提交 11e865c1 编写于 作者: G Gianluca Palli 提交者: Greg Kroah-Hartman

Staging: comedi: add s626 driver

This adds the s626 comedi driver to the build.

From: Gianluca Palli <gpalli@deis.unibo.it>
Cc: David Schleef <ds@schleef.org>
Cc: Frank Mori Hess <fmhess@users.sourceforge.net>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
上级 d2f63f9c
......@@ -11,6 +11,7 @@ obj-$(CONFIG_COMEDI) += comedi_parport.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += mite.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += icp_multi.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += s626.o
# Comedi USB drivers
obj-$(CONFIG_COMEDI_USB_DRIVERS) += usbdux.o
......
/*
comedi/drivers/s626.c
Sensoray s626 Comedi driver
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2000 David A. Schleef <ds@schleef.org>
Based on Sensoray Model 626 Linux driver Version 0.2
Copyright (C) 2002-2004 Sensoray Co., Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: s626
Description: Sensoray 626 driver
Devices: [Sensoray] 626 (s626)
Authors: Gianluca Palli <gpalli@deis.unibo.it>,
Updated: Fri, 15 Feb 2008 10:28:42 +0000
Status: experimental
Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.
INSN_CONFIG instructions:
analog input:
none
analog output:
none
digital channel:
s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
supported configuration options:
INSN_CONFIG_DIO_QUERY
COMEDI_INPUT
COMEDI_OUTPUT
encoder:
Every channel must be configured before reading.
Example code
insn.insn=INSN_CONFIG; //configuration instruction
insn.n=1; //number of operation (must be 1)
insn.data=&initialvalue; //initial value loaded into encoder
//during configuration
insn.subdev=5; //encoder subdevice
insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
//to configure
comedi_do_insn(cf,&insn); //executing configuration
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include "../comedidev.h"
#include "comedi_pci.h"
#include "comedi_fc.h"
#include "s626.h"
MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
MODULE_LICENSE("GPL");
typedef struct s626_board_struct {
const char *name;
int ai_chans;
int ai_bits;
int ao_chans;
int ao_bits;
int dio_chans;
int dio_banks;
int enc_chans;
} s626_board;
static const s626_board s626_boards[] = {
{
name: "s626",
ai_chans:S626_ADC_CHANNELS,
ai_bits: 14,
ao_chans:S626_DAC_CHANNELS,
ao_bits: 13,
dio_chans:S626_DIO_CHANNELS,
dio_banks:S626_DIO_BANKS,
enc_chans:S626_ENCODER_CHANNELS,
}
};
#define thisboard ((const s626_board *)dev->board_ptr)
#define PCI_VENDOR_ID_S626 0x1131
#define PCI_DEVICE_ID_S626 0x7146
static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
0},
{0}
};
MODULE_DEVICE_TABLE(pci, s626_pci_table);
static int s626_attach(comedi_device * dev, comedi_devconfig * it);
static int s626_detach(comedi_device * dev);
static comedi_driver driver_s626 = {
driver_name:"s626",
module:THIS_MODULE,
attach:s626_attach,
detach:s626_detach,
};
typedef struct {
struct pci_dev *pdev;
void *base_addr;
int got_regions;
short allocatedBuf;
uint8_t ai_cmd_running; // ai_cmd is running
uint8_t ai_continous; // continous aquisition
int ai_sample_count; // number of samples to aquire
unsigned int ai_sample_timer; // time between samples in
// units of the timer
int ai_convert_count; // conversion counter
unsigned int ai_convert_timer; // time between conversion in
// units of the timer
uint16_t CounterIntEnabs; //Counter interrupt enable
//mask for MISC2 register.
uint8_t AdcItems; //Number of items in ADC poll
//list.
DMABUF RPSBuf; //DMA buffer used to hold ADC
//(RPS1) program.
DMABUF ANABuf; //DMA buffer used to receive
//ADC data and hold DAC data.
uint32_t *pDacWBuf; //Pointer to logical adrs of
//DMA buffer used to hold DAC
//data.
uint16_t Dacpol; //Image of DAC polarity
//register.
uint8_t TrimSetpoint[12]; //Images of TrimDAC setpoints.
//registers.
uint16_t ChargeEnabled; //Image of MISC2 Battery
//Charge Enabled (0 or
//WRMISC2_CHARGE_ENABLE).
uint16_t WDInterval; //Image of MISC2 watchdog
//interval control bits.
uint32_t I2CAdrs; //I2C device address for
//onboard EEPROM (board rev
//dependent).
// short I2Cards;
lsampl_t ao_readback[S626_DAC_CHANNELS];
} s626_private;
typedef struct {
uint16_t RDDIn;
uint16_t WRDOut;
uint16_t RDEdgSel;
uint16_t WREdgSel;
uint16_t RDCapSel;
uint16_t WRCapSel;
uint16_t RDCapFlg;
uint16_t RDIntSel;
uint16_t WRIntSel;
} dio_private;
static dio_private dio_private_A = {
RDDIn:LP_RDDINA,
WRDOut:LP_WRDOUTA,
RDEdgSel:LP_RDEDGSELA,
WREdgSel:LP_WREDGSELA,
RDCapSel:LP_RDCAPSELA,
WRCapSel:LP_WRCAPSELA,
RDCapFlg:LP_RDCAPFLGA,
RDIntSel:LP_RDINTSELA,
WRIntSel:LP_WRINTSELA,
};
static dio_private dio_private_B = {
RDDIn:LP_RDDINB,
WRDOut:LP_WRDOUTB,
RDEdgSel:LP_RDEDGSELB,
WREdgSel:LP_WREDGSELB,
RDCapSel:LP_RDCAPSELB,
WRCapSel:LP_WRCAPSELB,
RDCapFlg:LP_RDCAPFLGB,
RDIntSel:LP_RDINTSELB,
WRIntSel:LP_WRINTSELB,
};
static dio_private dio_private_C = {
RDDIn:LP_RDDINC,
WRDOut:LP_WRDOUTC,
RDEdgSel:LP_RDEDGSELC,
WREdgSel:LP_WREDGSELC,
RDCapSel:LP_RDCAPSELC,
WRCapSel:LP_WRCAPSELC,
RDCapFlg:LP_RDCAPFLGC,
RDIntSel:LP_RDINTSELC,
WRIntSel:LP_WRINTSELC,
};
/* to group dio devices (48 bits mask and data are not allowed ???)
static dio_private *dio_private_word[]={
&dio_private_A,
&dio_private_B,
&dio_private_C,
};
*/
#define devpriv ((s626_private *)dev->private)
#define diopriv ((dio_private *)s->private)
COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
//ioctl routines
static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s);
static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
comedi_cmd * cmd);
static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s);
static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_dio_set_irq(comedi_device * dev, unsigned int chan);
static int s626_dio_reset_irq(comedi_device * dev, unsigned int gruop,
unsigned int mask);
static int s626_dio_clear_irq(comedi_device * dev);
static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int s626_ns_to_timer(int *nanosec, int round_mode);
static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd);
static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
unsigned int trignum);
static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
static lsampl_t s626_ai_reg_to_uint(int data);
/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
//end ioctl routines
//internal routines
static void s626_dio_init(comedi_device * dev);
static void ResetADC(comedi_device * dev, uint8_t * ppl);
static void LoadTrimDACs(comedi_device * dev);
static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
uint8_t DacData);
static uint8_t I2Cread(comedi_device * dev, uint8_t addr);
static uint32_t I2Chandshake(comedi_device * dev, uint32_t val);
static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata);
static void SendDAC(comedi_device * dev, uint32_t val);
static void WriteMISC2(comedi_device * dev, uint16_t NewImage);
static void DEBItransfer(comedi_device * dev);
static uint16_t DEBIread(comedi_device * dev, uint16_t addr);
static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata);
static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
uint16_t wdata);
static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize);
// COUNTER OBJECT ------------------------------------------------
typedef struct enc_private_struct {
// Pointers to functions that differ for A and B counters:
uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *); //Return clock enable.
uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *); //Return interrupt source.
uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *); //Return preload trigger source.
uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *); //Return standardized operating mode.
void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *); //Generate soft index strobe.
void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab); //Program clock enable.
void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource); //Program interrupt source.
void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig); //Program preload trigger source.
void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); //Program standardized operating mode.
void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *); //Reset event capture flags.
uint16_t MyCRA; // Address of CRA register.
uint16_t MyCRB; // Address of CRB register.
uint16_t MyLatchLsw; // Address of Latch least-significant-word
// register.
uint16_t MyEventBits[4]; // Bit translations for IntSrc -->RDMISC2.
} enc_private; //counter object
#define encpriv ((enc_private *)(dev->subdevices+5)->private)
//counters routines
static void s626_timer_load(comedi_device * dev, enc_private * k, int tick);
static uint32_t ReadLatch(comedi_device * dev, enc_private * k);
static void ResetCapFlags_A(comedi_device * dev, enc_private * k);
static void ResetCapFlags_B(comedi_device * dev, enc_private * k);
static uint16_t GetMode_A(comedi_device * dev, enc_private * k);
static uint16_t GetMode_B(comedi_device * dev, enc_private * k);
static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
uint16_t DisableIntSrc);
static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
uint16_t DisableIntSrc);
static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab);
static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab);
static uint16_t GetEnable_A(comedi_device * dev, enc_private * k);
static uint16_t GetEnable_B(comedi_device * dev, enc_private * k);
static void SetLatchSource(comedi_device * dev, enc_private * k,
uint16_t value);
/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig);
static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig);
static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k);
static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k);
static void SetIntSrc_B(comedi_device * dev, enc_private * k,
uint16_t IntSource);
static void SetIntSrc_A(comedi_device * dev, enc_private * k,
uint16_t IntSource);
static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k);
static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k);
/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ); */
/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k ); */
static void PulseIndex_A(comedi_device * dev, enc_private * k);
static void PulseIndex_B(comedi_device * dev, enc_private * k);
static void Preload(comedi_device * dev, enc_private * k, uint32_t value);
static void CountersInit(comedi_device * dev);
//end internal routines
/////////////////////////////////////////////////////////////////////////
// Counter objects constructor.
// Counter overflow/index event flag masks for RDMISC2.
#define INDXMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 + 4 ) ) )
#define OVERMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
// Translation table to map IntSrc into equivalent RDMISC2 event flag
// bits.
//static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
/* enc_private; */
static enc_private enc_private_data[] = {
{
GetEnable:GetEnable_A,
GetIntSrc:GetIntSrc_A,
GetLoadTrig:GetLoadTrig_A,
GetMode: GetMode_A,
PulseIndex:PulseIndex_A,
SetEnable:SetEnable_A,
SetIntSrc:SetIntSrc_A,
SetLoadTrig:SetLoadTrig_A,
SetMode: SetMode_A,
ResetCapFlags:ResetCapFlags_A,
MyCRA: LP_CR0A,
MyCRB: LP_CR0B,
MyLatchLsw:LP_CNTR0ALSW,
MyEventBits:EVBITS(0),
},
{
GetEnable:GetEnable_A,
GetIntSrc:GetIntSrc_A,
GetLoadTrig:GetLoadTrig_A,
GetMode: GetMode_A,
PulseIndex:PulseIndex_A,
SetEnable:SetEnable_A,
SetIntSrc:SetIntSrc_A,
SetLoadTrig:SetLoadTrig_A,
SetMode: SetMode_A,
ResetCapFlags:ResetCapFlags_A,
MyCRA: LP_CR1A,
MyCRB: LP_CR1B,
MyLatchLsw:LP_CNTR1ALSW,
MyEventBits:EVBITS(1),
},
{
GetEnable:GetEnable_A,
GetIntSrc:GetIntSrc_A,
GetLoadTrig:GetLoadTrig_A,
GetMode: GetMode_A,
PulseIndex:PulseIndex_A,
SetEnable:SetEnable_A,
SetIntSrc:SetIntSrc_A,
SetLoadTrig:SetLoadTrig_A,
SetMode: SetMode_A,
ResetCapFlags:ResetCapFlags_A,
MyCRA: LP_CR2A,
MyCRB: LP_CR2B,
MyLatchLsw:LP_CNTR2ALSW,
MyEventBits:EVBITS(2),
},
{
GetEnable:GetEnable_B,
GetIntSrc:GetIntSrc_B,
GetLoadTrig:GetLoadTrig_B,
GetMode: GetMode_B,
PulseIndex:PulseIndex_B,
SetEnable:SetEnable_B,
SetIntSrc:SetIntSrc_B,
SetLoadTrig:SetLoadTrig_B,
SetMode: SetMode_B,
ResetCapFlags:ResetCapFlags_B,
MyCRA: LP_CR0A,
MyCRB: LP_CR0B,
MyLatchLsw:LP_CNTR0BLSW,
MyEventBits:EVBITS(3),
},
{
GetEnable:GetEnable_B,
GetIntSrc:GetIntSrc_B,
GetLoadTrig:GetLoadTrig_B,
GetMode: GetMode_B,
PulseIndex:PulseIndex_B,
SetEnable:SetEnable_B,
SetIntSrc:SetIntSrc_B,
SetLoadTrig:SetLoadTrig_B,
SetMode: SetMode_B,
ResetCapFlags:ResetCapFlags_B,
MyCRA: LP_CR1A,
MyCRB: LP_CR1B,
MyLatchLsw:LP_CNTR1BLSW,
MyEventBits:EVBITS(4),
},
{
GetEnable:GetEnable_B,
GetIntSrc:GetIntSrc_B,
GetLoadTrig:GetLoadTrig_B,
GetMode: GetMode_B,
PulseIndex:PulseIndex_B,
SetEnable:SetEnable_B,
SetIntSrc:SetIntSrc_B,
SetLoadTrig:SetLoadTrig_B,
SetMode: SetMode_B,
ResetCapFlags:ResetCapFlags_B,
MyCRA: LP_CR2A,
MyCRB: LP_CR2B,
MyLatchLsw:LP_CNTR2BLSW,
MyEventBits:EVBITS(5),
},
};
// enab/disable a function or test status bit(s) that are accessed
// through Main Control Registers 1 or 2.
#define MC_ENABLE( REGADRS, CTRLWORD ) writel( ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) )
#define MC_DISABLE( REGADRS, CTRLWORD ) writel( (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )
#define MC_TEST( REGADRS, CTRLWORD ) ( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 )
/* #define WR7146(REGARDS,CTRLWORD)
writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
#define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,devpriv->base_addr+(REGARDS))
/* #define RR7146(REGARDS)
readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
#define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
#define BUGFIX_STREG(REGADRS) ( REGADRS - 4 )
// Write a time slot control record to TSL2.
#define VECTPORT( VECTNUM ) (P_TSL2 + ( (VECTNUM) << 2 ))
#define SETVECT( VECTNUM, VECTVAL ) WR7146(VECTPORT( VECTNUM ), (VECTVAL))
// Code macros used for constructing I2C command bytes.
#define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
#define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
#define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) )
static const comedi_lrange s626_range_table = { 2, {
RANGE(-5, 5),
RANGE(-10, 10),
}
};
static int s626_attach(comedi_device * dev, comedi_devconfig * it)
{
/* uint8_t PollList; */
/* uint16_t AdcData; */
/* uint16_t StartVal; */
/* uint16_t index; */
/* unsigned int data[16]; */
int result;
int i;
int ret;
resource_size_t resourceStart;
dma_addr_t appdma;
comedi_subdevice *s;
struct pci_dev *pdev;
if (alloc_private(dev, sizeof(s626_private)) < 0)
return -ENOMEM;
for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
NULL); pdev != NULL;
pdev = pci_get_device(PCI_VENDOR_ID_S626,
PCI_DEVICE_ID_S626, pdev)) {
if (it->options[0] || it->options[1]) {
if (pdev->bus->number == it->options[0] &&
PCI_SLOT(pdev->devfn) == it->options[1]) {
/* matches requested bus/slot */
break;
}
} else {
/* no bus/slot specified */
break;
}
}
devpriv->pdev = pdev;
if (pdev == NULL) {
printk("s626_attach: Board not present!!!\n");
return -ENODEV;
}
if ((result = comedi_pci_enable(pdev, "s626")) < 0) {
printk("s626_attach: comedi_pci_enable fails\n");
return -ENODEV;
}
devpriv->got_regions = 1;
resourceStart = pci_resource_start(devpriv->pdev, 0);
devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
if (devpriv->base_addr == NULL) {
printk("s626_attach: IOREMAP failed\n");
return -ENODEV;
}
if (devpriv->base_addr) {
//disable master interrupt
writel(0, devpriv->base_addr + P_IER);
//soft reset
writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
//DMA FIXME DMA//
DEBUG("s626_attach: DMA ALLOCATION\n");
//adc buffer allocation
devpriv->allocatedBuf = 0;
if ((devpriv->ANABuf.LogicalBase =
pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
&appdma)) == NULL) {
printk("s626_attach: DMA Memory mapping error\n");
return -ENOMEM;
}
devpriv->ANABuf.PhysicalBase = appdma;
DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
devpriv->allocatedBuf++;
if ((devpriv->RPSBuf.LogicalBase =
pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
&appdma)) == NULL) {
printk("s626_attach: DMA Memory mapping error\n");
return -ENOMEM;
}
devpriv->RPSBuf.PhysicalBase = appdma;
DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
devpriv->allocatedBuf++;
}
dev->board_ptr = s626_boards;
dev->board_name = thisboard->name;
if (alloc_subdevices(dev, 6) < 0)
return -ENOMEM;
dev->iobase = (unsigned long)devpriv->base_addr;
dev->irq = devpriv->pdev->irq;
//set up interrupt handler
if (dev->irq == 0) {
printk(" unknown irq (bad)\n");
} else {
if ((ret = comedi_request_irq(dev->irq, s626_irq_handler,
IRQF_SHARED, "s626", dev)) < 0) {
printk(" irq not available\n");
dev->irq = 0;
}
}
DEBUG("s626_attach: -- it opts %d,%d -- \n",
it->options[0], it->options[1]);
s = dev->subdevices + 0;
/* analog input subdevice */
dev->read_subdev = s;
/* we support single-ended (ground) and differential */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
s->n_chan = thisboard->ai_chans;
s->maxdata = (0xffff >> 2);
s->range_table = &s626_range_table;
s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
length that the board can
handle */
s->insn_config = s626_ai_insn_config;
s->insn_read = s626_ai_insn_read;
s->do_cmd = s626_ai_cmd;
s->do_cmdtest = s626_ai_cmdtest;
s->cancel = s626_ai_cancel;
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = thisboard->ao_chans;
s->maxdata = (0x3fff);
s->range_table = &range_bipolar10;
s->insn_write = s626_ao_winsn;
s->insn_read = s626_ao_rinsn;
s = dev->subdevices + 2;
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = S626_DIO_CHANNELS;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = &dio_private_A;
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = dev->subdevices + 3;
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = &dio_private_B;
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = dev->subdevices + 4;
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = &dio_private_C;
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = dev->subdevices + 5;
/* encoder (counter) subdevice */
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
s->n_chan = thisboard->enc_chans;
s->private = enc_private_data;
s->insn_config = s626_enc_insn_config;
s->insn_read = s626_enc_insn_read;
s->insn_write = s626_enc_insn_write;
s->maxdata = 0xffffff;
s->range_table = &range_unknown;
//stop ai_command
devpriv->ai_cmd_running = 0;
if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
dma_addr_t pPhysBuf;
uint16_t chan;
// enab DEBI and audio pins, enable I2C interface.
MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
// Configure DEBI operating mode.
WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 // Local bus is 16
// bits wide.
| (DEBI_TOUT << DEBI_CFG_TOUT_BIT) // Declare DEBI
// transfer timeout
// interval.
| DEBI_SWAP // Set up byte lane
// steering.
| DEBI_CFG_INTEL); // Intel-compatible
// local bus (DEBI
// never times out).
DEBUG("s626_attach: %d debi init -- %d\n",
DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
DEBI_SWAP | DEBI_CFG_INTEL,
DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
DEBI_CFG_16Q);
//DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ
//| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end
// Paging is disabled.
WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); // Disable MMU paging.
// Init GPIO so that ADC Start* is negated.
WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
//IsBoardRevA is a boolean that indicates whether the board is
//RevA.
// VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
// EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
// is used to access the onboard serial EEPROM. The EEPROM's I2C
// DeviceAddress is hardwired to a value that is dependent on the
// 626 board revision. On all board revisions, the EEPROM stores
// TrimDAC calibration constants for analog I/O. On RevB and
// higher boards, the DeviceAddress is hardwired to 0 to enable
// the EEPROM to also store the PCI SubVendorID and SubDeviceID;
// this is the address at which the SAA7146 expects a
// configuration EEPROM to reside. On RevA boards, the EEPROM
// device address, which is hardwired to 4, prevents the SAA7146
// from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
// default values, instead.
// devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM
// DeviceType (0xA0)
// and DeviceAddress<<1.
devpriv->I2CAdrs = 0xA0; // I2C device address for onboard
// eeprom(revb)
// Issue an I2C ABORT command to halt any I2C operation in
//progress and reset BUSY flag.
WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); // Write I2C control:
// abort any I2C
// activity.
MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command
// upload
while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; // and wait for
// upload to
// complete.
// Per SAA7146 data sheet, write to STATUS reg twice to reset all
// I2C error flags.
for (i = 0; i < 2; i++) {
WR7146(P_I2CSTAT, I2C_CLKSEL); // Write I2C control: reset
// error flags.
MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command upload
while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; // and wait for
// upload to
// complete.
}
// Init audio interface functional attributes: set DAC/ADC serial
// clock rates, invert DAC serial clock so that DAC data setup
// times are satisfied, enable DAC serial clock out.
WR7146(P_ACON2, ACON2_INIT);
// Set up TSL1 slot list, which is used to control the
// accumulation of ADC data: RSD1 = shift data in on SD1. SIB_A1
// = store data uint8_t at next available location in FB BUFFER1
// register.
WR7146(P_TSL1, RSD1 | SIB_A1); // Fetch ADC high data
// uint8_t.
WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); // Fetch ADC low data
// uint8_t; end of
// TSL1.
// enab TSL1 slot list so that it executes all the time.
WR7146(P_ACON1, ACON1_ADCSTART);
// Initialize RPS registers used for ADC.
//Physical start of RPS program.
WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
WR7146(P_RPSPAGE1, 0); // RPS program performs no
// explicit mem writes.
WR7146(P_RPS1_TOUT, 0); // Disable RPS timeouts.
// SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface to a
// known state by invoking ADCs until FB BUFFER 1 register shows
// that it is correctly receiving ADC data. This is necessary
// because the SAA7146 ADC interface does not start up in a
// defined state after a PCI reset.
/* PollList = EOPL; // Create a simple polling */
/* // list for analog input */
/* // channel 0. */
/* ResetADC( dev, &PollList ); */
/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
/* //Get initial ADC */
/* //value. */
/* StartVal = data[0]; */
/* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
/* // Invoke ADCs until the new ADC value differs from the initial */
/* // value or a timeout occurs. The timeout protects against the */
/* // possibility that the driver is restarting and the ADC data is a */
/* // fixed value resulting from the applied ADC analog input being */
/* // unusually quiet or at the rail. */
/* for ( index = 0; index < 500; index++ ) */
/* { */
/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
/* AdcData = data[0]; //ReadADC( &AdcData ); */
/* if ( AdcData != StartVal ) */
/* break; */
/* } */
// end initADC
// init the DAC interface
// Init Audio2's output DMAC attributes: burst length = 1 DWORD,
// threshold = 1 DWORD.
WR7146(P_PCI_BT_A, 0);
// Init Audio2's output DMA physical addresses. The protection
// address is set to 1 DWORD past the base address so that a
// single DWORD will be transferred each time a DMA transfer is
// enabled.
pPhysBuf =
devpriv->ANABuf.PhysicalBase +
(DAC_WDMABUF_OS * sizeof(uint32_t));
WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); // Buffer base adrs.
WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); // Protection address.
// Cache Audio2's output DMA buffer logical address. This is
// where DAC data is buffered for A2 output DMA transfers.
devpriv->pDacWBuf =
(uint32_t *) devpriv->ANABuf.LogicalBase +
DAC_WDMABUF_OS;
// Audio2's output channels does not use paging. The protection
// violation handling bit is set so that the DMAC will
// automatically halt and its PCI address pointer will be reset
// when the protection address is reached.
WR7146(P_PAGEA2_OUT, 8);
// Initialize time slot list 2 (TSL2), which is used to control
// the clock generation for and serialization of data to be sent
// to the DAC devices. Slot 0 is a NOP that is used to trap TSL
// execution; this permits other slots to be safely modified
// without first turning off the TSL sequencer (which is
// apparently impossible to do). Also, SD3 (which is driven by a
// pull-up resistor) is shifted in and stored to the MSB of
// FB_BUFFER2 to be used as evidence that the slot sequence has
// not yet finished executing.
SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); // Slot 0: Trap TSL
// execution, shift 0xFF
// into FB_BUFFER2.
// Initialize slot 1, which is constant. Slot 1 causes a DWORD to
// be transferred from audio channel 2's output FIFO to the FIFO's
// output buffer so that it can be serialized and sent to the DAC
// during subsequent slots. All remaining slots are dynamically
// populated as required by the target DAC device.
SETVECT(1, LF_A2); // Slot 1: Fetch DWORD from Audio2's
// output FIFO.
// Start DAC's audio interface (TSL2) running.
WR7146(P_ACON1, ACON1_DACSTART);
////////////////////////////////////////////////////////
// end init DAC interface
// Init Trim DACs to calibrated values. Do it twice because the
// SAA7146 audio channel does not always reset properly and
// sometimes causes the first few TrimDAC writes to malfunction.
LoadTrimDACs(dev);
LoadTrimDACs(dev); // Insurance.
//////////////////////////////////////////////////////////////////
// Manually init all gate array hardware in case this is a soft
// reset (we have no way of determining whether this is a warm or
// cold start). This is necessary because the gate array will
// reset only in response to a PCI hard reset; there is no soft
// reset function.
// Init all DAC outputs to 0V and init all DAC setpoint and
// polarity images.
for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
SetDAC(dev, chan, 0);
// Init image of WRMISC2 Battery Charger Enabled control bit.
// This image is used when the state of the charger control bit,
// which has no direct hardware readback mechanism, is queried.
devpriv->ChargeEnabled = 0;
// Init image of watchdog timer interval in WRMISC2. This image
// maintains the value of the control bits of MISC2 are
// continuously reset to zero as long as the WD timer is disabled.
devpriv->WDInterval = 0;
// Init Counter Interrupt enab mask for RDMISC2. This mask is
// applied against MISC2 when testing to determine which timer
// events are requesting interrupt service.
devpriv->CounterIntEnabs = 0;
// Init counters.
CountersInit(dev);
// Without modifying the state of the Battery Backup enab, disable
// the watchdog timer, set DIO channels 0-5 to operate in the
// standard DIO (vs. counter overflow) mode, disable the battery
// charger, and reset the watchdog interval selector to zero.
WriteMISC2(dev, (uint16_t) (DEBIread(dev,
LP_RDMISC2) & MISC2_BATT_ENABLE));
// Initialize the digital I/O subsystem.
s626_dio_init(dev);
//enable interrupt test
// writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER);
}
DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
(uint32_t) devpriv->base_addr);
return 1;
}
static lsampl_t s626_ai_reg_to_uint(int data)
{
lsampl_t tempdata;
tempdata = (data >> 18);
if (tempdata & 0x2000)
tempdata &= 0x1fff;
else
tempdata += (1 << 13);
return tempdata;
}
/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
/* return 0; */
/* } */
static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
{
comedi_device *dev = d;
comedi_subdevice *s;
comedi_cmd *cmd;
enc_private *k;
unsigned long flags;
int32_t *readaddr;
uint32_t irqtype, irqstatus;
int i = 0;
sampl_t tempdata;
uint8_t group;
uint16_t irqbit;
DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
if (dev->attached == 0)
return IRQ_NONE;
// lock to avoid race with comedi_poll
comedi_spin_lock_irqsave(&dev->spinlock, flags);
//save interrupt enable register state
irqstatus = readl(devpriv->base_addr + P_IER);
//read interrupt type
irqtype = readl(devpriv->base_addr + P_ISR);
//disable master interrupt
writel(0, devpriv->base_addr + P_IER);
//clear interrupt
writel(irqtype, devpriv->base_addr + P_ISR);
//do somethings
DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
switch (irqtype) {
case IRQ_RPS1: // end_of_scan occurs
DEBUG("s626_irq_handler: RPS1 irq detected\n");
// manage ai subdevice
s = dev->subdevices;
cmd = &(s->async->cmd);
// Init ptr to DMA buffer that holds new ADC data. We skip the
// first uint16_t in the buffer because it contains junk data from
// the final ADC of the previous poll list scan.
readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
// get the data and hand it over to comedi
for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
// Convert ADC data to 16-bit integer values and copy to application
// buffer.
tempdata = s626_ai_reg_to_uint((int)*readaddr);
readaddr++;
//put data into read buffer
// comedi_buf_put(s->async, tempdata);
if (cfc_write_to_buffer(s, tempdata) == 0)
printk("s626_irq_handler: cfc_write_to_buffer error!\n");
DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
i, tempdata);
}
//end of scan occurs
s->async->events |= COMEDI_CB_EOS;
if (!(devpriv->ai_continous))
devpriv->ai_sample_count--;
if (devpriv->ai_sample_count <= 0) {
devpriv->ai_cmd_running = 0;
// Stop RPS program.
MC_DISABLE(P_MC1, MC1_ERPS1);
//send end of acquisition
s->async->events |= COMEDI_CB_EOA;
//disable master interrupt
irqstatus = 0;
}
if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
s626_dio_set_irq(dev, cmd->scan_begin_arg);
DEBUG("s626_irq_handler: External trigger is set!!!\n");
}
// tell comedi that data is there
DEBUG("s626_irq_handler: events %d\n", s->async->events);
comedi_event(dev, s);
break;
case IRQ_GPIO3: //check dio and conter interrupt
DEBUG("s626_irq_handler: GPIO3 irq detected\n");
// manage ai subdevice
s = dev->subdevices;
cmd = &(s->async->cmd);
//s626_dio_clear_irq(dev);
for (group = 0; group < S626_DIO_BANKS; group++) {
irqbit = 0;
//read interrupt type
irqbit = DEBIread(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->RDCapFlg);
//check if interrupt is generated from dio channels
if (irqbit) {
s626_dio_reset_irq(dev, group, irqbit);
DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
if (devpriv->ai_cmd_running) {
//check if interrupt is an ai acquisition start trigger
if ((irqbit >> (cmd->start_arg -
(16 * group)))
== 1
&& cmd->start_src == TRIG_EXT) {
DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
// Start executing the RPS program.
MC_ENABLE(P_MC1, MC1_ERPS1);
DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
if (cmd->scan_begin_src ==
TRIG_EXT) {
DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
s626_dio_set_irq(dev,
cmd->
scan_begin_arg);
DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
}
}
if ((irqbit >> (cmd->scan_begin_arg -
(16 * group)))
== 1
&& cmd->scan_begin_src ==
TRIG_EXT) {
DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
// Trigger ADC scan loop start by setting RPS Signal 0.
MC_ENABLE(P_MC2, MC2_ADC_RPS);
DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
if (cmd->convert_src ==
TRIG_EXT) {
DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
devpriv->
ai_convert_count
=
cmd->
chanlist_len;
s626_dio_set_irq(dev,
cmd->
convert_arg);
DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
}
if (cmd->convert_src ==
TRIG_TIMER) {
k = &encpriv[5];
devpriv->
ai_convert_count
=
cmd->
chanlist_len;
k->SetEnable(dev, k,
CLKENAB_ALWAYS);
}
}
if ((irqbit >> (cmd->convert_arg -
(16 * group)))
== 1
&& cmd->convert_src ==
TRIG_EXT) {
DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
// Trigger ADC scan loop start by setting RPS Signal 0.
MC_ENABLE(P_MC2, MC2_ADC_RPS);
DEBUG("s626_irq_handler: adc convert triggered!!!\n");
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count >
0) {
DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
s626_dio_set_irq(dev,
cmd->
convert_arg);
DEBUG("s626_irq_handler: External trigger is set!!!\n");
}
}
}
break;
}
}
//read interrupt type
irqbit = DEBIread(dev, LP_RDMISC2);
//check interrupt on counters
DEBUG("s626_irq_handler: check counters interrupt %d\n",
irqbit);
if (irqbit & IRQ_COINT1A) {
DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
k = &encpriv[0];
//clear interrupt capture flag
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT2A) {
DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
k = &encpriv[1];
//clear interrupt capture flag
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT3A) {
DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
k = &encpriv[2];
//clear interrupt capture flag
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT1B) {
DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
k = &encpriv[3];
//clear interrupt capture flag
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT2B) {
DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
k = &encpriv[4];
//clear interrupt capture flag
k->ResetCapFlags(dev, k);
if (devpriv->ai_convert_count > 0) {
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count == 0)
k->SetEnable(dev, k, CLKENAB_INDEX);
if (cmd->convert_src == TRIG_TIMER) {
DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
// Trigger ADC scan loop start by setting RPS Signal 0.
MC_ENABLE(P_MC2, MC2_ADC_RPS);
}
}
}
if (irqbit & IRQ_COINT3B) {
DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
k = &encpriv[5];
//clear interrupt capture flag
k->ResetCapFlags(dev, k);
if (cmd->scan_begin_src == TRIG_TIMER) {
DEBUG("s626_irq_handler: scan timer trigger!!!\n");
// Trigger ADC scan loop start by setting RPS Signal 0.
MC_ENABLE(P_MC2, MC2_ADC_RPS);
}
if (cmd->convert_src == TRIG_TIMER) {
DEBUG("s626_irq_handler: convert timer trigger is set\n");
k = &encpriv[4];
devpriv->ai_convert_count = cmd->chanlist_len;
k->SetEnable(dev, k, CLKENAB_ALWAYS);
}
}
}
//enable interrupt
writel(irqstatus, devpriv->base_addr + P_IER);
DEBUG("s626_irq_handler: exit interrupt service routine.\n");
comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
return IRQ_HANDLED;
}
static int s626_detach(comedi_device * dev)
{
if (devpriv) {
//stop ai_command
devpriv->ai_cmd_running = 0;
if (devpriv->base_addr) {
//interrupt mask
WR7146(P_IER, 0); // Disable master interrupt.
WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); // Clear board's IRQ status flag.
// Disable the watchdog timer and battery charger.
WriteMISC2(dev, 0);
// Close all interfaces on 7146 device.
WR7146(P_MC1, MC1_SHUTDOWN);
WR7146(P_ACON1, ACON1_BASE);
CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
}
if (dev->irq) {
comedi_free_irq(dev->irq, dev);
}
if (devpriv->base_addr) {
iounmap(devpriv->base_addr);
}
if (devpriv->pdev) {
if (devpriv->got_regions) {
comedi_pci_disable(devpriv->pdev);
}
pci_dev_put(devpriv->pdev);
}
}
DEBUG("s626_detach: S626 detached!\n");
return 0;
}
/*
* this functions build the RPS program for hardware driven acquistion
*/
void ResetADC(comedi_device * dev, uint8_t * ppl)
{
register uint32_t *pRPS;
uint32_t JmpAdrs;
uint16_t i;
uint16_t n;
uint32_t LocalPPL;
comedi_cmd *cmd = &(dev->subdevices->async->cmd);
// Stop RPS program in case it is currently running.
MC_DISABLE(P_MC1, MC1_ERPS1);
// Set starting logical address to write RPS commands.
pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
// Initialize RPS instruction pointer.
WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
// Construct RPS program in RPSBuf DMA buffer
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
DEBUG("ResetADC: scan_begin pause inserted\n");
// Wait for Start trigger.
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
// SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
// because the first RPS DEBI Write following a non-RPS DEBI write
// seems to always fail. If we don't do this dummy write, the ADC
// gain might not be set to the value required for the first slot in
// the poll list; the ADC gain would instead remain unchanged from
// the previously programmed value.
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI Write command
// and address to shadow RAM.
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI immediate data
// to shadow RAM:
*pRPS++ = GSEL_BIPOLAR5V; // arbitrary immediate data
// value.
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM
// uploaded" flag.
*pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
*pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to finish.
// Digitize all slots in the poll list. This is implemented as a
// for loop to limit the slot count to 16 in case the application
// forgot to set the EOPL flag in the final slot.
for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
// Convert application's poll list item to private board class
// format. Each app poll list item is an uint8_t with form
// (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
// +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
LocalPPL =
(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
GSEL_BIPOLAR10V);
// Switch ADC analog gain.
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
// and address to
// shadow RAM.
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
// immediate data to
// shadow RAM.
*pRPS++ = LocalPPL;
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
// flag.
*pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
*pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
// finish.
// Select ADC analog input channel.
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
// and address to
// shadow RAM.
*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
// immediate data to
// shadow RAM.
*pRPS++ = LocalPPL;
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
// flag.
*pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
*pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
// finish.
// Delay at least 10 microseconds for analog input settling.
// Instead of padding with NOPs, we use RPS_JUMP instructions
// here; this allows us to produce a longer delay than is
// possible with NOPs because each RPS_JUMP flushes the RPS'
// instruction prefetch pipeline.
JmpAdrs =
(uint32_t) devpriv->RPSBuf.PhysicalBase +
(uint32_t) ((unsigned long)pRPS -
(unsigned long)devpriv->RPSBuf.LogicalBase);
for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
JmpAdrs += 8; // Repeat to implement time delay:
*pRPS++ = RPS_JUMP; // Jump to next RPS instruction.
*pRPS++ = JmpAdrs;
}
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
DEBUG("ResetADC: convert pause inserted\n");
// Wait for Start trigger.
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
// Start ADC by pulsing GPIO1.
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
*pRPS++ = GPIO_BASE | GPIO1_LO;
*pRPS++ = RPS_NOP;
// VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
*pRPS++ = GPIO_BASE | GPIO1_HI;
// Wait for ADC to complete (GPIO2 is asserted high when ADC not
// busy) and for data from previous conversion to shift into FB
// BUFFER 1 register.
*pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
// Transfer ADC data from FB BUFFER 1 register to DMA buffer.
*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
*pRPS++ =
(uint32_t) devpriv->ANABuf.PhysicalBase +
(devpriv->AdcItems << 2);
// If this slot's EndOfPollList flag is set, all channels have
// now been processed.
if (*ppl++ & EOPL) {
devpriv->AdcItems++; // Adjust poll list item count.
break; // Exit poll list processing loop.
}
}
DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
// VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
// ADC to stabilize for 2 microseconds before starting the final
// (dummy) conversion. This delay is necessary to allow sufficient
// time between last conversion finished and the start of the dummy
// conversion. Without this delay, the last conversion's data value
// is sometimes set to the previous conversion's data value.
for (n = 0; n < (2 * RPSCLK_PER_US); n++)
*pRPS++ = RPS_NOP;
// Start a dummy conversion to cause the data from the last
// conversion of interest to be shifted in.
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
*pRPS++ = GPIO_BASE | GPIO1_LO;
*pRPS++ = RPS_NOP;
// VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
*pRPS++ = GPIO_BASE | GPIO1_HI;
// Wait for the data from the last conversion of interest to arrive
// in FB BUFFER 1 register.
*pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
// Transfer final ADC data from FB BUFFER 1 register to DMA buffer.
*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); //
*pRPS++ =
(uint32_t) devpriv->ANABuf.PhysicalBase +
(devpriv->AdcItems << 2);
// Indicate ADC scan loop is finished.
// *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done.
//invoke interrupt
if (devpriv->ai_cmd_running == 1) {
DEBUG("ResetADC: insert irq in ADC RPS task\n");
*pRPS++ = RPS_IRQ;
}
// Restart RPS program at its beginning.
*pRPS++ = RPS_JUMP; // Branch to start of RPS program.
*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
// End of RPS program build
// ------------------------------------------------------------
}
/* TO COMPLETE, IF NECESSARY */
static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
return -EINVAL;
}
/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
/* { */
/* register uint8_t i; */
/* register int32_t *readaddr; */
/* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
/* // Trigger ADC scan loop start by setting RPS Signal 0. */
/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
/* // Wait until ADC scan loop is finished (RPS Signal 0 reset). */
/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
/* // Init ptr to DMA buffer that holds new ADC data. We skip the */
/* // first uint16_t in the buffer because it contains junk data from */
/* // the final ADC of the previous poll list scan. */
/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
/* // Convert ADC data to 16-bit integer values and copy to application */
/* // buffer. */
/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
/* DEBUG("s626_ai_rinsn: data %d \n",*data); */
/* data++; */
/* } */
/* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
/* return i; */
/* } */
static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
uint16_t chan = CR_CHAN(insn->chanspec);
uint16_t range = CR_RANGE(insn->chanspec);
uint16_t AdcSpec = 0;
uint32_t GpioImage;
int n;
/* //interrupt call test */
/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */
/* //into any of the RPS_PSR */
/* //bits causes the */
/* //corresponding interrupt */
/* //to be generated if */
/* //enabled */
DEBUG("s626_ai_insn_read: entering\n");
// Convert application's ADC specification into form
// appropriate for register programming.
if (range == 0)
AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
else
AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
// Switch ADC analog gain.
DEBIwrite(dev, LP_GSEL, AdcSpec); // Set gain.
// Select ADC analog input channel.
DEBIwrite(dev, LP_ISEL, AdcSpec); // Select channel.
for (n = 0; n < insn->n; n++) {
// Delay 10 microseconds for analog input settling.
comedi_udelay(10);
// Start ADC by pulsing GPIO1 low.
GpioImage = RR7146(P_GPIO);
// Assert ADC Start command
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
// and stretch it out.
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
// Negate ADC Start command.
WR7146(P_GPIO, GpioImage | GPIO1_HI);
// Wait for ADC to complete (GPIO2 is asserted high when
// ADC not busy) and for data from previous conversion to
// shift into FB BUFFER 1 register.
// Wait for ADC done.
while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
// Fetch ADC data.
if (n != 0)
data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
// Allow the ADC to stabilize for 4 microseconds before
// starting the next (final) conversion. This delay is
// necessary to allow sufficient time between last
// conversion finished and the start of the next
// conversion. Without this delay, the last conversion's
// data value is sometimes set to the previous
// conversion's data value.
comedi_udelay(4);
}
// Start a dummy conversion to cause the data from the
// previous conversion to be shifted in.
GpioImage = RR7146(P_GPIO);
//Assert ADC Start command
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
// and stretch it out.
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
// Negate ADC Start command.
WR7146(P_GPIO, GpioImage | GPIO1_HI);
// Wait for the data to arrive in FB BUFFER 1 register.
// Wait for ADC done.
while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
// Fetch ADC data from audio interface's input shift
// register.
// Fetch ADC data.
if (n != 0)
data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
return n;
}
static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd)
{
int n;
for (n = 0; n < cmd->chanlist_len; n++) {
if (CR_RANGE((cmd->chanlist)[n]) == 0)
ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
else
ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
}
ppl[n - 1] |= EOPL;
return n;
}
static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
unsigned int trignum)
{
if (trignum != 0)
return -EINVAL;
DEBUG("s626_ai_inttrig: trigger adc start...");
// Start executing the RPS program.
MC_ENABLE(P_MC1, MC1_ERPS1);
s->async->inttrig = NULL;
DEBUG(" done\n");
return 1;
}
/* TO COMPLETE */
static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
{
uint8_t ppl[16];
comedi_cmd *cmd = &s->async->cmd;
enc_private *k;
int tick;
DEBUG("s626_ai_cmd: entering command function\n");
if (devpriv->ai_cmd_running) {
printk("s626_ai_cmd: Another ai_cmd is running %d\n",
dev->minor);
return -EBUSY;
}
//disable interrupt
writel(0, devpriv->base_addr + P_IER);
//clear interrupt request
writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
//clear any pending interrupt
s626_dio_clear_irq(dev);
// s626_enc_clear_irq(dev);
//reset ai_cmd_running flag
devpriv->ai_cmd_running = 0;
// test if cmd is valid
if (cmd == NULL) {
DEBUG("s626_ai_cmd: NULL command\n");
return -EINVAL;
} else {
DEBUG("s626_ai_cmd: command recieved!!!\n");
}
if (dev->irq == 0) {
comedi_error(dev,
"s626_ai_cmd: cannot run command without an irq");
return -EIO;
}
s626_ai_load_polllist(ppl, cmd);
devpriv->ai_cmd_running = 1;
devpriv->ai_convert_count = 0;
switch (cmd->scan_begin_src) {
case TRIG_FOLLOW:
break;
case TRIG_TIMER:
// set a conter to generate adc trigger at scan_begin_arg interval
k = &encpriv[5];
tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
//load timer value and enable interrupt
s626_timer_load(dev, k, tick);
k->SetEnable(dev, k, CLKENAB_ALWAYS);
DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
tick);
break;
case TRIG_EXT:
// set the digital line and interrupt for scan trigger
if (cmd->start_src != TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
break;
}
switch (cmd->convert_src) {
case TRIG_NOW:
break;
case TRIG_TIMER:
// set a conter to generate adc trigger at convert_arg interval
k = &encpriv[4];
tick = s626_ns_to_timer((int *)&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
//load timer value and enable interrupt
s626_timer_load(dev, k, tick);
k->SetEnable(dev, k, CLKENAB_INDEX);
DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
break;
case TRIG_EXT:
// set the digital line and interrupt for convert trigger
if (cmd->scan_begin_src != TRIG_EXT
&& cmd->start_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->convert_arg);
DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
break;
}
switch (cmd->stop_src) {
case TRIG_COUNT:
// data arrives as one packet
devpriv->ai_sample_count = cmd->stop_arg;
devpriv->ai_continous = 0;
break;
case TRIG_NONE:
// continous aquisition
devpriv->ai_continous = 1;
devpriv->ai_sample_count = 0;
break;
}
ResetADC(dev, ppl);
switch (cmd->start_src) {
case TRIG_NOW:
// Trigger ADC scan loop start by setting RPS Signal 0.
// MC_ENABLE( P_MC2, MC2_ADC_RPS );
// Start executing the RPS program.
MC_ENABLE(P_MC1, MC1_ERPS1);
DEBUG("s626_ai_cmd: ADC triggered\n");
s->async->inttrig = NULL;
break;
case TRIG_EXT:
//configure DIO channel for acquisition trigger
s626_dio_set_irq(dev, cmd->start_arg);
DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
s->async->inttrig = NULL;
break;
case TRIG_INT:
s->async->inttrig = s626_ai_inttrig;
break;
}
//enable interrupt
writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
DEBUG("s626_ai_cmd: command function terminated\n");
return 0;
}
static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
comedi_cmd * cmd)
{
int err = 0;
int tmp;
/* cmdtest tests a particular command to see if it is valid. Using
* the cmdtest ioctl, a user can create a valid cmd and then have it
* executes by the cmd ioctl.
*
* cmdtest returns 1,2,3,4 or 0, depending on which tests the
* command passes. */
/* step 1: make sure trigger sources are trivially valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
if (err)
return 1;
/* step 2: make sure trigger sources are unique and mutually
compatible */
/* note that mutual compatiblity is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT
&& cmd->scan_begin_src != TRIG_FOLLOW)
err++;
if (cmd->convert_src != TRIG_TIMER &&
cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
err++;
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
err++;
if (err)
return 2;
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
cmd->start_arg = 0;
err++;
}
if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
cmd->start_arg = 39;
err++;
}
if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
cmd->scan_begin_arg = 0;
err++;
}
if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
cmd->scan_begin_arg = 39;
err++;
}
if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
cmd->convert_arg = 0;
err++;
}
if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
cmd->convert_arg = 39;
err++;
}
#define MAX_SPEED 200000 /* in nanoseconds */
#define MIN_SPEED 2000000000 /* in nanoseconds */
if (cmd->scan_begin_src == TRIG_TIMER) {
if (cmd->scan_begin_arg < MAX_SPEED) {
cmd->scan_begin_arg = MAX_SPEED;
err++;
}
if (cmd->scan_begin_arg > MIN_SPEED) {
cmd->scan_begin_arg = MIN_SPEED;
err++;
}
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
/* if(cmd->scan_begin_arg>9){ */
/* cmd->scan_begin_arg=9; */
/* err++; */
/* } */
}
if (cmd->convert_src == TRIG_TIMER) {
if (cmd->convert_arg < MAX_SPEED) {
cmd->convert_arg = MAX_SPEED;
err++;
}
if (cmd->convert_arg > MIN_SPEED) {
cmd->convert_arg = MIN_SPEED;
err++;
}
} else {
/* external trigger */
/* see above */
/* if(cmd->convert_arg>9){ */
/* cmd->convert_arg=9; */
/* err++; */
/* } */
}
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
if (cmd->stop_src == TRIG_COUNT) {
if (cmd->stop_arg > 0x00ffffff) {
cmd->stop_arg = 0x00ffffff;
err++;
}
} else {
/* TRIG_NONE */
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
}
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp = cmd->scan_begin_arg;
s626_ns_to_timer((int *)&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->scan_begin_arg)
err++;
}
if (cmd->convert_src == TRIG_TIMER) {
tmp = cmd->convert_arg;
s626_ns_to_timer((int *)&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->convert_arg)
err++;
if (cmd->scan_begin_src == TRIG_TIMER &&
cmd->scan_begin_arg <
cmd->convert_arg * cmd->scan_end_arg) {
cmd->scan_begin_arg =
cmd->convert_arg * cmd->scan_end_arg;
err++;
}
}
if (err)
return 4;
return 0;
}
static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s)
{
// Stop RPS program in case it is currently running.
MC_DISABLE(P_MC1, MC1_ERPS1);
//disable master interrupt
writel(0, devpriv->base_addr + P_IER);
devpriv->ai_cmd_running = 0;
return 0;
}
/* This function doesn't require a particular form, this is just what
* happens to be used in some of the drivers. It should convert ns
* nanoseconds to a counter value suitable for programming the device.
* Also, it should adjust ns so that it cooresponds to the actual time
* that the device will use. */
static int s626_ns_to_timer(int *nanosec, int round_mode)
{
int divider, base;
base = 500; //2MHz internal clock
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
*nanosec = base * divider;
return divider - 1;
}
static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
int i;
uint16_t chan = CR_CHAN(insn->chanspec);
int16_t dacdata;
for (i = 0; i < insn->n; i++) {
dacdata = (int16_t) data[i];
devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
dacdata -= (0x1fff);
SetDAC(dev, chan, dacdata);
}
return i;
}
static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
int i;
for (i = 0; i < insn->n; i++) {
data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
}
return i;
}
/////////////////////////////////////////////////////////////////////
/////////////// DIGITAL I/O FUNCTIONS /////////////////////////////
/////////////////////////////////////////////////////////////////////
// All DIO functions address a group of DIO channels by means of
// "group" argument. group may be 0, 1 or 2, which correspond to DIO
// ports A, B and C, respectively.
/////////////////////////////////////////////////////////////////////
static void s626_dio_init(comedi_device * dev)
{
uint16_t group;
comedi_subdevice *s;
// Prepare to treat writes to WRCapSel as capture disables.
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
// For each group of sixteen channels ...
for (group = 0; group < S626_DIO_BANKS; group++) {
s = dev->subdevices + 2 + group;
DEBIwrite(dev, diopriv->WRIntSel, 0); // Disable all interrupts.
DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); // Disable all event
// captures.
DEBIwrite(dev, diopriv->WREdgSel, 0); // Init all DIOs to
// default edge
// polarity.
DEBIwrite(dev, diopriv->WRDOut, 0); // Program all outputs
// to inactive state.
}
DEBUG("s626_dio_init: DIO initialized \n");
}
/* DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The comedi
* core can convert between insn_bits and insn_read/write */
static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
/* Length of data must be 2 (mask and new data, see below) */
if (insn->n == 0) {
return 0;
}
if (insn->n != 2) {
printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
return -EINVAL;
}
/*
* The insn data consists of a mask in data[0] and the new data in
* data[1]. The mask defines which bits we are concerning about.
* The new data must be anded with the mask. Each channel
* corresponds to a bit.
*/
if (data[0]) {
/* Check if requested ports are configured for output */
if ((s->io_bits & data[0]) != data[0])
return -EIO;
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */
DEBIwrite(dev, diopriv->WRDOut, s->state);
}
data[1] = DEBIread(dev, diopriv->RDDIn);
return 2;
}
static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
switch (data[0]) {
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->io_bits & (1 << CR_CHAN(insn->
chanspec))) ? COMEDI_OUTPUT :
COMEDI_INPUT;
return insn->n;
break;
case COMEDI_INPUT:
s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
break;
case COMEDI_OUTPUT:
s->io_bits |= 1 << CR_CHAN(insn->chanspec);
break;
default:
return -EINVAL;
break;
}
DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
return 1;
}
static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
{
unsigned int group;
unsigned int bitmask;
unsigned int status;
//select dio bank
group = chan / 16;
bitmask = 1 << (chan - (16 * group));
DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
chan - (16 * group), group);
//set channel to capture positive edge
status = DEBIread(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->RDEdgSel);
DEBIwrite(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->WREdgSel, bitmask | status);
//enable interrupt on selected channel
status = DEBIread(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->RDIntSel);
DEBIwrite(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->WRIntSel, bitmask | status);
//enable edge capture write command
DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
//enable edge capture on selected channel
status = DEBIread(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->RDCapSel);
DEBIwrite(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->WRCapSel, bitmask | status);
return 0;
}
static int s626_dio_reset_irq(comedi_device * dev, unsigned int group,
unsigned int mask)
{
DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
//disable edge capture write command
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
//enable edge capture on selected channel
DEBIwrite(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->WRCapSel, mask);
return 0;
}
static int s626_dio_clear_irq(comedi_device * dev)
{
unsigned int group;
//disable edge capture write command
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
for (group = 0; group < S626_DIO_BANKS; group++) {
//clear pending events and interrupt
DEBIwrite(dev,
((dio_private *) (dev->subdevices + 2 +
group)->private)->WRCapSel, 0xffff);
}
return 0;
}
/* Now this function initializes the value of the counter (data[0])
and set the subdevice. To complete with trigger and interrupt
configuration */
static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
// index.
(INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
(CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
(CLKPOL_POS << BF_CLKPOL) | // Active high clock.
//( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down.
(CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
(CLKENAB_INDEX << BF_CLKENAB);
/* uint16_t DisableIntSrc=TRUE; */
// uint32_t Preloadvalue; //Counter initial value
uint16_t valueSrclatch = LATCHSRC_AB_READ;
uint16_t enab = CLKENAB_ALWAYS;
enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
DEBUG("s626_enc_insn_config: encoder config\n");
// (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]);
k->SetMode(dev, k, Setup, TRUE);
Preload(dev, k, *(insn->data));
k->PulseIndex(dev, k);
SetLatchSource(dev, k, valueSrclatch);
k->SetEnable(dev, k, (uint16_t) (enab != 0));
return insn->n;
}
static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
int n;
enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
DEBUG("s626_enc_insn_read: encoder read channel %d \n",
CR_CHAN(insn->chanspec));
for (n = 0; n < insn->n; n++)
data[n] = ReadLatch(dev, k);
DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
return n;
}
static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
DEBUG("s626_enc_insn_write: encoder write channel %d \n",
CR_CHAN(insn->chanspec));
// Set the preload register
Preload(dev, k, data[0]);
// Software index pulse forces the preload register to load
// into the counter
k->SetLoadTrig(dev, k, 0);
k->PulseIndex(dev, k);
k->SetLoadTrig(dev, k, 2);
DEBUG("s626_enc_insn_write: End encoder write\n");
return 1;
}
static void s626_timer_load(comedi_device * dev, enc_private * k, int tick)
{
uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
// index.
(INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
(CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
(CLKPOL_POS << BF_CLKPOL) | // Active high clock.
(CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down.
(CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
(CLKENAB_INDEX << BF_CLKENAB);
uint16_t valueSrclatch = LATCHSRC_A_INDXA;
// uint16_t enab=CLKENAB_ALWAYS;
k->SetMode(dev, k, Setup, FALSE);
// Set the preload register
Preload(dev, k, tick);
// Software index pulse forces the preload register to load
// into the counter
k->SetLoadTrig(dev, k, 0);
k->PulseIndex(dev, k);
//set reload on counter overflow
k->SetLoadTrig(dev, k, 1);
//set interrupt on overflow
k->SetIntSrc(dev, k, INTSRC_OVER);
SetLatchSource(dev, k, valueSrclatch);
// k->SetEnable(dev,k,(uint16_t)(enab != 0));
}
///////////////////////////////////////////////////////////////////////
///////////////////// DAC FUNCTIONS /////////////////////////////////
///////////////////////////////////////////////////////////////////////
// Slot 0 base settings.
#define VECT0 ( XSD2 | RSD3 | SIB_A2 ) // Slot 0 always shifts in
// 0xFF and store it to
// FB_BUFFER2.
// TrimDac LogicalChan-to-PhysicalChan mapping table.
static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
// TrimDac LogicalChan-to-EepromAdrs mapping table.
static uint8_t trimadrs[] =
{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
static void LoadTrimDACs(comedi_device * dev)
{
register uint8_t i;
// Copy TrimDac setpoint values from EEPROM to TrimDacs.
for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
}
static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
uint8_t DacData)
{
uint32_t chan;
// Save the new setpoint in case the application needs to read it back later.
devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
// Map logical channel number to physical channel number.
chan = (uint32_t) trimchan[LogicalChan];
// Set up TSL2 records for TrimDac write operation. All slots shift
// 0xFF in from pulled-up SD3 so that the end of the slot sequence
// can be detected.
SETVECT(2, XSD2 | XFIFO_1 | WS3); // Slot 2: Send high uint8_t
// to target TrimDac.
SETVECT(3, XSD2 | XFIFO_0 | WS3); // Slot 3: Send low uint8_t to
// target TrimDac.
SETVECT(4, XSD2 | XFIFO_3 | WS1); // Slot 4: Send NOP high
// uint8_t to DAC0 to keep
// clock running.
SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); // Slot 5: Send NOP low
// uint8_t to DAC0.
// Construct and transmit target DAC's serial packet: ( 0000 AAAA
// ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC
// channel's address, and D<7:0> is the DAC setpoint. Append a WORD
// value (that writes a channel 0 NOP command to a non-existent main
// DAC channel) that serves to keep the clock running after the
// packet has been sent to the target DAC.
SendDAC(dev, ((uint32_t) chan << 8) // Address the DAC channel
// within the trimdac device.
| (uint32_t) DacData); // Include DAC setpoint data.
}
/////////////////////////////////////////////////////////////////////////
//////////////// EEPROM ACCESS FUNCTIONS //////////////////////////////
/////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////
// Read uint8_t from EEPROM.
static uint8_t I2Cread(comedi_device * dev, uint8_t addr)
{
uint8_t rtnval;
// Send EEPROM target address.
if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) // Byte2 = I2C
// command:
// write to
// I2C EEPROM
// device.
| I2C_B1(I2C_ATTRSTOP, addr) // Byte1 = EEPROM
// internal target
// address.
| I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
// sent.
{
// Abort function and declare error if handshake failed.
DEBUG("I2Cread: error handshake I2Cread a\n");
return 0;
}
// Execute EEPROM read.
if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) // Byte2 = I2C
// command: read
// from I2C EEPROM
// device.
| I2C_B1(I2C_ATTRSTOP, 0) // Byte1 receives
// uint8_t from
// EEPROM.
| I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
// sent.
{
// Abort function and declare error if handshake failed.
DEBUG("I2Cread: error handshake I2Cread b\n");
return 0;
}
// Return copy of EEPROM value.
rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
return rtnval;
}
static uint32_t I2Chandshake(comedi_device * dev, uint32_t val)
{
// Write I2C command to I2C Transfer Control shadow register.
WR7146(P_I2CCTRL, val);
// Upload I2C shadow registers into working registers and wait for
// upload confirmation.
MC_ENABLE(P_MC2, MC2_UPLD_IIC);
while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
// Wait until I2C bus transfer is finished or an error occurs.
while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
// Return non-zero if I2C error occured.
return RR7146(P_I2CCTRL) & I2C_ERR;
}
// Private helper function: Write setpoint to an application DAC channel.
static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
{
register uint16_t signmask;
register uint32_t WSImage;
// Adjust DAC data polarity and set up Polarity Control Register
// image.
signmask = 1 << chan;
if (dacdata < 0) {
dacdata = -dacdata;
devpriv->Dacpol |= signmask;
} else
devpriv->Dacpol &= ~signmask;
// Limit DAC setpoint value to valid range.
if ((uint16_t) dacdata > 0x1FFF)
dacdata = 0x1FFF;
// Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
// and V3 transmit the setpoint to the target DAC. V4 and V5 send
// data to a non-existent TrimDac channel just to keep the clock
// running after sending data to the target DAC. This is necessary
// to eliminate the clock glitch that would otherwise occur at the
// end of the target DAC's serial data stream. When the sequence
// restarts at V0 (after executing V5), the gate array automatically
// disables gating for the DAC clock and all DAC chip selects.
WSImage = (chan & 2) ? WS1 : WS2; // Choose DAC chip select to
// be asserted.
SETVECT(2, XSD2 | XFIFO_1 | WSImage); // Slot 2: Transmit high
// data byte to target DAC.
SETVECT(3, XSD2 | XFIFO_0 | WSImage); // Slot 3: Transmit low data
// byte to target DAC.
SETVECT(4, XSD2 | XFIFO_3 | WS3); // Slot 4: Transmit to
// non-existent TrimDac
// channel to keep clock
SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); // Slot 5: running after
// writing target DAC's
// low data byte.
// Construct and transmit target DAC's serial packet: ( A10D DDDD
// ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0>
// is the DAC setpoint. Append a WORD value (that writes to a
// non-existent TrimDac channel) that serves to keep the clock
// running after the packet has been sent to the target DAC.
SendDAC(dev, 0x0F000000 //Continue clock after target DAC
//data (write to non-existent
//trimdac).
| 0x00004000 // Address the two main dual-DAC
// devices (TSL's chip select enables
// target device).
| ((uint32_t) (chan & 1) << 15) // Address the DAC
// channel within the
// device.
| (uint32_t) dacdata); // Include DAC setpoint data.
}
////////////////////////////////////////////////////////
// Private helper function: Transmit serial data to DAC via Audio
// channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
// Dacpol contains valid target image.
static void SendDAC(comedi_device * dev, uint32_t val)
{
// START THE SERIAL CLOCK RUNNING -------------
// Assert DAC polarity control and enable gating of DAC serial clock
// and audio bit stream signals. At this point in time we must be
// assured of being in time slot 0. If we are not in slot 0, the
// serial clock and audio stream signals will be disabled; this is
// because the following DEBIwrite statement (which enables signals
// to be passed through the gate array) would execute before the
// trailing edge of WS1/WS3 (which turns off the signals), thus
// causing the signals to be inactive during the DAC write.
DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
// TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ----------------
// Copy DAC setpoint value to DAC's output DMA buffer.
//WR7146( (uint32_t)devpriv->pDacWBuf, val );
*devpriv->pDacWBuf = val;
// enab the output DMA transfer. This will cause the DMAC to copy
// the DAC's data value to A2's output FIFO. The DMA transfer will
// then immediately terminate because the protection address is
// reached upon transfer of the first DWORD value.
MC_ENABLE(P_MC1, MC1_A2OUT);
// While the DMA transfer is executing ...
// Reset Audio2 output FIFO's underflow flag (along with any other
// FIFO underflow/overflow flags). When set, this flag will
// indicate that we have emerged from slot 0.
WR7146(P_ISR, ISR_AFOU);
// Wait for the DMA transfer to finish so that there will be data
// available in the FIFO when time slot 1 tries to transfer a DWORD
// from the FIFO to the output buffer register. We test for DMA
// Done by polling the DMAC enable flag; this flag is automatically
// cleared when the transfer has finished.
while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
// START THE OUTPUT STREAM TO THE TARGET DAC --------------------
// FIFO data is now available, so we enable execution of time slots
// 1 and higher by clearing the EOS flag in slot 0. Note that SD3
// will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
// detection.
SETVECT(0, XSD2 | RSD3 | SIB_A2);
// Wait for slot 1 to execute to ensure that the Packet will be
// transmitted. This is detected by polling the Audio2 output FIFO
// underflow flag, which will be set when slot 1 execution has
// finished transferring the DAC's data DWORD from the output FIFO
// to the output buffer register.
while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
// Set up to trap execution at slot 0 when the TSL sequencer cycles
// back to slot 0 after executing the EOS in slot 5. Also,
// simultaneously shift out and in the 0x00 that is ALWAYS the value
// stored in the last byte to be shifted out of the FIFO's DWORD
// buffer register.
SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
// WAIT FOR THE TRANSACTION TO FINISH -----------------------
// Wait for the TSL to finish executing all time slots before
// exiting this function. We must do this so that the next DAC
// write doesn't start, thereby enabling clock/chip select signals:
// 1. Before the TSL sequence cycles back to slot 0, which disables
// the clock/cs signal gating and traps slot // list execution. If
// we have not yet finished slot 5 then the clock/cs signals are
// still gated and we have // not finished transmitting the stream.
// 2. While slots 2-5 are executing due to a late slot 0 trap. In
// this case, the slot sequence is currently // repeating, but with
// clock/cs signals disabled. We must wait for slot 0 to trap
// execution before setting // up the next DAC setpoint DMA transfer
// and enabling the clock/cs signals. To detect the end of slot 5,
// we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
// the TSL has not yet finished executing slot 5 ...
if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
// The trap was set on time and we are still executing somewhere
// in slots 2-5, so we now wait for slot 0 to execute and trap
// TSL execution. This is detected when FB_BUFFER2 MSB changes
// from 0xFF to 0x00, which slot 0 causes to happen by shifting
// out/in on SD2 the 0x00 that is always referenced by slot 5.
while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
}
// Either (1) we were too late setting the slot 0 trap; the TSL
// sequencer restarted slot 0 before we could set the EOS trap flag,
// or (2) we were not late and execution is now trapped at slot 0.
// In either case, we must now change slot 0 so that it will store
// value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
// In order to do this, we reprogram slot 0 so that it will shift in
// SD3, which is driven only by a pull-up resistor.
SETVECT(0, RSD3 | SIB_A2 | EOS);
// Wait for slot 0 to execute, at which time the TSL is setup for
// the next DAC write. This is detected when FB_BUFFER2 MSB changes
// from 0x00 to 0xFF.
while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
}
static void WriteMISC2(comedi_device * dev, uint16_t NewImage)
{
DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); // enab writes to
// MISC2 register.
DEBIwrite(dev, LP_WRMISC2, NewImage); // Write new image to MISC2.
DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); // Disable writes to MISC2.
}
/////////////////////////////////////////////////////////////////////
// Initialize the DEBI interface for all transfers.
static uint16_t DEBIread(comedi_device * dev, uint16_t addr)
{
uint16_t retval;
// Set up DEBI control register value in shadow RAM.
WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
// Execute the DEBI transfer.
DEBItransfer(dev);
// Fetch target register value.
retval = (uint16_t) RR7146(P_DEBIAD);
// Return register value.
return retval;
}
// Execute a DEBI transfer. This must be called from within a
// critical section.
static void DEBItransfer(comedi_device * dev)
{
// Initiate upload of shadow RAM to DEBI control register.
MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
// Wait for completion of upload from shadow RAM to DEBI control
// register.
while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
// Wait until DEBI transfer is done.
while (RR7146(P_PSR) & PSR_DEBI_S) ;
}
// Write a value to a gate array register.
static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata)
{
// Set up DEBI control register value in shadow RAM.
WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
WR7146(P_DEBIAD, wdata);
// Execute the DEBI transfer.
DEBItransfer(dev);
}
/////////////////////////////////////////////////////////////////////////////
// Replace the specified bits in a gate array register. Imports: mask
// specifies bits that are to be preserved, wdata is new value to be
// or'd with the masked original.
static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
uint16_t wdata)
{
// Copy target gate array register into P_DEBIAD register.
WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); // Set up DEBI control
// reg value in shadow
// RAM.
DEBItransfer(dev); // Execute the DEBI
// Read transfer.
// Write back the modified image.
WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); // Set up DEBI control
// reg value in shadow
// RAM.
WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); // Modify the register image.
DEBItransfer(dev); // Execute the DEBI Write transfer.
}
static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
{
void *vbptr;
dma_addr_t vpptr;
DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
if (pdma == NULL)
return;
//find the matching allocation from the board struct
vbptr = pdma->LogicalBase;
vpptr = pdma->PhysicalBase;
if (vbptr) {
pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
pdma->LogicalBase = 0;
pdma->PhysicalBase = 0;
DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
vbptr, bsize, (uint32_t) vpptr);
}
}
////////////////////////////////////////////////////////////////////////
///////////////// COUNTER FUNCTIONS //////////////////////////////////
////////////////////////////////////////////////////////////////////////
// All counter functions address a specific counter by means of the
// "Counter" argument, which is a logical counter number. The Counter
// argument may have any of the following legal values: 0=0A, 1=1A,
// 2=2A, 3=0B, 4=1B, 5=2B.
////////////////////////////////////////////////////////////////////////
// Forward declarations for functions that are common to both A and B
// counters:
/////////////////////////////////////////////////////////////////////
//////////////////// PRIVATE COUNTER FUNCTIONS /////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// Read a counter's output latch.
static uint32_t ReadLatch(comedi_device * dev, enc_private * k)
{
register uint32_t value;
//DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n");
// Latch counts and fetch LSW of latched counts value.
value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
// Fetch MSW of latched counts and combine with LSW.
value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
// DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n");
// Return latched counts.
return value;
}
///////////////////////////////////////////////////////////////////
// Reset a counter's index and overflow event capture flags.
static void ResetCapFlags_A(comedi_device * dev, enc_private * k)
{
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
}
static void ResetCapFlags_B(comedi_device * dev, enc_private * k)
{
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
}
/////////////////////////////////////////////////////////////////////////
// Return counter setup in a format (COUNTER_SETUP) that is consistent
// for both A and B counters.
static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
{
register uint16_t cra;
register uint16_t crb;
register uint16_t setup;
// Fetch CRA and CRB register images.
cra = DEBIread(dev, k->MyCRA);
crb = DEBIread(dev, k->MyCRB);
// Populate the standardized counter setup bit fields. Note:
// IndexSrc is restricted to ENC_X or IndxPol.
setup = ((cra & STDMSK_LOADSRC) // LoadSrc = LoadSrcA.
| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcA.
| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) // IntSrc = IntSrcA.
| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) // IndxSrc = IndxSrcA<1>.
| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) // IndxPol = IndxPolA.
| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); // ClkEnab = ClkEnabA.
// Adjust mode-dependent parameters.
if (cra & (2 << CRABIT_CLKSRC_A)) // If Timer mode (ClkSrcA<1> == 1):
setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) // Set ClkPol to indicate count direction (ClkSrcA<0>).
| (MULT_X1 << STDBIT_CLKMULT)); // ClkMult must be 1x in Timer mode.
else // If Counter mode (ClkSrcA<1> == 0):
setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Counter mode.
| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) // Pass through ClkPol.
| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? // Force ClkMult to 1x if not legal, else pass through.
(MULT_X1 << STDBIT_CLKMULT) :
((cra >> (CRABIT_CLKMULT_A -
STDBIT_CLKMULT)) &
STDMSK_CLKMULT)));
// Return adjusted counter setup.
return setup;
}
static uint16_t GetMode_B(comedi_device * dev, enc_private * k)
{
register uint16_t cra;
register uint16_t crb;
register uint16_t setup;
// Fetch CRA and CRB register images.
cra = DEBIread(dev, k->MyCRA);
crb = DEBIread(dev, k->MyCRB);
// Populate the standardized counter setup bit fields. Note:
// IndexSrc is restricted to ENC_X or IndxPol.
setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) // IntSrc = IntSrcB.
| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcB.
| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) // LoadSrc = LoadSrcB.
| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) // IndxPol = IndxPolB.
| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) // ClkEnab = ClkEnabB.
| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); // IndxSrc = IndxSrcB<1>.
// Adjust mode-dependent parameters.
if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) // If Extender mode (ClkMultB == MULT_X0):
setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) // Indicate Extender mode.
| (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
else if (cra & (2 << CRABIT_CLKSRC_B)) // If Timer mode (ClkSrcB<1> == 1):
setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
| (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
else // If Counter mode (ClkSrcB<1> == 0):
setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Timer mode.
| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) // Clock multiplier is passed through.
| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); // Clock polarity is passed through.
// Return adjusted counter setup.
return setup;
}
/////////////////////////////////////////////////////////////////////////////////////////////
// Set the operating mode for the specified counter. The setup
// parameter is treated as a COUNTER_SETUP data type. The following
// parameters are programmable (all other parms are ignored): ClkMult,
// ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
uint16_t DisableIntSrc)
{
register uint16_t cra;
register uint16_t crb;
register uint16_t setup = Setup; // Cache the Standard Setup.
// Initialize CRA and CRB images.
cra = ((setup & CRAMSK_LOADSRC_A) // Preload trigger is passed through.
| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); // IndexSrc is restricted to ENC_X or IndxPol.
crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A // Reset any pending CounterA event captures.
| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); // Clock enable is passed through.
// Force IntSrc to Disabled if DisableIntSrc is asserted.
if (!DisableIntSrc)
cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRABIT_INTSRC_A));
// Populate all mode-dependent attributes of CRA & CRB images.
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
case CLKSRC_EXTENDER: // Extender Mode: Force to Timer mode
// (Extender valid only for B counters).
case CLKSRC_TIMER: // Timer Mode:
cra |= ((2 << CRABIT_CLKSRC_A) // ClkSrcA<1> selects system clock
| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) // with count direction (ClkSrcA<0>) obtained from ClkPol.
| (1 << CRABIT_CLKPOL_A) // ClkPolA behaves as always-on clock enable.
| (MULT_X1 << CRABIT_CLKMULT_A)); // ClkMult must be 1x.
break;
default: // Counter Mode:
cra |= (CLKSRC_COUNTER // Select ENC_C and ENC_D as clock/direction inputs.
| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) // Clock polarity is passed through.
| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force multiplier to x1 if not legal, otherwise pass through.
(MULT_X1 << CRABIT_CLKMULT_A) :
((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
STDBIT_CLKMULT))));
}
// Force positive index polarity if IndxSrc is software-driven only,
// otherwise pass it through.
if (~setup & STDMSK_INDXSRC)
cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
STDBIT_INDXPOL));
// If IntSrc has been forced to Disabled, update the MISC2 interrupt
// enable mask to indicate the counter interrupt is disabled.
if (DisableIntSrc)
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
// While retaining CounterB and LatchSrc configurations, program the
// new counter operating mode.
DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
}
static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
uint16_t DisableIntSrc)
{
register uint16_t cra;
register uint16_t crb;
register uint16_t setup = Setup; // Cache the Standard Setup.
// Initialize CRA and CRB images.
cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); // IndexSrc field is restricted to ENC_X or IndxPol.
crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B // Reset event captures and disable interrupts.
| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) // Clock enable is passed through.
| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); // Preload trigger source is passed through.
// Force IntSrc to Disabled if DisableIntSrc is asserted.
if (!DisableIntSrc)
crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRBBIT_INTSRC_B));
// Populate all mode-dependent attributes of CRA & CRB images.
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
case CLKSRC_TIMER: // Timer Mode:
cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB<1> selects system clock
| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction (ClkSrcB<0>) obtained from ClkPol.
crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB behaves as always-on clock enable.
| (MULT_X1 << CRBBIT_CLKMULT_B)); // ClkMultB must be 1x.
break;
case CLKSRC_EXTENDER: // Extender Mode:
cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB source is OverflowA (same as "timer")
| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction obtained from ClkPol.
crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB controls IndexB -- always set to active.
| (MULT_X0 << CRBBIT_CLKMULT_B)); // ClkMultB selects OverflowA as the clock source.
break;
default: // Counter Mode:
cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); // Select ENC_C and ENC_D as clock/direction inputs.
crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) // ClkPol is passed through.
| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force ClkMult to x1 if not legal, otherwise pass through.
(MULT_X1 << CRBBIT_CLKMULT_B) :
((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
STDBIT_CLKMULT))));
}
// Force positive index polarity if IndxSrc is software-driven only,
// otherwise pass it through.
if (~setup & STDMSK_INDXSRC)
crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
CRBBIT_INDXPOL_B));
// If IntSrc has been forced to Disabled, update the MISC2 interrupt
// enable mask to indicate the counter interrupt is disabled.
if (DisableIntSrc)
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
// While retaining CounterA and LatchSrc configurations, program the
// new counter operating mode.
DEBIreplace(dev, k->MyCRA,
(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
}
////////////////////////////////////////////////////////////////////////
// Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab)
{
DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
(uint16_t) (enab << CRBBIT_CLKENAB_A));
}
static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab)
{
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
(uint16_t) (enab << CRBBIT_CLKENAB_B));
}
static uint16_t GetEnable_A(comedi_device * dev, enc_private * k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
}
static uint16_t GetEnable_B(comedi_device * dev, enc_private * k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
}
////////////////////////////////////////////////////////////////////////
// Return/set a counter pair's latch trigger source. 0: On read
// access, 1: A index latches A, 2: B index latches B, 3: A overflow
// latches B.
static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
{
DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
(uint16_t) (value << CRBBIT_LATCHSRC));
DEBUG("SetLatchSource: SetLatchSource exit \n");
}
/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */
/* { */
/* return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */
/* } */
/////////////////////////////////////////////////////////////////////////
// Return/set the event that will trigger transfer of the preload
// register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
// 2=OverflowA (B counters only), 3=disabled.
static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig)
{
DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
(uint16_t) (Trig << CRABIT_LOADSRC_A));
}
static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig)
{
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
(uint16_t) (Trig << CRBBIT_LOADSRC_B));
}
static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k)
{
return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
}
static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
}
////////////////////
// Return/set counter interrupt source and clear any captured
// index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
// 2=IndexOnly, 3=IndexAndOverflow.
static void SetIntSrc_A(comedi_device * dev, enc_private * k,
uint16_t IntSource)
{
// Reset any pending counter overflow or index captures.
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
// Program counter interrupt source.
DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
(uint16_t) (IntSource << CRABIT_INTSRC_A));
// Update MISC2 interrupt enable mask.
devpriv->CounterIntEnabs =
(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
MyEventBits[IntSource];
}
static void SetIntSrc_B(comedi_device * dev, enc_private * k,
uint16_t IntSource)
{
uint16_t crb;
// Cache writeable CRB register image.
crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
// Reset any pending counter overflow or index captures.
DEBIwrite(dev, k->MyCRB,
(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
// Program counter interrupt source.
DEBIwrite(dev, k->MyCRB,
(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
CRBBIT_INTSRC_B)));
// Update MISC2 interrupt enable mask.
devpriv->CounterIntEnabs =
(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
MyEventBits[IntSource];
}
static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k)
{
return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
}
static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
}
/////////////////////////////////////////////////////////////////////////
// Return/set the clock multiplier.
/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
/* } */
/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
/* } */
/* ////////////////////////////////////////////////////////////////////////// */
/* // Return/set the clock polarity. */
/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
/* } */
/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
/* } */
/* /////////////////////////////////////////////////////////////////////// */
/* // Return/set the clock source. */
/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
/* } */
/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
/* } */
/* //////////////////////////////////////////////////////////////////////// */
/* // Return/set the index polarity. */
/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
/* } */
/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
/* } */
/* //////////////////////////////////////////////////////////////////////// */
/* // Return/set the index source. */
/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value ) */
/* { */
/* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
/* } */
/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
/* } */
///////////////////////////////////////////////////////////////////
// Generate an index pulse.
static void PulseIndex_A(comedi_device * dev, enc_private * k)
{
register uint16_t cra;
DEBUG("PulseIndex_A: pulse index enter\n");
cra = DEBIread(dev, k->MyCRA); // Pulse index.
DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
DEBUG("PulseIndex_A: pulse index step1\n");
DEBIwrite(dev, k->MyCRA, cra);
}
static void PulseIndex_B(comedi_device * dev, enc_private * k)
{
register uint16_t crb;
crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; // Pulse index.
DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
DEBIwrite(dev, k->MyCRB, crb);
}
/////////////////////////////////////////////////////////
// Write value into counter preload register.
static void Preload(comedi_device * dev, enc_private * k, uint32_t value)
{
DEBUG("Preload: preload enter\n");
DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); // Write value to preload register.
DEBUG("Preload: preload step 1\n");
DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
(uint16_t) (value >> 16));
}
static void CountersInit(comedi_device * dev)
{
int chan;
enc_private *k;
uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
// index.
(INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
(CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is counter.
(CLKPOL_POS << BF_CLKPOL) | // Active high clock.
(CNTDIR_UP << BF_CLKPOL) | // Count direction is up.
(CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
(CLKENAB_INDEX << BF_CLKENAB); // Enabled by index
// Disable all counter interrupts and clear any captured counter events.
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
k = &encpriv[chan];
k->SetMode(dev, k, Setup, TRUE);
k->SetIntSrc(dev, k, 0);
k->ResetCapFlags(dev, k);
k->SetEnable(dev, k, CLKENAB_ALWAYS);
}
DEBUG("CountersInit: counters initialized \n");
}
/*
comedi/drivers/s626.h
Sensoray s626 Comedi driver, header file
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2000 David A. Schleef <ds@schleef.org>
Based on Sensoray Model 626 Linux driver Version 0.2
Copyright (C) 2002-2004 Sensoray Co., Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: s626.o (s626.ko)
Description: Sensoray 626 driver
Devices: Sensoray s626
Authors: Gianluca Palli <gpalli@deis.unibo.it>,
Updated: Thu, 12 Jul 2005
Status: experimental
Configuration Options:
analog input:
none
analog output:
none
digital channel:
s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
supported configuration options:
INSN_CONFIG_DIO_QUERY
COMEDI_INPUT
COMEDI_OUTPUT
encoder:
Every channel must be configured before reading.
Example code
insn.insn=INSN_CONFIG; //configuration instruction
insn.n=1; //number of operation (must be 1)
insn.data=&initialvalue; //initial value loaded into encoder
//during configuration
insn.subdev=5; //encoder subdevice
insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
//to configure
comedi_do_insn(cf,&insn); //executing configuration
*/
#ifdef _DEBUG_
#define DEBUG(...); rt_printk(__VA_ARGS__);
#else
#define DEBUG(...)
#endif
#if !defined(TRUE)
#define TRUE (1)
#endif
#if !defined(FALSE)
#define FALSE (0)
#endif
#if !defined(EXTERN)
#if defined(__cplusplus)
#define EXTERN extern "C"
#else
#define EXTERN extern
#endif
#endif
#if !defined(INLINE)
#define INLINE static __inline
#endif
/////////////////////////////////////////////////////
#include<linux/slab.h>
#define S626_SIZE 0x0200
#define SIZEOF_ADDRESS_SPACE 0x0200
#define DMABUF_SIZE 4096 // 4k pages
#define S626_ADC_CHANNELS 16
#define S626_DAC_CHANNELS 4
#define S626_ENCODER_CHANNELS 6
#define S626_DIO_CHANNELS 48
#define S626_DIO_BANKS 3 // Number of DIO groups.
#define S626_DIO_EXTCHANS 40 // Number of
// extended-capability
// DIO channels.
#define NUM_TRIMDACS 12 // Number of valid TrimDAC channels.
// PCI bus interface types.
#define INTEL 1 // Intel bus type.
#define MOTOROLA 2 // Motorola bus type.
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
#define PLATFORM INTEL // *** SELECT PLATFORM TYPE ***
//////////////////////////////////////////////////////////
#define RANGE_5V 0x10 // +/-5V range
#define RANGE_10V 0x00 // +/-10V range
#define EOPL 0x80 // End of ADC poll list marker.
#define GSEL_BIPOLAR5V 0x00F0 // LP_GSEL setting for 5V bipolar range.
#define GSEL_BIPOLAR10V 0x00A0 // LP_GSEL setting for 10V bipolar range.
// Error codes that must be visible to this base class.
#define ERR_ILLEGAL_PARM 0x00010000 // Illegal function parameter value was specified.
#define ERR_I2C 0x00020000 // I2C error.
#define ERR_COUNTERSETUP 0x00200000 // Illegal setup specified for counter channel.
#define ERR_DEBI_TIMEOUT 0x00400000 // DEBI transfer timed out.
// Organization (physical order) and size (in DWORDs) of logical DMA buffers contained by ANA_DMABUF.
#define ADC_DMABUF_DWORDS 40 // ADC DMA buffer must hold 16 samples, plus pre/post garbage samples.
#define DAC_WDMABUF_DWORDS 1 // DAC output DMA buffer holds a single sample.
// All remaining space in 4KB DMA buffer is available for the RPS1 program.
// Address offsets, in DWORDS, from base of DMA buffer.
#define DAC_WDMABUF_OS ADC_DMABUF_DWORDS
// Interrupt enab bit in ISR and IER.
#define IRQ_GPIO3 0x00000040 // IRQ enable for GPIO3.
#define IRQ_RPS1 0x10000000
#define ISR_AFOU 0x00000800 // Audio fifo
// under/overflow
// detected.
#define IRQ_COINT1A 0x0400 // conter 1A overflow
// interrupt mask
#define IRQ_COINT1B 0x0800 // conter 1B overflow
// interrupt mask
#define IRQ_COINT2A 0x1000 // conter 2A overflow
// interrupt mask
#define IRQ_COINT2B 0x2000 // conter 2B overflow
// interrupt mask
#define IRQ_COINT3A 0x4000 // conter 3A overflow
// interrupt mask
#define IRQ_COINT3B 0x8000 // conter 3B overflow
// interrupt mask
// RPS command codes.
#define RPS_CLRSIGNAL 0x00000000 // CLEAR SIGNAL
#define RPS_SETSIGNAL 0x10000000 // SET SIGNAL
#define RPS_NOP 0x00000000 // NOP
#define RPS_PAUSE 0x20000000 // PAUSE
#define RPS_UPLOAD 0x40000000 // UPLOAD
#define RPS_JUMP 0x80000000 // JUMP
#define RPS_LDREG 0x90000100 // LDREG (1 uint32_t only)
#define RPS_STREG 0xA0000100 // STREG (1 uint32_t only)
#define RPS_STOP 0x50000000 // STOP
#define RPS_IRQ 0x60000000 // IRQ
#define RPS_LOGICAL_OR 0x08000000 // Logical OR conditionals.
#define RPS_INVERT 0x04000000 // Test for negated semaphores.
#define RPS_DEBI 0x00000002 // DEBI done
#define RPS_SIG0 0x00200000 // RPS semaphore 0 (used by ADC).
#define RPS_SIG1 0x00400000 // RPS semaphore 1 (used by DAC).
#define RPS_SIG2 0x00800000 // RPS semaphore 2 (not used).
#define RPS_GPIO2 0x00080000 // RPS GPIO2
#define RPS_GPIO3 0x00100000 // RPS GPIO3
#define RPS_SIGADC RPS_SIG0 // Trigger/status for ADC's RPS program.
#define RPS_SIGDAC RPS_SIG1 // Trigger/status for DAC's RPS program.
// RPS clock parameters.
#define RPSCLK_SCALAR 8 // This is apparent ratio of PCI/RPS clks (undocumented!!).
#define RPSCLK_PER_US ( 33 / RPSCLK_SCALAR ) // Number of RPS clocks in one microsecond.
// Event counter source addresses.
#define SBA_RPS_A0 0x27 // Time of RPS0 busy, in PCI clocks.
// GPIO constants.
#define GPIO_BASE 0x10004000 // GPIO 0,2,3 = inputs, GPIO3 = IRQ; GPIO1 = out.
#define GPIO1_LO 0x00000000 // GPIO1 set to LOW.
#define GPIO1_HI 0x00001000 // GPIO1 set to HIGH.
// Primary Status Register (PSR) constants.
#define PSR_DEBI_E 0x00040000 // DEBI event flag.
#define PSR_DEBI_S 0x00080000 // DEBI status flag.
#define PSR_A2_IN 0x00008000 // Audio output DMA2 protection address reached.
#define PSR_AFOU 0x00000800 // Audio FIFO under/overflow detected.
#define PSR_GPIO2 0x00000020 // GPIO2 input pin: 0=AdcBusy, 1=AdcIdle.
#define PSR_EC0S 0x00000001 // Event counter 0 threshold reached.
// Secondary Status Register (SSR) constants.
#define SSR_AF2_OUT 0x00000200 // Audio 2 output FIFO under/overflow detected.
// Master Control Register 1 (MC1) constants.
#define MC1_SOFT_RESET 0x80000000 // Invoke 7146 soft reset.
#define MC1_SHUTDOWN 0x3FFF0000 // Shut down all MC1-controlled enables.
#define MC1_ERPS1 0x2000 // enab/disable RPS task 1.
#define MC1_ERPS0 0x1000 // enab/disable RPS task 0.
#define MC1_DEBI 0x0800 // enab/disable DEBI pins.
#define MC1_AUDIO 0x0200 // enab/disable audio port pins.
#define MC1_I2C 0x0100 // enab/disable I2C interface.
#define MC1_A2OUT 0x0008 // enab/disable transfer on A2 out.
#define MC1_A2IN 0x0004 // enab/disable transfer on A2 in.
#define MC1_A1IN 0x0001 // enab/disable transfer on A1 in.
// Master Control Register 2 (MC2) constants.
#define MC2_UPLD_DEBIq 0x00020002 // Upload DEBI registers.
#define MC2_UPLD_IICq 0x00010001 // Upload I2C registers.
#define MC2_RPSSIG2_ONq 0x20002000 // Assert RPS_SIG2.
#define MC2_RPSSIG1_ONq 0x10001000 // Assert RPS_SIG1.
#define MC2_RPSSIG0_ONq 0x08000800 // Assert RPS_SIG0.
#define MC2_UPLD_DEBI_MASKq 0x00000002 // Upload DEBI mask.
#define MC2_UPLD_IIC_MASKq 0x00000001 // Upload I2C mask.
#define MC2_RPSSIG2_MASKq 0x00002000 // RPS_SIG2 bit mask.
#define MC2_RPSSIG1_MASKq 0x00001000 // RPS_SIG1 bit mask.
#define MC2_RPSSIG0_MASKq 0x00000800 // RPS_SIG0 bit mask.
#define MC2_DELAYTRIG_4USq MC2_RPSSIG1_ON
#define MC2_DELAYBUSY_4USq MC2_RPSSIG1_MASK
#define MC2_DELAYTRIG_6USq MC2_RPSSIG2_ON
#define MC2_DELAYBUSY_6USq MC2_RPSSIG2_MASK
#define MC2_UPLD_DEBI 0x0002 // Upload DEBI.
#define MC2_UPLD_IIC 0x0001 // Upload I2C.
#define MC2_RPSSIG2 0x2000 // RPS signal 2 (not used).
#define MC2_RPSSIG1 0x1000 // RPS signal 1 (DAC RPS busy).
#define MC2_RPSSIG0 0x0800 // RPS signal 0 (ADC RPS busy).
#define MC2_ADC_RPS MC2_RPSSIG0 // ADC RPS busy.
#define MC2_DAC_RPS MC2_RPSSIG1 // DAC RPS busy.
///////////////////oldies///////////
#define MC2_UPLD_DEBIQ 0x00020002 // Upload DEBI registers.
#define MC2_UPLD_IICQ 0x00010001 // Upload I2C registers.
////////////////////////////////////////
// PCI BUS (SAA7146) REGISTER ADDRESS OFFSETS ////////////////////////
#define P_PCI_BT_A 0x004C // Audio DMA
// burst/threshold
// control.
#define P_DEBICFG 0x007C // DEBI configuration.
#define P_DEBICMD 0x0080 // DEBI command.
#define P_DEBIPAGE 0x0084 // DEBI page.
#define P_DEBIAD 0x0088 // DEBI target address.
#define P_I2CCTRL 0x008C // I2C control.
#define P_I2CSTAT 0x0090 // I2C status.
#define P_BASEA2_IN 0x00AC // Audio input 2 base
// physical DMAbuf
// address.
#define P_PROTA2_IN 0x00B0 // Audio input 2
// physical DMAbuf
// protection address.
#define P_PAGEA2_IN 0x00B4 // Audio input 2
// paging attributes.
#define P_BASEA2_OUT 0x00B8 // Audio output 2 base
// physical DMAbuf
// address.
#define P_PROTA2_OUT 0x00BC // Audio output 2
// physical DMAbuf
// protection address.
#define P_PAGEA2_OUT 0x00C0 // Audio output 2
// paging attributes.
#define P_RPSPAGE0 0x00C4 // RPS0 page.
#define P_RPSPAGE1 0x00C8 // RPS1 page.
#define P_RPS0_TOUT 0x00D4 // RPS0 time-out.
#define P_RPS1_TOUT 0x00D8 // RPS1 time-out.
#define P_IER 0x00DC // Interrupt enable.
#define P_GPIO 0x00E0 // General-purpose I/O.
#define P_EC1SSR 0x00E4 // Event counter set 1
// source select.
#define P_ECT1R 0x00EC // Event counter
// threshold set 1.
#define P_ACON1 0x00F4 // Audio control 1.
#define P_ACON2 0x00F8 // Audio control 2.
#define P_MC1 0x00FC // Master control 1.
#define P_MC2 0x0100 // Master control 2.
#define P_RPSADDR0 0x0104 // RPS0 instruction pointer.
#define P_RPSADDR1 0x0108 // RPS1 instruction pointer.
#define P_ISR 0x010C // Interrupt status.
#define P_PSR 0x0110 // Primary status.
#define P_SSR 0x0114 // Secondary status.
#define P_EC1R 0x0118 // Event counter set 1.
#define P_ADP4 0x0138 // Logical audio DMA
// pointer of audio
// input FIFO A2_IN.
#define P_FB_BUFFER1 0x0144 // Audio feedback buffer 1.
#define P_FB_BUFFER2 0x0148 // Audio feedback buffer 2.
#define P_TSL1 0x0180 // Audio time slot list 1.
#define P_TSL2 0x01C0 // Audio time slot list 2.
// LOCAL BUS (GATE ARRAY) REGISTER ADDRESS OFFSETS /////////////////
// Analog I/O registers:
#define LP_DACPOL 0x0082 // Write DAC polarity.
#define LP_GSEL 0x0084 // Write ADC gain.
#define LP_ISEL 0x0086 // Write ADC channel select.
// Digital I/O (write only):
#define LP_WRINTSELA 0x0042 // Write A interrupt enable.
#define LP_WREDGSELA 0x0044 // Write A edge selection.
#define LP_WRCAPSELA 0x0046 // Write A capture enable.
#define LP_WRDOUTA 0x0048 // Write A digital output.
#define LP_WRINTSELB 0x0052 // Write B interrupt enable.
#define LP_WREDGSELB 0x0054 // Write B edge selection.
#define LP_WRCAPSELB 0x0056 // Write B capture enable.
#define LP_WRDOUTB 0x0058 // Write B digital output.
#define LP_WRINTSELC 0x0062 // Write C interrupt enable.
#define LP_WREDGSELC 0x0064 // Write C edge selection.
#define LP_WRCAPSELC 0x0066 // Write C capture enable.
#define LP_WRDOUTC 0x0068 // Write C digital output.
// Digital I/O (read only):
#define LP_RDDINA 0x0040 // Read digital input.
#define LP_RDCAPFLGA 0x0048 // Read edges captured.
#define LP_RDINTSELA 0x004A // Read interrupt
// enable register.
#define LP_RDEDGSELA 0x004C // Read edge
// selection
// register.
#define LP_RDCAPSELA 0x004E // Read capture
// enable register.
#define LP_RDDINB 0x0050 // Read digital input.
#define LP_RDCAPFLGB 0x0058 // Read edges captured.
#define LP_RDINTSELB 0x005A // Read interrupt
// enable register.
#define LP_RDEDGSELB 0x005C // Read edge
// selection
// register.
#define LP_RDCAPSELB 0x005E // Read capture
// enable register.
#define LP_RDDINC 0x0060 // Read digital input.
#define LP_RDCAPFLGC 0x0068 // Read edges captured.
#define LP_RDINTSELC 0x006A // Read interrupt
// enable register.
#define LP_RDEDGSELC 0x006C // Read edge
// selection
// register.
#define LP_RDCAPSELC 0x006E // Read capture
// enable register.
// Counter Registers (read/write):
#define LP_CR0A 0x0000 // 0A setup register.
#define LP_CR0B 0x0002 // 0B setup register.
#define LP_CR1A 0x0004 // 1A setup register.
#define LP_CR1B 0x0006 // 1B setup register.
#define LP_CR2A 0x0008 // 2A setup register.
#define LP_CR2B 0x000A // 2B setup register.
// Counter PreLoad (write) and Latch (read) Registers:
#define LP_CNTR0ALSW 0x000C // 0A lsw.
#define LP_CNTR0AMSW 0x000E // 0A msw.
#define LP_CNTR0BLSW 0x0010 // 0B lsw.
#define LP_CNTR0BMSW 0x0012 // 0B msw.
#define LP_CNTR1ALSW 0x0014 // 1A lsw.
#define LP_CNTR1AMSW 0x0016 // 1A msw.
#define LP_CNTR1BLSW 0x0018 // 1B lsw.
#define LP_CNTR1BMSW 0x001A // 1B msw.
#define LP_CNTR2ALSW 0x001C // 2A lsw.
#define LP_CNTR2AMSW 0x001E // 2A msw.
#define LP_CNTR2BLSW 0x0020 // 2B lsw.
#define LP_CNTR2BMSW 0x0022 // 2B msw.
// Miscellaneous Registers (read/write):
#define LP_MISC1 0x0088 // Read/write Misc1.
#define LP_WRMISC2 0x0090 // Write Misc2.
#define LP_RDMISC2 0x0082 // Read Misc2.
// Bit masks for MISC1 register that are the same for reads and writes.
#define MISC1_WENABLE 0x8000 // enab writes to
// MISC2 (except Clear
// Watchdog bit).
#define MISC1_WDISABLE 0x0000 // Disable writes to MISC2.
#define MISC1_EDCAP 0x1000 // enab edge capture
// on DIO chans
// specified by
// LP_WRCAPSELx.
#define MISC1_NOEDCAP 0x0000 // Disable edge
// capture on
// specified DIO
// chans.
// Bit masks for MISC1 register reads.
#define RDMISC1_WDTIMEOUT 0x4000 // Watchdog timer timed out.
// Bit masks for MISC2 register writes.
#define WRMISC2_WDCLEAR 0x8000 // Reset watchdog
// timer to zero.
#define WRMISC2_CHARGE_ENABLE 0x4000 // enab battery
// trickle charging.
// Bit masks for MISC2 register that are the same for reads and writes.
#define MISC2_BATT_ENABLE 0x0008 // Backup battery enable.
#define MISC2_WDENABLE 0x0004 // Watchdog timer enable.
#define MISC2_WDPERIOD_MASK 0x0003 // Watchdog interval
// select mask.
// Bit masks for ACON1 register.
#define A2_RUN 0x40000000 // Run A2 based on TSL2.
#define A1_RUN 0x20000000 // Run A1 based on TSL1.
#define A1_SWAP 0x00200000 // Use big-endian for A1.
#define A2_SWAP 0x00100000 // Use big-endian for A2.
#define WS_MODES 0x00019999 // WS0 = TSL1 trigger
// input, WS1-WS4 =
// CS* outputs.
#if PLATFORM == INTEL // Base ACON1 config:
// always run A1 based
// on TSL1.
#define ACON1_BASE ( WS_MODES | A1_RUN )
#elif PLATFORM == MOTOROLA
#define ACON1_BASE ( WS_MODES | A1_RUN | A1_SWAP | A2_SWAP )
#endif
#define ACON1_ADCSTART ACON1_BASE // Start ADC: run A1
// based on TSL1.
#define ACON1_DACSTART ( ACON1_BASE | A2_RUN ) // Start
// transmit to
// DAC: run A2
// based on
// TSL2.
#define ACON1_DACSTOP ACON1_BASE // Halt A2.
// Bit masks for ACON2 register.
#define A1_CLKSRC_BCLK1 0x00000000 // A1 bit rate = BCLK1 (ADC).
#define A2_CLKSRC_X1 0x00800000 // A2 bit rate = ACLK/1 (DACs).
#define A2_CLKSRC_X2 0x00C00000 // A2 bit rate = ACLK/2 (DACs).
#define A2_CLKSRC_X4 0x01400000 // A2 bit rate = ACLK/4 (DACs).
#define INVERT_BCLK2 0x00100000 // Invert BCLK2 (DACs).
#define BCLK2_OE 0x00040000 // enab BCLK2 (DACs).
#define ACON2_XORMASK 0x000C0000 // XOR mask for ACON2
// active-low bits.
#define ACON2_INIT ( ACON2_XORMASK ^ ( A1_CLKSRC_BCLK1 | A2_CLKSRC_X2 | INVERT_BCLK2 | BCLK2_OE ) )
// Bit masks for timeslot records.
#define WS1 0x40000000 // WS output to assert.
#define WS2 0x20000000
#define WS3 0x10000000
#define WS4 0x08000000
#define RSD1 0x01000000 // Shift A1 data in on SD1.
#define SDW_A1 0x00800000 // Store rcv'd char at
// next char slot of
// DWORD1 buffer.
#define SIB_A1 0x00400000 // Store rcv'd char at
// next char slot of
// FB1 buffer.
#define SF_A1 0x00200000 // Write unsigned long
// buffer to input
// FIFO.
//Select parallel-to-serial converter's data source:
#define XFIFO_0 0x00000000 // Data fifo byte 0.
#define XFIFO_1 0x00000010 // Data fifo byte 1.
#define XFIFO_2 0x00000020 // Data fifo byte 2.
#define XFIFO_3 0x00000030 // Data fifo byte 3.
#define XFB0 0x00000040 // FB_BUFFER byte 0.
#define XFB1 0x00000050 // FB_BUFFER byte 1.
#define XFB2 0x00000060 // FB_BUFFER byte 2.
#define XFB3 0x00000070 // FB_BUFFER byte 3.
#define SIB_A2 0x00000200 // Store next dword
// from A2's input
// shifter to FB2
// buffer.
#define SF_A2 0x00000100 // Store next dword
// from A2's input
// shifter to its
// input fifo.
#define LF_A2 0x00000080 // Load next dword
// from A2's output
// fifo into its
// output dword
// buffer.
#define XSD2 0x00000008 // Shift data out on SD2.
#define RSD3 0x00001800 // Shift data in on SD3.
#define RSD2 0x00001000 // Shift data in on SD2.
#define LOW_A2 0x00000002 // Drive last SD low
// for 7 clks, then
// tri-state.
#define EOS 0x00000001 // End of superframe.
//////////////////////
// I2C configuration constants.
#define I2C_CLKSEL 0x0400 // I2C bit rate =
// PCIclk/480 = 68.75
// KHz.
#define I2C_BITRATE 68.75 // I2C bus data bit
// rate (determined by
// I2C_CLKSEL) in KHz.
#define I2C_WRTIME 15.0 // Worst case time,in
// msec, for EEPROM
// internal write op.
// I2C manifest constants.
// Max retries to wait for EEPROM write.
#define I2C_RETRIES ( I2C_WRTIME * I2C_BITRATE / 9.0 )
#define I2C_ERR 0x0002 // I2C control/status
// flag ERROR.
#define I2C_BUSY 0x0001 // I2C control/status
// flag BUSY.
#define I2C_ABORT 0x0080 // I2C status flag ABORT.
#define I2C_ATTRSTART 0x3 // I2C attribute START.
#define I2C_ATTRCONT 0x2 // I2C attribute CONT.
#define I2C_ATTRSTOP 0x1 // I2C attribute STOP.
#define I2C_ATTRNOP 0x0 // I2C attribute NOP.
// I2C read command | EEPROM address.
#define I2CR ( devpriv->I2CAdrs | 1 )
// I2C write command | EEPROM address.
#define I2CW ( devpriv->I2CAdrs )
// Code macros used for constructing I2C command bytes.
#define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
#define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
#define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) )
////////////////////////////////////////////////////////
//oldest
#define P_DEBICFGq 0x007C // DEBI configuration.
#define P_DEBICMDq 0x0080 // DEBI command.
#define P_DEBIPAGEq 0x0084 // DEBI page.
#define P_DEBIADq 0x0088 // DEBI target address.
#define DEBI_CFG_TOQ 0x03C00000 // timeout (15 PCI cycles)
#define DEBI_CFG_FASTQ 0x10000000 // fast mode enable
#define DEBI_CFG_16Q 0x00080000 // 16-bit access enable
#define DEBI_CFG_INCQ 0x00040000 // enable address increment
#define DEBI_CFG_TIMEROFFQ 0x00010000 // disable timer
#define DEBI_CMD_RDQ 0x00050000 // read immediate 2 bytes
#define DEBI_CMD_WRQ 0x00040000 // write immediate 2 bytes
#define DEBI_PAGE_DISABLEQ 0x00000000 // paging disable
///////////////////////////////////////////
// DEBI command constants.
#define DEBI_CMD_SIZE16 ( 2 << 17 ) // Transfer size is
// always 2 bytes.
#define DEBI_CMD_READ 0x00010000 // Read operation.
#define DEBI_CMD_WRITE 0x00000000 // Write operation.
// Read immediate 2 bytes.
#define DEBI_CMD_RDWORD ( DEBI_CMD_READ | DEBI_CMD_SIZE16 )
// Write immediate 2 bytes.
#define DEBI_CMD_WRWORD ( DEBI_CMD_WRITE | DEBI_CMD_SIZE16 )
// DEBI configuration constants.
#define DEBI_CFG_XIRQ_EN 0x80000000 // enab external
// interrupt on GPIO3.
#define DEBI_CFG_XRESUME 0x40000000 // Resume block
// transfer when XIRQ
// deasserted.
#define DEBI_CFG_FAST 0x10000000 // Fast mode enable.
// 4-bit field that specifies DEBI timeout value in PCI clock cycles:
#define DEBI_CFG_TOUT_BIT 22 // Finish DEBI cycle after
// this many clocks.
// 2-bit field that specifies Endian byte lane steering:
#define DEBI_CFG_SWAP_NONE 0x00000000 // Straight - don't
// swap any bytes
// (Intel).
#define DEBI_CFG_SWAP_2 0x00100000 // 2-byte swap (Motorola).
#define DEBI_CFG_SWAP_4 0x00200000 // 4-byte swap.
#define DEBI_CFG_16 0x00080000 // Slave is able to
// serve 16-bit
// cycles.
#define DEBI_CFG_SLAVE16 0x00080000 // Slave is able to
// serve 16-bit
// cycles.
#define DEBI_CFG_INC 0x00040000 // enab address
// increment for block
// transfers.
#define DEBI_CFG_INTEL 0x00020000 // Intel style local bus.
#define DEBI_CFG_TIMEROFF 0x00010000 // Disable timer.
#if PLATFORM == INTEL
#define DEBI_TOUT 7 // Wait 7 PCI clocks
// (212 ns) before
// polling RDY.
// Intel byte lane steering (pass through all byte lanes).
#define DEBI_SWAP DEBI_CFG_SWAP_NONE
#elif PLATFORM == MOTOROLA
#define DEBI_TOUT 15 // Wait 15 PCI clocks (454 ns)
// maximum before timing out.
#define DEBI_SWAP DEBI_CFG_SWAP_2 // Motorola byte lane steering.
#endif
// DEBI page table constants.
#define DEBI_PAGE_DISABLE 0x00000000 // Paging disable.
///////////////////EXTRA FROM OTHER SANSORAY * .h////////
// LoadSrc values:
#define LOADSRC_INDX 0 // Preload core in response to
// Index.
#define LOADSRC_OVER 1 // Preload core in response to
// Overflow.
#define LOADSRCB_OVERA 2 // Preload B core in response
// to A Overflow.
#define LOADSRC_NONE 3 // Never preload core.
// IntSrc values:
#define INTSRC_NONE 0 // Interrupts disabled.
#define INTSRC_OVER 1 // Interrupt on Overflow.
#define INTSRC_INDX 2 // Interrupt on Index.
#define INTSRC_BOTH 3 // Interrupt on Index or Overflow.
// LatchSrc values:
#define LATCHSRC_AB_READ 0 // Latch on read.
#define LATCHSRC_A_INDXA 1 // Latch A on A Index.
#define LATCHSRC_B_INDXB 2 // Latch B on B Index.
#define LATCHSRC_B_OVERA 3 // Latch B on A Overflow.
// IndxSrc values:
#define INDXSRC_HARD 0 // Hardware or software index.
#define INDXSRC_SOFT 1 // Software index only.
// IndxPol values:
#define INDXPOL_POS 0 // Index input is active high.
#define INDXPOL_NEG 1 // Index input is active low.
// ClkSrc values:
#define CLKSRC_COUNTER 0 // Counter mode.
#define CLKSRC_TIMER 2 // Timer mode.
#define CLKSRC_EXTENDER 3 // Extender mode.
// ClkPol values:
#define CLKPOL_POS 0 // Counter/Extender clock is
// active high.
#define CLKPOL_NEG 1 // Counter/Extender clock is
// active low.
#define CNTDIR_UP 0 // Timer counts up.
#define CNTDIR_DOWN 1 // Timer counts down.
// ClkEnab values:
#define CLKENAB_ALWAYS 0 // Clock always enabled.
#define CLKENAB_INDEX 1 // Clock is enabled by index.
// ClkMult values:
#define CLKMULT_4X 0 // 4x clock multiplier.
#define CLKMULT_2X 1 // 2x clock multiplier.
#define CLKMULT_1X 2 // 1x clock multiplier.
// Bit Field positions in COUNTER_SETUP structure:
#define BF_LOADSRC 9 // Preload trigger.
#define BF_INDXSRC 7 // Index source.
#define BF_INDXPOL 6 // Index polarity.
#define BF_CLKSRC 4 // Clock source.
#define BF_CLKPOL 3 // Clock polarity/count direction.
#define BF_CLKMULT 1 // Clock multiplier.
#define BF_CLKENAB 0 // Clock enable.
// Enumerated counter operating modes specified by ClkSrc bit field in
// a COUNTER_SETUP.
#define CLKSRC_COUNTER 0 // Counter: ENC_C clock, ENC_D
// direction.
#define CLKSRC_TIMER 2 // Timer: SYS_C clock,
// direction specified by
// ClkPol.
#define CLKSRC_EXTENDER 3 // Extender: OVR_A clock,
// ENC_D direction.
// Enumerated counter clock multipliers.
#define MULT_X0 0x0003 // Supports no multipliers;
// fixed physical multiplier =
// 3.
#define MULT_X1 0x0002 // Supports multiplier x1;
// fixed physical multiplier =
// 2.
#define MULT_X2 0x0001 // Supports multipliers x1,
// x2; physical multipliers =
// 1 or 2.
#define MULT_X4 0x0000 // Supports multipliers x1,
// x2, x4; physical
// multipliers = 0, 1 or 2.
// Sanity-check limits for parameters.
#define NUM_COUNTERS 6 // Maximum valid counter
// logical channel number.
#define NUM_INTSOURCES 4
#define NUM_LATCHSOURCES 4
#define NUM_CLKMULTS 4
#define NUM_CLKSOURCES 4
#define NUM_CLKPOLS 2
#define NUM_INDEXPOLS 2
#define NUM_INDEXSOURCES 2
#define NUM_LOADTRIGS 4
// Bit field positions in CRA and CRB counter control registers.
// Bit field positions in CRA:
#define CRABIT_INDXSRC_B 14 // B index source.
#define CRABIT_CLKSRC_B 12 // B clock source.
#define CRABIT_INDXPOL_A 11 // A index polarity.
#define CRABIT_LOADSRC_A 9 // A preload trigger.
#define CRABIT_CLKMULT_A 7 // A clock multiplier.
#define CRABIT_INTSRC_A 5 // A interrupt source.
#define CRABIT_CLKPOL_A 4 // A clock polarity.
#define CRABIT_INDXSRC_A 2 // A index source.
#define CRABIT_CLKSRC_A 0 // A clock source.
// Bit field positions in CRB:
#define CRBBIT_INTRESETCMD 15 // Interrupt reset command.
#define CRBBIT_INTRESET_B 14 // B interrupt reset enable.
#define CRBBIT_INTRESET_A 13 // A interrupt reset enable.
#define CRBBIT_CLKENAB_A 12 // A clock enable.
#define CRBBIT_INTSRC_B 10 // B interrupt source.
#define CRBBIT_LATCHSRC 8 // A/B latch source.
#define CRBBIT_LOADSRC_B 6 // B preload trigger.
#define CRBBIT_CLKMULT_B 3 // B clock multiplier.
#define CRBBIT_CLKENAB_B 2 // B clock enable.
#define CRBBIT_INDXPOL_B 1 // B index polarity.
#define CRBBIT_CLKPOL_B 0 // B clock polarity.
// Bit field masks for CRA and CRB.
#define CRAMSK_INDXSRC_B ( (uint16_t)( 3 << CRABIT_INDXSRC_B) )
#define CRAMSK_CLKSRC_B ( (uint16_t)( 3 << CRABIT_CLKSRC_B) )
#define CRAMSK_INDXPOL_A ( (uint16_t)( 1 << CRABIT_INDXPOL_A) )
#define CRAMSK_LOADSRC_A ( (uint16_t)( 3 << CRABIT_LOADSRC_A) )
#define CRAMSK_CLKMULT_A ( (uint16_t)( 3 << CRABIT_CLKMULT_A) )
#define CRAMSK_INTSRC_A ( (uint16_t)( 3 << CRABIT_INTSRC_A) )
#define CRAMSK_CLKPOL_A ( (uint16_t)( 3 << CRABIT_CLKPOL_A) )
#define CRAMSK_INDXSRC_A ( (uint16_t)( 3 << CRABIT_INDXSRC_A) )
#define CRAMSK_CLKSRC_A ( (uint16_t)( 3 << CRABIT_CLKSRC_A) )
#define CRBMSK_INTRESETCMD ( (uint16_t)( 1 << CRBBIT_INTRESETCMD) )
#define CRBMSK_INTRESET_B ( (uint16_t)( 1 << CRBBIT_INTRESET_B) )
#define CRBMSK_INTRESET_A ( (uint16_t)( 1 << CRBBIT_INTRESET_A) )
#define CRBMSK_CLKENAB_A ( (uint16_t)( 1 << CRBBIT_CLKENAB_A) )
#define CRBMSK_INTSRC_B ( (uint16_t)( 3 << CRBBIT_INTSRC_B) )
#define CRBMSK_LATCHSRC ( (uint16_t)( 3 << CRBBIT_LATCHSRC) )
#define CRBMSK_LOADSRC_B ( (uint16_t)( 3 << CRBBIT_LOADSRC_B) )
#define CRBMSK_CLKMULT_B ( (uint16_t)( 3 << CRBBIT_CLKMULT_B) )
#define CRBMSK_CLKENAB_B ( (uint16_t)( 1 << CRBBIT_CLKENAB_B) )
#define CRBMSK_INDXPOL_B ( (uint16_t)( 1 << CRBBIT_INDXPOL_B) )
#define CRBMSK_CLKPOL_B ( (uint16_t)( 1 << CRBBIT_CLKPOL_B) )
#define CRBMSK_INTCTRL ( CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A | CRBMSK_INTRESET_B ) // Interrupt reset control bits.
// Bit field positions for standardized SETUP structure.
#define STDBIT_INTSRC 13
#define STDBIT_LATCHSRC 11
#define STDBIT_LOADSRC 9
#define STDBIT_INDXSRC 7
#define STDBIT_INDXPOL 6
#define STDBIT_CLKSRC 4
#define STDBIT_CLKPOL 3
#define STDBIT_CLKMULT 1
#define STDBIT_CLKENAB 0
// Bit field masks for standardized SETUP structure.
#define STDMSK_INTSRC ( (uint16_t)( 3 << STDBIT_INTSRC ) )
#define STDMSK_LATCHSRC ( (uint16_t)( 3 << STDBIT_LATCHSRC ) )
#define STDMSK_LOADSRC ( (uint16_t)( 3 << STDBIT_LOADSRC ) )
#define STDMSK_INDXSRC ( (uint16_t)( 1 << STDBIT_INDXSRC ) )
#define STDMSK_INDXPOL ( (uint16_t)( 1 << STDBIT_INDXPOL ) )
#define STDMSK_CLKSRC ( (uint16_t)( 3 << STDBIT_CLKSRC ) )
#define STDMSK_CLKPOL ( (uint16_t)( 1 << STDBIT_CLKPOL ) )
#define STDMSK_CLKMULT ( (uint16_t)( 3 << STDBIT_CLKMULT ) )
#define STDMSK_CLKENAB ( (uint16_t)( 1 << STDBIT_CLKENAB ) )
//////////////////////////////////////////////////////////
/* typedef struct indexCounter */
/* { */
/* unsigned int ao; */
/* unsigned int ai; */
/* unsigned int digout; */
/* unsigned int digin; */
/* unsigned int enc; */
/* }CallCounter; */
typedef struct bufferDMA {
dma_addr_t PhysicalBase;
void *LogicalBase;
uint32_t DMAHandle;
} DMABUF;
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册