提交 245ac873 编写于 作者: J Jeff Garzik

Merge upstream net/ieee80211.h changes into 'ieee80211' branch.

...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
* of the original driver such as link fail-over and link management because * of the original driver such as link fail-over and link management because
* those should be done at higher levels. * those should be done at higher levels.
* *
* Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org> * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
...@@ -42,19 +42,20 @@ ...@@ -42,19 +42,20 @@
#include "skge.h" #include "skge.h"
#define DRV_NAME "skge" #define DRV_NAME "skge"
#define DRV_VERSION "0.6" #define DRV_VERSION "0.7"
#define PFX DRV_NAME " " #define PFX DRV_NAME " "
#define DEFAULT_TX_RING_SIZE 128 #define DEFAULT_TX_RING_SIZE 128
#define DEFAULT_RX_RING_SIZE 512 #define DEFAULT_RX_RING_SIZE 512
#define MAX_TX_RING_SIZE 1024 #define MAX_TX_RING_SIZE 1024
#define MAX_RX_RING_SIZE 4096 #define MAX_RX_RING_SIZE 4096
#define RX_COPY_THRESHOLD 128
#define RX_BUF_SIZE 1536
#define PHY_RETRIES 1000 #define PHY_RETRIES 1000
#define ETH_JUMBO_MTU 9000 #define ETH_JUMBO_MTU 9000
#define TX_WATCHDOG (5 * HZ) #define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64 #define NAPI_WEIGHT 64
#define BLINK_HZ (HZ/4) #define BLINK_HZ (HZ/4)
#define LINK_POLL_HZ (HZ/10)
MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
...@@ -70,28 +71,17 @@ module_param(debug, int, 0); ...@@ -70,28 +71,17 @@ module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static const struct pci_device_id skge_id_table[] = { static const struct pci_device_id skge_id_table[] = {
{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940, { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
PCI_ANY_ID, PCI_ANY_ID }, { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B, { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
PCI_ANY_ID, PCI_ANY_ID }, { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
{ PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE, { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
PCI_ANY_ID, PCI_ANY_ID }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
{ PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
PCI_ANY_ID, PCI_ANY_ID }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
{ PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */ { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
PCI_ANY_ID, PCI_ANY_ID }, { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
{ PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T, { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
PCI_ANY_ID, PCI_ANY_ID },
{ PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */
PCI_ANY_ID, PCI_ANY_ID },
{ PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */
PCI_ANY_ID, PCI_ANY_ID },
{ PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD,
PCI_ANY_ID, PCI_ANY_ID },
{ PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032,
PCI_ANY_ID, PCI_ANY_ID },
{ PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064,
PCI_ANY_ID, PCI_ANY_ID },
{ 0 } { 0 }
}; };
MODULE_DEVICE_TABLE(pci, skge_id_table); MODULE_DEVICE_TABLE(pci, skge_id_table);
...@@ -99,19 +89,22 @@ MODULE_DEVICE_TABLE(pci, skge_id_table); ...@@ -99,19 +89,22 @@ MODULE_DEVICE_TABLE(pci, skge_id_table);
static int skge_up(struct net_device *dev); static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev); static int skge_down(struct net_device *dev);
static void skge_tx_clean(struct skge_port *skge); static void skge_tx_clean(struct skge_port *skge);
static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void genesis_get_stats(struct skge_port *skge, u64 *data); static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data); static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port); static void yukon_init(struct skge_hw *hw, int port);
static void yukon_reset(struct skge_hw *hw, int port); static void yukon_reset(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port); static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_reset(struct skge_hw *hw, int port); static void genesis_reset(struct skge_hw *hw, int port);
static void genesis_link_up(struct skge_port *skge);
/* Avoid conditionals by using array */
static const int txqaddr[] = { Q_XA1, Q_XA2 }; static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 }; static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
/* Don't need to look at whole 16K. /* Don't need to look at whole 16K.
* last interesting register is descriptor poll timer. * last interesting register is descriptor poll timer.
...@@ -154,7 +147,7 @@ static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, ...@@ -154,7 +147,7 @@ static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
static int wol_supported(const struct skge_hw *hw) static int wol_supported(const struct skge_hw *hw)
{ {
return !((hw->chip_id == CHIP_ID_GENESIS || return !((hw->chip_id == CHIP_ID_GENESIS ||
(hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0))); (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
} }
static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
...@@ -170,7 +163,7 @@ static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) ...@@ -170,7 +163,7 @@ static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
struct skge_port *skge = netdev_priv(dev); struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw; struct skge_hw *hw = skge->hw;
if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
return -EOPNOTSUPP; return -EOPNOTSUPP;
if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw)) if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
...@@ -190,6 +183,36 @@ static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) ...@@ -190,6 +183,36 @@ static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
return 0; return 0;
} }
/* Determine supported/adverised modes based on hardware.
* Note: ethtoool ADVERTISED_xxx == SUPPORTED_xxx
*/
static u32 skge_supported_modes(const struct skge_hw *hw)
{
u32 supported;
if (iscopper(hw)) {
supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg| SUPPORTED_TP;
if (hw->chip_id == CHIP_ID_GENESIS)
supported &= ~(SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full);
else if (hw->chip_id == CHIP_ID_YUKON)
supported &= ~SUPPORTED_1000baseT_Half;
} else
supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
| SUPPORTED_Autoneg;
return supported;
}
static int skge_get_settings(struct net_device *dev, static int skge_get_settings(struct net_device *dev,
struct ethtool_cmd *ecmd) struct ethtool_cmd *ecmd)
...@@ -198,38 +221,13 @@ static int skge_get_settings(struct net_device *dev, ...@@ -198,38 +221,13 @@ static int skge_get_settings(struct net_device *dev,
struct skge_hw *hw = skge->hw; struct skge_hw *hw = skge->hw;
ecmd->transceiver = XCVR_INTERNAL; ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = skge_supported_modes(hw);
if (iscopper(hw)) { if (iscopper(hw)) {
if (hw->chip_id == CHIP_ID_GENESIS)
ecmd->supported = SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_Autoneg | SUPPORTED_TP;
else {
ecmd->supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg| SUPPORTED_TP;
if (hw->chip_id == CHIP_ID_YUKON)
ecmd->supported &= ~SUPPORTED_1000baseT_Half;
else if (hw->chip_id == CHIP_ID_YUKON_FE)
ecmd->supported &= ~(SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full);
}
ecmd->port = PORT_TP; ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy_addr; ecmd->phy_address = hw->phy_addr;
} else { } else
ecmd->supported = SUPPORTED_1000baseT_Full
| SUPPORTED_FIBRE
| SUPPORTED_Autoneg;
ecmd->port = PORT_FIBRE; ecmd->port = PORT_FIBRE;
}
ecmd->advertising = skge->advertising; ecmd->advertising = skge->advertising;
ecmd->autoneg = skge->autoneg; ecmd->autoneg = skge->autoneg;
...@@ -238,65 +236,57 @@ static int skge_get_settings(struct net_device *dev, ...@@ -238,65 +236,57 @@ static int skge_get_settings(struct net_device *dev,
return 0; return 0;
} }
static u32 skge_modes(const struct skge_hw *hw)
{
u32 modes = ADVERTISED_Autoneg
| ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
| ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
| ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
if (iscopper(hw)) {
modes |= ADVERTISED_TP;
switch(hw->chip_id) {
case CHIP_ID_GENESIS:
modes &= ~(ADVERTISED_100baseT_Full
| ADVERTISED_100baseT_Half
| ADVERTISED_10baseT_Full
| ADVERTISED_10baseT_Half);
break;
case CHIP_ID_YUKON:
modes &= ~ADVERTISED_1000baseT_Half;
break;
case CHIP_ID_YUKON_FE:
modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
break;
}
} else {
modes |= ADVERTISED_FIBRE;
modes &= ~ADVERTISED_1000baseT_Half;
}
return modes;
}
static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{ {
struct skge_port *skge = netdev_priv(dev); struct skge_port *skge = netdev_priv(dev);
const struct skge_hw *hw = skge->hw; const struct skge_hw *hw = skge->hw;
u32 supported = skge_supported_modes(hw);
if (ecmd->autoneg == AUTONEG_ENABLE) { if (ecmd->autoneg == AUTONEG_ENABLE) {
if (ecmd->advertising & skge_modes(hw)) ecmd->advertising = supported;
return -EINVAL; skge->duplex = -1;
skge->speed = -1;
} else { } else {
u32 setting;
switch(ecmd->speed) { switch(ecmd->speed) {
case SPEED_1000: case SPEED_1000:
if (hw->chip_id == CHIP_ID_YUKON_FE) if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL; return -EINVAL;
break; break;
case SPEED_100: case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10: case SPEED_10:
if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS) if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL; return -EINVAL;
break; break;
default: default:
return -EINVAL; return -EINVAL;
} }
if ((setting & supported) == 0)
return -EINVAL;
skge->speed = ecmd->speed;
skge->duplex = ecmd->duplex;
} }
skge->autoneg = ecmd->autoneg; skge->autoneg = ecmd->autoneg;
skge->speed = ecmd->speed;
skge->duplex = ecmd->duplex;
skge->advertising = ecmd->advertising; skge->advertising = ecmd->advertising;
if (netif_running(dev)) { if (netif_running(dev)) {
...@@ -393,7 +383,7 @@ static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) ...@@ -393,7 +383,7 @@ static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{ {
int i; int i;
switch(stringset) { switch (stringset) {
case ETH_SS_STATS: case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(skge_stats); i++) for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN, memcpy(data + i * ETH_GSTRING_LEN,
...@@ -511,14 +501,6 @@ static int skge_set_rx_csum(struct net_device *dev, u32 data) ...@@ -511,14 +501,6 @@ static int skge_set_rx_csum(struct net_device *dev, u32 data)
return 0; return 0;
} }
/* Only Yukon II supports TSO (not implemented yet) */
static int skge_set_tso(struct net_device *dev, u32 data)
{
if (data)
return -EOPNOTSUPP;
return 0;
}
static void skge_get_pauseparam(struct net_device *dev, static void skge_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd) struct ethtool_pauseparam *ecmd)
{ {
...@@ -540,9 +522,9 @@ static int skge_set_pauseparam(struct net_device *dev, ...@@ -540,9 +522,9 @@ static int skge_set_pauseparam(struct net_device *dev,
skge->autoneg = ecmd->autoneg; skge->autoneg = ecmd->autoneg;
if (ecmd->rx_pause && ecmd->tx_pause) if (ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYMMETRIC; skge->flow_control = FLOW_MODE_SYMMETRIC;
else if(ecmd->rx_pause && !ecmd->tx_pause) else if (ecmd->rx_pause && !ecmd->tx_pause)
skge->flow_control = FLOW_MODE_REM_SEND; skge->flow_control = FLOW_MODE_REM_SEND;
else if(!ecmd->rx_pause && ecmd->tx_pause) else if (!ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_LOC_SEND; skge->flow_control = FLOW_MODE_LOC_SEND;
else else
skge->flow_control = FLOW_MODE_NONE; skge->flow_control = FLOW_MODE_NONE;
...@@ -559,8 +541,6 @@ static inline u32 hwkhz(const struct skge_hw *hw) ...@@ -559,8 +541,6 @@ static inline u32 hwkhz(const struct skge_hw *hw)
{ {
if (hw->chip_id == CHIP_ID_GENESIS) if (hw->chip_id == CHIP_ID_GENESIS)
return 53215; /* or: 53.125 MHz */ return 53215; /* or: 53.125 MHz */
else if (hw->chip_id == CHIP_ID_YUKON_EC)
return 125000; /* or: 125.000 MHz */
else else
return 78215; /* or: 78.125 MHz */ return 78215; /* or: 78.125 MHz */
} }
...@@ -643,30 +623,18 @@ static int skge_set_coalesce(struct net_device *dev, ...@@ -643,30 +623,18 @@ static int skge_set_coalesce(struct net_device *dev,
static void skge_led_on(struct skge_hw *hw, int port) static void skge_led_on(struct skge_hw *hw, int port)
{ {
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, B0_LED, LED_STAT_ON); skge_write8(hw, B0_LED, LED_STAT_ON);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON); skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100); skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
switch (hw->phy_type) { /* For Broadcom Phy only */
case SK_PHY_BCOM: xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
PHY_B_PEC_LED_ON);
break;
case SK_PHY_LONE:
skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
0x0800);
break;
default:
skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON);
skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
}
} else { } else {
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_ON) | PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) | PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) | PHY_M_LED_MO_100(MO_LED_ON) |
...@@ -678,28 +646,17 @@ static void skge_led_on(struct skge_hw *hw, int port) ...@@ -678,28 +646,17 @@ static void skge_led_on(struct skge_hw *hw, int port)
static void skge_led_off(struct skge_hw *hw, int port) static void skge_led_off(struct skge_hw *hw, int port)
{ {
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
skge_write8(hw, B0_LED, LED_STAT_OFF); skge_write8(hw, B0_LED, LED_STAT_OFF);
skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0); skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
switch (hw->phy_type) { /* Broadcom only */
case SK_PHY_BCOM: xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
PHY_B_PEC_LED_OFF);
break;
case SK_PHY_LONE:
skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
PHY_L_LC_LEDT);
break;
default:
skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF);
}
} else { } else {
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_OFF) | PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) | PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) | PHY_M_LED_MO_100(MO_LED_OFF) |
...@@ -730,7 +687,7 @@ static int skge_phys_id(struct net_device *dev, u32 data) ...@@ -730,7 +687,7 @@ static int skge_phys_id(struct net_device *dev, u32 data)
{ {
struct skge_port *skge = netdev_priv(dev); struct skge_port *skge = netdev_priv(dev);
if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
/* start blinking */ /* start blinking */
...@@ -763,8 +720,6 @@ static struct ethtool_ops skge_ethtool_ops = { ...@@ -763,8 +720,6 @@ static struct ethtool_ops skge_ethtool_ops = {
.set_pauseparam = skge_set_pauseparam, .set_pauseparam = skge_set_pauseparam,
.get_coalesce = skge_get_coalesce, .get_coalesce = skge_get_coalesce,
.set_coalesce = skge_set_coalesce, .set_coalesce = skge_set_coalesce,
.get_tso = ethtool_op_get_tso,
.set_tso = skge_set_tso,
.get_sg = ethtool_op_get_sg, .get_sg = ethtool_op_get_sg,
.set_sg = skge_set_sg, .set_sg = skge_set_sg,
.get_tx_csum = ethtool_op_get_tx_csum, .get_tx_csum = ethtool_op_get_tx_csum,
...@@ -793,6 +748,7 @@ static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base) ...@@ -793,6 +748,7 @@ static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
e->desc = d; e->desc = d;
e->skb = NULL;
if (i == ring->count - 1) { if (i == ring->count - 1) {
e->next = ring->start; e->next = ring->start;
d->next_offset = base; d->next_offset = base;
...@@ -806,24 +762,23 @@ static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base) ...@@ -806,24 +762,23 @@ static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
return 0; return 0;
} }
/* Setup buffer for receiving */ static struct sk_buff *skge_rx_alloc(struct net_device *dev, unsigned int size)
static inline int skge_rx_alloc(struct skge_port *skge,
struct skge_element *e)
{ {
unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */ struct sk_buff *skb = dev_alloc_skb(size);
struct skge_rx_desc *rd = e->desc;
struct sk_buff *skb;
u64 map;
skb = dev_alloc_skb(bufsize + NET_IP_ALIGN); if (likely(skb)) {
if (unlikely(!skb)) { skb->dev = dev;
printk(KERN_DEBUG PFX "%s: out of memory for receive\n", skb_reserve(skb, NET_IP_ALIGN);
skge->netdev->name);
return -ENOMEM;
} }
return skb;
}
skb->dev = skge->netdev; /* Allocate and setup a new buffer for receiving */
skb_reserve(skb, NET_IP_ALIGN); static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
struct sk_buff *skb, unsigned int bufsize)
{
struct skge_rx_desc *rd = e->desc;
u64 map;
map = pci_map_single(skge->hw->pdev, skb->data, bufsize, map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
...@@ -841,55 +796,69 @@ static inline int skge_rx_alloc(struct skge_port *skge, ...@@ -841,55 +796,69 @@ static inline int skge_rx_alloc(struct skge_port *skge,
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
pci_unmap_addr_set(e, mapaddr, map); pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, bufsize); pci_unmap_len_set(e, maplen, bufsize);
return 0;
} }
/* Free all unused buffers in receive ring, assumes receiver stopped */ /* Resume receiving using existing skb,
* Note: DMA address is not changed by chip.
* MTU not changed while receiver active.
*/
static void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
struct skge_rx_desc *rd = e->desc;
rd->csum2 = 0;
rd->csum2_start = ETH_HLEN;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}
/* Free all buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge) static void skge_rx_clean(struct skge_port *skge)
{ {
struct skge_hw *hw = skge->hw; struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring; struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e; struct skge_element *e;
for (e = ring->to_clean; e != ring->to_use; e = e->next) { e = ring->start;
do {
struct skge_rx_desc *rd = e->desc; struct skge_rx_desc *rd = e->desc;
rd->control = 0; rd->control = 0;
if (e->skb) {
pci_unmap_single(hw->pdev, pci_unmap_single(hw->pdev,
pci_unmap_addr(e, mapaddr), pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen), pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
dev_kfree_skb(e->skb); dev_kfree_skb(e->skb);
e->skb = NULL; e->skb = NULL;
} }
ring->to_clean = e; } while ((e = e->next) != ring->start);
} }
/* Allocate buffers for receive ring /* Allocate buffers for receive ring
* For receive: to_use is refill location * For receive: to_clean is next received frame.
* to_clean is next received frame.
*
* if (to_use == to_clean)
* then ring all frames in ring need buffers
* if (to_use->next == to_clean)
* then ring all frames in ring have buffers
*/ */
static int skge_rx_fill(struct skge_port *skge) static int skge_rx_fill(struct skge_port *skge)
{ {
struct skge_ring *ring = &skge->rx_ring; struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e; struct skge_element *e;
int ret = 0; unsigned int bufsize = skge->rx_buf_size;
for (e = ring->to_use; e->next != ring->to_clean; e = e->next) { e = ring->start;
if (skge_rx_alloc(skge, e)) { do {
ret = 1; struct sk_buff *skb = skge_rx_alloc(skge->netdev, bufsize);
break;
}
} if (!skb)
ring->to_use = e; return -ENOMEM;
skge_rx_setup(skge, e, skb, bufsize);
} while ( (e = e->next) != ring->start);
return ret; ring->to_clean = ring->start;
return 0;
} }
static void skge_link_up(struct skge_port *skge) static void skge_link_up(struct skge_port *skge)
...@@ -919,50 +888,50 @@ static void skge_link_down(struct skge_port *skge) ...@@ -919,50 +888,50 @@ static void skge_link_down(struct skge_port *skge)
printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
} }
static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg) static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{ {
int i; int i;
u16 v; u16 v;
skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
v = skge_xm_read16(hw, port, XM_PHY_DATA); v = xm_read16(hw, port, XM_PHY_DATA);
if (hw->phy_type != SK_PHY_XMAC) {
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (skge_xm_read16(hw, port, XM_MMU_CMD)
& XM_MMU_PHY_RDY)
goto ready;
}
printk(KERN_WARNING PFX "%s: phy read timed out\n", /* Need to wait for external PHY */
hw->dev[port]->name); for (i = 0; i < PHY_RETRIES; i++) {
return 0; udelay(1);
ready: if (xm_read16(hw, port, XM_MMU_CMD)
v = skge_xm_read16(hw, port, XM_PHY_DATA); & XM_MMU_PHY_RDY)
goto ready;
} }
printk(KERN_WARNING PFX "%s: phy read timed out\n",
hw->dev[port]->name);
return 0;
ready:
v = xm_read16(hw, port, XM_PHY_DATA);
return v; return v;
} }
static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{ {
int i; int i;
skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
goto ready; goto ready;
cpu_relax(); udelay(1);
} }
printk(KERN_WARNING PFX "%s: phy write failed to come ready\n", printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
hw->dev[port]->name); hw->dev[port]->name);
ready: ready:
skge_xm_write16(hw, port, XM_PHY_DATA, val); xm_write16(hw, port, XM_PHY_DATA, val);
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
return; return;
} }
printk(KERN_WARNING PFX "%s: phy write timed out\n", printk(KERN_WARNING PFX "%s: phy write timed out\n",
...@@ -999,34 +968,112 @@ static void genesis_init(struct skge_hw *hw) ...@@ -999,34 +968,112 @@ static void genesis_init(struct skge_hw *hw)
static void genesis_reset(struct skge_hw *hw, int port) static void genesis_reset(struct skge_hw *hw, int port)
{ {
int i; const u8 zero[8] = { 0 };
u64 zero = 0;
/* reset the statistics module */ /* reset the statistics module */
skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */ xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable all PHY IRQs */ /* disable Broadcom PHY IRQ */
if (hw->phy_type == SK_PHY_BCOM) xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero); xm_outhash(hw, port, XM_HSM, zero);
for (i = 0; i < 15; i++)
skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
} }
static void genesis_mac_init(struct skge_hw *hw, int port) /* Convert mode to MII values */
static const u16 phy_pause_map[] = {
[FLOW_MODE_NONE] = 0,
[FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
[FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};
/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
{ {
struct skge_port *skge = netdev_priv(hw->dev[port]); struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 status;
/* read twice because of latch */
(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
status = xm_phy_read(hw, port, PHY_BCOM_STAT);
pr_debug("bcom_check_link status=0x%x\n", status);
if ((status & PHY_ST_LSYNC) == 0) {
u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
xm_write16(hw, port, XM_MMU_CMD, cmd);
/* dummy read to ensure writing */
(void) xm_read16(hw, port, XM_MMU_CMD);
if (netif_carrier_ok(dev))
skge_link_down(skge);
} else {
if (skge->autoneg == AUTONEG_ENABLE &&
(status & PHY_ST_AN_OVER)) {
u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
if (lpa & PHY_B_AN_RF) {
printk(KERN_NOTICE PFX "%s: remote fault\n",
dev->name);
return;
}
/* Check Duplex mismatch */
switch(aux & PHY_B_AS_AN_RES_MSK) {
case PHY_B_RES_1000FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_B_RES_1000HD:
skge->duplex = DUPLEX_HALF;
break;
default:
printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
dev->name);
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (aux & PHY_B_AS_PAUSE_MSK) {
case PHY_B_AS_PAUSE_MSK:
skge->flow_control = FLOW_MODE_SYMMETRIC;
break;
case PHY_B_AS_PRR:
skge->flow_control = FLOW_MODE_REM_SEND;
break;
case PHY_B_AS_PRT:
skge->flow_control = FLOW_MODE_LOC_SEND;
break;
default:
skge->flow_control = FLOW_MODE_NONE;
}
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
}
}
/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
* Phy on for 100 or 10Mbit operation
*/
static void bcom_phy_init(struct skge_port *skge, int jumbo)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i; int i;
u32 r; u16 id1, r, ext, ctl;
u16 id1;
u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
/* magic workaround patterns for Broadcom */ /* magic workaround patterns for Broadcom */
static const struct { static const struct {
...@@ -1042,16 +1089,120 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1042,16 +1089,120 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
}; };
pr_debug("bcom_phy_init\n");
/* read Id from external PHY (all have the same address) */
id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */
r = xm_read16(hw, port, XM_MMU_CMD);
r |= XM_MMU_NO_PRE;
xm_write16(hw, port, XM_MMU_CMD,r);
switch(id1) {
case PHY_BCOM_ID1_C0:
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val);
break;
case PHY_BCOM_ID1_A1:
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val);
break;
}
/*
* Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset.
*/
r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
r |= PHY_B_AC_DIS_PM;
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
/* Dummy read */
xm_read16(hw, port, XM_ISRC);
ext = PHY_B_PEC_EN_LTR; /* enable tx led */
ctl = PHY_CT_SP1000; /* always 1000mbit */
if (skge->autoneg == AUTONEG_ENABLE) {
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
u16 adv = PHY_B_1000C_RD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_B_1000C_AHD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_B_1000C_AFD;
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
if (skge->duplex == DUPLEX_FULL)
ctl |= PHY_CT_DUP_MD;
/* Force to slave */
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
}
/* Set autonegotiation pause parameters */
xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
/* Handle Jumbo frames */
if (jumbo) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
ext |= PHY_B_PEC_HIGH_LA;
}
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
/* Use link status change interrrupt */
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
bcom_check_link(hw, port);
}
static void genesis_mac_init(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
int i;
u32 r;
const u8 zero[6] = { 0 };
/* Clear MIB counters */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* initialize Rx, Tx and Link LED */ /* initialize Rx, Tx and Link LED */
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
/* Unreset the XMAC. */ /* Unreset the XMAC. */
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
/* /*
* Perform additional initialization for external PHYs, * Perform additional initialization for external PHYs,
...@@ -1059,67 +1210,56 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1059,67 +1210,56 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
* GMII mode. * GMII mode.
*/ */
spin_lock_bh(&hw->phy_lock); spin_lock_bh(&hw->phy_lock);
if (hw->phy_type != SK_PHY_XMAC) { /* Take external Phy out of reset */
/* Take PHY out of reset. */ r = skge_read32(hw, B2_GP_IO);
r = skge_read32(hw, B2_GP_IO); if (port == 0)
if (port == 0) r |= GP_DIR_0|GP_IO_0;
r |= GP_DIR_0|GP_IO_0; else
else r |= GP_DIR_2|GP_IO_2;
r |= GP_DIR_2|GP_IO_2;
skge_write32(hw, B2_GP_IO, r);
skge_read32(hw, B2_GP_IO);
/* Enable GMII mode on the XMAC. */
skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */
skge_xm_write16(hw, port, XM_MMU_CMD,
skge_xm_read16(hw, port, XM_MMU_CMD)
| XM_MMU_NO_PRE);
if (id1 == PHY_BCOM_ID1_C0) {
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
skge_xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val);
} else if (id1 == PHY_BCOM_ID1_A1) {
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
skge_xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val);
}
/* skge_write32(hw, B2_GP_IO, r);
* Workaround BCOM Errata (#10523) for all BCom PHYs. skge_read32(hw, B2_GP_IO);
* Disable Power Management after reset. spin_unlock_bh(&hw->phy_lock);
*/
r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
}
/* Dummy read */ /* Enable GMII interfac */
skge_xm_read16(hw, port, XM_ISRC); xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
bcom_phy_init(skge, jumbo);
/* Set Station Address */
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
/* We don't use match addresses so clear */
for (i = 1; i < 16; i++)
xm_outaddr(hw, port, XM_EXM(i), zero);
r = skge_xm_read32(hw, port, XM_MODE); /* configure Rx High Water Mark (XM_RX_HI_WM) */
skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA); xm_write16(hw, port, XM_RX_HI_WM, 1450);
/* We don't need the FCS appended to the packet. */ /* We don't need the FCS appended to the packet. */
r = skge_xm_read16(hw, port, XM_RX_CMD); r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS); if (jumbo)
r |= XM_RX_BIG_PK_OK;
if (skge->duplex == DUPLEX_HALF) {
/*
* If in manual half duplex mode the other side might be in
* full duplex mode, so ignore if a carrier extension is not seen
* on frames received
*/
r |= XM_RX_DIS_CEXT;
}
xm_write16(hw, port, XM_RX_CMD, r);
/* We want short frames padded to 60 bytes. */ /* We want short frames padded to 60 bytes. */
r = skge_xm_read16(hw, port, XM_TX_CMD); xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
xm_write16(hw, port, XM_TX_THR, 512);
/* /*
* Enable the reception of all error frames. This is is * Enable the reception of all error frames. This is is
...@@ -1135,19 +1275,22 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1135,19 +1275,22 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
* case the XMAC will start transfering frames out of the * case the XMAC will start transfering frames out of the
* RX FIFO as soon as the FIFO threshold is reached. * RX FIFO as soon as the FIFO threshold is reached.
*/ */
r = skge_xm_read32(hw, port, XM_MODE); xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
skge_xm_write32(hw, port, XM_MODE,
XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
XM_MD_RX_ERR|XM_MD_RX_IRLE);
skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
/* /*
* Bump up the transmit threshold. This helps hold off transmit * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
* underruns when we're blasting traffic from both ports at once. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
* and 'Octets Rx OK Hi Cnt Ov'.
*/ */
skge_xm_write16(hw, port, XM_TX_THR, 512); xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
/*
* Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
* - Enable all bits excepting 'Octets Tx OK Low CntOv'
* and 'Octets Tx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
/* Configure MAC arbiter */ /* Configure MAC arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
...@@ -1164,137 +1307,30 @@ static void genesis_mac_init(struct skge_hw *hw, int port) ...@@ -1164,137 +1307,30 @@ static void genesis_mac_init(struct skge_hw *hw, int port)
skge_write8(hw, B3_MA_RCINI_TX2, 0); skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* Configure Rx MAC FIFO */ /* Configure Rx MAC FIFO */
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */ /* Configure Tx MAC FIFO */
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
if (hw->dev[port]->mtu > ETH_DATA_LEN) { if (jumbo) {
/* Enable frame flushing if jumbo frames used */ /* Enable frame flushing if jumbo frames used */
skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
} else { } else {
/* enable timeout timers if normal frames */ /* enable timeout timers if normal frames */
skge_write16(hw, B3_PA_CTRL, skge_write16(hw, B3_PA_CTRL,
port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
} }
r = skge_xm_read16(hw, port, XM_RX_CMD);
if (hw->dev[port]->mtu > ETH_DATA_LEN)
skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
else
skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
switch (hw->phy_type) {
case SK_PHY_XMAC:
if (skge->autoneg == AUTONEG_ENABLE) {
ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
switch (skge->flow_control) {
case FLOW_MODE_NONE:
ctrl1 |= PHY_X_P_NO_PAUSE;
break;
case FLOW_MODE_LOC_SEND:
ctrl1 |= PHY_X_P_ASYM_MD;
break;
case FLOW_MODE_SYMMETRIC:
ctrl1 |= PHY_X_P_SYM_MD;
break;
case FLOW_MODE_REM_SEND:
ctrl1 |= PHY_X_P_BOTH_MD;
break;
}
skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
ctrl2 = 0;
if (skge->duplex == DUPLEX_FULL)
ctrl2 |= PHY_CT_DUP_MD;
}
skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
break;
case SK_PHY_BCOM:
ctrl1 = PHY_CT_SP1000;
ctrl2 = 0;
ctrl3 = PHY_SEL_TYPE;
ctrl4 = PHY_B_PEC_EN_LTR;
ctrl5 = PHY_B_AC_TX_TST;
if (skge->autoneg == AUTONEG_ENABLE) {
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
ctrl2 |= PHY_B_1000C_RD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
ctrl2 |= PHY_B_1000C_AHD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
ctrl2 |= PHY_B_1000C_AFD;
/* Set Flow-control capabilities */
switch (skge->flow_control) {
case FLOW_MODE_NONE:
ctrl3 |= PHY_B_P_NO_PAUSE;
break;
case FLOW_MODE_LOC_SEND:
ctrl3 |= PHY_B_P_ASYM_MD;
break;
case FLOW_MODE_SYMMETRIC:
ctrl3 |= PHY_B_P_SYM_MD;
break;
case FLOW_MODE_REM_SEND:
ctrl3 |= PHY_B_P_BOTH_MD;
break;
}
/* Restart Auto-negotiation */
ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
if (skge->duplex == DUPLEX_FULL)
ctrl1 |= PHY_CT_DUP_MD;
ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
}
skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
if (skge->netdev->mtu > ETH_DATA_LEN) {
ctrl4 |= PHY_B_PEC_HIGH_LA;
ctrl5 |= PHY_B_AC_LONG_PACK;
skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
}
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
break;
}
spin_unlock_bh(&hw->phy_lock);
/* Clear MIB counters */
skge_xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */
skge_xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Start polling for link status */
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
} }
static void genesis_stop(struct skge_port *skge) static void genesis_stop(struct skge_port *skge)
{ {
struct skge_hw *hw = skge->hw; struct skge_hw *hw = skge->hw;
int port = skge->port; int port = skge->port;
u32 reg;
/* Clear Tx packet arbiter timeout IRQ */ /* Clear Tx packet arbiter timeout IRQ */
skge_write16(hw, B3_PA_CTRL, skge_write16(hw, B3_PA_CTRL,
...@@ -1304,33 +1340,30 @@ static void genesis_stop(struct skge_port *skge) ...@@ -1304,33 +1340,30 @@ static void genesis_stop(struct skge_port *skge)
* If the transfer stucks at the MAC the STOP command will not * If the transfer stucks at the MAC the STOP command will not
* terminate if we don't flush the XMAC's transmit FIFO ! * terminate if we don't flush the XMAC's transmit FIFO !
*/ */
skge_xm_write32(hw, port, XM_MODE, xm_write32(hw, port, XM_MODE,
skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF); xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
/* Reset the MAC */ /* Reset the MAC */
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
/* For external PHYs there must be special handling */ /* For external PHYs there must be special handling */
if (hw->phy_type != SK_PHY_XMAC) { reg = skge_read32(hw, B2_GP_IO);
u32 reg = skge_read32(hw, B2_GP_IO); if (port == 0) {
reg |= GP_DIR_0;
if (port == 0) { reg &= ~GP_IO_0;
reg |= GP_DIR_0; } else {
reg &= ~GP_IO_0; reg |= GP_DIR_2;
} else { reg &= ~GP_IO_2;
reg |= GP_DIR_2;
reg &= ~GP_IO_2;
}
skge_write32(hw, B2_GP_IO, reg);
skge_read32(hw, B2_GP_IO);
} }
skge_write32(hw, B2_GP_IO, reg);
skge_read32(hw, B2_GP_IO);
skge_xm_write16(hw, port, XM_MMU_CMD, xm_write16(hw, port, XM_MMU_CMD,
skge_xm_read16(hw, port, XM_MMU_CMD) xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
skge_xm_read16(hw, port, XM_MMU_CMD); xm_read16(hw, port, XM_MMU_CMD);
} }
...@@ -1341,11 +1374,11 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data) ...@@ -1341,11 +1374,11 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data)
int i; int i;
unsigned long timeout = jiffies + HZ; unsigned long timeout = jiffies + HZ;
skge_xm_write16(hw, port, xm_write16(hw, port,
XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
/* wait for update to complete */ /* wait for update to complete */
while (skge_xm_read16(hw, port, XM_STAT_CMD) while (xm_read16(hw, port, XM_STAT_CMD)
& (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
if (time_after(jiffies, timeout)) if (time_after(jiffies, timeout))
break; break;
...@@ -1353,68 +1386,60 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data) ...@@ -1353,68 +1386,60 @@ static void genesis_get_stats(struct skge_port *skge, u64 *data)
} }
/* special case for 64 bit octet counter */ /* special case for 64 bit octet counter */
data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
| skge_xm_read32(hw, port, XM_TXO_OK_LO); | xm_read32(hw, port, XM_TXO_OK_LO);
data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
| skge_xm_read32(hw, port, XM_RXO_OK_LO); | xm_read32(hw, port, XM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++) for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset); data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
} }
static void genesis_mac_intr(struct skge_hw *hw, int port) static void genesis_mac_intr(struct skge_hw *hw, int port)
{ {
struct skge_port *skge = netdev_priv(hw->dev[port]); struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 status = skge_xm_read16(hw, port, XM_ISRC); u16 status = xm_read16(hw, port, XM_ISRC);
pr_debug("genesis_intr status %x\n", status); if (netif_msg_intr(skge))
if (hw->phy_type == SK_PHY_XMAC) { printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
/* LInk down, start polling for state change */ skge->netdev->name, status);
if (status & XM_IS_INP_ASS) {
skge_xm_write16(hw, port, XM_IMSK,
skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
}
else if (status & XM_IS_AND)
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
}
if (status & XM_IS_TXF_UR) { if (status & XM_IS_TXF_UR) {
skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF); xm_write32(hw, port, XM_MODE, XM_MD_FTF);
++skge->net_stats.tx_fifo_errors; ++skge->net_stats.tx_fifo_errors;
} }
if (status & XM_IS_RXF_OV) { if (status & XM_IS_RXF_OV) {
skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF); xm_write32(hw, port, XM_MODE, XM_MD_FRF);
++skge->net_stats.rx_fifo_errors; ++skge->net_stats.rx_fifo_errors;
} }
} }
static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{ {
int i; int i;
skge_gma_write16(hw, port, GM_SMI_DATA, val); gma_write16(hw, port, GM_SMI_DATA, val);
skge_gma_write16(hw, port, GM_SMI_CTRL, gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
break; break;
} }
} }
static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg) static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{ {
int i; int i;
skge_gma_write16(hw, port, GM_SMI_CTRL, gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) GM_SMI_CT_PHY_AD(hw->phy_addr)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) { for (i = 0; i < PHY_RETRIES; i++) {
udelay(1); udelay(1);
if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
goto ready; goto ready;
} }
...@@ -1422,24 +1447,7 @@ static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg) ...@@ -1422,24 +1447,7 @@ static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
hw->dev[port]->name); hw->dev[port]->name);
return 0; return 0;
ready: ready:
return skge_gma_read16(hw, port, GM_SMI_DATA); return gma_read16(hw, port, GM_SMI_DATA);
}
static void genesis_link_down(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
pr_debug("genesis_link_down\n");
skge_xm_write16(hw, port, XM_MMU_CMD,
skge_xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
/* dummy read to ensure writing */
(void) skge_xm_read16(hw, port, XM_MMU_CMD);
skge_link_down(skge);
} }
static void genesis_link_up(struct skge_port *skge) static void genesis_link_up(struct skge_port *skge)
...@@ -1450,7 +1458,7 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1450,7 +1458,7 @@ static void genesis_link_up(struct skge_port *skge)
u32 mode, msk; u32 mode, msk;
pr_debug("genesis_link_up\n"); pr_debug("genesis_link_up\n");
cmd = skge_xm_read16(hw, port, XM_MMU_CMD); cmd = xm_read16(hw, port, XM_MMU_CMD);
/* /*
* enabling pause frame reception is required for 1000BT * enabling pause frame reception is required for 1000BT
...@@ -1458,14 +1466,15 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1458,14 +1466,15 @@ static void genesis_link_up(struct skge_port *skge)
*/ */
if (skge->flow_control == FLOW_MODE_NONE || if (skge->flow_control == FLOW_MODE_NONE ||
skge->flow_control == FLOW_MODE_LOC_SEND) skge->flow_control == FLOW_MODE_LOC_SEND)
/* Disable Pause Frame Reception */
cmd |= XM_MMU_IGN_PF; cmd |= XM_MMU_IGN_PF;
else else
/* Enable Pause Frame Reception */ /* Enable Pause Frame Reception */
cmd &= ~XM_MMU_IGN_PF; cmd &= ~XM_MMU_IGN_PF;
skge_xm_write16(hw, port, XM_MMU_CMD, cmd); xm_write16(hw, port, XM_MMU_CMD, cmd);
mode = skge_xm_read32(hw, port, XM_MODE); mode = xm_read32(hw, port, XM_MODE);
if (skge->flow_control == FLOW_MODE_SYMMETRIC || if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
skge->flow_control == FLOW_MODE_LOC_SEND) { skge->flow_control == FLOW_MODE_LOC_SEND) {
/* /*
...@@ -1479,10 +1488,10 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1479,10 +1488,10 @@ static void genesis_link_up(struct skge_port *skge)
/* XM_PAUSE_DA = '010000C28001' (default) */ /* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */ /* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */ /* remember this value is defined in big endian (!) */
skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff); xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
mode |= XM_PAUSE_MODE; mode |= XM_PAUSE_MODE;
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
} else { } else {
/* /*
* disable pause frame generation is required for 1000BT * disable pause frame generation is required for 1000BT
...@@ -1491,125 +1500,68 @@ static void genesis_link_up(struct skge_port *skge) ...@@ -1491,125 +1500,68 @@ static void genesis_link_up(struct skge_port *skge)
/* Disable Pause Mode in Mode Register */ /* Disable Pause Mode in Mode Register */
mode &= ~XM_PAUSE_MODE; mode &= ~XM_PAUSE_MODE;
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
} }
skge_xm_write32(hw, port, XM_MODE, mode); xm_write32(hw, port, XM_MODE, mode);
msk = XM_DEF_MSK; msk = XM_DEF_MSK;
if (hw->phy_type != SK_PHY_XMAC) /* disable GP0 interrupt bit for external Phy */
msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */ msk |= XM_IS_INP_ASS;
skge_xm_write16(hw, port, XM_IMSK, msk); xm_write16(hw, port, XM_IMSK, msk);
skge_xm_read16(hw, port, XM_ISRC); xm_read16(hw, port, XM_ISRC);
/* get MMU Command Reg. */ /* get MMU Command Reg. */
cmd = skge_xm_read16(hw, port, XM_MMU_CMD); cmd = xm_read16(hw, port, XM_MMU_CMD);
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) if (skge->duplex == DUPLEX_FULL)
cmd |= XM_MMU_GMII_FD; cmd |= XM_MMU_GMII_FD;
if (hw->phy_type == SK_PHY_BCOM) { /*
/* * Workaround BCOM Errata (#10523) for all BCom Phys
* Workaround BCOM Errata (#10523) for all BCom Phys * Enable Power Management after link up
* Enable Power Management after link up */
*/ xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) & ~PHY_B_AC_DIS_PM);
& ~PHY_B_AC_DIS_PM); xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
PHY_B_DEF_MSK);
}
/* enable Rx/Tx */ /* enable Rx/Tx */
skge_xm_write16(hw, port, XM_MMU_CMD, xm_write16(hw, port, XM_MMU_CMD,
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
skge_link_up(skge); skge_link_up(skge);
} }
static void genesis_bcom_intr(struct skge_port *skge) static inline void bcom_phy_intr(struct skge_port *skge)
{ {
struct skge_hw *hw = skge->hw; struct skge_hw *hw = skge->hw;
int port = skge->port; int port = skge->port;
u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT); u16 isrc;
isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
skge->netdev->name, isrc);
pr_debug("genesis_bcom intr stat=%x\n", stat); if (isrc & PHY_B_IS_PSE)
printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
hw->dev[port]->name);
/* Workaround BCom Errata: /* Workaround BCom Errata:
* enable and disable loopback mode if "NO HCD" occurs. * enable and disable loopback mode if "NO HCD" occurs.
*/ */
if (stat & PHY_B_IS_NO_HDCL) { if (isrc & PHY_B_IS_NO_HDCL) {
u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL); u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl | PHY_CT_LOOP); ctrl | PHY_CT_LOOP);
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl & ~PHY_CT_LOOP); ctrl & ~PHY_CT_LOOP);
} }
stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT); if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) { bcom_check_link(hw, port);
u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
genesis_link_down(skge);
else if (stat & PHY_B_IS_LST_CHANGE) {
if (aux & PHY_B_AS_AN_C) {
switch (aux & PHY_B_AS_AN_RES_MSK) {
case PHY_B_RES_1000FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_B_RES_1000HD:
skge->duplex = DUPLEX_HALF;
break;
}
switch (aux & PHY_B_AS_PAUSE_MSK) {
case PHY_B_AS_PAUSE_MSK:
skge->flow_control = FLOW_MODE_SYMMETRIC;
break;
case PHY_B_AS_PRR:
skge->flow_control = FLOW_MODE_REM_SEND;
break;
case PHY_B_AS_PRT:
skge->flow_control = FLOW_MODE_LOC_SEND;
break;
default:
skge->flow_control = FLOW_MODE_NONE;
}
skge->speed = SPEED_1000;
}
genesis_link_up(skge);
}
else
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
}
}
/* Perodic poll of phy status to check for link transistion */
static void skge_link_timer(unsigned long __arg)
{
struct skge_port *skge = (struct skge_port *) __arg;
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
return;
spin_lock_bh(&hw->phy_lock);
if (hw->phy_type == SK_PHY_BCOM)
genesis_bcom_intr(skge);
else {
int i;
for (i = 0; i < 3; i++)
if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
break;
if (i == 3)
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
else
genesis_link_up(skge);
}
spin_unlock_bh(&hw->phy_lock);
} }
/* Marvell Phy Initailization */ /* Marvell Phy Initailization */
...@@ -1621,31 +1573,27 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1621,31 +1573,27 @@ static void yukon_init(struct skge_hw *hw, int port)
pr_debug("yukon_init\n"); pr_debug("yukon_init\n");
if (skge->autoneg == AUTONEG_ENABLE) { if (skge->autoneg == AUTONEG_ENABLE) {
u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK); PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
/* on PHY 88E1111 there is a change for downshift control */ ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
if (hw->chip_id == CHIP_ID_YUKON_EC)
ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
else
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
} }
ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL); ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (skge->autoneg == AUTONEG_DISABLE) if (skge->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE; ctrl &= ~PHY_CT_ANE;
ctrl |= PHY_CT_RESET; ctrl |= PHY_CT_RESET;
skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0; ctrl = 0;
ct1000 = 0; ct1000 = 0;
adv = PHY_SEL_TYPE; adv = PHY_AN_CSMA;
if (skge->autoneg == AUTONEG_ENABLE) { if (skge->autoneg == AUTONEG_ENABLE) {
if (iscopper(hw)) { if (iscopper(hw)) {
...@@ -1661,41 +1609,12 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1661,41 +1609,12 @@ static void yukon_init(struct skge_hw *hw, int port)
adv |= PHY_M_AN_10_FD; adv |= PHY_M_AN_10_FD;
if (skge->advertising & ADVERTISED_10baseT_Half) if (skge->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD; adv |= PHY_M_AN_10_HD;
} else /* special defines for FIBER (88E1011S only) */
/* Set Flow-control capabilities */
switch (skge->flow_control) {
case FLOW_MODE_NONE:
adv |= PHY_B_P_NO_PAUSE;
break;
case FLOW_MODE_LOC_SEND:
adv |= PHY_B_P_ASYM_MD;
break;
case FLOW_MODE_SYMMETRIC:
adv |= PHY_B_P_SYM_MD;
break;
case FLOW_MODE_REM_SEND:
adv |= PHY_B_P_BOTH_MD;
break;
}
} else { /* special defines for FIBER (88E1011S only) */
adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD; adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
/* Set Flow-control capabilities */ /* Set Flow-control capabilities */
switch (skge->flow_control) { adv |= phy_pause_map[skge->flow_control];
case FLOW_MODE_NONE:
adv |= PHY_M_P_NO_PAUSE_X;
break;
case FLOW_MODE_LOC_SEND:
adv |= PHY_M_P_ASYM_MD_X;
break;
case FLOW_MODE_SYMMETRIC:
adv |= PHY_M_P_SYM_MD_X;
break;
case FLOW_MODE_REM_SEND:
adv |= PHY_M_P_BOTH_MD_X;
break;
}
}
/* Restart Auto-negotiation */ /* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else { } else {
...@@ -1717,36 +1636,23 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1717,36 +1636,23 @@ static void yukon_init(struct skge_hw *hw, int port)
ctrl |= PHY_CT_RESET; ctrl |= PHY_CT_RESET;
} }
if (hw->chip_id != CHIP_ID_YUKON_FE) gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Setup Phy LED's */ /* Setup Phy LED's */
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS); ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
ledover = 0; ledover = 0;
if (hw->chip_id == CHIP_ID_YUKON_FE) { ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
& ~PHY_M_FELP_LED1_MSK)
| PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
} else {
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* turn off the Rx LED (LED_RX) */ /* turn off the Rx LED (LED_RX) */
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF); ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
/* disable blink mode (LED_DUPLEX) on collisions */ /* disable blink mode (LED_DUPLEX) on collisions */
ctrl |= PHY_M_LEDC_DP_CTRL; ctrl |= PHY_M_LEDC_DP_CTRL;
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) { if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */ /* turn on 100 Mbps LED (LED_LINK100) */
...@@ -1754,25 +1660,25 @@ static void yukon_init(struct skge_hw *hw, int port) ...@@ -1754,25 +1660,25 @@ static void yukon_init(struct skge_hw *hw, int port)
} }
if (ledover) if (ledover)
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
/* Enable phy interrupt on autonegotiation complete (or link up) */ /* Enable phy interrupt on autonegotiation complete (or link up) */
if (skge->autoneg == AUTONEG_ENABLE) if (skge->autoneg == AUTONEG_ENABLE)
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
else else
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
} }
static void yukon_reset(struct skge_hw *hw, int port) static void yukon_reset(struct skge_hw *hw, int port)
{ {
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0); gma_write16(hw, port, GM_MC_ADDR_H2, 0);
skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0); gma_write16(hw, port, GM_MC_ADDR_H3, 0);
skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0); gma_write16(hw, port, GM_MC_ADDR_H4, 0);
skge_gma_write16(hw, port, GM_RX_CTRL, gma_write16(hw, port, GM_RX_CTRL,
skge_gma_read16(hw, port, GM_RX_CTRL) gma_read16(hw, port, GM_RX_CTRL)
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
} }
...@@ -1785,17 +1691,17 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1785,17 +1691,17 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
/* WA code for COMA mode -- set PHY reset */ /* WA code for COMA mode -- set PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE && if (hw->chip_id == CHIP_ID_YUKON_LITE &&
chip_rev(hw) == CHIP_REV_YU_LITE_A3) hw->chip_rev == CHIP_REV_YU_LITE_A3)
skge_write32(hw, B2_GP_IO, skge_write32(hw, B2_GP_IO,
(skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9)); (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
/* hard reset */ /* hard reset */
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET); skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* WA code for COMA mode -- clear PHY reset */ /* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE && if (hw->chip_id == CHIP_ID_YUKON_LITE &&
chip_rev(hw) == CHIP_REV_YU_LITE_A3) hw->chip_rev == CHIP_REV_YU_LITE_A3)
skge_write32(hw, B2_GP_IO, skge_write32(hw, B2_GP_IO,
(skge_read32(hw, B2_GP_IO) | GP_DIR_9) (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
& ~GP_IO_9); & ~GP_IO_9);
...@@ -1806,13 +1712,13 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1806,13 +1712,13 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
/* Clear GMC reset */ /* Clear GMC reset */
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET); skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
if (skge->autoneg == AUTONEG_DISABLE) { if (skge->autoneg == AUTONEG_DISABLE) {
reg = GM_GPCR_AU_ALL_DIS; reg = GM_GPCR_AU_ALL_DIS;
skge_gma_write16(hw, port, GM_GP_CTRL, gma_write16(hw, port, GM_GP_CTRL,
skge_gma_read16(hw, port, GM_GP_CTRL) | reg); gma_read16(hw, port, GM_GP_CTRL) | reg);
switch (skge->speed) { switch (skge->speed) {
case SPEED_1000: case SPEED_1000:
...@@ -1828,7 +1734,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1828,7 +1734,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
switch (skge->flow_control) { switch (skge->flow_control) {
case FLOW_MODE_NONE: case FLOW_MODE_NONE:
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break; break;
case FLOW_MODE_LOC_SEND: case FLOW_MODE_LOC_SEND:
...@@ -1836,7 +1742,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1836,7 +1742,7 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
} }
skge_gma_write16(hw, port, GM_GP_CTRL, reg); gma_write16(hw, port, GM_GP_CTRL, reg);
skge_read16(hw, GMAC_IRQ_SRC); skge_read16(hw, GMAC_IRQ_SRC);
spin_lock_bh(&hw->phy_lock); spin_lock_bh(&hw->phy_lock);
...@@ -1844,25 +1750,25 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1844,25 +1750,25 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
spin_unlock_bh(&hw->phy_lock); spin_unlock_bh(&hw->phy_lock);
/* MIB clear */ /* MIB clear */
reg = skge_gma_read16(hw, port, GM_PHY_ADDR); reg = gma_read16(hw, port, GM_PHY_ADDR);
skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = 0; i < GM_MIB_CNT_SIZE; i++) for (i = 0; i < GM_MIB_CNT_SIZE; i++)
skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
skge_gma_write16(hw, port, GM_PHY_ADDR, reg); gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */ /* transmit control */
skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */ /* receive control reg: unicast + multicast + no FCS */
skge_gma_write16(hw, port, GM_RX_CTRL, gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */ /* transmit flow control */
skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */ /* transmit parameter */
skge_gma_write16(hw, port, GM_TX_PARAM, gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
...@@ -1872,33 +1778,33 @@ static void yukon_mac_init(struct skge_hw *hw, int port) ...@@ -1872,33 +1778,33 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
if (hw->dev[port]->mtu > 1500) if (hw->dev[port]->mtu > 1500)
reg |= GM_SMOD_JUMBO_ENA; reg |= GM_SMOD_JUMBO_ENA;
skge_gma_write16(hw, port, GM_SERIAL_MODE, reg); gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* physical address: used for pause frames */ /* physical address: used for pause frames */
skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr); gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* virtual address for data */ /* virtual address for data */
skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr); gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* enable interrupt mask for counter overflows */ /* enable interrupt mask for counter overflows */
skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0); gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0); gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0); gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Initialize Mac Fifo */ /* Initialize Mac Fifo */
/* Configure Rx MAC FIFO */ /* Configure Rx MAC FIFO */
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON; reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
if (hw->chip_id == CHIP_ID_YUKON_LITE && if (hw->chip_id == CHIP_ID_YUKON_LITE &&
chip_rev(hw) == CHIP_REV_YU_LITE_A3) hw->chip_rev == CHIP_REV_YU_LITE_A3)
reg &= ~GMF_RX_F_FL_ON; reg &= ~GMF_RX_F_FL_ON;
skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg); skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
/* Configure Tx MAC FIFO */ /* Configure Tx MAC FIFO */
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
} }
static void yukon_stop(struct skge_port *skge) static void yukon_stop(struct skge_port *skge)
...@@ -1907,19 +1813,19 @@ static void yukon_stop(struct skge_port *skge) ...@@ -1907,19 +1813,19 @@ static void yukon_stop(struct skge_port *skge)
int port = skge->port; int port = skge->port;
if (hw->chip_id == CHIP_ID_YUKON_LITE && if (hw->chip_id == CHIP_ID_YUKON_LITE &&
chip_rev(hw) == CHIP_REV_YU_LITE_A3) { hw->chip_rev == CHIP_REV_YU_LITE_A3) {
skge_write32(hw, B2_GP_IO, skge_write32(hw, B2_GP_IO,
skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9); skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
} }
skge_gma_write16(hw, port, GM_GP_CTRL, gma_write16(hw, port, GM_GP_CTRL,
skge_gma_read16(hw, port, GM_GP_CTRL) gma_read16(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA)); & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
skge_gma_read16(hw, port, GM_GP_CTRL); gma_read16(hw, port, GM_GP_CTRL);
/* set GPHY Control reset */ /* set GPHY Control reset */
skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET); gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET); gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
} }
static void yukon_get_stats(struct skge_port *skge, u64 *data) static void yukon_get_stats(struct skge_port *skge, u64 *data)
...@@ -1928,39 +1834,40 @@ static void yukon_get_stats(struct skge_port *skge, u64 *data) ...@@ -1928,39 +1834,40 @@ static void yukon_get_stats(struct skge_port *skge, u64 *data)
int port = skge->port; int port = skge->port;
int i; int i;
data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| skge_gma_read32(hw, port, GM_TXO_OK_LO); | gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| skge_gma_read32(hw, port, GM_RXO_OK_LO); | gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++) for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = skge_gma_read32(hw, port, data[i] = gma_read32(hw, port,
skge_stats[i].gma_offset); skge_stats[i].gma_offset);
} }
static void yukon_mac_intr(struct skge_hw *hw, int port) static void yukon_mac_intr(struct skge_hw *hw, int port)
{ {
struct skge_port *skge = netdev_priv(hw->dev[port]); struct net_device *dev = hw->dev[port];
u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC)); struct skge_port *skge = netdev_priv(dev);
u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
dev->name, status);
pr_debug("yukon_intr status %x\n", status);
if (status & GM_IS_RX_FF_OR) { if (status & GM_IS_RX_FF_OR) {
++skge->net_stats.rx_fifo_errors; ++skge->net_stats.rx_fifo_errors;
skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO); gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
} }
if (status & GM_IS_TX_FF_UR) { if (status & GM_IS_TX_FF_UR) {
++skge->net_stats.tx_fifo_errors; ++skge->net_stats.tx_fifo_errors;
skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU); gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
} }
} }
static u16 yukon_speed(const struct skge_hw *hw, u16 aux) static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{ {
if (hw->chip_id == CHIP_ID_YUKON_FE) switch (aux & PHY_M_PS_SPEED_MSK) {
return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
switch(aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000: case PHY_M_PS_SPEED_1000:
return SPEED_1000; return SPEED_1000;
case PHY_M_PS_SPEED_100: case PHY_M_PS_SPEED_100:
...@@ -1981,15 +1888,15 @@ static void yukon_link_up(struct skge_port *skge) ...@@ -1981,15 +1888,15 @@ static void yukon_link_up(struct skge_port *skge)
/* Enable Transmit FIFO Underrun */ /* Enable Transmit FIFO Underrun */
skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK); skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
reg = skge_gma_read16(hw, port, GM_GP_CTRL); reg = gma_read16(hw, port, GM_GP_CTRL);
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL; reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */ /* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
skge_gma_write16(hw, port, GM_GP_CTRL, reg); gma_write16(hw, port, GM_GP_CTRL, reg);
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
skge_link_up(skge); skge_link_up(skge);
} }
...@@ -1999,16 +1906,15 @@ static void yukon_link_down(struct skge_port *skge) ...@@ -1999,16 +1906,15 @@ static void yukon_link_down(struct skge_port *skge)
int port = skge->port; int port = skge->port;
pr_debug("yukon_link_down\n"); pr_debug("yukon_link_down\n");
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
skge_gm_phy_write(hw, port, GM_GP_CTRL, gm_phy_write(hw, port, GM_GP_CTRL,
skge_gm_phy_read(hw, port, GM_GP_CTRL) gm_phy_read(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)); & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
if (hw->chip_id != CHIP_ID_YUKON_FE && if (skge->flow_control == FLOW_MODE_REM_SEND) {
skge->flow_control == FLOW_MODE_REM_SEND) {
/* restore Asymmetric Pause bit */ /* restore Asymmetric Pause bit */
skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
skge_gm_phy_read(hw, port, gm_phy_read(hw, port,
PHY_MARV_AUNE_ADV) PHY_MARV_AUNE_ADV)
| PHY_M_AN_ASP); | PHY_M_AN_ASP);
...@@ -2027,20 +1933,21 @@ static void yukon_phy_intr(struct skge_port *skge) ...@@ -2027,20 +1933,21 @@ static void yukon_phy_intr(struct skge_port *skge)
const char *reason = NULL; const char *reason = NULL;
u16 istatus, phystat; u16 istatus, phystat;
istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT); istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT); phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
skge->netdev->name, istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) { if (istatus & PHY_M_IS_AN_COMPL) {
if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP) if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
& PHY_M_AN_RF) { & PHY_M_AN_RF) {
reason = "remote fault"; reason = "remote fault";
goto failed; goto failed;
} }
if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC) if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
&& (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
& PHY_B_1000S_MSF)) {
reason = "master/slave fault"; reason = "master/slave fault";
goto failed; goto failed;
} }
...@@ -2054,10 +1961,6 @@ static void yukon_phy_intr(struct skge_port *skge) ...@@ -2054,10 +1961,6 @@ static void yukon_phy_intr(struct skge_port *skge)
? DUPLEX_FULL : DUPLEX_HALF; ? DUPLEX_FULL : DUPLEX_HALF;
skge->speed = yukon_speed(hw, phystat); skge->speed = yukon_speed(hw, phystat);
/* Tx & Rx Pause Enabled bits are at 9..8 */
if (hw->chip_id == CHIP_ID_YUKON_XL)
phystat >>= 6;
/* We are using IEEE 802.3z/D5.0 Table 37-4 */ /* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (phystat & PHY_M_PS_PAUSE_MSK) { switch (phystat & PHY_M_PS_PAUSE_MSK) {
case PHY_M_PS_PAUSE_MSK: case PHY_M_PS_PAUSE_MSK:
...@@ -2075,9 +1978,9 @@ static void yukon_phy_intr(struct skge_port *skge) ...@@ -2075,9 +1978,9 @@ static void yukon_phy_intr(struct skge_port *skge)
if (skge->flow_control == FLOW_MODE_NONE || if (skge->flow_control == FLOW_MODE_NONE ||
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
else else
skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON); skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
yukon_link_up(skge); yukon_link_up(skge);
return; return;
} }
...@@ -2161,6 +2064,12 @@ static int skge_up(struct net_device *dev) ...@@ -2161,6 +2064,12 @@ static int skge_up(struct net_device *dev)
if (netif_msg_ifup(skge)) if (netif_msg_ifup(skge))
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
if (dev->mtu > RX_BUF_SIZE)
skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
else
skge->rx_buf_size = RX_BUF_SIZE;
rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
skge->mem_size = tx_size + rx_size; skge->mem_size = tx_size + rx_size;
...@@ -2173,7 +2082,8 @@ static int skge_up(struct net_device *dev) ...@@ -2173,7 +2082,8 @@ static int skge_up(struct net_device *dev)
if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma))) if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
goto free_pci_mem; goto free_pci_mem;
if (skge_rx_fill(skge)) err = skge_rx_fill(skge);
if (err)
goto free_rx_ring; goto free_rx_ring;
if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
...@@ -2182,6 +2092,10 @@ static int skge_up(struct net_device *dev) ...@@ -2182,6 +2092,10 @@ static int skge_up(struct net_device *dev)
skge->tx_avail = skge->tx_ring.count - 1; skge->tx_avail = skge->tx_ring.count - 1;
/* Enable IRQ from port */
hw->intr_mask |= portirqmask[port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
/* Initialze MAC */ /* Initialze MAC */
if (hw->chip_id == CHIP_ID_GENESIS) if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_init(hw, port); genesis_mac_init(hw, port);
...@@ -2189,7 +2103,7 @@ static int skge_up(struct net_device *dev) ...@@ -2189,7 +2103,7 @@ static int skge_up(struct net_device *dev)
yukon_mac_init(hw, port); yukon_mac_init(hw, port);
/* Configure RAMbuffers */ /* Configure RAMbuffers */
chunk = hw->ram_size / (isdualport(hw) ? 4 : 2); chunk = hw->ram_size / ((hw->ports + 1)*2);
ram_addr = hw->ram_offset + 2 * chunk * port; ram_addr = hw->ram_offset + 2 * chunk * port;
skge_ramset(hw, rxqaddr[port], ram_addr, chunk); skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
...@@ -2227,7 +2141,6 @@ static int skge_down(struct net_device *dev) ...@@ -2227,7 +2141,6 @@ static int skge_down(struct net_device *dev)
netif_stop_queue(dev); netif_stop_queue(dev);
del_timer_sync(&skge->led_blink); del_timer_sync(&skge->led_blink);
del_timer_sync(&skge->link_check);
/* Stop transmitter */ /* Stop transmitter */
skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
...@@ -2240,12 +2153,12 @@ static int skge_down(struct net_device *dev) ...@@ -2240,12 +2153,12 @@ static int skge_down(struct net_device *dev)
yukon_stop(skge); yukon_stop(skge);
/* Disable Force Sync bit and Enable Alloc bit */ /* Disable Force Sync bit and Enable Alloc bit */
skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL), skge_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */ /* Stop Interval Timer and Limit Counter of Tx Arbiter */
skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L); skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L); skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset PCI FIFO */ /* Reset PCI FIFO */
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
...@@ -2260,13 +2173,13 @@ static int skge_down(struct net_device *dev) ...@@ -2260,13 +2173,13 @@ static int skge_down(struct net_device *dev)
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
} else { } else {
skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
} }
/* turn off led's */ /* turn off led's */
...@@ -2299,10 +2212,10 @@ static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) ...@@ -2299,10 +2212,10 @@ static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
local_irq_save(flags); local_irq_save(flags);
if (!spin_trylock(&skge->tx_lock)) { if (!spin_trylock(&skge->tx_lock)) {
/* Collision - tell upper layer to requeue */ /* Collision - tell upper layer to requeue */
local_irq_restore(flags); local_irq_restore(flags);
return NETDEV_TX_LOCKED; return NETDEV_TX_LOCKED;
} }
if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) { if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
netif_stop_queue(dev); netif_stop_queue(dev);
...@@ -2333,7 +2246,7 @@ static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) ...@@ -2333,7 +2246,7 @@ static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
* does. Looks like hardware is wrong? * does. Looks like hardware is wrong?
*/ */
if (ip->protocol == IPPROTO_UDP if (ip->protocol == IPPROTO_UDP
&& chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON) && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
control = BMU_TCP_CHECK; control = BMU_TCP_CHECK;
else else
control = BMU_UDP_CHECK; control = BMU_UDP_CHECK;
...@@ -2394,6 +2307,7 @@ static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) ...@@ -2394,6 +2307,7 @@ static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e) static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
{ {
/* This ring element can be skb or fragment */
if (e->skb) { if (e->skb) {
pci_unmap_single(hw->pdev, pci_unmap_single(hw->pdev,
pci_unmap_addr(e, mapaddr), pci_unmap_addr(e, mapaddr),
...@@ -2438,16 +2352,17 @@ static void skge_tx_timeout(struct net_device *dev) ...@@ -2438,16 +2352,17 @@ static void skge_tx_timeout(struct net_device *dev)
static int skge_change_mtu(struct net_device *dev, int new_mtu) static int skge_change_mtu(struct net_device *dev, int new_mtu)
{ {
int err = 0; int err = 0;
int running = netif_running(dev);
if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL; return -EINVAL;
dev->mtu = new_mtu;
if (netif_running(dev)) { if (running)
skge_down(dev); skge_down(dev);
dev->mtu = new_mtu;
if (running)
skge_up(dev); skge_up(dev);
}
return err; return err;
} }
...@@ -2462,7 +2377,9 @@ static void genesis_set_multicast(struct net_device *dev) ...@@ -2462,7 +2377,9 @@ static void genesis_set_multicast(struct net_device *dev)
u32 mode; u32 mode;
u8 filter[8]; u8 filter[8];
mode = skge_xm_read32(hw, port, XM_MODE); pr_debug("genesis_set_multicast flags=%x count=%d\n", dev->flags, dev->mc_count);
mode = xm_read32(hw, port, XM_MODE);
mode |= XM_MD_ENA_HASH; mode |= XM_MD_ENA_HASH;
if (dev->flags & IFF_PROMISC) if (dev->flags & IFF_PROMISC)
mode |= XM_MD_ENA_PROM; mode |= XM_MD_ENA_PROM;
...@@ -2473,17 +2390,16 @@ static void genesis_set_multicast(struct net_device *dev) ...@@ -2473,17 +2390,16 @@ static void genesis_set_multicast(struct net_device *dev)
memset(filter, 0xff, sizeof(filter)); memset(filter, 0xff, sizeof(filter));
else { else {
memset(filter, 0, sizeof(filter)); memset(filter, 0, sizeof(filter));
for(i = 0; list && i < count; i++, list = list->next) { for (i = 0; list && i < count; i++, list = list->next) {
u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN); u32 crc, bit;
u8 bit = 63 - (crc & 63); crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
bit = ~crc & 0x3f;
filter[bit/8] |= 1 << (bit%8); filter[bit/8] |= 1 << (bit%8);
} }
} }
skge_xm_outhash(hw, port, XM_HSM, filter); xm_write32(hw, port, XM_MODE, mode);
xm_outhash(hw, port, XM_HSM, filter);
skge_xm_write32(hw, port, XM_MODE, mode);
} }
static void yukon_set_multicast(struct net_device *dev) static void yukon_set_multicast(struct net_device *dev)
...@@ -2497,7 +2413,7 @@ static void yukon_set_multicast(struct net_device *dev) ...@@ -2497,7 +2413,7 @@ static void yukon_set_multicast(struct net_device *dev)
memset(filter, 0, sizeof(filter)); memset(filter, 0, sizeof(filter));
reg = skge_gma_read16(hw, port, GM_RX_CTRL); reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA; reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscious */ if (dev->flags & IFF_PROMISC) /* promiscious */
...@@ -2510,23 +2426,23 @@ static void yukon_set_multicast(struct net_device *dev) ...@@ -2510,23 +2426,23 @@ static void yukon_set_multicast(struct net_device *dev)
int i; int i;
reg |= GM_RXCR_MCF_ENA; reg |= GM_RXCR_MCF_ENA;
for(i = 0; list && i < dev->mc_count; i++, list = list->next) { for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
filter[bit/8] |= 1 << (bit%8); filter[bit/8] |= 1 << (bit%8);
} }
} }
skge_gma_write16(hw, port, GM_MC_ADDR_H1, gma_write16(hw, port, GM_MC_ADDR_H1,
(u16)filter[0] | ((u16)filter[1] << 8)); (u16)filter[0] | ((u16)filter[1] << 8));
skge_gma_write16(hw, port, GM_MC_ADDR_H2, gma_write16(hw, port, GM_MC_ADDR_H2,
(u16)filter[2] | ((u16)filter[3] << 8)); (u16)filter[2] | ((u16)filter[3] << 8));
skge_gma_write16(hw, port, GM_MC_ADDR_H3, gma_write16(hw, port, GM_MC_ADDR_H3,
(u16)filter[4] | ((u16)filter[5] << 8)); (u16)filter[4] | ((u16)filter[5] << 8));
skge_gma_write16(hw, port, GM_MC_ADDR_H4, gma_write16(hw, port, GM_MC_ADDR_H4,
(u16)filter[6] | ((u16)filter[7] << 8)); (u16)filter[6] | ((u16)filter[7] << 8));
skge_gma_write16(hw, port, GM_RX_CTRL, reg); gma_write16(hw, port, GM_RX_CTRL, reg);
} }
static inline int bad_phy_status(const struct skge_hw *hw, u32 status) static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
...@@ -2545,28 +2461,76 @@ static void skge_rx_error(struct skge_port *skge, int slot, ...@@ -2545,28 +2461,76 @@ static void skge_rx_error(struct skge_port *skge, int slot,
printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n", printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
skge->netdev->name, slot, control, status); skge->netdev->name, slot, control, status);
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF) if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
|| (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
skge->net_stats.rx_length_errors++; skge->net_stats.rx_length_errors++;
else { else if (skge->hw->chip_id == CHIP_ID_GENESIS) {
if (skge->hw->chip_id == CHIP_ID_GENESIS) { if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) skge->net_stats.rx_length_errors++;
skge->net_stats.rx_length_errors++; if (status & XMR_FS_FRA_ERR)
if (status & XMR_FS_FRA_ERR) skge->net_stats.rx_frame_errors++;
skge->net_stats.rx_frame_errors++; if (status & XMR_FS_FCS_ERR)
if (status & XMR_FS_FCS_ERR) skge->net_stats.rx_crc_errors++;
skge->net_stats.rx_crc_errors++; } else {
} else { if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) skge->net_stats.rx_length_errors++;
skge->net_stats.rx_length_errors++; if (status & GMR_FS_FRAGMENT)
if (status & GMR_FS_FRAGMENT) skge->net_stats.rx_frame_errors++;
skge->net_stats.rx_frame_errors++; if (status & GMR_FS_CRC_ERR)
if (status & GMR_FS_CRC_ERR) skge->net_stats.rx_crc_errors++;
skge->net_stats.rx_crc_errors++; }
}
/* Get receive buffer from descriptor.
* Handles copy of small buffers and reallocation failures
*/
static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
struct skge_element *e,
unsigned int len)
{
struct sk_buff *nskb, *skb;
if (len < RX_COPY_THRESHOLD) {
nskb = skge_rx_alloc(skge->netdev, len + NET_IP_ALIGN);
if (unlikely(!nskb))
return NULL;
pci_dma_sync_single_for_cpu(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
memcpy(nskb->data, e->skb->data, len);
pci_dma_sync_single_for_device(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
if (skge->rx_csum) {
struct skge_rx_desc *rd = e->desc;
nskb->csum = le16_to_cpu(rd->csum2);
nskb->ip_summed = CHECKSUM_HW;
} }
skge_rx_reuse(e, skge->rx_buf_size);
return nskb;
} else {
nskb = skge_rx_alloc(skge->netdev, skge->rx_buf_size);
if (unlikely(!nskb))
return NULL;
pci_unmap_single(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
skb = e->skb;
if (skge->rx_csum) {
struct skge_rx_desc *rd = e->desc;
skb->csum = le16_to_cpu(rd->csum2);
skb->ip_summed = CHECKSUM_HW;
}
skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
return skb;
} }
} }
static int skge_poll(struct net_device *dev, int *budget) static int skge_poll(struct net_device *dev, int *budget)
{ {
struct skge_port *skge = netdev_priv(dev); struct skge_port *skge = netdev_priv(dev);
...@@ -2575,13 +2539,12 @@ static int skge_poll(struct net_device *dev, int *budget) ...@@ -2575,13 +2539,12 @@ static int skge_poll(struct net_device *dev, int *budget)
struct skge_element *e; struct skge_element *e;
unsigned int to_do = min(dev->quota, *budget); unsigned int to_do = min(dev->quota, *budget);
unsigned int work_done = 0; unsigned int work_done = 0;
int done;
static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
for (e = ring->to_clean; e != ring->to_use && work_done < to_do; pr_debug("skge_poll\n");
e = e->next) {
for (e = ring->to_clean; work_done < to_do; e = e->next) {
struct skge_rx_desc *rd = e->desc; struct skge_rx_desc *rd = e->desc;
struct sk_buff *skb = e->skb; struct sk_buff *skb;
u32 control, len, status; u32 control, len, status;
rmb(); rmb();
...@@ -2590,19 +2553,12 @@ static int skge_poll(struct net_device *dev, int *budget) ...@@ -2590,19 +2553,12 @@ static int skge_poll(struct net_device *dev, int *budget)
break; break;
len = control & BMU_BBC; len = control & BMU_BBC;
e->skb = NULL;
pci_unmap_single(hw->pdev,
pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
status = rd->status; status = rd->status;
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
|| len > dev->mtu + VLAN_ETH_HLEN if (unlikely((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
|| bad_phy_status(hw, status)) { || bad_phy_status(hw, status))) {
skge_rx_error(skge, e - ring->start, control, status); skge_rx_error(skge, e - ring->start, control, status);
dev_kfree_skb(skb); skge_rx_reuse(e, skge->rx_buf_size);
continue; continue;
} }
...@@ -2610,43 +2566,37 @@ static int skge_poll(struct net_device *dev, int *budget) ...@@ -2610,43 +2566,37 @@ static int skge_poll(struct net_device *dev, int *budget)
printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
dev->name, e - ring->start, rd->status, len); dev->name, e - ring->start, rd->status, len);
skb_put(skb, len); skb = skge_rx_get(skge, e, len);
skb->protocol = eth_type_trans(skb, dev); if (likely(skb)) {
skb_put(skb, len);
if (skge->rx_csum) { skb->protocol = eth_type_trans(skb, dev);
skb->csum = le16_to_cpu(rd->csum2);
skb->ip_summed = CHECKSUM_HW;
}
dev->last_rx = jiffies; dev->last_rx = jiffies;
netif_receive_skb(skb); netif_receive_skb(skb);
++work_done; ++work_done;
} else
skge_rx_reuse(e, skge->rx_buf_size);
} }
ring->to_clean = e; ring->to_clean = e;
*budget -= work_done;
dev->quota -= work_done;
done = work_done < to_do;
if (skge_rx_fill(skge))
done = 0;
/* restart receiver */ /* restart receiver */
wmb(); wmb();
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
CSR_START | CSR_IRQ_CL_F); CSR_START | CSR_IRQ_CL_F);
if (done) { *budget -= work_done;
local_irq_disable(); dev->quota -= work_done;
hw->intr_mask |= irqmask[skge->port];
/* Order is important since data can get interrupted */
skge_write32(hw, B0_IMSK, hw->intr_mask);
__netif_rx_complete(dev);
local_irq_enable();
}
return !done; if (work_done >= to_do)
return 1; /* not done */
local_irq_disable();
__netif_rx_complete(dev);
hw->intr_mask |= portirqmask[skge->port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
local_irq_enable();
return 0;
} }
static inline void skge_tx_intr(struct net_device *dev) static inline void skge_tx_intr(struct net_device *dev)
...@@ -2657,7 +2607,7 @@ static inline void skge_tx_intr(struct net_device *dev) ...@@ -2657,7 +2607,7 @@ static inline void skge_tx_intr(struct net_device *dev)
struct skge_element *e; struct skge_element *e;
spin_lock(&skge->tx_lock); spin_lock(&skge->tx_lock);
for(e = ring->to_clean; e != ring->to_use; e = e->next) { for (e = ring->to_clean; e != ring->to_use; e = e->next) {
struct skge_tx_desc *td = e->desc; struct skge_tx_desc *td = e->desc;
u32 control; u32 control;
...@@ -2690,12 +2640,12 @@ static void skge_mac_parity(struct skge_hw *hw, int port) ...@@ -2690,12 +2640,12 @@ static void skge_mac_parity(struct skge_hw *hw, int port)
: (port == 0 ? "(port A)": "(port B")); : (port == 0 ? "(port A)": "(port B"));
if (hw->chip_id == CHIP_ID_GENESIS) if (hw->chip_id == CHIP_ID_GENESIS)
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_CLR_PERR); MFF_CLR_PERR);
else else
/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
(hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0) (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
? GMF_CLI_TX_FC : GMF_CLI_TX_PE); ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
} }
...@@ -2703,16 +2653,16 @@ static void skge_pci_clear(struct skge_hw *hw) ...@@ -2703,16 +2653,16 @@ static void skge_pci_clear(struct skge_hw *hw)
{ {
u16 status; u16 status;
status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS)); pci_read_config_word(hw->pdev, PCI_STATUS, &status);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
skge_write16(hw, SKGEPCI_REG(PCI_STATUS), pci_write_config_word(hw->pdev, PCI_STATUS,
status | PCI_STATUS_ERROR_BITS); status | PCI_STATUS_ERROR_BITS);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
} }
static void skge_mac_intr(struct skge_hw *hw, int port) static void skge_mac_intr(struct skge_hw *hw, int port)
{ {
if (hw->chip_id == CHIP_ID_GENESIS) if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_intr(hw, port); genesis_mac_intr(hw, port);
else else
yukon_mac_intr(hw, port); yukon_mac_intr(hw, port);
...@@ -2726,9 +2676,9 @@ static void skge_error_irq(struct skge_hw *hw) ...@@ -2726,9 +2676,9 @@ static void skge_error_irq(struct skge_hw *hw)
if (hw->chip_id == CHIP_ID_GENESIS) { if (hw->chip_id == CHIP_ID_GENESIS) {
/* clear xmac errors */ /* clear xmac errors */
if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT); skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT); skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
} else { } else {
/* Timestamp (unused) overflow */ /* Timestamp (unused) overflow */
if (hwstatus & IS_IRQ_TIST_OV) if (hwstatus & IS_IRQ_TIST_OV)
...@@ -2803,8 +2753,8 @@ static void skge_extirq(unsigned long data) ...@@ -2803,8 +2753,8 @@ static void skge_extirq(unsigned long data)
if (hw->chip_id != CHIP_ID_GENESIS) if (hw->chip_id != CHIP_ID_GENESIS)
yukon_phy_intr(skge); yukon_phy_intr(skge);
else if (hw->phy_type == SK_PHY_BCOM) else
genesis_bcom_intr(skge); bcom_phy_intr(skge);
} }
} }
spin_unlock(&hw->phy_lock); spin_unlock(&hw->phy_lock);
...@@ -2824,19 +2774,14 @@ static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) ...@@ -2824,19 +2774,14 @@ static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
return IRQ_NONE; return IRQ_NONE;
status &= hw->intr_mask; status &= hw->intr_mask;
if (status & IS_R1_F) {
if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
status &= ~IS_R1_F;
hw->intr_mask &= ~IS_R1_F; hw->intr_mask &= ~IS_R1_F;
skge_write32(hw, B0_IMSK, hw->intr_mask); netif_rx_schedule(hw->dev[0]);
__netif_rx_schedule(hw->dev[0]);
} }
if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) { if (status & IS_R2_F) {
status &= ~IS_R2_F;
hw->intr_mask &= ~IS_R2_F; hw->intr_mask &= ~IS_R2_F;
skge_write32(hw, B0_IMSK, hw->intr_mask); netif_rx_schedule(hw->dev[1]);
__netif_rx_schedule(hw->dev[1]);
} }
if (status & IS_XA1_F) if (status & IS_XA1_F)
...@@ -2845,9 +2790,27 @@ static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) ...@@ -2845,9 +2790,27 @@ static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
if (status & IS_XA2_F) if (status & IS_XA2_F)
skge_tx_intr(hw->dev[1]); skge_tx_intr(hw->dev[1]);
if (status & IS_PA_TO_RX1) {
struct skge_port *skge = netdev_priv(hw->dev[0]);
++skge->net_stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
}
if (status & IS_PA_TO_RX2) {
struct skge_port *skge = netdev_priv(hw->dev[1]);
++skge->net_stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
}
if (status & IS_PA_TO_TX1)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
if (status & IS_PA_TO_TX2)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
if (status & IS_MAC1) if (status & IS_MAC1)
skge_mac_intr(hw, 0); skge_mac_intr(hw, 0);
if (status & IS_MAC2) if (status & IS_MAC2)
skge_mac_intr(hw, 1); skge_mac_intr(hw, 1);
...@@ -2859,8 +2822,7 @@ static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) ...@@ -2859,8 +2822,7 @@ static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
tasklet_schedule(&hw->ext_tasklet); tasklet_schedule(&hw->ext_tasklet);
} }
if (status) skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_write32(hw, B0_IMSK, hw->intr_mask);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -2904,9 +2866,6 @@ static const struct { ...@@ -2904,9 +2866,6 @@ static const struct {
{ CHIP_ID_YUKON, "Yukon" }, { CHIP_ID_YUKON, "Yukon" },
{ CHIP_ID_YUKON_LITE, "Yukon-Lite"}, { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
{ CHIP_ID_YUKON_LP, "Yukon-LP"}, { CHIP_ID_YUKON_LP, "Yukon-LP"},
{ CHIP_ID_YUKON_XL, "Yukon-2 XL"},
{ CHIP_ID_YUKON_EC, "YUKON-2 EC"},
{ CHIP_ID_YUKON_FE, "YUKON-2 FE"},
}; };
static const char *skge_board_name(const struct skge_hw *hw) static const char *skge_board_name(const struct skge_hw *hw)
...@@ -2930,8 +2889,8 @@ static const char *skge_board_name(const struct skge_hw *hw) ...@@ -2930,8 +2889,8 @@ static const char *skge_board_name(const struct skge_hw *hw)
static int skge_reset(struct skge_hw *hw) static int skge_reset(struct skge_hw *hw)
{ {
u16 ctst; u16 ctst;
u8 t8; u8 t8, mac_cfg;
int i, ports; int i;
ctst = skge_read16(hw, B0_CTST); ctst = skge_read16(hw, B0_CTST);
...@@ -2952,12 +2911,9 @@ static int skge_reset(struct skge_hw *hw) ...@@ -2952,12 +2911,9 @@ static int skge_reset(struct skge_hw *hw)
hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
hw->pmd_type = skge_read8(hw, B2_PMD_TYP); hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
switch(hw->chip_id) { switch (hw->chip_id) {
case CHIP_ID_GENESIS: case CHIP_ID_GENESIS:
switch (hw->phy_type) { switch (hw->phy_type) {
case SK_PHY_XMAC:
hw->phy_addr = PHY_ADDR_XMAC;
break;
case SK_PHY_BCOM: case SK_PHY_BCOM:
hw->phy_addr = PHY_ADDR_BCOM; hw->phy_addr = PHY_ADDR_BCOM;
break; break;
...@@ -2986,8 +2942,9 @@ static int skge_reset(struct skge_hw *hw) ...@@ -2986,8 +2942,9 @@ static int skge_reset(struct skge_hw *hw)
return -EOPNOTSUPP; return -EOPNOTSUPP;
} }
hw->mac_cfg = skge_read8(hw, B2_MAC_CFG); mac_cfg = skge_read8(hw, B2_MAC_CFG);
ports = isdualport(hw) ? 2 : 1; hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
/* read the adapters RAM size */ /* read the adapters RAM size */
t8 = skge_read8(hw, B2_E_0); t8 = skge_read8(hw, B2_E_0);
...@@ -3010,9 +2967,9 @@ static int skge_reset(struct skge_hw *hw) ...@@ -3010,9 +2967,9 @@ static int skge_reset(struct skge_hw *hw)
/* switch power to VCC (WA for VAUX problem) */ /* switch power to VCC (WA for VAUX problem) */
skge_write8(hw, B0_POWER_CTRL, skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
for (i = 0; i < ports; i++) { for (i = 0; i < hw->ports; i++) {
skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
} }
} }
...@@ -3022,8 +2979,8 @@ static int skge_reset(struct skge_hw *hw) ...@@ -3022,8 +2979,8 @@ static int skge_reset(struct skge_hw *hw)
skge_write8(hw, B0_LED, LED_STAT_ON); skge_write8(hw, B0_LED, LED_STAT_ON);
/* enable the Tx Arbiters */ /* enable the Tx Arbiters */
for (i = 0; i < ports; i++) for (i = 0; i < hw->ports; i++)
skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB); skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */ /* Initialize ram interface */
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
...@@ -3050,16 +3007,14 @@ static int skge_reset(struct skge_hw *hw) ...@@ -3050,16 +3007,14 @@ static int skge_reset(struct skge_hw *hw)
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
skge_write32(hw, B2_IRQM_CTRL, TIM_START); skge_write32(hw, B2_IRQM_CTRL, TIM_START);
hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1; hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
if (isdualport(hw))
hw->intr_mask |= IS_PORT_2;
skge_write32(hw, B0_IMSK, hw->intr_mask); skge_write32(hw, B0_IMSK, hw->intr_mask);
if (hw->chip_id != CHIP_ID_GENESIS) if (hw->chip_id != CHIP_ID_GENESIS)
skge_write8(hw, GMAC_IRQ_MSK, 0); skge_write8(hw, GMAC_IRQ_MSK, 0);
spin_lock_bh(&hw->phy_lock); spin_lock_bh(&hw->phy_lock);
for (i = 0; i < ports; i++) { for (i = 0; i < hw->ports; i++) {
if (hw->chip_id == CHIP_ID_GENESIS) if (hw->chip_id == CHIP_ID_GENESIS)
genesis_reset(hw, i); genesis_reset(hw, i);
else else
...@@ -3071,7 +3026,8 @@ static int skge_reset(struct skge_hw *hw) ...@@ -3071,7 +3026,8 @@ static int skge_reset(struct skge_hw *hw)
} }
/* Initialize network device */ /* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port) static struct net_device *skge_devinit(struct skge_hw *hw, int port,
int highmem)
{ {
struct skge_port *skge; struct skge_port *skge;
struct net_device *dev = alloc_etherdev(sizeof(*skge)); struct net_device *dev = alloc_etherdev(sizeof(*skge));
...@@ -3104,6 +3060,8 @@ static struct net_device *skge_devinit(struct skge_hw *hw, int port) ...@@ -3104,6 +3060,8 @@ static struct net_device *skge_devinit(struct skge_hw *hw, int port)
#endif #endif
dev->irq = hw->pdev->irq; dev->irq = hw->pdev->irq;
dev->features = NETIF_F_LLTX; dev->features = NETIF_F_LLTX;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
skge = netdev_priv(dev); skge = netdev_priv(dev);
skge->netdev = dev; skge->netdev = dev;
...@@ -3117,7 +3075,7 @@ static struct net_device *skge_devinit(struct skge_hw *hw, int port) ...@@ -3117,7 +3075,7 @@ static struct net_device *skge_devinit(struct skge_hw *hw, int port)
skge->flow_control = FLOW_MODE_SYMMETRIC; skge->flow_control = FLOW_MODE_SYMMETRIC;
skge->duplex = -1; skge->duplex = -1;
skge->speed = -1; skge->speed = -1;
skge->advertising = skge_modes(hw); skge->advertising = skge_supported_modes(hw);
hw->dev[port] = dev; hw->dev[port] = dev;
...@@ -3125,10 +3083,6 @@ static struct net_device *skge_devinit(struct skge_hw *hw, int port) ...@@ -3125,10 +3083,6 @@ static struct net_device *skge_devinit(struct skge_hw *hw, int port)
spin_lock_init(&skge->tx_lock); spin_lock_init(&skge->tx_lock);
init_timer(&skge->link_check);
skge->link_check.function = skge_link_timer;
skge->link_check.data = (unsigned long) skge;
init_timer(&skge->led_blink); init_timer(&skge->led_blink);
skge->led_blink.function = skge_blink_timer; skge->led_blink.function = skge_blink_timer;
skge->led_blink.data = (unsigned long) skge; skge->led_blink.data = (unsigned long) skge;
...@@ -3232,14 +3186,11 @@ static int __devinit skge_probe(struct pci_dev *pdev, ...@@ -3232,14 +3186,11 @@ static int __devinit skge_probe(struct pci_dev *pdev,
printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n", printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
pci_resource_start(pdev, 0), pdev->irq, pci_resource_start(pdev, 0), pdev->irq,
skge_board_name(hw), chip_rev(hw)); skge_board_name(hw), hw->chip_rev);
if ((dev = skge_devinit(hw, 0)) == NULL) if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
goto err_out_led_off; goto err_out_led_off;
if (using_dac)
dev->features |= NETIF_F_HIGHDMA;
if ((err = register_netdev(dev))) { if ((err = register_netdev(dev))) {
printk(KERN_ERR PFX "%s: cannot register net device\n", printk(KERN_ERR PFX "%s: cannot register net device\n",
pci_name(pdev)); pci_name(pdev));
...@@ -3248,10 +3199,7 @@ static int __devinit skge_probe(struct pci_dev *pdev, ...@@ -3248,10 +3199,7 @@ static int __devinit skge_probe(struct pci_dev *pdev,
skge_show_addr(dev); skge_show_addr(dev);
if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) { if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
if (using_dac)
dev1->features |= NETIF_F_HIGHDMA;
if (register_netdev(dev1) == 0) if (register_netdev(dev1) == 0)
skge_show_addr(dev1); skge_show_addr(dev1);
else { else {
...@@ -3288,7 +3236,7 @@ static void __devexit skge_remove(struct pci_dev *pdev) ...@@ -3288,7 +3236,7 @@ static void __devexit skge_remove(struct pci_dev *pdev)
struct skge_hw *hw = pci_get_drvdata(pdev); struct skge_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1; struct net_device *dev0, *dev1;
if(!hw) if (!hw)
return; return;
if ((dev1 = hw->dev[1])) if ((dev1 = hw->dev[1]))
...@@ -3316,7 +3264,7 @@ static int skge_suspend(struct pci_dev *pdev, u32 state) ...@@ -3316,7 +3264,7 @@ static int skge_suspend(struct pci_dev *pdev, u32 state)
struct skge_hw *hw = pci_get_drvdata(pdev); struct skge_hw *hw = pci_get_drvdata(pdev);
int i, wol = 0; int i, wol = 0;
for(i = 0; i < 2; i++) { for (i = 0; i < 2; i++) {
struct net_device *dev = hw->dev[i]; struct net_device *dev = hw->dev[i];
if (dev) { if (dev) {
...@@ -3349,11 +3297,11 @@ static int skge_resume(struct pci_dev *pdev) ...@@ -3349,11 +3297,11 @@ static int skge_resume(struct pci_dev *pdev)
skge_reset(hw); skge_reset(hw);
for(i = 0; i < 2; i++) { for (i = 0; i < 2; i++) {
struct net_device *dev = hw->dev[i]; struct net_device *dev = hw->dev[i];
if (dev) { if (dev) {
netif_device_attach(dev); netif_device_attach(dev);
if(netif_running(dev)) if (netif_running(dev))
skge_up(dev); skge_up(dev);
} }
} }
......
...@@ -7,31 +7,6 @@ ...@@ -7,31 +7,6 @@
/* PCI config registers */ /* PCI config registers */
#define PCI_DEV_REG1 0x40 #define PCI_DEV_REG1 0x40
#define PCI_DEV_REG2 0x44 #define PCI_DEV_REG2 0x44
#ifndef PCI_VPD
#define PCI_VPD 0x50
#endif
/* PCI_OUR_REG_2 32 bit Our Register 2 */
enum {
PCI_VPD_WR_THR = 0xff<<24, /* Bit 31..24: VPD Write Threshold */
PCI_DEV_SEL = 0x7f<<17, /* Bit 23..17: EEPROM Device Select */
PCI_VPD_ROM_SZ = 7 <<14, /* Bit 16..14: VPD ROM Size */
/* Bit 13..12: reserved */
PCI_EN_DUMMY_RD = 1<<3, /* Enable Dummy Read */
PCI_REV_DESC = 1<<2, /* Reverse Desc. Bytes */
PCI_USEDATA64 = 1<<0, /* Use 64Bit Data bus ext */
};
/* PCI_VPD_ADR_REG 16 bit VPD Address Register */
enum {
PCI_VPD_FLAG = 1<<15, /* starts VPD rd/wr cycle */
PCI_VPD_ADR_MSK =0x7fffL, /* Bit 14.. 0: VPD Address Mask */
VPD_RES_ID = 0x82,
VPD_RES_READ = 0x90,
VPD_RES_WRITE = 0x81,
VPD_RES_END = 0x78,
};
#define PCI_STATUS_ERROR_BITS (PCI_STATUS_DETECTED_PARITY | \ #define PCI_STATUS_ERROR_BITS (PCI_STATUS_DETECTED_PARITY | \
PCI_STATUS_SIG_SYSTEM_ERROR | \ PCI_STATUS_SIG_SYSTEM_ERROR | \
...@@ -39,7 +14,6 @@ enum { ...@@ -39,7 +14,6 @@ enum {
PCI_STATUS_REC_TARGET_ABORT | \ PCI_STATUS_REC_TARGET_ABORT | \
PCI_STATUS_PARITY) PCI_STATUS_PARITY)
enum csr_regs { enum csr_regs {
B0_RAP = 0x0000, B0_RAP = 0x0000,
B0_CTST = 0x0004, B0_CTST = 0x0004,
...@@ -229,8 +203,11 @@ enum { ...@@ -229,8 +203,11 @@ enum {
IS_XA2_F = 1<<1, /* Q_XA2 End of Frame */ IS_XA2_F = 1<<1, /* Q_XA2 End of Frame */
IS_XA2_C = 1<<0, /* Q_XA2 Encoding Error */ IS_XA2_C = 1<<0, /* Q_XA2 Encoding Error */
IS_PORT_1 = IS_XA1_F| IS_R1_F| IS_MAC1, IS_TO_PORT1 = IS_PA_TO_RX1 | IS_PA_TO_TX1,
IS_PORT_2 = IS_XA2_F| IS_R2_F| IS_MAC2, IS_TO_PORT2 = IS_PA_TO_RX2 | IS_PA_TO_TX2,
IS_PORT_1 = IS_XA1_F| IS_R1_F | IS_TO_PORT1 | IS_MAC1,
IS_PORT_2 = IS_XA2_F| IS_R2_F | IS_TO_PORT2 | IS_MAC2,
}; };
...@@ -288,14 +265,6 @@ enum { ...@@ -288,14 +265,6 @@ enum {
CHIP_REV_YU_LITE_A3 = 7, /* Chip Rev. for YUKON-Lite A3 */ CHIP_REV_YU_LITE_A3 = 7, /* Chip Rev. for YUKON-Lite A3 */
}; };
/* B2_LD_TEST 8 bit EPROM loader test register */
enum {
LD_T_ON = 1<<3, /* Loader Test mode on */
LD_T_OFF = 1<<2, /* Loader Test mode off */
LD_T_STEP = 1<<1, /* Decrement FPROM addr. Counter */
LD_START = 1<<0, /* Start loading FPROM */
};
/* B2_TI_CTRL 8 bit Timer control */ /* B2_TI_CTRL 8 bit Timer control */
/* B2_IRQM_CTRL 8 bit IRQ Moderation Timer Control */ /* B2_IRQM_CTRL 8 bit IRQ Moderation Timer Control */
enum { enum {
...@@ -313,16 +282,6 @@ enum { ...@@ -313,16 +282,6 @@ enum {
TIM_T_STEP = 1<<0, /* Test step */ TIM_T_STEP = 1<<0, /* Test step */
}; };
/* B28_DPT_INI 32 bit Descriptor Poll Timer Init Val */
/* B28_DPT_VAL 32 bit Descriptor Poll Timer Curr Val */
/* B28_DPT_CTRL 8 bit Descriptor Poll Timer Ctrl Reg */
enum {
DPT_MSK = 0x00ffffffL, /* Bit 23.. 0: Desc Poll Timer Bits */
DPT_START = 1<<1, /* Start Descriptor Poll Timer */
DPT_STOP = 1<<0, /* Stop Descriptor Poll Timer */
};
/* B2_GP_IO 32 bit General Purpose I/O Register */ /* B2_GP_IO 32 bit General Purpose I/O Register */
enum { enum {
GP_DIR_9 = 1<<25, /* IO_9 direct, 0=In/1=Out */ GP_DIR_9 = 1<<25, /* IO_9 direct, 0=In/1=Out */
...@@ -348,30 +307,6 @@ enum { ...@@ -348,30 +307,6 @@ enum {
GP_IO_0 = 1<<0, /* IO_0 pin */ GP_IO_0 = 1<<0, /* IO_0 pin */
}; };
/* Rx/Tx Path related Arbiter Test Registers */
/* B3_MA_TO_TEST 16 bit MAC Arbiter Timeout Test Reg */
/* B3_MA_RC_TEST 16 bit MAC Arbiter Recovery Test Reg */
/* B3_PA_TEST 16 bit Packet Arbiter Test Register */
/* Bit 15, 11, 7, and 3 are reserved in B3_PA_TEST */
enum {
TX2_T_EV = 1<<15,/* TX2 Timeout/Recv Event occured */
TX2_T_ON = 1<<14,/* TX2 Timeout/Recv Timer Test On */
TX2_T_OFF = 1<<13,/* TX2 Timeout/Recv Timer Tst Off */
TX2_T_STEP = 1<<12,/* TX2 Timeout/Recv Timer Step */
TX1_T_EV = 1<<11,/* TX1 Timeout/Recv Event occured */
TX1_T_ON = 1<<10,/* TX1 Timeout/Recv Timer Test On */
TX1_T_OFF = 1<<9, /* TX1 Timeout/Recv Timer Tst Off */
TX1_T_STEP = 1<<8, /* TX1 Timeout/Recv Timer Step */
RX2_T_EV = 1<<7, /* RX2 Timeout/Recv Event occured */
RX2_T_ON = 1<<6, /* RX2 Timeout/Recv Timer Test On */
RX2_T_OFF = 1<<5, /* RX2 Timeout/Recv Timer Tst Off */
RX2_T_STEP = 1<<4, /* RX2 Timeout/Recv Timer Step */
RX1_T_EV = 1<<3, /* RX1 Timeout/Recv Event occured */
RX1_T_ON = 1<<2, /* RX1 Timeout/Recv Timer Test On */
RX1_T_OFF = 1<<1, /* RX1 Timeout/Recv Timer Tst Off */
RX1_T_STEP = 1<<0, /* RX1 Timeout/Recv Timer Step */
};
/* Descriptor Bit Definition */ /* Descriptor Bit Definition */
/* TxCtrl Transmit Buffer Control Field */ /* TxCtrl Transmit Buffer Control Field */
/* RxCtrl Receive Buffer Control Field */ /* RxCtrl Receive Buffer Control Field */
...@@ -428,14 +363,6 @@ enum { ...@@ -428,14 +363,6 @@ enum {
RI_RST_SET = 1<<0, /* Set RAM Interface Reset */ RI_RST_SET = 1<<0, /* Set RAM Interface Reset */
}; };
/* B3_RI_TEST 8 bit RAM Iface Test Register */
enum {
RI_T_EV = 1<<3, /* Timeout Event occured */
RI_T_ON = 1<<2, /* Timeout Timer Test On */
RI_T_OFF = 1<<1, /* Timeout Timer Test Off */
RI_T_STEP = 1<<0, /* Timeout Timer Step */
};
/* MAC Arbiter Registers */ /* MAC Arbiter Registers */
/* B3_MA_TO_CTRL 16 bit MAC Arbiter Timeout Ctrl Reg */ /* B3_MA_TO_CTRL 16 bit MAC Arbiter Timeout Ctrl Reg */
enum { enum {
...@@ -452,19 +379,6 @@ enum { ...@@ -452,19 +379,6 @@ enum {
#define SK_PKT_TO_MAX 0xffff /* Maximum value */ #define SK_PKT_TO_MAX 0xffff /* Maximum value */
#define SK_RI_TO_53 36 /* RAM interface timeout */ #define SK_RI_TO_53 36 /* RAM interface timeout */
/* B3_MA_RC_CTRL 16 bit MAC Arbiter Recovery Ctrl Reg */
enum {
MA_ENA_REC_TX2 = 1<<7, /* Enable Recovery Timer TX2 */
MA_DIS_REC_TX2 = 1<<6, /* Disable Recovery Timer TX2 */
MA_ENA_REC_TX1 = 1<<5, /* Enable Recovery Timer TX1 */
MA_DIS_REC_TX1 = 1<<4, /* Disable Recovery Timer TX1 */
MA_ENA_REC_RX2 = 1<<3, /* Enable Recovery Timer RX2 */
MA_DIS_REC_RX2 = 1<<2, /* Disable Recovery Timer RX2 */
MA_ENA_REC_RX1 = 1<<1, /* Enable Recovery Timer RX1 */
MA_DIS_REC_RX1 = 1<<0, /* Disable Recovery Timer RX1 */
};
/* Packet Arbiter Registers */ /* Packet Arbiter Registers */
/* B3_PA_CTRL 16 bit Packet Arbiter Ctrl Register */ /* B3_PA_CTRL 16 bit Packet Arbiter Ctrl Register */
enum { enum {
...@@ -488,7 +402,7 @@ enum { ...@@ -488,7 +402,7 @@ enum {
PA_ENA_TO_TX1 | PA_ENA_TO_TX2) PA_ENA_TO_TX1 | PA_ENA_TO_TX2)
/* Transmit Arbiter Registers MAC 1 and 2, use MR_ADDR() to access */ /* Transmit Arbiter Registers MAC 1 and 2, use SK_REG() to access */
/* TXA_ITI_INI 32 bit Tx Arb Interval Timer Init Val */ /* TXA_ITI_INI 32 bit Tx Arb Interval Timer Init Val */
/* TXA_ITI_VAL 32 bit Tx Arb Interval Timer Value */ /* TXA_ITI_VAL 32 bit Tx Arb Interval Timer Value */
/* TXA_LIM_INI 32 bit Tx Arb Limit Counter Init Val */ /* TXA_LIM_INI 32 bit Tx Arb Limit Counter Init Val */
...@@ -511,7 +425,7 @@ enum { ...@@ -511,7 +425,7 @@ enum {
/* /*
* Bank 4 - 5 * Bank 4 - 5
*/ */
/* Transmit Arbiter Registers MAC 1 and 2, use MR_ADDR() to access */ /* Transmit Arbiter Registers MAC 1 and 2, use SK_REG() to access */
enum { enum {
TXA_ITI_INI = 0x0200,/* 32 bit Tx Arb Interval Timer Init Val*/ TXA_ITI_INI = 0x0200,/* 32 bit Tx Arb Interval Timer Init Val*/
TXA_ITI_VAL = 0x0204,/* 32 bit Tx Arb Interval Timer Value */ TXA_ITI_VAL = 0x0204,/* 32 bit Tx Arb Interval Timer Value */
...@@ -537,7 +451,7 @@ enum { ...@@ -537,7 +451,7 @@ enum {
/* Queue Register Offsets, use Q_ADDR() to access */ /* Queue Register Offsets, use Q_ADDR() to access */
enum { enum {
B8_Q_REGS = 0x0400, /* base of Queue registers */ B8_Q_REGS = 0x0400, /* base of Queue registers */
Q_D = 0x00, /* 8*32 bit Current Descriptor */ Q_D = 0x00, /* 8*32 bit Current Descriptor */
Q_DA_L = 0x20, /* 32 bit Current Descriptor Address Low dWord */ Q_DA_L = 0x20, /* 32 bit Current Descriptor Address Low dWord */
Q_DA_H = 0x24, /* 32 bit Current Descriptor Address High dWord */ Q_DA_H = 0x24, /* 32 bit Current Descriptor Address High dWord */
...@@ -618,8 +532,7 @@ enum { ...@@ -618,8 +532,7 @@ enum {
enum { enum {
PHY_ADDR_XMAC = 0<<8, PHY_ADDR_XMAC = 0<<8,
PHY_ADDR_BCOM = 1<<8, PHY_ADDR_BCOM = 1<<8,
PHY_ADDR_LONE = 3<<8,
PHY_ADDR_NAT = 0<<8,
/* GPHY address (bits 15..11 of SMI control reg) */ /* GPHY address (bits 15..11 of SMI control reg) */
PHY_ADDR_MARV = 0, PHY_ADDR_MARV = 0,
}; };
...@@ -986,7 +899,7 @@ enum { ...@@ -986,7 +899,7 @@ enum {
LINKLED_BLINK_OFF = 0x10, LINKLED_BLINK_OFF = 0x10,
LINKLED_BLINK_ON = 0x20, LINKLED_BLINK_ON = 0x20,
}; };
/* GMAC and GPHY Control Registers (YUKON only) */ /* GMAC and GPHY Control Registers (YUKON only) */
enum { enum {
GMAC_CTRL = 0x0f00,/* 32 bit GMAC Control Reg */ GMAC_CTRL = 0x0f00,/* 32 bit GMAC Control Reg */
...@@ -1151,54 +1064,6 @@ enum { ...@@ -1151,54 +1064,6 @@ enum {
PHY_MARV_FE_SPEC_2 = 0x1c,/* 16 bit r/w Specific Control Reg. 2 */ PHY_MARV_FE_SPEC_2 = 0x1c,/* 16 bit r/w Specific Control Reg. 2 */
}; };
/* Level One-PHY Registers, indirect addressed over XMAC */
enum {
PHY_LONE_CTRL = 0x00,/* 16 bit r/w PHY Control Register */
PHY_LONE_STAT = 0x01,/* 16 bit r/o PHY Status Register */
PHY_LONE_ID0 = 0x02,/* 16 bit r/o PHY ID0 Register */
PHY_LONE_ID1 = 0x03,/* 16 bit r/o PHY ID1 Register */
PHY_LONE_AUNE_ADV = 0x04,/* 16 bit r/w Auto-Neg. Advertisement */
PHY_LONE_AUNE_LP = 0x05,/* 16 bit r/o Link Part Ability Reg */
PHY_LONE_AUNE_EXP = 0x06,/* 16 bit r/o Auto-Neg. Expansion Reg */
PHY_LONE_NEPG = 0x07,/* 16 bit r/w Next Page Register */
PHY_LONE_NEPG_LP = 0x08,/* 16 bit r/o Next Page Link Partner */
/* Level One-specific registers */
PHY_LONE_1000T_CTRL = 0x09,/* 16 bit r/w 1000Base-T Control Reg */
PHY_LONE_1000T_STAT = 0x0a,/* 16 bit r/o 1000Base-T Status Reg */
PHY_LONE_EXT_STAT = 0x0f,/* 16 bit r/o Extended Status Reg */
PHY_LONE_PORT_CFG = 0x10,/* 16 bit r/w Port Configuration Reg*/
PHY_LONE_Q_STAT = 0x11,/* 16 bit r/o Quick Status Reg */
PHY_LONE_INT_ENAB = 0x12,/* 16 bit r/w Interrupt Enable Reg */
PHY_LONE_INT_STAT = 0x13,/* 16 bit r/o Interrupt Status Reg */
PHY_LONE_LED_CFG = 0x14,/* 16 bit r/w LED Configuration Reg */
PHY_LONE_PORT_CTRL = 0x15,/* 16 bit r/w Port Control Reg */
PHY_LONE_CIM = 0x16,/* 16 bit r/o CIM Reg */
};
/* National-PHY Registers, indirect addressed over XMAC */
enum {
PHY_NAT_CTRL = 0x00,/* 16 bit r/w PHY Control Register */
PHY_NAT_STAT = 0x01,/* 16 bit r/w PHY Status Register */
PHY_NAT_ID0 = 0x02,/* 16 bit r/o PHY ID0 Register */
PHY_NAT_ID1 = 0x03,/* 16 bit r/o PHY ID1 Register */
PHY_NAT_AUNE_ADV = 0x04,/* 16 bit r/w Auto-Neg. Advertisement */
PHY_NAT_AUNE_LP = 0x05,/* 16 bit r/o Link Partner Ability Reg */
PHY_NAT_AUNE_EXP = 0x06,/* 16 bit r/o Auto-Neg. Expansion Reg */
PHY_NAT_NEPG = 0x07,/* 16 bit r/w Next Page Register */
PHY_NAT_NEPG_LP = 0x08,/* 16 bit r/o Next Page Link Partner Reg */
/* National-specific registers */
PHY_NAT_1000T_CTRL = 0x09,/* 16 bit r/w 1000Base-T Control Reg */
PHY_NAT_1000T_STAT = 0x0a,/* 16 bit r/o 1000Base-T Status Reg */
PHY_NAT_EXT_STAT = 0x0f,/* 16 bit r/o Extended Status Register */
PHY_NAT_EXT_CTRL1 = 0x10,/* 16 bit r/o Extended Control Reg1 */
PHY_NAT_Q_STAT1 = 0x11,/* 16 bit r/o Quick Status Reg1 */
PHY_NAT_10B_OP = 0x12,/* 16 bit r/o 10Base-T Operations Reg */
PHY_NAT_EXT_CTRL2 = 0x13,/* 16 bit r/o Extended Control Reg1 */
PHY_NAT_Q_STAT2 = 0x14,/* 16 bit r/o Quick Status Reg2 */
PHY_NAT_PHY_ADDR = 0x19,/* 16 bit r/o PHY Address Register */
};
enum { enum {
PHY_CT_RESET = 1<<15, /* Bit 15: (sc) clear all PHY related regs */ PHY_CT_RESET = 1<<15, /* Bit 15: (sc) clear all PHY related regs */
PHY_CT_LOOP = 1<<14, /* Bit 14: enable Loopback over PHY */ PHY_CT_LOOP = 1<<14, /* Bit 14: enable Loopback over PHY */
...@@ -1253,8 +1118,29 @@ enum { ...@@ -1253,8 +1118,29 @@ enum {
PHY_MARV_ID1_Y2 = 0x0C91, /* Yukon-2 (PHY 88E1112) */ PHY_MARV_ID1_Y2 = 0x0C91, /* Yukon-2 (PHY 88E1112) */
}; };
/* Advertisement register bits */
enum { enum {
PHY_AN_NXT_PG = 1<<15, /* Bit 15: Request Next Page */ PHY_AN_NXT_PG = 1<<15, /* Bit 15: Request Next Page */
PHY_AN_ACK = 1<<14, /* Bit 14: (ro) Acknowledge Received */
PHY_AN_RF = 1<<13, /* Bit 13: Remote Fault Bits */
PHY_AN_PAUSE_ASYM = 1<<11,/* Bit 11: Try for asymmetric */
PHY_AN_PAUSE_CAP = 1<<10, /* Bit 10: Try for pause */
PHY_AN_100BASE4 = 1<<9, /* Bit 9: Try for 100mbps 4k packets */
PHY_AN_100FULL = 1<<8, /* Bit 8: Try for 100mbps full-duplex */
PHY_AN_100HALF = 1<<7, /* Bit 7: Try for 100mbps half-duplex */
PHY_AN_10FULL = 1<<6, /* Bit 6: Try for 10mbps full-duplex */
PHY_AN_10HALF = 1<<5, /* Bit 5: Try for 10mbps half-duplex */
PHY_AN_CSMA = 1<<0, /* Bit 0: Only selector supported */
PHY_AN_SEL = 0x1f, /* Bit 4..0: Selector Field, 00001=Ethernet*/
PHY_AN_FULL = PHY_AN_100FULL | PHY_AN_10FULL | PHY_AN_CSMA,
PHY_AN_ALL = PHY_AN_10HALF | PHY_AN_10FULL |
PHY_AN_100HALF | PHY_AN_100FULL,
};
/* Xmac Specific */
enum {
PHY_X_AN_NXT_PG = 1<<15, /* Bit 15: Request Next Page */
PHY_X_AN_ACK = 1<<14, /* Bit 14: (ro) Acknowledge Received */ PHY_X_AN_ACK = 1<<14, /* Bit 14: (ro) Acknowledge Received */
PHY_X_AN_RFB = 3<<12,/* Bit 13..12: Remote Fault Bits */ PHY_X_AN_RFB = 3<<12,/* Bit 13..12: Remote Fault Bits */
...@@ -1263,82 +1149,6 @@ enum { ...@@ -1263,82 +1149,6 @@ enum {
PHY_X_AN_FD = 1<<5, /* Bit 5: Full Duplex */ PHY_X_AN_FD = 1<<5, /* Bit 5: Full Duplex */
}; };
enum {
PHY_B_AN_RF = 1<<13, /* Bit 13: Remote Fault */
PHY_B_AN_ASP = 1<<11, /* Bit 11: Asymmetric Pause */
PHY_B_AN_PC = 1<<10, /* Bit 10: Pause Capable */
PHY_B_AN_SEL = 0x1f, /* Bit 4..0: Selector Field, 00001=Ethernet*/
};
enum {
PHY_L_AN_RF = 1<<13, /* Bit 13: Remote Fault */
/* Bit 12: reserved */
PHY_L_AN_ASP = 1<<11, /* Bit 11: Asymmetric Pause */
PHY_L_AN_PC = 1<<10, /* Bit 10: Pause Capable */
PHY_L_AN_SEL = 0x1f, /* Bit 4..0: Selector Field, 00001=Ethernet*/
};
/* PHY_NAT_AUNE_ADV 16 bit r/w Auto-Negotiation Advertisement */
/* PHY_NAT_AUNE_LP 16 bit r/o Link Partner Ability Reg *****/
/* PHY_AN_NXT_PG (see XMAC) Bit 15: Request Next Page */
enum {
PHY_N_AN_RF = 1<<13, /* Bit 13: Remote Fault */
PHY_N_AN_100F = 1<<11, /* Bit 11: 100Base-T2 FD Support */
PHY_N_AN_100H = 1<<10, /* Bit 10: 100Base-T2 HD Support */
PHY_N_AN_SEL = 0x1f, /* Bit 4..0: Selector Field, 00001=Ethernet*/
};
/* field type definition for PHY_x_AN_SEL */
enum {
PHY_SEL_TYPE = 1, /* 00001 = Ethernet */
};
enum {
PHY_ANE_LP_NP = 1<<3, /* Bit 3: Link Partner can Next Page */
PHY_ANE_LOC_NP = 1<<2, /* Bit 2: Local PHY can Next Page */
PHY_ANE_RX_PG = 1<<1, /* Bit 1: Page Received */
};
enum {
PHY_ANE_PAR_DF = 1<<4, /* Bit 4: Parallel Detection Fault */
PHY_ANE_LP_CAP = 1<<0, /* Bit 0: Link Partner Auto-Neg. Cap. */
};
enum {
PHY_NP_MORE = 1<<15, /* Bit 15: More, Next Pages to follow */
PHY_NP_ACK1 = 1<<14, /* Bit 14: (ro) Ack1, for receiving a message */
PHY_NP_MSG_VAL = 1<<13, /* Bit 13: Message Page valid */
PHY_NP_ACK2 = 1<<12, /* Bit 12: Ack2, comply with msg content */
PHY_NP_TOG = 1<<11, /* Bit 11: Toggle Bit, ensure sync */
PHY_NP_MSG = 0x07ff, /* Bit 10..0: Message from/to Link Partner */
};
enum {
PHY_X_EX_FD = 1<<15, /* Bit 15: Device Supports Full Duplex */
PHY_X_EX_HD = 1<<14, /* Bit 14: Device Supports Half Duplex */
};
enum {
PHY_X_RS_PAUSE = 3<<7,/* Bit 8..7: selected Pause Mode */
PHY_X_RS_HD = 1<<6, /* Bit 6: Half Duplex Mode selected */
PHY_X_RS_FD = 1<<5, /* Bit 5: Full Duplex Mode selected */
PHY_X_RS_ABLMIS = 1<<4, /* Bit 4: duplex or pause cap mismatch */
PHY_X_RS_PAUMIS = 1<<3, /* Bit 3: pause capability mismatch */
};
/** Remote Fault Bits (PHY_X_AN_RFB) encoding */
enum {
X_RFB_OK = 0<<12,/* Bit 13..12 No errors, Link OK */
X_RFB_LF = 1<<12, /* Bit 13..12 Link Failure */
X_RFB_OFF = 2<<12,/* Bit 13..12 Offline */
X_RFB_AN_ERR = 3<<12,/* Bit 13..12 Auto-Negotiation Error */
};
/* Pause Bits (PHY_X_AN_PAUSE and PHY_X_RS_PAUSE) encoding */ /* Pause Bits (PHY_X_AN_PAUSE and PHY_X_RS_PAUSE) encoding */
enum { enum {
PHY_X_P_NO_PAUSE = 0<<7,/* Bit 8..7: no Pause Mode */ PHY_X_P_NO_PAUSE = 0<<7,/* Bit 8..7: no Pause Mode */
...@@ -1418,6 +1228,16 @@ enum { ...@@ -1418,6 +1228,16 @@ enum {
PHY_B_PES_MLT3_ER = 1<<0, /* Bit 0: MLT3 code Error */ PHY_B_PES_MLT3_ER = 1<<0, /* Bit 0: MLT3 code Error */
}; };
/* PHY_BCOM_AUNE_ADV 16 bit r/w Auto-Negotiation Advertisement *****/
/* PHY_BCOM_AUNE_LP 16 bit r/o Link Partner Ability Reg *****/
enum {
PHY_B_AN_RF = 1<<13, /* Bit 13: Remote Fault */
PHY_B_AN_ASP = 1<<11, /* Bit 11: Asymmetric Pause */
PHY_B_AN_PC = 1<<10, /* Bit 10: Pause Capable */
};
/***** PHY_BCOM_FC_CTR 16 bit r/w False Carrier Counter *****/ /***** PHY_BCOM_FC_CTR 16 bit r/w False Carrier Counter *****/
enum { enum {
PHY_B_FC_CTR = 0xff, /* Bit 7..0: False Carrier Counter */ PHY_B_FC_CTR = 0xff, /* Bit 7..0: False Carrier Counter */
...@@ -1478,7 +1298,9 @@ enum { ...@@ -1478,7 +1298,9 @@ enum {
PHY_B_IS_LST_CHANGE = 1<<1, /* Bit 1: Link Status Changed */ PHY_B_IS_LST_CHANGE = 1<<1, /* Bit 1: Link Status Changed */
PHY_B_IS_CRC_ER = 1<<0, /* Bit 0: CRC Error */ PHY_B_IS_CRC_ER = 1<<0, /* Bit 0: CRC Error */
}; };
#define PHY_B_DEF_MSK (~(PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) #define PHY_B_DEF_MSK \
(~(PHY_B_IS_PSE | PHY_B_IS_AN_PR | PHY_B_IS_DUP_CHANGE | \
PHY_B_IS_LSP_CHANGE | PHY_B_IS_LST_CHANGE))
/* Pause Bits (PHY_B_AN_ASP and PHY_B_AN_PC) encoding */ /* Pause Bits (PHY_B_AN_ASP and PHY_B_AN_PC) encoding */
enum { enum {
...@@ -1495,166 +1317,6 @@ enum { ...@@ -1495,166 +1317,6 @@ enum {
PHY_B_RES_1000HD = 6<<8,/* Bit 10..8: 1000Base-T Half Dup. */ PHY_B_RES_1000HD = 6<<8,/* Bit 10..8: 1000Base-T Half Dup. */
}; };
/*
* Level One-Specific
*/
/***** PHY_LONE_1000T_CTRL 16 bit r/w 1000Base-T Control Reg *****/
enum {
PHY_L_1000C_TEST = 7<<13,/* Bit 15..13: Test Modes */
PHY_L_1000C_MSE = 1<<12, /* Bit 12: Master/Slave Enable */
PHY_L_1000C_MSC = 1<<11, /* Bit 11: M/S Configuration */
PHY_L_1000C_RD = 1<<10, /* Bit 10: Repeater/DTE */
PHY_L_1000C_AFD = 1<<9, /* Bit 9: Advertise Full Duplex */
PHY_L_1000C_AHD = 1<<8, /* Bit 8: Advertise Half Duplex */
};
/***** PHY_LONE_1000T_STAT 16 bit r/o 1000Base-T Status Reg *****/
enum {
PHY_L_1000S_MSF = 1<<15, /* Bit 15: Master/Slave Fault */
PHY_L_1000S_MSR = 1<<14, /* Bit 14: Master/Slave Result */
PHY_L_1000S_LRS = 1<<13, /* Bit 13: Local Receiver Status */
PHY_L_1000S_RRS = 1<<12, /* Bit 12: Remote Receiver Status */
PHY_L_1000S_LP_FD = 1<<11, /* Bit 11: Link Partner can FD */
PHY_L_1000S_LP_HD = 1<<10, /* Bit 10: Link Partner can HD */
PHY_L_1000S_IEC = 0xff, /* Bit 7..0: Idle Error Count */
/***** PHY_LONE_EXT_STAT 16 bit r/o Extended Status Register *****/
PHY_L_ES_X_FD_CAP = 1<<15, /* Bit 15: 1000Base-X FD capable */
PHY_L_ES_X_HD_CAP = 1<<14, /* Bit 14: 1000Base-X HD capable */
PHY_L_ES_T_FD_CAP = 1<<13, /* Bit 13: 1000Base-T FD capable */
PHY_L_ES_T_HD_CAP = 1<<12, /* Bit 12: 1000Base-T HD capable */
};
/***** PHY_LONE_PORT_CFG 16 bit r/w Port Configuration Reg *****/
enum {
PHY_L_PC_REP_MODE = 1<<15, /* Bit 15: Repeater Mode */
PHY_L_PC_TX_DIS = 1<<13, /* Bit 13: Tx output Disabled */
PHY_L_PC_BY_SCR = 1<<12, /* Bit 12: Bypass Scrambler */
PHY_L_PC_BY_45 = 1<<11, /* Bit 11: Bypass 4B5B-Decoder */
PHY_L_PC_JAB_DIS = 1<<10, /* Bit 10: Jabber Disabled */
PHY_L_PC_SQE = 1<<9, /* Bit 9: Enable Heartbeat */
PHY_L_PC_TP_LOOP = 1<<8, /* Bit 8: TP Loopback */
PHY_L_PC_SSS = 1<<7, /* Bit 7: Smart Speed Selection */
PHY_L_PC_FIFO_SIZE = 1<<6, /* Bit 6: FIFO Size */
PHY_L_PC_PRE_EN = 1<<5, /* Bit 5: Preamble Enable */
PHY_L_PC_CIM = 1<<4, /* Bit 4: Carrier Integrity Mon */
PHY_L_PC_10_SER = 1<<3, /* Bit 3: Use Serial Output */
PHY_L_PC_ANISOL = 1<<2, /* Bit 2: Unisolate Port */
PHY_L_PC_TEN_BIT = 1<<1, /* Bit 1: 10bit iface mode on */
PHY_L_PC_ALTCLOCK = 1<<0, /* Bit 0: (ro) ALTCLOCK Mode on */
};
/***** PHY_LONE_Q_STAT 16 bit r/o Quick Status Reg *****/
enum {
PHY_L_QS_D_RATE = 3<<14,/* Bit 15..14: Data Rate */
PHY_L_QS_TX_STAT = 1<<13, /* Bit 13: Transmitting */
PHY_L_QS_RX_STAT = 1<<12, /* Bit 12: Receiving */
PHY_L_QS_COL_STAT = 1<<11, /* Bit 11: Collision */
PHY_L_QS_L_STAT = 1<<10, /* Bit 10: Link is up */
PHY_L_QS_DUP_MOD = 1<<9, /* Bit 9: Full/Half Duplex */
PHY_L_QS_AN = 1<<8, /* Bit 8: AutoNeg is On */
PHY_L_QS_AN_C = 1<<7, /* Bit 7: AN is Complete */
PHY_L_QS_LLE = 7<<4,/* Bit 6..4: Line Length Estim. */
PHY_L_QS_PAUSE = 1<<3, /* Bit 3: LP advertised Pause */
PHY_L_QS_AS_PAUSE = 1<<2, /* Bit 2: LP adv. asym. Pause */
PHY_L_QS_ISOLATE = 1<<1, /* Bit 1: CIM Isolated */
PHY_L_QS_EVENT = 1<<0, /* Bit 0: Event has occurred */
};
/***** PHY_LONE_INT_ENAB 16 bit r/w Interrupt Enable Reg *****/
/***** PHY_LONE_INT_STAT 16 bit r/o Interrupt Status Reg *****/
enum {
PHY_L_IS_AN_F = 1<<13, /* Bit 13: Auto-Negotiation fault */
PHY_L_IS_CROSS = 1<<11, /* Bit 11: Crossover used */
PHY_L_IS_POL = 1<<10, /* Bit 10: Polarity correct. used */
PHY_L_IS_SS = 1<<9, /* Bit 9: Smart Speed Downgrade */
PHY_L_IS_CFULL = 1<<8, /* Bit 8: Counter Full */
PHY_L_IS_AN_C = 1<<7, /* Bit 7: AutoNeg Complete */
PHY_L_IS_SPEED = 1<<6, /* Bit 6: Speed Changed */
PHY_L_IS_DUP = 1<<5, /* Bit 5: Duplex Changed */
PHY_L_IS_LS = 1<<4, /* Bit 4: Link Status Changed */
PHY_L_IS_ISOL = 1<<3, /* Bit 3: Isolate Occured */
PHY_L_IS_MDINT = 1<<2, /* Bit 2: (ro) STAT: MII Int Pending */
PHY_L_IS_INTEN = 1<<1, /* Bit 1: ENAB: Enable IRQs */
PHY_L_IS_FORCE = 1<<0, /* Bit 0: ENAB: Force Interrupt */
};
/* int. mask */
#define PHY_L_DEF_MSK (PHY_L_IS_LS | PHY_L_IS_ISOL | PHY_L_IS_INTEN)
/***** PHY_LONE_LED_CFG 16 bit r/w LED Configuration Reg *****/
enum {
PHY_L_LC_LEDC = 3<<14,/* Bit 15..14: Col/Blink/On/Off */
PHY_L_LC_LEDR = 3<<12,/* Bit 13..12: Rx/Blink/On/Off */
PHY_L_LC_LEDT = 3<<10,/* Bit 11..10: Tx/Blink/On/Off */
PHY_L_LC_LEDG = 3<<8,/* Bit 9..8: Giga/Blink/On/Off */
PHY_L_LC_LEDS = 3<<6,/* Bit 7..6: 10-100/Blink/On/Off */
PHY_L_LC_LEDL = 3<<4,/* Bit 5..4: Link/Blink/On/Off */
PHY_L_LC_LEDF = 3<<2,/* Bit 3..2: Duplex/Blink/On/Off */
PHY_L_LC_PSTRECH= 1<<1, /* Bit 1: Strech LED Pulses */
PHY_L_LC_FREQ = 1<<0, /* Bit 0: 30/100 ms */
};
/***** PHY_LONE_PORT_CTRL 16 bit r/w Port Control Reg *****/
enum {
PHY_L_PC_TX_TCLK = 1<<15, /* Bit 15: Enable TX_TCLK */
PHY_L_PC_ALT_NP = 1<<13, /* Bit 14: Alternate Next Page */
PHY_L_PC_GMII_ALT= 1<<12, /* Bit 13: Alternate GMII driver */
PHY_L_PC_TEN_CRS = 1<<10, /* Bit 10: Extend CRS*/
};
/***** PHY_LONE_CIM 16 bit r/o CIM Reg *****/
enum {
PHY_L_CIM_ISOL = 0xff<<8,/* Bit 15..8: Isolate Count */
PHY_L_CIM_FALSE_CAR = 0xff, /* Bit 7..0: False Carrier Count */
};
/*
* Pause Bits (PHY_L_AN_ASP and PHY_L_AN_PC) encoding
*/
enum {
PHY_L_P_NO_PAUSE= 0<<10,/* Bit 11..10: no Pause Mode */
PHY_L_P_SYM_MD = 1<<10, /* Bit 11..10: symmetric Pause Mode */
PHY_L_P_ASYM_MD = 2<<10,/* Bit 11..10: asymmetric Pause Mode */
PHY_L_P_BOTH_MD = 3<<10,/* Bit 11..10: both Pause Mode */
};
/*
* National-Specific
*/
/***** PHY_NAT_1000T_CTRL 16 bit r/w 1000Base-T Control Reg *****/
enum {
PHY_N_1000C_TEST= 7<<13,/* Bit 15..13: Test Modes */
PHY_N_1000C_MSE = 1<<12, /* Bit 12: Master/Slave Enable */
PHY_N_1000C_MSC = 1<<11, /* Bit 11: M/S Configuration */
PHY_N_1000C_RD = 1<<10, /* Bit 10: Repeater/DTE */
PHY_N_1000C_AFD = 1<<9, /* Bit 9: Advertise Full Duplex */
PHY_N_1000C_AHD = 1<<8, /* Bit 8: Advertise Half Duplex */
PHY_N_1000C_APC = 1<<7, /* Bit 7: Asymmetric Pause Cap. */};
/***** PHY_NAT_1000T_STAT 16 bit r/o 1000Base-T Status Reg *****/
enum {
PHY_N_1000S_MSF = 1<<15, /* Bit 15: Master/Slave Fault */
PHY_N_1000S_MSR = 1<<14, /* Bit 14: Master/Slave Result */
PHY_N_1000S_LRS = 1<<13, /* Bit 13: Local Receiver Status */
PHY_N_1000S_RRS = 1<<12, /* Bit 12: Remote Receiver Status*/
PHY_N_1000S_LP_FD= 1<<11, /* Bit 11: Link Partner can FD */
PHY_N_1000S_LP_HD= 1<<10, /* Bit 10: Link Partner can HD */
PHY_N_1000C_LP_APC= 1<<9, /* Bit 9: LP Asym. Pause Cap. */
PHY_N_1000S_IEC = 0xff, /* Bit 7..0: Idle Error Count */
};
/***** PHY_NAT_EXT_STAT 16 bit r/o Extended Status Register *****/
enum {
PHY_N_ES_X_FD_CAP= 1<<15, /* Bit 15: 1000Base-X FD capable */
PHY_N_ES_X_HD_CAP= 1<<14, /* Bit 14: 1000Base-X HD capable */
PHY_N_ES_T_FD_CAP= 1<<13, /* Bit 13: 1000Base-T FD capable */
PHY_N_ES_T_HD_CAP= 1<<12, /* Bit 12: 1000Base-T HD capable */
};
/** Marvell-Specific */ /** Marvell-Specific */
enum { enum {
PHY_M_AN_NXT_PG = 1<<15, /* Request Next Page */ PHY_M_AN_NXT_PG = 1<<15, /* Request Next Page */
...@@ -1718,7 +1380,7 @@ enum { ...@@ -1718,7 +1380,7 @@ enum {
PHY_M_PC_EN_DET_PLUS = 3<<8, /* Energy Detect Plus (Mode 2) */ PHY_M_PC_EN_DET_PLUS = 3<<8, /* Energy Detect Plus (Mode 2) */
}; };
#define PHY_M_PC_MDI_XMODE(x) (((x)<<5) & PHY_M_PC_MDIX_MSK) #define PHY_M_PC_MDI_XMODE(x) (((x)<<5) & PHY_M_PC_MDIX_MSK)
enum { enum {
PHY_M_PC_MAN_MDI = 0, /* 00 = Manual MDI configuration */ PHY_M_PC_MAN_MDI = 0, /* 00 = Manual MDI configuration */
...@@ -2105,7 +1767,7 @@ enum { ...@@ -2105,7 +1767,7 @@ enum {
GM_GPSR_FC_RX_DIS = 1<<2, /* Bit 2: Rx Flow-Control Mode Disabled */ GM_GPSR_FC_RX_DIS = 1<<2, /* Bit 2: Rx Flow-Control Mode Disabled */
GM_GPSR_PROM_EN = 1<<1, /* Bit 1: Promiscuous Mode Enabled */ GM_GPSR_PROM_EN = 1<<1, /* Bit 1: Promiscuous Mode Enabled */
}; };
/* GM_GP_CTRL 16 bit r/w General Purpose Control Register */ /* GM_GP_CTRL 16 bit r/w General Purpose Control Register */
enum { enum {
GM_GPCR_PROM_ENA = 1<<14, /* Bit 14: Enable Promiscuous Mode */ GM_GPCR_PROM_ENA = 1<<14, /* Bit 14: Enable Promiscuous Mode */
...@@ -2127,7 +1789,7 @@ enum { ...@@ -2127,7 +1789,7 @@ enum {
#define GM_GPCR_SPEED_1000 (GM_GPCR_GIGS_ENA | GM_GPCR_SPEED_100) #define GM_GPCR_SPEED_1000 (GM_GPCR_GIGS_ENA | GM_GPCR_SPEED_100)
#define GM_GPCR_AU_ALL_DIS (GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_FCT_DIS|GM_GPCR_AU_SPD_DIS) #define GM_GPCR_AU_ALL_DIS (GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_FCT_DIS|GM_GPCR_AU_SPD_DIS)
/* GM_TX_CTRL 16 bit r/w Transmit Control Register */ /* GM_TX_CTRL 16 bit r/w Transmit Control Register */
enum { enum {
GM_TXCR_FORCE_JAM = 1<<15, /* Bit 15: Force Jam / Flow-Control */ GM_TXCR_FORCE_JAM = 1<<15, /* Bit 15: Force Jam / Flow-Control */
...@@ -2138,7 +1800,7 @@ enum { ...@@ -2138,7 +1800,7 @@ enum {
#define TX_COL_THR(x) (((x)<<10) & GM_TXCR_COL_THR_MSK) #define TX_COL_THR(x) (((x)<<10) & GM_TXCR_COL_THR_MSK)
#define TX_COL_DEF 0x04 #define TX_COL_DEF 0x04
/* GM_RX_CTRL 16 bit r/w Receive Control Register */ /* GM_RX_CTRL 16 bit r/w Receive Control Register */
enum { enum {
GM_RXCR_UCF_ENA = 1<<15, /* Bit 15: Enable Unicast filtering */ GM_RXCR_UCF_ENA = 1<<15, /* Bit 15: Enable Unicast filtering */
...@@ -2146,7 +1808,7 @@ enum { ...@@ -2146,7 +1808,7 @@ enum {
GM_RXCR_CRC_DIS = 1<<13, /* Bit 13: Remove 4-byte CRC */ GM_RXCR_CRC_DIS = 1<<13, /* Bit 13: Remove 4-byte CRC */
GM_RXCR_PASS_FC = 1<<12, /* Bit 12: Pass FC packets to FIFO */ GM_RXCR_PASS_FC = 1<<12, /* Bit 12: Pass FC packets to FIFO */
}; };
/* GM_TX_PARAM 16 bit r/w Transmit Parameter Register */ /* GM_TX_PARAM 16 bit r/w Transmit Parameter Register */
enum { enum {
GM_TXPA_JAMLEN_MSK = 0x03<<14, /* Bit 15..14: Jam Length */ GM_TXPA_JAMLEN_MSK = 0x03<<14, /* Bit 15..14: Jam Length */
...@@ -2171,7 +1833,7 @@ enum { ...@@ -2171,7 +1833,7 @@ enum {
GM_SMOD_JUMBO_ENA = 1<<8, /* Bit 8: Enable Jumbo (Max. Frame Len) */ GM_SMOD_JUMBO_ENA = 1<<8, /* Bit 8: Enable Jumbo (Max. Frame Len) */
GM_SMOD_IPG_MSK = 0x1f /* Bit 4..0: Inter-Packet Gap (IPG) */ GM_SMOD_IPG_MSK = 0x1f /* Bit 4..0: Inter-Packet Gap (IPG) */
}; };
#define DATA_BLIND_VAL(x) (((x)<<11) & GM_SMOD_DATABL_MSK) #define DATA_BLIND_VAL(x) (((x)<<11) & GM_SMOD_DATABL_MSK)
#define DATA_BLIND_DEF 0x04 #define DATA_BLIND_DEF 0x04
...@@ -2186,7 +1848,7 @@ enum { ...@@ -2186,7 +1848,7 @@ enum {
GM_SMI_CT_RD_VAL = 1<<4, /* Bit 4: Read Valid (Read completed) */ GM_SMI_CT_RD_VAL = 1<<4, /* Bit 4: Read Valid (Read completed) */
GM_SMI_CT_BUSY = 1<<3, /* Bit 3: Busy (Operation in progress) */ GM_SMI_CT_BUSY = 1<<3, /* Bit 3: Busy (Operation in progress) */
}; };
#define GM_SMI_CT_PHY_AD(x) (((x)<<11) & GM_SMI_CT_PHY_A_MSK) #define GM_SMI_CT_PHY_AD(x) (((x)<<11) & GM_SMI_CT_PHY_A_MSK)
#define GM_SMI_CT_REG_AD(x) (((x)<<6) & GM_SMI_CT_REG_A_MSK) #define GM_SMI_CT_REG_AD(x) (((x)<<6) & GM_SMI_CT_REG_A_MSK)
...@@ -2195,7 +1857,7 @@ enum { ...@@ -2195,7 +1857,7 @@ enum {
GM_PAR_MIB_CLR = 1<<5, /* Bit 5: Set MIB Clear Counter Mode */ GM_PAR_MIB_CLR = 1<<5, /* Bit 5: Set MIB Clear Counter Mode */
GM_PAR_MIB_TST = 1<<4, /* Bit 4: MIB Load Counter (Test Mode) */ GM_PAR_MIB_TST = 1<<4, /* Bit 4: MIB Load Counter (Test Mode) */
}; };
/* Receive Frame Status Encoding */ /* Receive Frame Status Encoding */
enum { enum {
GMR_FS_LEN = 0xffff<<16, /* Bit 31..16: Rx Frame Length */ GMR_FS_LEN = 0xffff<<16, /* Bit 31..16: Rx Frame Length */
...@@ -2217,12 +1879,12 @@ enum { ...@@ -2217,12 +1879,12 @@ enum {
/* /*
* GMR_FS_ANY_ERR (analogous to XMR_FS_ANY_ERR) * GMR_FS_ANY_ERR (analogous to XMR_FS_ANY_ERR)
*/ */
GMR_FS_ANY_ERR = GMR_FS_CRC_ERR | GMR_FS_LONG_ERR | GMR_FS_ANY_ERR = GMR_FS_CRC_ERR | GMR_FS_LONG_ERR |
GMR_FS_MII_ERR | GMR_FS_BAD_FC | GMR_FS_GOOD_FC | GMR_FS_MII_ERR | GMR_FS_BAD_FC | GMR_FS_GOOD_FC |
GMR_FS_JABBER, GMR_FS_JABBER,
/* Rx GMAC FIFO Flush Mask (default) */ /* Rx GMAC FIFO Flush Mask (default) */
RX_FF_FL_DEF_MSK = GMR_FS_CRC_ERR | GMR_FS_RX_FF_OV |GMR_FS_MII_ERR | RX_FF_FL_DEF_MSK = GMR_FS_CRC_ERR | GMR_FS_RX_FF_OV |GMR_FS_MII_ERR |
GMR_FS_BAD_FC | GMR_FS_GOOD_FC | GMR_FS_UN_SIZE | GMR_FS_BAD_FC | GMR_FS_GOOD_FC | GMR_FS_UN_SIZE |
GMR_FS_JABBER, GMR_FS_JABBER,
}; };
...@@ -2540,10 +2202,6 @@ enum { ...@@ -2540,10 +2202,6 @@ enum {
}; };
/* XM_PHY_ADDR 16 bit r/w PHY Address Register */
#define XM_PHY_ADDR_SZ 0x1f /* Bit 4..0: PHY Address bits */
/* XM_GP_PORT 32 bit r/w General Purpose Port Register */ /* XM_GP_PORT 32 bit r/w General Purpose Port Register */
enum { enum {
XM_GP_ANIP = 1<<6, /* Bit 6: (ro) Auto-Neg. in progress */ XM_GP_ANIP = 1<<6, /* Bit 6: (ro) Auto-Neg. in progress */
...@@ -2662,8 +2320,8 @@ enum { ...@@ -2662,8 +2320,8 @@ enum {
}; };
#define XM_PAUSE_MODE (XM_MD_SPOE_E | XM_MD_SPOL_I | XM_MD_SPOH_I) #define XM_PAUSE_MODE (XM_MD_SPOE_E | XM_MD_SPOL_I | XM_MD_SPOH_I)
#define XM_DEF_MODE (XM_MD_RX_RUNT | XM_MD_RX_IRLE | XM_MD_RX_LONG |\ #define XM_DEF_MODE (XM_MD_RX_RUNT | XM_MD_RX_IRLE | XM_MD_RX_LONG |\
XM_MD_RX_CRCE | XM_MD_RX_ERR | XM_MD_CSA | XM_MD_CAA) XM_MD_RX_CRCE | XM_MD_RX_ERR | XM_MD_CSA)
/* XM_STAT_CMD 16 bit r/w Statistics Command Register */ /* XM_STAT_CMD 16 bit r/w Statistics Command Register */
enum { enum {
...@@ -2793,28 +2451,20 @@ struct skge_hw { ...@@ -2793,28 +2451,20 @@ struct skge_hw {
u32 intr_mask; u32 intr_mask;
struct net_device *dev[2]; struct net_device *dev[2];
u8 mac_cfg;
u8 chip_id; u8 chip_id;
u8 chip_rev;
u8 phy_type; u8 phy_type;
u8 pmd_type; u8 pmd_type;
u16 phy_addr; u16 phy_addr;
u8 ports;
u32 ram_size; u32 ram_size;
u32 ram_offset; u32 ram_offset;
struct tasklet_struct ext_tasklet; struct tasklet_struct ext_tasklet;
spinlock_t phy_lock; spinlock_t phy_lock;
}; };
static inline int isdualport(const struct skge_hw *hw)
{
return !(hw->mac_cfg & CFG_SNG_MAC);
}
static inline u8 chip_rev(const struct skge_hw *hw)
{
return (hw->mac_cfg & CFG_CHIP_R_MSK) >> 4;
}
static inline int iscopper(const struct skge_hw *hw) static inline int iscopper(const struct skge_hw *hw)
{ {
...@@ -2827,7 +2477,7 @@ enum { ...@@ -2827,7 +2477,7 @@ enum {
FLOW_MODE_REM_SEND = 2, /* Symmetric or just remote */ FLOW_MODE_REM_SEND = 2, /* Symmetric or just remote */
FLOW_MODE_SYMMETRIC = 3, /* Both stations may send PAUSE */ FLOW_MODE_SYMMETRIC = 3, /* Both stations may send PAUSE */
}; };
struct skge_port { struct skge_port {
u32 msg_enable; u32 msg_enable;
struct skge_hw *hw; struct skge_hw *hw;
...@@ -2853,8 +2503,8 @@ struct skge_port { ...@@ -2853,8 +2503,8 @@ struct skge_port {
void *mem; /* PCI memory for rings */ void *mem; /* PCI memory for rings */
dma_addr_t dma; dma_addr_t dma;
unsigned long mem_size; unsigned long mem_size;
unsigned int rx_buf_size;
struct timer_list link_check;
struct timer_list led_blink; struct timer_list led_blink;
}; };
...@@ -2863,7 +2513,6 @@ struct skge_port { ...@@ -2863,7 +2513,6 @@ struct skge_port {
static inline u32 skge_read32(const struct skge_hw *hw, int reg) static inline u32 skge_read32(const struct skge_hw *hw, int reg)
{ {
return readl(hw->regs + reg); return readl(hw->regs + reg);
} }
static inline u16 skge_read16(const struct skge_hw *hw, int reg) static inline u16 skge_read16(const struct skge_hw *hw, int reg)
...@@ -2892,114 +2541,87 @@ static inline void skge_write8(const struct skge_hw *hw, int reg, u8 val) ...@@ -2892,114 +2541,87 @@ static inline void skge_write8(const struct skge_hw *hw, int reg, u8 val)
} }
/* MAC Related Registers inside the device. */ /* MAC Related Registers inside the device. */
#define SKGEMAC_REG(port,reg) (((port)<<7)+(reg)) #define SK_REG(port,reg) (((port)<<7)+(reg))
#define SK_XMAC_REG(port, reg) \
/* PCI config space can be accessed via memory mapped space */
#define SKGEPCI_REG(reg) ((reg)+ 0x380)
#define SKGEXM_REG(port, reg) \
((BASE_XMAC_1 + (port) * (BASE_XMAC_2 - BASE_XMAC_1)) | (reg) << 1) ((BASE_XMAC_1 + (port) * (BASE_XMAC_2 - BASE_XMAC_1)) | (reg) << 1)
static inline u32 skge_xm_read32(const struct skge_hw *hw, int port, int reg) static inline u32 xm_read32(const struct skge_hw *hw, int port, int reg)
{
return skge_read32(hw, SKGEXM_REG(port,reg));
}
static inline u16 skge_xm_read16(const struct skge_hw *hw, int port, int reg)
{ {
return skge_read16(hw, SKGEXM_REG(port,reg)); u32 v;
v = skge_read16(hw, SK_XMAC_REG(port, reg));
v |= (u32)skge_read16(hw, SK_XMAC_REG(port, reg+2)) << 16;
return v;
} }
static inline u8 skge_xm_read8(const struct skge_hw *hw, int port, int reg) static inline u16 xm_read16(const struct skge_hw *hw, int port, int reg)
{ {
return skge_read8(hw, SKGEXM_REG(port,reg)); return skge_read16(hw, SK_XMAC_REG(port,reg));
} }
static inline void skge_xm_write32(const struct skge_hw *hw, int port, int r, u32 v) static inline void xm_write32(const struct skge_hw *hw, int port, int r, u32 v)
{ {
skge_write32(hw, SKGEXM_REG(port,r), v); skge_write16(hw, SK_XMAC_REG(port,r), v & 0xffff);
skge_write16(hw, SK_XMAC_REG(port,r+2), v >> 16);
} }
static inline void skge_xm_write16(const struct skge_hw *hw, int port, int r, u16 v) static inline void xm_write16(const struct skge_hw *hw, int port, int r, u16 v)
{ {
skge_write16(hw, SKGEXM_REG(port,r), v); skge_write16(hw, SK_XMAC_REG(port,r), v);
} }
static inline void skge_xm_write8(const struct skge_hw *hw, int port, int r, u8 v) static inline void xm_outhash(const struct skge_hw *hw, int port, int reg,
{
skge_write8(hw, SKGEXM_REG(port,r), v);
}
static inline void skge_xm_outhash(const struct skge_hw *hw, int port, int reg,
const u8 *hash) const u8 *hash)
{ {
skge_xm_write16(hw, port, reg, xm_write16(hw, port, reg, (u16)hash[0] | ((u16)hash[1] << 8));
(u16)hash[0] | ((u16)hash[1] << 8)); xm_write16(hw, port, reg+2, (u16)hash[2] | ((u16)hash[3] << 8));
skge_xm_write16(hw, port, reg+2, xm_write16(hw, port, reg+4, (u16)hash[4] | ((u16)hash[5] << 8));
(u16)hash[2] | ((u16)hash[3] << 8)); xm_write16(hw, port, reg+6, (u16)hash[6] | ((u16)hash[7] << 8));
skge_xm_write16(hw, port, reg+4,
(u16)hash[4] | ((u16)hash[5] << 8));
skge_xm_write16(hw, port, reg+6,
(u16)hash[6] | ((u16)hash[7] << 8));
} }
static inline void skge_xm_outaddr(const struct skge_hw *hw, int port, int reg, static inline void xm_outaddr(const struct skge_hw *hw, int port, int reg,
const u8 *addr) const u8 *addr)
{ {
skge_xm_write16(hw, port, reg, xm_write16(hw, port, reg, (u16)addr[0] | ((u16)addr[1] << 8));
(u16)addr[0] | ((u16)addr[1] << 8)); xm_write16(hw, port, reg+2, (u16)addr[2] | ((u16)addr[3] << 8));
skge_xm_write16(hw, port, reg, xm_write16(hw, port, reg+4, (u16)addr[4] | ((u16)addr[5] << 8));
(u16)addr[2] | ((u16)addr[3] << 8));
skge_xm_write16(hw, port, reg,
(u16)addr[4] | ((u16)addr[5] << 8));
} }
#define SK_GMAC_REG(port,reg) \
(BASE_GMAC_1 + (port) * (BASE_GMAC_2-BASE_GMAC_1) + (reg))
#define SKGEGMA_REG(port,reg) \ static inline u16 gma_read16(const struct skge_hw *hw, int port, int reg)
((reg) + BASE_GMAC_1 + \
(port) * (BASE_GMAC_2-BASE_GMAC_1))
static inline u16 skge_gma_read16(const struct skge_hw *hw, int port, int reg)
{ {
return skge_read16(hw, SKGEGMA_REG(port,reg)); return skge_read16(hw, SK_GMAC_REG(port,reg));
} }
static inline u32 skge_gma_read32(const struct skge_hw *hw, int port, int reg) static inline u32 gma_read32(const struct skge_hw *hw, int port, int reg)
{ {
return (u32) skge_read16(hw, SKGEGMA_REG(port,reg)) return (u32) skge_read16(hw, SK_GMAC_REG(port,reg))
| ((u32)skge_read16(hw, SKGEGMA_REG(port,reg+4)) << 16); | ((u32)skge_read16(hw, SK_GMAC_REG(port,reg+4)) << 16);
} }
static inline u8 skge_gma_read8(const struct skge_hw *hw, int port, int reg) static inline void gma_write16(const struct skge_hw *hw, int port, int r, u16 v)
{ {
return skge_read8(hw, SKGEGMA_REG(port,reg)); skge_write16(hw, SK_GMAC_REG(port,r), v);
} }
static inline void skge_gma_write16(const struct skge_hw *hw, int port, int r, u16 v) static inline void gma_write32(const struct skge_hw *hw, int port, int r, u32 v)
{ {
skge_write16(hw, SKGEGMA_REG(port,r), v); skge_write16(hw, SK_GMAC_REG(port, r), (u16) v);
skge_write32(hw, SK_GMAC_REG(port, r+4), (u16)(v >> 16));
} }
static inline void skge_gma_write32(const struct skge_hw *hw, int port, int r, u32 v) static inline void gma_write8(const struct skge_hw *hw, int port, int r, u8 v)
{ {
skge_write16(hw, SKGEGMA_REG(port, r), (u16) v); skge_write8(hw, SK_GMAC_REG(port,r), v);
skge_write32(hw, SKGEGMA_REG(port, r+4), (u16)(v >> 16));
} }
static inline void skge_gma_write8(const struct skge_hw *hw, int port, int r, u8 v) static inline void gma_set_addr(struct skge_hw *hw, int port, int reg,
{
skge_write8(hw, SKGEGMA_REG(port,r), v);
}
static inline void skge_gm_set_addr(struct skge_hw *hw, int port, int reg,
const u8 *addr) const u8 *addr)
{ {
skge_gma_write16(hw, port, reg, gma_write16(hw, port, reg, (u16) addr[0] | ((u16) addr[1] << 8));
(u16) addr[0] | ((u16) addr[1] << 8)); gma_write16(hw, port, reg+4,(u16) addr[2] | ((u16) addr[3] << 8));
skge_gma_write16(hw, port, reg+4, gma_write16(hw, port, reg+8,(u16) addr[4] | ((u16) addr[5] << 8));
(u16) addr[2] | ((u16) addr[3] << 8));
skge_gma_write16(hw, port, reg+8,
(u16) addr[4] | ((u16) addr[5] << 8));
} }
#endif #endif
...@@ -65,7 +65,7 @@ static inline int is_zero_ether_addr(const u8 *addr) ...@@ -65,7 +65,7 @@ static inline int is_zero_ether_addr(const u8 *addr)
*/ */
static inline int is_multicast_ether_addr(const u8 *addr) static inline int is_multicast_ether_addr(const u8 *addr)
{ {
return addr[0] & 0x01; return ((addr[0] != 0xff) && (0x01 & addr[0]));
} }
/** /**
......
...@@ -625,17 +625,6 @@ enum ieee80211_state { ...@@ -625,17 +625,6 @@ enum ieee80211_state {
#define MAC_ARG(x) ((u8*)(x))[0],((u8*)(x))[1],((u8*)(x))[2],((u8*)(x))[3],((u8*)(x))[4],((u8*)(x))[5] #define MAC_ARG(x) ((u8*)(x))[0],((u8*)(x))[1],((u8*)(x))[2],((u8*)(x))[3],((u8*)(x))[4],((u8*)(x))[5]
extern inline int is_multicast_ether_addr(const u8 *addr)
{
return ((addr[0] != 0xff) && (0x01 & addr[0]));
}
extern inline int is_broadcast_ether_addr(const u8 *addr)
{
return ((addr[0] == 0xff) && (addr[1] == 0xff) && (addr[2] == 0xff) && \
(addr[3] == 0xff) && (addr[4] == 0xff) && (addr[5] == 0xff));
}
#define CFG_IEEE80211_RESERVE_FCS (1<<0) #define CFG_IEEE80211_RESERVE_FCS (1<<0)
#define CFG_IEEE80211_COMPUTE_FCS (1<<1) #define CFG_IEEE80211_COMPUTE_FCS (1<<1)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册