提交 1122b134 编写于 作者: T Thomas Gleixner 提交者: Ingo Molnar

x86: share rtc code

Remove the rtc code from time_64.c and add the extra bits to the
i386 path. The ACPI century check is probably valid for i386 as
well, but this is material for a separate patch.
Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
Signed-off-by: NIngo Molnar <mingo@elte.hu>
上级 fe599f9f
...@@ -11,7 +11,7 @@ obj-y := process_64.o signal_64.o entry_64.o traps_64.o irq_64.o \ ...@@ -11,7 +11,7 @@ obj-y := process_64.o signal_64.o entry_64.o traps_64.o irq_64.o \
x8664_ksyms_64.o i387_64.o syscall_64.o vsyscall_64.o \ x8664_ksyms_64.o i387_64.o syscall_64.o vsyscall_64.o \
setup64.o bootflag.o e820_64.o reboot_64.o quirks.o i8237.o \ setup64.o bootflag.o e820_64.o reboot_64.o quirks.o i8237.o \
pci-dma_64.o pci-nommu_64.o alternative.o hpet.o tsc_64.o bugs_64.o \ pci-dma_64.o pci-nommu_64.o alternative.o hpet.o tsc_64.o bugs_64.o \
i8253.o io_delay.o i8253.o io_delay.o rtc.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += cpu/ obj-y += cpu/
......
/* /*
* RTC related functions * RTC related functions
*/ */
#include <linux/acpi.h>
#include <linux/bcd.h> #include <linux/bcd.h>
#include <linux/mc146818rtc.h> #include <linux/mc146818rtc.h>
#include <asm/time.h> #include <asm/time.h>
#ifdef CONFIG_X86_32
# define CMOS_YEARS_OFFS 1900
/*
* This is a special lock that is owned by the CPU and holds the index
* register we are working with. It is required for NMI access to the
* CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
*/
volatile unsigned long cmos_lock = 0;
EXPORT_SYMBOL(cmos_lock);
#else
/*
* x86-64 systems only exists since 2002.
* This will work up to Dec 31, 2100
*/
# define CMOS_YEARS_OFFS 2000
#endif
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
/* /*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be * In order to set the CMOS clock precisely, set_rtc_mmss has to be
* called 500 ms after the second nowtime has started, because when * called 500 ms after the second nowtime has started, because when
...@@ -22,10 +43,12 @@ int mach_set_rtc_mmss(unsigned long nowtime) ...@@ -22,10 +43,12 @@ int mach_set_rtc_mmss(unsigned long nowtime)
int real_seconds, real_minutes, cmos_minutes; int real_seconds, real_minutes, cmos_minutes;
unsigned char save_control, save_freq_select; unsigned char save_control, save_freq_select;
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ /* tell the clock it's being set */
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ /* stop and reset prescaler */
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES); cmos_minutes = CMOS_READ(RTC_MINUTES);
...@@ -40,8 +63,9 @@ int mach_set_rtc_mmss(unsigned long nowtime) ...@@ -40,8 +63,9 @@ int mach_set_rtc_mmss(unsigned long nowtime)
*/ */
real_seconds = nowtime % 60; real_seconds = nowtime % 60;
real_minutes = nowtime / 60; real_minutes = nowtime / 60;
/* correct for half hour time zone */
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
real_minutes += 30; /* correct for half hour time zone */ real_minutes += 30;
real_minutes %= 60; real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) { if (abs(real_minutes - cmos_minutes) < 30) {
...@@ -73,18 +97,32 @@ int mach_set_rtc_mmss(unsigned long nowtime) ...@@ -73,18 +97,32 @@ int mach_set_rtc_mmss(unsigned long nowtime)
unsigned long mach_get_cmos_time(void) unsigned long mach_get_cmos_time(void)
{ {
unsigned int year, mon, day, hour, min, sec; unsigned int year, mon, day, hour, min, sec, century = 0;
/*
* If UIP is clear, then we have >= 244 microseconds before
* RTC registers will be updated. Spec sheet says that this
* is the reliable way to read RTC - registers. If UIP is set
* then the register access might be invalid.
*/
while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
cpu_relax();
do {
sec = CMOS_READ(RTC_SECONDS); sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES); min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS); hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH); day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH); mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR); year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { #if defined(CONFIG_ACPI) && defined(CONFIG_X86_64)
/* CHECKME: Is this really 64bit only ??? */
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
century = CMOS_READ(acpi_gbl_FADT.century);
#endif
if (RTC_ALWAYS_BCD || !(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)) {
BCD_TO_BIN(sec); BCD_TO_BIN(sec);
BCD_TO_BIN(min); BCD_TO_BIN(min);
BCD_TO_BIN(hour); BCD_TO_BIN(hour);
...@@ -93,24 +131,19 @@ unsigned long mach_get_cmos_time(void) ...@@ -93,24 +131,19 @@ unsigned long mach_get_cmos_time(void)
BCD_TO_BIN(year); BCD_TO_BIN(year);
} }
year += 1900; if (century) {
BCD_TO_BIN(century);
year += century * 100;
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
} else {
year += CMOS_YEARS_OFFS;
if (year < 1970) if (year < 1970)
year += 100; year += 100;
}
return mktime(year, mon, day, hour, min, sec); return mktime(year, mon, day, hour, min, sec);
} }
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
/*
* This is a special lock that is owned by the CPU and holds the index
* register we are working with. It is required for NMI access to the
* CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
*/
volatile unsigned long cmos_lock = 0;
EXPORT_SYMBOL(cmos_lock);
/* Routines for accessing the CMOS RAM/RTC. */ /* Routines for accessing the CMOS RAM/RTC. */
unsigned char rtc_cmos_read(unsigned char addr) unsigned char rtc_cmos_read(unsigned char addr)
{ {
...@@ -138,8 +171,6 @@ static int set_rtc_mmss(unsigned long nowtime) ...@@ -138,8 +171,6 @@ static int set_rtc_mmss(unsigned long nowtime)
int retval; int retval;
unsigned long flags; unsigned long flags;
/* gets recalled with irq locally disabled */
/* XXX - does irqsave resolve this? -johnstul */
spin_lock_irqsave(&rtc_lock, flags); spin_lock_irqsave(&rtc_lock, flags);
retval = set_wallclock(nowtime); retval = set_wallclock(nowtime);
spin_unlock_irqrestore(&rtc_lock, flags); spin_unlock_irqrestore(&rtc_lock, flags);
...@@ -150,8 +181,7 @@ static int set_rtc_mmss(unsigned long nowtime) ...@@ -150,8 +181,7 @@ static int set_rtc_mmss(unsigned long nowtime)
/* not static: needed by APM */ /* not static: needed by APM */
unsigned long read_persistent_clock(void) unsigned long read_persistent_clock(void)
{ {
unsigned long retval; unsigned long retval, flags;
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags); spin_lock_irqsave(&rtc_lock, flags);
retval = get_wallclock(); retval = get_wallclock();
......
...@@ -46,9 +46,6 @@ ...@@ -46,9 +46,6 @@
#include <asm/nmi.h> #include <asm/nmi.h>
#include <asm/vgtod.h> #include <asm/vgtod.h>
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
unsigned long profile_pc(struct pt_regs *regs) unsigned long profile_pc(struct pt_regs *regs)
...@@ -69,103 +66,6 @@ unsigned long profile_pc(struct pt_regs *regs) ...@@ -69,103 +66,6 @@ unsigned long profile_pc(struct pt_regs *regs)
} }
EXPORT_SYMBOL(profile_pc); EXPORT_SYMBOL(profile_pc);
/* Routines for accessing the CMOS RAM/RTC. */
unsigned char rtc_cmos_read(unsigned char addr)
{
unsigned char val;
lock_cmos_prefix(addr);
outb_p(addr, RTC_PORT(0));
val = inb_p(RTC_PORT(1));
lock_cmos_suffix(addr);
return val;
}
EXPORT_SYMBOL(rtc_cmos_read);
void rtc_cmos_write(unsigned char val, unsigned char addr)
{
lock_cmos_prefix(addr);
outb_p(addr, RTC_PORT(0));
outb_p(val, RTC_PORT(1));
lock_cmos_suffix(addr);
}
EXPORT_SYMBOL(rtc_cmos_write);
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
* ms after the second nowtime has started, because when nowtime is written
* into the registers of the CMOS clock, it will jump to the next second
* precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
* sheet for details.
*/
static int set_rtc_mmss(unsigned long nowtime)
{
int retval = 0;
int real_seconds, real_minutes, cmos_minutes;
unsigned char control, freq_select;
unsigned long flags;
/*
* set_rtc_mmss is called when irqs are enabled, so disable irqs here
*/
spin_lock_irqsave(&rtc_lock, flags);
/*
* Tell the clock it's being set and stop it.
*/
control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
BCD_TO_BIN(cmos_minutes);
/*
* since we're only adjusting minutes and seconds, don't interfere with hour
* overflow. This avoids messing with unknown time zones but requires your RTC
* not to be off by more than 15 minutes. Since we're calling it only when
* our clock is externally synchronized using NTP, this shouldn't be a problem.
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
real_minutes += 30; /* correct for half hour time zone */
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) >= 30) {
printk(KERN_WARNING "time.c: can't update CMOS clock "
"from %d to %d\n", cmos_minutes, real_minutes);
retval = -1;
} else {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
CMOS_WRITE(real_seconds, RTC_SECONDS);
CMOS_WRITE(real_minutes, RTC_MINUTES);
}
/*
* The following flags have to be released exactly in this order, otherwise the
* DS12887 (popular MC146818A clone with integrated battery and quartz) will
* not reset the oscillator and will not update precisely 500 ms later. You
* won't find this mentioned in the Dallas Semiconductor data sheets, but who
* believes data sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(control, RTC_CONTROL);
CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
spin_unlock_irqrestore(&rtc_lock, flags);
return retval;
}
int update_persistent_clock(struct timespec now)
{
return set_rtc_mmss(now.tv_sec);
}
static irqreturn_t timer_event_interrupt(int irq, void *dev_id) static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
{ {
add_pda(irq0_irqs, 1); add_pda(irq0_irqs, 1);
...@@ -175,63 +75,6 @@ static irqreturn_t timer_event_interrupt(int irq, void *dev_id) ...@@ -175,63 +75,6 @@ static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
unsigned long read_persistent_clock(void)
{
unsigned int year, mon, day, hour, min, sec;
unsigned long flags;
unsigned century = 0;
spin_lock_irqsave(&rtc_lock, flags);
/*
* if UIP is clear, then we have >= 244 microseconds before RTC
* registers will be updated. Spec sheet says that this is the
* reliable way to read RTC - registers invalid (off bus) during update
*/
while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
cpu_relax();
/* now read all RTC registers while stable with interrupts disabled */
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
century = CMOS_READ(acpi_gbl_FADT.century);
#endif
spin_unlock_irqrestore(&rtc_lock, flags);
/*
* We know that x86-64 always uses BCD format, no need to check the
* config register.
*/
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
if (century) {
BCD_TO_BIN(century);
year += century * 100;
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
} else {
/*
* x86-64 systems only exists since 2002.
* This will work up to Dec 31, 2100
*/
year += 2000;
}
return mktime(year, mon, day, hour, min, sec);
}
/* calibrate_cpu is used on systems with fixed rate TSCs to determine /* calibrate_cpu is used on systems with fixed rate TSCs to determine
* processor frequency */ * processor frequency */
#define TICK_COUNT 100000000 #define TICK_COUNT 100000000
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册