提交 33d9e183 编写于 作者: T Thomas Richter 提交者: Arnaldo Carvalho de Melo

perf report: Add GUI report support for s390 auxiliary trace

Add support for s390 auxiliary trace support.

Use 'perf record -e rbd000 -- ls' to create the perf.data file.

Use 'perf report' to display the auxiliary trace data.

Output before:

  [root@s35lp76 perf]# ./perf report --stdio
  0x128 [0x10]: failed to process type: 70
  Error:
  failed to process sample
  [root@s35lp76 perf]#

Output after:

  [root@s35lp76 perf]# ./perf report --stdio

      18.21%    18.21%  ls     [kernel.kallsyms]       [k] ftrace_likely_update
       9.52%     9.52%  ls     [kernel.kallsyms]       [k] lock_acquire
       9.38%     9.38%  ls     [kernel.kallsyms]       [k] lock_release
       3.45%     3.45%  ls     [kernel.kallsyms]       [k] lock_acquired
       2.88%     2.88%  ls     [kernel.kallsyms]       [k] link_path_walk
       2.63%     2.63%  ls     [kernel.kallsyms]       [k] __d_lookup
       2.38%     2.38%  ls     [kernel.kallsyms]       [k] __d_lookup_rcu
       2.04%     2.04%  ls     [kernel.kallsyms]       [k] ___might_sleep
       1.83%     1.83%  ls     [kernel.kallsyms]       [k] debug_lockdep_rcu_enabled
       1.44%     1.44%  ls     [kernel.kallsyms]       [k] dput
     ....
Signed-off-by: NThomas Richter <tmricht@linux.ibm.com>
Reviewed-by: NHendrik Brueckner <brueckner@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Link: http://lkml.kernel.org/r/20180802074622.13641-4-tmricht@linux.ibm.com
[ Use PRI[xd]64 to fix the build on debian:experimental-x-mips (gcc 8.1.0) and others ]
Signed-off-by: NArnaldo Carvalho de Melo <acme@redhat.com>
上级 2b1444f2
......@@ -4,6 +4,138 @@
* Auxtrace support for s390 CPU-Measurement Sampling Facility
*
* Author(s): Thomas Richter <tmricht@linux.ibm.com>
*
* Auxiliary traces are collected during 'perf record' using rbd000 event.
* Several PERF_RECORD_XXX are generated during recording:
*
* PERF_RECORD_AUX:
* Records that new data landed in the AUX buffer part.
* PERF_RECORD_AUXTRACE:
* Defines auxtrace data. Followed by the actual data. The contents of
* the auxtrace data is dependent on the event and the CPU.
* This record is generated by perf record command. For details
* see Documentation/perf.data-file-format.txt.
* PERF_RECORD_AUXTRACE_INFO:
* Defines a table of contains for PERF_RECORD_AUXTRACE records. This
* record is generated during 'perf record' command. Each record contains up
* to 256 entries describing offset and size of the AUXTRACE data in the
* perf.data file.
* PERF_RECORD_AUXTRACE_ERROR:
* Indicates an error during AUXTRACE collection such as buffer overflow.
* PERF_RECORD_FINISHED_ROUND:
* Perf events are not necessarily in time stamp order, as they can be
* collected in parallel on different CPUs. If the events should be
* processed in time order they need to be sorted first.
* Perf report guarantees that there is no reordering over a
* PERF_RECORD_FINISHED_ROUND boundary event. All perf records with a
* time stamp lower than this record are processed (and displayed) before
* the succeeding perf record are processed.
*
* These records are evaluated during perf report command.
*
* 1. PERF_RECORD_AUXTRACE_INFO is used to set up the infrastructure for
* auxiliary trace data processing. See s390_cpumsf_process_auxtrace_info()
* below.
* Auxiliary trace data is collected per CPU. To merge the data into the report
* an auxtrace_queue is created for each CPU. It is assumed that the auxtrace
* data is in ascending order.
*
* Each queue has a double linked list of auxtrace_buffers. This list contains
* the offset and size of a CPU's auxtrace data. During auxtrace processing
* the data portion is mmap()'ed.
*
* To sort the queues in chronological order, all queue access is controlled
* by the auxtrace_heap. This is basicly a stack, each stack element has two
* entries, the queue number and a time stamp. However the stack is sorted by
* the time stamps. The highest time stamp is at the bottom the lowest
* (nearest) time stamp is at the top. That sort order is maintained at all
* times!
*
* After the auxtrace infrastructure has been setup, the auxtrace queues are
* filled with data (offset/size pairs) and the auxtrace_heap is populated.
*
* 2. PERF_RECORD_XXX processing triggers access to the auxtrace_queues.
* Each record is handled by s390_cpumsf_process_event(). The time stamp of
* the perf record is compared with the time stamp located on the auxtrace_heap
* top element. If that time stamp is lower than the time stamp from the
* record sample, the auxtrace queues will be processed. As auxtrace queues
* control many auxtrace_buffers and each buffer can be quite large, the
* auxtrace buffer might be processed only partially. In this case the
* position in the auxtrace_buffer of that queue is remembered and the time
* stamp of the last processed entry of the auxtrace_buffer replaces the
* current auxtrace_heap top.
*
* 3. Auxtrace_queues might run of out data and are feeded by the
* PERF_RECORD_AUXTRACE handling, see s390_cpumsf_process_auxtrace_event().
*
* Event Generation
* Each sampling-data entry in the auxilary trace data generates a perf sample.
* This sample is filled
* with data from the auxtrace such as PID/TID, instruction address, CPU state,
* etc. This sample is processed with perf_session__deliver_synth_event() to
* be included into the GUI.
*
* 4. PERF_RECORD_FINISHED_ROUND event is used to process all the remaining
* auxiliary traces entries until the time stamp of this record is reached
* auxtrace_heap top. This is triggered by ordered_event->deliver().
*
*
* Perf event processing.
* Event processing of PERF_RECORD_XXX entries relies on time stamp entries.
* This is the function call sequence:
*
* __cmd_report()
* |
* perf_session__process_events()
* |
* __perf_session__process_events()
* |
* perf_session__process_event()
* | This functions splits the PERF_RECORD_XXX records.
* | - Those generated by perf record command (type number equal or higher
* | than PERF_RECORD_USER_TYPE_START) are handled by
* | perf_session__process_user_event(see below)
* | - Those generated by the kernel are handled by
* | perf_evlist__parse_sample_timestamp()
* |
* perf_evlist__parse_sample_timestamp()
* | Extract time stamp from sample data.
* |
* perf_session__queue_event()
* | If timestamp is positive the sample is entered into an ordered_event
* | list, sort order is the timestamp. The event processing is deferred until
* | later (see perf_session__process_user_event()).
* | Other timestamps (0 or -1) are handled immediately by
* | perf_session__deliver_event(). These are events generated at start up
* | of command perf record. They create PERF_RECORD_COMM and PERF_RECORD_MMAP*
* | records. They are needed to create a list of running processes and its
* | memory mappings and layout. They are needed at the beginning to enable
* | command perf report to create process trees and memory mappings.
* |
* perf_session__deliver_event()
* | Delivers a PERF_RECORD_XXX entry for handling.
* |
* auxtrace__process_event()
* | The timestamp of the PERF_RECORD_XXX entry is taken to correlate with
* | time stamps from the auxiliary trace buffers. This enables
* | synchronization between auxiliary trace data and the events on the
* | perf.data file.
* |
* machine__deliver_event()
* | Handles the PERF_RECORD_XXX event. This depends on the record type.
* It might update the process tree, update a process memory map or enter
* a sample with IP and call back chain data into GUI data pool.
*
*
* Deferred processing determined by perf_session__process_user_event() is
* finally processed when a PERF_RECORD_FINISHED_ROUND is encountered. These
* are generated during command perf record.
* The timestamp of PERF_RECORD_FINISHED_ROUND event is taken to process all
* PERF_RECORD_XXX entries stored in the ordered_event list. This list was
* built up while reading the perf.data file.
* Each event is now processed by calling perf_session__deliver_event().
* This enables time synchronization between the data in the perf.data file and
* the data in the auxiliary trace buffers.
*/
#include <endian.h>
......@@ -37,6 +169,14 @@ struct s390_cpumsf {
u32 auxtrace_type;
u32 pmu_type;
u16 machine_type;
bool data_queued;
};
struct s390_cpumsf_queue {
struct s390_cpumsf *sf;
unsigned int queue_nr;
struct auxtrace_buffer *buffer;
int cpu;
};
/* Display s390 CPU measurement facility basic-sampling data entry */
......@@ -181,8 +321,8 @@ static void s390_cpumsf_dump(struct s390_cpumsf *sf,
const char *color = PERF_COLOR_BLUE;
struct hws_basic_entry *basic;
struct hws_diag_entry *diag;
size_t pos = 0;
unsigned short bsdes, dsdes;
size_t pos = 0;
color_fprintf(stdout, color,
". ... s390 AUX data: size %zu bytes\n",
......@@ -243,15 +383,414 @@ static void s390_cpumsf_dump_event(struct s390_cpumsf *sf, unsigned char *buf,
s390_cpumsf_dump(sf, buf, len);
}
#define S390_LPP_PID_MASK 0xffffffff
static bool s390_cpumsf_make_event(size_t pos,
struct hws_basic_entry *basic,
struct s390_cpumsf_queue *sfq)
{
struct perf_sample sample = {
.ip = basic->ia,
.pid = basic->hpp & S390_LPP_PID_MASK,
.tid = basic->hpp & S390_LPP_PID_MASK,
.cpumode = PERF_RECORD_MISC_CPUMODE_UNKNOWN,
.cpu = sfq->cpu,
.period = 1
};
union perf_event event;
memset(&event, 0, sizeof(event));
if (basic->CL == 1) /* Native LPAR mode */
sample.cpumode = basic->P ? PERF_RECORD_MISC_USER
: PERF_RECORD_MISC_KERNEL;
else if (basic->CL == 2) /* Guest kernel/user space */
sample.cpumode = basic->P ? PERF_RECORD_MISC_GUEST_USER
: PERF_RECORD_MISC_GUEST_KERNEL;
else if (basic->gpp || basic->prim_asn != 0xffff)
/* Use heuristics on old hardware */
sample.cpumode = basic->P ? PERF_RECORD_MISC_GUEST_USER
: PERF_RECORD_MISC_GUEST_KERNEL;
else
sample.cpumode = basic->P ? PERF_RECORD_MISC_USER
: PERF_RECORD_MISC_KERNEL;
event.sample.header.type = PERF_RECORD_SAMPLE;
event.sample.header.misc = sample.cpumode;
event.sample.header.size = sizeof(struct perf_event_header);
pr_debug4("%s pos:%#zx ip:%#" PRIx64 " P:%d CL:%d pid:%d.%d cpumode:%d cpu:%d\n",
__func__, pos, sample.ip, basic->P, basic->CL, sample.pid,
sample.tid, sample.cpumode, sample.cpu);
if (perf_session__deliver_synth_event(sfq->sf->session, &event,
&sample)) {
pr_err("s390 Auxiliary Trace: failed to deliver event\n");
return false;
}
return true;
}
static unsigned long long get_trailer_time(const unsigned char *buf)
{
struct hws_trailer_entry *te;
unsigned long long aux_time;
te = (struct hws_trailer_entry *)(buf + S390_CPUMSF_PAGESZ
- sizeof(*te));
if (!te->clock_base) /* TOD_CLOCK_BASE value missing */
return 0;
/* Correct calculation to convert time stamp in trailer entry to
* nano seconds (taken from arch/s390 function tod_to_ns()).
* TOD_CLOCK_BASE is stored in trailer entry member progusage2.
*/
aux_time = trailer_timestamp(te) - te->progusage2;
aux_time = (aux_time >> 9) * 125 + (((aux_time & 0x1ff) * 125) >> 9);
return aux_time;
}
/* Process the data samples of a single queue. The first parameter is a
* pointer to the queue, the second parameter is the time stamp. This
* is the time stamp:
* - of the event that triggered this processing.
* - or the time stamp when the last proccesing of this queue stopped.
* In this case it stopped at a 4KB page boundary and record the
* position on where to continue processing on the next invocation
* (see buffer->use_data and buffer->use_size).
*
* When this function returns the second parameter is updated to
* reflect the time stamp of the last processed auxiliary data entry
* (taken from the trailer entry of that page). The caller uses this
* returned time stamp to record the last processed entry in this
* queue.
*
* The function returns:
* 0: Processing successful. The second parameter returns the
* time stamp from the trailer entry until which position
* processing took place. Subsequent calls resume from this
* position.
* <0: An error occurred during processing. The second parameter
* returns the maximum time stamp.
* >0: Done on this queue. The second parameter returns the
* maximum time stamp.
*/
static int s390_cpumsf_samples(struct s390_cpumsf_queue *sfq, u64 *ts)
{
struct s390_cpumsf *sf = sfq->sf;
unsigned char *buf = sfq->buffer->use_data;
size_t len = sfq->buffer->use_size;
struct hws_basic_entry *basic;
unsigned short bsdes, dsdes;
size_t pos = 0;
int err = 1;
u64 aux_ts;
if (!s390_cpumsf_validate(sf->machine_type, buf, len, &bsdes,
&dsdes)) {
*ts = ~0ULL;
return -1;
}
/* Get trailer entry time stamp and check if entries in
* this auxiliary page are ready for processing. If the
* time stamp of the first entry is too high, whole buffer
* can be skipped. In this case return time stamp.
*/
aux_ts = get_trailer_time(buf);
if (!aux_ts) {
pr_err("[%#08" PRIx64 "] Invalid AUX trailer entry TOD clock base\n",
sfq->buffer->data_offset);
aux_ts = ~0ULL;
goto out;
}
if (aux_ts > *ts) {
*ts = aux_ts;
return 0;
}
while (pos < len) {
/* Handle Basic entry */
basic = (struct hws_basic_entry *)(buf + pos);
if (s390_cpumsf_make_event(pos, basic, sfq))
pos += bsdes;
else {
err = -EBADF;
goto out;
}
pos += dsdes; /* Skip diagnositic entry */
/* Check for trailer entry */
if (!s390_cpumsf_reached_trailer(bsdes + dsdes, pos)) {
pos = (pos + S390_CPUMSF_PAGESZ)
& ~(S390_CPUMSF_PAGESZ - 1);
/* Check existence of next page */
if (pos >= len)
break;
aux_ts = get_trailer_time(buf + pos);
if (!aux_ts) {
aux_ts = ~0ULL;
goto out;
}
if (aux_ts > *ts) {
*ts = aux_ts;
sfq->buffer->use_data += pos;
sfq->buffer->use_size -= pos;
return 0;
}
}
}
out:
*ts = aux_ts;
sfq->buffer->use_size = 0;
sfq->buffer->use_data = NULL;
return err; /* Buffer completely scanned or error */
}
/* Run the s390 auxiliary trace decoder.
* Select the queue buffer to operate on, the caller already selected
* the proper queue, depending on second parameter 'ts'.
* This is the time stamp until which the auxiliary entries should
* be processed. This value is updated by called functions and
* returned to the caller.
*
* Resume processing in the current buffer. If there is no buffer
* get a new buffer from the queue and setup start position for
* processing.
* When a buffer is completely processed remove it from the queue
* before returning.
*
* This function returns
* 1: When the queue is empty. Second parameter will be set to
* maximum time stamp.
* 0: Normal processing done.
* <0: Error during queue buffer setup. This causes the caller
* to stop processing completely.
*/
static int s390_cpumsf_run_decoder(struct s390_cpumsf_queue *sfq,
u64 *ts)
{
struct auxtrace_buffer *buffer;
struct auxtrace_queue *queue;
int err;
queue = &sfq->sf->queues.queue_array[sfq->queue_nr];
/* Get buffer and last position in buffer to resume
* decoding the auxiliary entries. One buffer might be large
* and decoding might stop in between. This depends on the time
* stamp of the trailer entry in each page of the auxiliary
* data and the time stamp of the event triggering the decoding.
*/
if (sfq->buffer == NULL) {
sfq->buffer = buffer = auxtrace_buffer__next(queue,
sfq->buffer);
if (!buffer) {
*ts = ~0ULL;
return 1; /* Processing done on this queue */
}
/* Start with a new buffer on this queue */
if (buffer->data) {
buffer->use_size = buffer->size;
buffer->use_data = buffer->data;
}
} else
buffer = sfq->buffer;
if (!buffer->data) {
int fd = perf_data__fd(sfq->sf->session->data);
buffer->data = auxtrace_buffer__get_data(buffer, fd);
if (!buffer->data)
return -ENOMEM;
buffer->use_size = buffer->size;
buffer->use_data = buffer->data;
}
pr_debug4("%s queue_nr:%d buffer:%" PRId64 " offset:%#" PRIx64 " size:%#zx rest:%#zx\n",
__func__, sfq->queue_nr, buffer->buffer_nr, buffer->offset,
buffer->size, buffer->use_size);
err = s390_cpumsf_samples(sfq, ts);
/* If non-zero, there is either an error (err < 0) or the buffer is
* completely done (err > 0). The error is unrecoverable, usually
* some descriptors could not be read successfully, so continue with
* the next buffer.
* In both cases the parameter 'ts' has been updated.
*/
if (err) {
sfq->buffer = NULL;
list_del(&buffer->list);
auxtrace_buffer__free(buffer);
if (err > 0) /* Buffer done, no error */
err = 0;
}
return err;
}
static struct s390_cpumsf_queue *
s390_cpumsf_alloc_queue(struct s390_cpumsf *sf, unsigned int queue_nr)
{
struct s390_cpumsf_queue *sfq;
sfq = zalloc(sizeof(struct s390_cpumsf_queue));
if (sfq == NULL)
return NULL;
sfq->sf = sf;
sfq->queue_nr = queue_nr;
sfq->cpu = -1;
return sfq;
}
static int s390_cpumsf_setup_queue(struct s390_cpumsf *sf,
struct auxtrace_queue *queue,
unsigned int queue_nr, u64 ts)
{
struct s390_cpumsf_queue *sfq = queue->priv;
if (list_empty(&queue->head))
return 0;
if (sfq == NULL) {
sfq = s390_cpumsf_alloc_queue(sf, queue_nr);
if (!sfq)
return -ENOMEM;
queue->priv = sfq;
if (queue->cpu != -1)
sfq->cpu = queue->cpu;
}
return auxtrace_heap__add(&sf->heap, queue_nr, ts);
}
static int s390_cpumsf_setup_queues(struct s390_cpumsf *sf, u64 ts)
{
unsigned int i;
int ret = 0;
for (i = 0; i < sf->queues.nr_queues; i++) {
ret = s390_cpumsf_setup_queue(sf, &sf->queues.queue_array[i],
i, ts);
if (ret)
break;
}
return ret;
}
static int s390_cpumsf_update_queues(struct s390_cpumsf *sf, u64 ts)
{
if (!sf->queues.new_data)
return 0;
sf->queues.new_data = false;
return s390_cpumsf_setup_queues(sf, ts);
}
static int s390_cpumsf_process_queues(struct s390_cpumsf *sf, u64 timestamp)
{
unsigned int queue_nr;
u64 ts;
int ret;
while (1) {
struct auxtrace_queue *queue;
struct s390_cpumsf_queue *sfq;
if (!sf->heap.heap_cnt)
return 0;
if (sf->heap.heap_array[0].ordinal >= timestamp)
return 0;
queue_nr = sf->heap.heap_array[0].queue_nr;
queue = &sf->queues.queue_array[queue_nr];
sfq = queue->priv;
auxtrace_heap__pop(&sf->heap);
if (sf->heap.heap_cnt) {
ts = sf->heap.heap_array[0].ordinal + 1;
if (ts > timestamp)
ts = timestamp;
} else {
ts = timestamp;
}
ret = s390_cpumsf_run_decoder(sfq, &ts);
if (ret < 0) {
auxtrace_heap__add(&sf->heap, queue_nr, ts);
return ret;
}
if (!ret) {
ret = auxtrace_heap__add(&sf->heap, queue_nr, ts);
if (ret < 0)
return ret;
}
}
return 0;
}
static int s390_cpumsf_synth_error(struct s390_cpumsf *sf, int code, int cpu,
pid_t pid, pid_t tid, u64 ip)
{
char msg[MAX_AUXTRACE_ERROR_MSG];
union perf_event event;
int err;
strncpy(msg, "Lost Auxiliary Trace Buffer", sizeof(msg) - 1);
auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
code, cpu, pid, tid, ip, msg);
err = perf_session__deliver_synth_event(sf->session, &event, NULL);
if (err)
pr_err("s390 Auxiliary Trace: failed to deliver error event,"
"error %d\n", err);
return err;
}
static int s390_cpumsf_lost(struct s390_cpumsf *sf, struct perf_sample *sample)
{
return s390_cpumsf_synth_error(sf, 1, sample->cpu,
sample->pid, sample->tid, 0);
}
static int
s390_cpumsf_process_event(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct perf_tool *tool __maybe_unused)
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
return 0;
struct s390_cpumsf *sf = container_of(session->auxtrace,
struct s390_cpumsf,
auxtrace);
u64 timestamp = sample->time;
int err = 0;
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("s390 Auxiliary Trace requires ordered events\n");
return -EINVAL;
}
if (event->header.type == PERF_RECORD_AUX &&
event->aux.flags & PERF_AUX_FLAG_TRUNCATED)
return s390_cpumsf_lost(sf, sample);
if (timestamp) {
err = s390_cpumsf_update_queues(sf, timestamp);
if (!err)
err = s390_cpumsf_process_queues(sf, timestamp);
}
return err;
}
struct s390_cpumsf_synth {
struct perf_tool cpumsf_tool;
struct perf_session *session;
};
static int
s390_cpumsf_process_auxtrace_event(struct perf_session *session,
union perf_event *event __maybe_unused,
......@@ -266,6 +805,9 @@ s390_cpumsf_process_auxtrace_event(struct perf_session *session,
off_t data_offset;
int err;
if (sf->data_queued)
return 0;
if (perf_data__is_pipe(session->data)) {
data_offset = 0;
} else {
......@@ -290,17 +832,21 @@ s390_cpumsf_process_auxtrace_event(struct perf_session *session,
return 0;
}
static void s390_cpumsf_free_events(struct perf_session *session __maybe_unused)
{
}
static int s390_cpumsf_flush(struct perf_session *session __maybe_unused,
struct perf_tool *tool __maybe_unused)
{
return 0;
}
static void s390_cpumsf_free_events(struct perf_session *session)
static void s390_cpumsf_free_queues(struct perf_session *session)
{
struct s390_cpumsf *sf = container_of(session->auxtrace,
struct s390_cpumsf,
auxtrace);
auxtrace);
struct auxtrace_queues *queues = &sf->queues;
unsigned int i;
......@@ -316,7 +862,7 @@ static void s390_cpumsf_free(struct perf_session *session)
auxtrace);
auxtrace_heap__free(&sf->heap);
s390_cpumsf_free_events(session);
s390_cpumsf_free_queues(session);
session->auxtrace = NULL;
free(sf);
}
......@@ -329,6 +875,19 @@ static int s390_cpumsf_get_type(const char *cpuid)
return (ret == 1) ? family : 0;
}
/* Check itrace options set on perf report command.
* Return true, if none are set or all options specified can be
* handled on s390.
* Return false otherwise.
*/
static bool check_auxtrace_itrace(struct itrace_synth_opts *itops)
{
if (!itops || !itops->set)
return true;
pr_err("No --itrace options supported\n");
return false;
}
int s390_cpumsf_process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
......@@ -343,6 +902,11 @@ int s390_cpumsf_process_auxtrace_info(union perf_event *event,
if (sf == NULL)
return -ENOMEM;
if (!check_auxtrace_itrace(session->itrace_synth_opts)) {
err = -EINVAL;
goto err_free;
}
err = auxtrace_queues__init(&sf->queues);
if (err)
goto err_free;
......@@ -360,8 +924,21 @@ int s390_cpumsf_process_auxtrace_info(union perf_event *event,
sf->auxtrace.free = s390_cpumsf_free;
session->auxtrace = &sf->auxtrace;
if (dump_trace)
return 0;
err = auxtrace_queues__process_index(&sf->queues, session);
if (err)
goto err_free_queues;
if (sf->queues.populated)
sf->data_queued = true;
return 0;
err_free_queues:
auxtrace_queues__free(&sf->queues);
session->auxtrace = NULL;
err_free:
free(sf);
return err;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册