(bpl, align); + pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline + * pix->height / vsub; + + memset(pix->plane_fmt[i].reserved, 0, + sizeof(pix->plane_fmt[i].reserved)); + } + + if (fmt->num_planes == 3) { + /* The two chroma planes must have the same stride. */ + pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline; + pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage; + + memset(pix->plane_fmt[2].reserved, 0, + sizeof(pix->plane_fmt[2].reserved)); + } +} + +static void fdp1_try_fmt_output(struct fdp1_ctx *ctx, + const struct fdp1_fmt **fmtinfo, + struct v4l2_pix_format_mplane *pix) +{ + const struct fdp1_fmt *fmt; + unsigned int width; + unsigned int height; + + /* Validate the pixel format to ensure the output queue supports it. */ + fmt = fdp1_find_format(pix->pixelformat); + if (!fmt || !(fmt->types & FDP1_OUTPUT)) + fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); + + if (fmtinfo) + *fmtinfo = fmt; + + pix->pixelformat = fmt->fourcc; + pix->num_planes = fmt->num_planes; + + /* + * Progressive video and all interlaced field orders are acceptable. + * Default to V4L2_FIELD_INTERLACED. + */ + if (pix->field != V4L2_FIELD_NONE && + pix->field != V4L2_FIELD_ALTERNATE && + !V4L2_FIELD_HAS_BOTH(pix->field)) + pix->field = V4L2_FIELD_INTERLACED; + + /* + * The deinterlacer doesn't care about the colorspace, accept all values + * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion + * at the output of the deinterlacer supports a subset of encodings and + * quantization methods and will only be available when the colorspace + * allows it. + */ + if (pix->colorspace == V4L2_COLORSPACE_DEFAULT) + pix->colorspace = V4L2_COLORSPACE_SMPTE170M; + + /* + * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp + * them to the supported frame size range. The height boundary are + * related to the full frame, divide them by two when the format passes + * fields in separate buffers. + */ + width = round_down(pix->width, fmt->hsub); + pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W); + + height = round_down(pix->height, fmt->vsub); + if (pix->field == V4L2_FIELD_ALTERNATE) + pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2); + else + pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H); + + fdp1_compute_stride(pix, fmt); +} + +static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx, + const struct fdp1_fmt **fmtinfo, + struct v4l2_pix_format_mplane *pix) +{ + struct fdp1_q_data *src_data = &ctx->out_q; + enum v4l2_colorspace colorspace; + enum v4l2_ycbcr_encoding ycbcr_enc; + enum v4l2_quantization quantization; + const struct fdp1_fmt *fmt; + bool allow_rgb; + + /* + * Validate the pixel format. We can only accept RGB output formats if + * the input encoding and quantization are compatible with the format + * conversions supported by the hardware. The supported combinations are + * + * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE + * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE + * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE + */ + colorspace = src_data->format.colorspace; + + ycbcr_enc = src_data->format.ycbcr_enc; + if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) + ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace); + + quantization = src_data->format.quantization; + if (quantization == V4L2_QUANTIZATION_DEFAULT) + quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace, + ycbcr_enc); + + allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 || + (ycbcr_enc == V4L2_YCBCR_ENC_709 && + quantization == V4L2_QUANTIZATION_LIM_RANGE); + + fmt = fdp1_find_format(pix->pixelformat); + if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt))) + fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); + + if (fmtinfo) + *fmtinfo = fmt; + + pix->pixelformat = fmt->fourcc; + pix->num_planes = fmt->num_planes; + pix->field = V4L2_FIELD_NONE; + + /* + * The colorspace on the capture queue is copied from the output queue + * as the hardware can't change the colorspace. It can convert YCbCr to + * RGB though, in which case the encoding and quantization are set to + * default values as anything else wouldn't make sense. + */ + pix->colorspace = src_data->format.colorspace; + pix->xfer_func = src_data->format.xfer_func; + + if (fdp1_fmt_is_rgb(fmt)) { + pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; + pix->quantization = V4L2_QUANTIZATION_DEFAULT; + } else { + pix->ycbcr_enc = src_data->format.ycbcr_enc; + pix->quantization = src_data->format.quantization; + } + + /* + * The frame width is identical to the output queue, and the height is + * either doubled or identical depending on whether the output queue + * field order contains one or two fields per frame. + */ + pix->width = src_data->format.width; + if (src_data->format.field == V4L2_FIELD_ALTERNATE) + pix->height = 2 * src_data->format.height; + else + pix->height = src_data->format.height; + + fdp1_compute_stride(pix, fmt); +} + +static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f) +{ + struct fdp1_ctx *ctx = fh_to_ctx(priv); + + if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) + fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp); + else + fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp); + + dprintk(ctx->fdp1, "Try %s format: %4s (0x%08x) %ux%u field %u\n", + V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", + (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, + f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); + + return 0; +} + +static void fdp1_set_format(struct fdp1_ctx *ctx, + struct v4l2_pix_format_mplane *pix, + enum v4l2_buf_type type) +{ + struct fdp1_q_data *q_data = get_q_data(ctx, type); + const struct fdp1_fmt *fmtinfo; + + if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) + fdp1_try_fmt_output(ctx, &fmtinfo, pix); + else + fdp1_try_fmt_capture(ctx, &fmtinfo, pix); + + q_data->fmt = fmtinfo; + q_data->format = *pix; + + q_data->vsize = pix->height; + if (pix->field != V4L2_FIELD_NONE) + q_data->vsize /= 2; + + q_data->stride_y = pix->plane_fmt[0].bytesperline; + q_data->stride_c = pix->plane_fmt[1].bytesperline; + + /* Adjust strides for interleaved buffers */ + if (pix->field == V4L2_FIELD_INTERLACED || + pix->field == V4L2_FIELD_INTERLACED_TB || + pix->field == V4L2_FIELD_INTERLACED_BT) { + q_data->stride_y *= 2; + q_data->stride_c *= 2; + } + + /* Propagate the format from the output node to the capture node. */ + if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { + struct fdp1_q_data *dst_data = &ctx->cap_q; + + /* + * Copy the format, clear the per-plane bytes per line and image + * size, override the field and double the height if needed. + */ + dst_data->format = q_data->format; + memset(dst_data->format.plane_fmt, 0, + sizeof(dst_data->format.plane_fmt)); + + dst_data->format.field = V4L2_FIELD_NONE; + if (pix->field == V4L2_FIELD_ALTERNATE) + dst_data->format.height *= 2; + + fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format); + + dst_data->vsize = dst_data->format.height; + dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline; + dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline; + } +} + +static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f) +{ + struct fdp1_ctx *ctx = fh_to_ctx(priv); + struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx; + struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type); + + if (vb2_is_busy(vq)) { + v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__); + return -EBUSY; + } + + fdp1_set_format(ctx, &f->fmt.pix_mp, f->type); + + dprintk(ctx->fdp1, "Set %s format: %4s (0x%08x) %ux%u field %u\n", + V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", + (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, + f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); + + return 0; +} + +static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl) +{ + struct fdp1_ctx *ctx = + container_of(ctrl->handler, struct fdp1_ctx, hdl); + struct fdp1_q_data *src_q_data = &ctx->out_q; + + switch (ctrl->id) { + case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE: + if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) + ctrl->val = 2; + else + ctrl->val = 1; + return 0; + } + + return 1; +} + +static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl) +{ + struct fdp1_ctx *ctx = + container_of(ctrl->handler, struct fdp1_ctx, hdl); + + switch (ctrl->id) { + case V4L2_CID_ALPHA_COMPONENT: + ctx->alpha = ctrl->val; + break; + + case V4L2_CID_DEINTERLACING_MODE: + ctx->deint_mode = ctrl->val; + break; + } + + return 0; +} + +static const struct v4l2_ctrl_ops fdp1_ctrl_ops = { + .s_ctrl = fdp1_s_ctrl, + .g_volatile_ctrl = fdp1_g_ctrl, +}; + +static const char * const fdp1_ctrl_deint_menu[] = { + "Progressive", + "Adaptive 2D/3D", + "Fixed 2D", + "Fixed 3D", + "Previous field", + "Next field", + NULL +}; + +static const struct v4l2_ioctl_ops fdp1_ioctl_ops = { + .vidioc_querycap = fdp1_vidioc_querycap, + + .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap, + .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out, + .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt, + .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt, + .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt, + .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt, + .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt, + .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt, + + .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, + .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, + .vidioc_qbuf = v4l2_m2m_ioctl_qbuf, + .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf, + .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf, + .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs, + .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, + + .vidioc_streamon = v4l2_m2m_ioctl_streamon, + .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, + + .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, + .vidioc_unsubscribe_event = v4l2_event_unsubscribe, +}; + +/* + * Queue operations + */ + +static int fdp1_queue_setup(struct vb2_queue *vq, + unsigned int *nbuffers, unsigned int *nplanes, + unsigned int sizes[], + struct device *alloc_ctxs[]) +{ + struct fdp1_ctx *ctx = vb2_get_drv_priv(vq); + struct fdp1_q_data *q_data; + unsigned int i; + + q_data = get_q_data(ctx, vq->type); + + if (*nplanes) { + if (*nplanes > FDP1_MAX_PLANES) + return -EINVAL; + + return 0; + } + + *nplanes = q_data->format.num_planes; + + for (i = 0; i < *nplanes; i++) + sizes[i] = q_data->format.plane_fmt[i].sizeimage; + + return 0; +} + +static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data, + struct vb2_v4l2_buffer *vbuf, + unsigned int field_num) +{ + struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); + struct fdp1_field_buffer *fbuf = &buf->fields[field_num]; + unsigned int num_fields; + unsigned int i; + + num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; + + fbuf->vb = vbuf; + fbuf->last_field = (field_num + 1) == num_fields; + + for (i = 0; i < vbuf->vb2_buf.num_planes; ++i) + fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i); + + switch (vbuf->field) { + case V4L2_FIELD_INTERLACED: + /* + * Interlaced means bottom-top for 60Hz TV standards (NTSC) and + * top-bottom for 50Hz. As TV standards are not applicable to + * the mem-to-mem API, use the height as a heuristic. + */ + fbuf->field = (q_data->format.height < 576) == field_num + ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; + break; + case V4L2_FIELD_INTERLACED_TB: + case V4L2_FIELD_SEQ_TB: + fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP; + break; + case V4L2_FIELD_INTERLACED_BT: + case V4L2_FIELD_SEQ_BT: + fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; + break; + default: + fbuf->field = vbuf->field; + break; + } + + /* Buffer is completed */ + if (!field_num) + return; + + /* Adjust buffer addresses for second field */ + switch (vbuf->field) { + case V4L2_FIELD_INTERLACED: + case V4L2_FIELD_INTERLACED_TB: + case V4L2_FIELD_INTERLACED_BT: + for (i = 0; i < vbuf->vb2_buf.num_planes; i++) + fbuf->addrs[i] += + (i == 0 ? q_data->stride_y : q_data->stride_c); + break; + case V4L2_FIELD_SEQ_TB: + case V4L2_FIELD_SEQ_BT: + for (i = 0; i < vbuf->vb2_buf.num_planes; i++) + fbuf->addrs[i] += q_data->vsize * + (i == 0 ? q_data->stride_y : q_data->stride_c); + break; + } +} + +static int fdp1_buf_prepare(struct vb2_buffer *vb) +{ + struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); + struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type); + struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); + struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); + unsigned int i; + + if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) { + bool field_valid = true; + + /* Validate the buffer field. */ + switch (q_data->format.field) { + case V4L2_FIELD_NONE: + if (vbuf->field != V4L2_FIELD_NONE) + field_valid = false; + break; + + case V4L2_FIELD_ALTERNATE: + if (vbuf->field != V4L2_FIELD_TOP && + vbuf->field != V4L2_FIELD_BOTTOM) + field_valid = false; + break; + + case V4L2_FIELD_INTERLACED: + case V4L2_FIELD_SEQ_TB: + case V4L2_FIELD_SEQ_BT: + case V4L2_FIELD_INTERLACED_TB: + case V4L2_FIELD_INTERLACED_BT: + if (vbuf->field != q_data->format.field) + field_valid = false; + break; + } + + if (!field_valid) { + dprintk(ctx->fdp1, + "buffer field %u invalid for format field %u\n", + vbuf->field, q_data->format.field); + return -EINVAL; + } + } else { + vbuf->field = V4L2_FIELD_NONE; + } + + /* Validate the planes sizes. */ + for (i = 0; i < q_data->format.num_planes; i++) { + unsigned long size = q_data->format.plane_fmt[i].sizeimage; + + if (vb2_plane_size(vb, i) < size) { + dprintk(ctx->fdp1, + "data will not fit into plane [%u/%u] (%lu < %lu)\n", + i, q_data->format.num_planes, + vb2_plane_size(vb, i), size); + return -EINVAL; + } + + /* We have known size formats all around */ + vb2_set_plane_payload(vb, i, size); + } + + buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; + for (i = 0; i < buf->num_fields; ++i) + fdp1_buf_prepare_field(q_data, vbuf, i); + + return 0; +} + +static void fdp1_buf_queue(struct vb2_buffer *vb) +{ + struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); + struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); + + v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); +} + +static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count) +{ + struct fdp1_ctx *ctx = vb2_get_drv_priv(q); + struct fdp1_q_data *q_data = get_q_data(ctx, q->type); + + if (V4L2_TYPE_IS_OUTPUT(q->type)) { + /* + * Force our deint_mode when we are progressive, + * ignoring any setting on the device from the user, + * Otherwise, lock in the requested de-interlace mode. + */ + if (q_data->format.field == V4L2_FIELD_NONE) + ctx->deint_mode = FDP1_PROGRESSIVE; + + if (ctx->deint_mode == FDP1_ADAPT2D3D) { + u32 stride; + dma_addr_t smsk_base; + const u32 bpp = 2; /* bytes per pixel */ + + stride = round_up(q_data->format.width, 8); + + ctx->smsk_size = bpp * stride * q_data->vsize; + + ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev, + ctx->smsk_size, &smsk_base, GFP_KERNEL); + + if (ctx->smsk_cpu == NULL) { + dprintk(ctx->fdp1, "Failed to alloc smsk\n"); + return -ENOMEM; + } + + ctx->smsk_addr[0] = smsk_base; + ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2); + } + } + + return 0; +} + +static void fdp1_stop_streaming(struct vb2_queue *q) +{ + struct fdp1_ctx *ctx = vb2_get_drv_priv(q); + struct vb2_v4l2_buffer *vbuf; + unsigned long flags; + + while (1) { + if (V4L2_TYPE_IS_OUTPUT(q->type)) + vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); + else + vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); + if (vbuf == NULL) + break; + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); + v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR); + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); + } + + /* Empty Output queues */ + if (V4L2_TYPE_IS_OUTPUT(q->type)) { + /* Empty our internal queues */ + struct fdp1_field_buffer *fbuf; + + /* Free any queued buffers */ + fbuf = fdp1_dequeue_field(ctx); + while (fbuf != NULL) { + fdp1_field_complete(ctx, fbuf); + fbuf = fdp1_dequeue_field(ctx); + } + + /* Free smsk_data */ + if (ctx->smsk_cpu) { + dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size, + ctx->smsk_cpu, ctx->smsk_addr[0]); + ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0; + ctx->smsk_cpu = NULL; + } + + WARN(!list_empty(&ctx->fields_queue), + "Buffer queue not empty"); + } else { + /* Empty Capture queues (Jobs) */ + struct fdp1_job *job; + + job = get_queued_job(ctx->fdp1); + while (job) { + if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) + fdp1_field_complete(ctx, job->previous); + else + fdp1_field_complete(ctx, job->active); + + v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR); + job->dst = NULL; + + job = get_queued_job(ctx->fdp1); + } + + /* Free any held buffer in the ctx */ + fdp1_field_complete(ctx, ctx->previous); + + WARN(!list_empty(&ctx->fdp1->queued_job_list), + "Queued Job List not empty"); + + WARN(!list_empty(&ctx->fdp1->hw_job_list), + "HW Job list not empty"); + } +} + +static struct vb2_ops fdp1_qops = { + .queue_setup = fdp1_queue_setup, + .buf_prepare = fdp1_buf_prepare, + .buf_queue = fdp1_buf_queue, + .start_streaming = fdp1_start_streaming, + .stop_streaming = fdp1_stop_streaming, + .wait_prepare = vb2_ops_wait_prepare, + .wait_finish = vb2_ops_wait_finish, +}; + +static int queue_init(void *priv, struct vb2_queue *src_vq, + struct vb2_queue *dst_vq) +{ + struct fdp1_ctx *ctx = priv; + int ret; + + src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; + src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; + src_vq->drv_priv = ctx; + src_vq->buf_struct_size = sizeof(struct fdp1_buffer); + src_vq->ops = &fdp1_qops; + src_vq->mem_ops = &vb2_dma_contig_memops; + src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; + src_vq->lock = &ctx->fdp1->dev_mutex; + src_vq->dev = ctx->fdp1->dev; + + ret = vb2_queue_init(src_vq); + if (ret) + return ret; + + dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; + dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; + dst_vq->drv_priv = ctx; + dst_vq->buf_struct_size = sizeof(struct fdp1_buffer); + dst_vq->ops = &fdp1_qops; + dst_vq->mem_ops = &vb2_dma_contig_memops; + dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; + dst_vq->lock = &ctx->fdp1->dev_mutex; + dst_vq->dev = ctx->fdp1->dev; + + return vb2_queue_init(dst_vq); +} + +/* + * File operations + */ +static int fdp1_open(struct file *file) +{ + struct fdp1_dev *fdp1 = video_drvdata(file); + struct v4l2_pix_format_mplane format; + struct fdp1_ctx *ctx = NULL; + struct v4l2_ctrl *ctrl; + int ret = 0; + + if (mutex_lock_interruptible(&fdp1->dev_mutex)) + return -ERESTARTSYS; + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) { + ret = -ENOMEM; + goto done; + } + + v4l2_fh_init(&ctx->fh, video_devdata(file)); + file->private_data = &ctx->fh; + ctx->fdp1 = fdp1; + + /* Initialise Queues */ + INIT_LIST_HEAD(&ctx->fields_queue); + + ctx->translen = 1; + ctx->sequence = 0; + + /* Initialise controls */ + + v4l2_ctrl_handler_init(&ctx->hdl, 3); + v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops, + V4L2_CID_DEINTERLACING_MODE, + FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D, + fdp1_ctrl_deint_menu); + + ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, + V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1); + if (ctrl) + ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; + + v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, + V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255); + + if (ctx->hdl.error) { + ret = ctx->hdl.error; + v4l2_ctrl_handler_free(&ctx->hdl); + goto done; + } + + ctx->fh.ctrl_handler = &ctx->hdl; + v4l2_ctrl_handler_setup(&ctx->hdl); + + /* Configure default parameters. */ + memset(&format, 0, sizeof(format)); + fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE); + + ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init); + + if (IS_ERR(ctx->fh.m2m_ctx)) { + ret = PTR_ERR(ctx->fh.m2m_ctx); + + v4l2_ctrl_handler_free(&ctx->hdl); + kfree(ctx); + goto done; + } + + /* Perform any power management required */ + pm_runtime_get_sync(fdp1->dev); + + v4l2_fh_add(&ctx->fh); + + dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n", + ctx, ctx->fh.m2m_ctx); + +done: + mutex_unlock(&fdp1->dev_mutex); + return ret; +} + +static int fdp1_release(struct file *file) +{ + struct fdp1_dev *fdp1 = video_drvdata(file); + struct fdp1_ctx *ctx = fh_to_ctx(file->private_data); + + dprintk(fdp1, "Releasing instance %p\n", ctx); + + v4l2_fh_del(&ctx->fh); + v4l2_fh_exit(&ctx->fh); + v4l2_ctrl_handler_free(&ctx->hdl); + mutex_lock(&fdp1->dev_mutex); + v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); + mutex_unlock(&fdp1->dev_mutex); + kfree(ctx); + + pm_runtime_put(fdp1->dev); + + return 0; +} + +static const struct v4l2_file_operations fdp1_fops = { + .owner = THIS_MODULE, + .open = fdp1_open, + .release = fdp1_release, + .poll = v4l2_m2m_fop_poll, + .unlocked_ioctl = video_ioctl2, + .mmap = v4l2_m2m_fop_mmap, +}; + +static const struct video_device fdp1_videodev = { + .name = DRIVER_NAME, + .vfl_dir = VFL_DIR_M2M, + .fops = &fdp1_fops, + .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING, + .ioctl_ops = &fdp1_ioctl_ops, + .minor = -1, + .release = video_device_release_empty, +}; + +static const struct v4l2_m2m_ops m2m_ops = { + .device_run = fdp1_m2m_device_run, + .job_ready = fdp1_m2m_job_ready, + .job_abort = fdp1_m2m_job_abort, +}; + +static irqreturn_t fdp1_irq_handler(int irq, void *dev_id) +{ + struct fdp1_dev *fdp1 = dev_id; + u32 int_status; + u32 ctl_status; + u32 vint_cnt; + u32 cycles; + + int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA); + cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT); + ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS); + vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >> + FD1_CTL_STATUS_VINT_CNT_SHIFT; + + /* Clear interrupts */ + fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA); + + if (debug >= 2) { + dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status, + int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]", + int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]", + int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]"); + + dprintk(fdp1, "CycleStatus = %d (%dms)\n", + cycles, cycles/(fdp1->clk_rate/1000)); + + dprintk(fdp1, + "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n", + ctl_status, vint_cnt, + ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "", + ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "", + ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "", + ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : ""); + dprintk(fdp1, "***********************************\n"); + } + + /* Spurious interrupt */ + if (!(FD1_CTL_IRQ_MASK & int_status)) + return IRQ_NONE; + + /* Work completed, release the frame */ + if (FD1_CTL_IRQ_VERE & int_status) + device_frame_end(fdp1, VB2_BUF_STATE_ERROR); + else if (FD1_CTL_IRQ_FREE & int_status) + device_frame_end(fdp1, VB2_BUF_STATE_DONE); + + return IRQ_HANDLED; +} + +static int fdp1_probe(struct platform_device *pdev) +{ + struct fdp1_dev *fdp1; + struct video_device *vfd; + struct device_node *fcp_node; + struct resource *res; + struct clk *clk; + unsigned int i; + + int ret; + int hw_version; + + fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL); + if (!fdp1) + return -ENOMEM; + + INIT_LIST_HEAD(&fdp1->free_job_list); + INIT_LIST_HEAD(&fdp1->queued_job_list); + INIT_LIST_HEAD(&fdp1->hw_job_list); + + /* Initialise the jobs on the free list */ + for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++) + list_add(&fdp1->jobs[i].list, &fdp1->free_job_list); + + mutex_init(&fdp1->dev_mutex); + + spin_lock_init(&fdp1->irqlock); + spin_lock_init(&fdp1->device_process_lock); + fdp1->dev = &pdev->dev; + platform_set_drvdata(pdev, fdp1); + + /* Memory-mapped registers */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + fdp1->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(fdp1->regs)) + return PTR_ERR(fdp1->regs); + + /* Interrupt service routine registration */ + fdp1->irq = ret = platform_get_irq(pdev, 0); + if (ret < 0) { + dev_err(&pdev->dev, "cannot find IRQ\n"); + return ret; + } + + ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0, + dev_name(&pdev->dev), fdp1); + if (ret) { + dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq); + return ret; + } + + /* FCP */ + fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0); + if (fcp_node) { + fdp1->fcp = rcar_fcp_get(fcp_node); + of_node_put(fcp_node); + if (IS_ERR(fdp1->fcp)) { + dev_err(&pdev->dev, "FCP not found (%ld)\n", + PTR_ERR(fdp1->fcp)); + return PTR_ERR(fdp1->fcp); + } + } + + /* Determine our clock rate */ + clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(clk)) + return PTR_ERR(clk); + + fdp1->clk_rate = clk_get_rate(clk); + clk_put(clk); + + /* V4L2 device registration */ + ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev); + if (ret) { + v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); + return ret; + } + + /* M2M registration */ + fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops); + if (IS_ERR(fdp1->m2m_dev)) { + v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n"); + ret = PTR_ERR(fdp1->m2m_dev); + goto unreg_dev; + } + + /* Video registration */ + fdp1->vfd = fdp1_videodev; + vfd = &fdp1->vfd; + vfd->lock = &fdp1->dev_mutex; + vfd->v4l2_dev = &fdp1->v4l2_dev; + video_set_drvdata(vfd, fdp1); + strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name)); + + ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0); + if (ret) { + v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); + goto release_m2m; + } + + v4l2_info(&fdp1->v4l2_dev, + "Device registered as /dev/video%d\n", vfd->num); + + /* Power up the cells to read HW */ + pm_runtime_enable(&pdev->dev); + pm_runtime_get_sync(fdp1->dev); + + hw_version = fdp1_read(fdp1, FD1_IP_INTDATA); + switch (hw_version) { + case FD1_IP_H3: + dprintk(fdp1, "FDP1 Version R-Car H3\n"); + break; + case FD1_IP_M3W: + dprintk(fdp1, "FDP1 Version R-Car M3-W\n"); + break; + default: + dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n", + hw_version); + } + + /* Allow the hw to sleep until an open call puts it to use */ + pm_runtime_put(fdp1->dev); + + return 0; + +release_m2m: + v4l2_m2m_release(fdp1->m2m_dev); + +unreg_dev: + v4l2_device_unregister(&fdp1->v4l2_dev); + + return ret; +} + +static int fdp1_remove(struct platform_device *pdev) +{ + struct fdp1_dev *fdp1 = platform_get_drvdata(pdev); + + v4l2_m2m_release(fdp1->m2m_dev); + video_unregister_device(&fdp1->vfd); + v4l2_device_unregister(&fdp1->v4l2_dev); + pm_runtime_disable(&pdev->dev); + + return 0; +} + +static int fdp1_pm_runtime_suspend(struct device *dev) +{ + struct fdp1_dev *fdp1 = dev_get_drvdata(dev); + + rcar_fcp_disable(fdp1->fcp); + + return 0; +} + +static int fdp1_pm_runtime_resume(struct device *dev) +{ + struct fdp1_dev *fdp1 = dev_get_drvdata(dev); + + /* Program in the static LUTs */ + fdp1_set_lut(fdp1); + + return rcar_fcp_enable(fdp1->fcp); +} + +static const struct dev_pm_ops fdp1_pm_ops = { + SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend, + fdp1_pm_runtime_resume, + NULL) +}; + +static const struct of_device_id fdp1_dt_ids[] = { + { .compatible = "renesas,fdp1" }, + { }, +}; +MODULE_DEVICE_TABLE(of, fdp1_dt_ids); + +static struct platform_driver fdp1_pdrv = { + .probe = fdp1_probe, + .remove = fdp1_remove, + .driver = { + .name = DRIVER_NAME, + .of_match_table = fdp1_dt_ids, + .pm = &fdp1_pm_ops, + }, +}; + +module_platform_driver(fdp1_pdrv); + +MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver"); +MODULE_AUTHOR("Kieran Bingham "); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:" DRIVER_NAME); -- GitLab