提交 1021a645 编写于 作者: L Linus Torvalds

Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6

* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6:
  hugetlb: add missing unlock in avoidcopy path in hugetlb_cow()
  hwpoison: rename CONFIG
  HWPOISON, hugetlb: support hwpoison injection for hugepage
  HWPOISON, hugetlb: detect hwpoison in hugetlb code
  HWPOISON, hugetlb: isolate corrupted hugepage
  HWPOISON, hugetlb: maintain mce_bad_pages in handling hugepage error
  HWPOISON, hugetlb: set/clear PG_hwpoison bits on hugepage
  HWPOISON, hugetlb: enable error handling path for hugepage
  hugetlb, rmap: add reverse mapping for hugepage
  hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h

Fix up trivial conflicts in mm/memory-failure.c
......@@ -2,6 +2,7 @@
#define _LINUX_HUGETLB_H
#include <linux/fs.h>
#include <linux/hugetlb_inline.h>
struct ctl_table;
struct user_struct;
......@@ -14,11 +15,6 @@ struct user_struct;
int PageHuge(struct page *page);
static inline int is_vm_hugetlb_page(struct vm_area_struct *vma)
{
return vma->vm_flags & VM_HUGETLB;
}
void reset_vma_resv_huge_pages(struct vm_area_struct *vma);
int hugetlb_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *);
int hugetlb_overcommit_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *);
......@@ -47,6 +43,7 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to,
struct vm_area_struct *vma,
int acctflags);
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed);
void __isolate_hwpoisoned_huge_page(struct page *page);
extern unsigned long hugepages_treat_as_movable;
extern const unsigned long hugetlb_zero, hugetlb_infinity;
......@@ -77,11 +74,6 @@ static inline int PageHuge(struct page *page)
return 0;
}
static inline int is_vm_hugetlb_page(struct vm_area_struct *vma)
{
return 0;
}
static inline void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
}
......@@ -108,6 +100,8 @@ static inline void hugetlb_report_meminfo(struct seq_file *m)
#define is_hugepage_only_range(mm, addr, len) 0
#define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) ({BUG(); 0; })
#define hugetlb_fault(mm, vma, addr, flags) ({ BUG(); 0; })
#define huge_pte_offset(mm, address) 0
#define __isolate_hwpoisoned_huge_page(page) 0
#define hugetlb_change_protection(vma, address, end, newprot)
......
#ifndef _LINUX_HUGETLB_INLINE_H
#define _LINUX_HUGETLB_INLINE_H
#ifdef CONFIG_HUGETLB_PAGE
#include <linux/mm.h>
static inline int is_vm_hugetlb_page(struct vm_area_struct *vma)
{
return vma->vm_flags & VM_HUGETLB;
}
#else
static inline int is_vm_hugetlb_page(struct vm_area_struct *vma)
{
return 0;
}
#endif
#endif
......@@ -13,6 +13,7 @@
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/hardirq.h> /* for in_interrupt() */
#include <linux/hugetlb_inline.h>
/*
* Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
......@@ -281,10 +282,16 @@ static inline loff_t page_offset(struct page *page)
return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}
extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address);
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
unsigned long address)
{
pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff_t pgoff;
if (unlikely(is_vm_hugetlb_page(vma)))
return linear_hugepage_index(vma, address);
pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}
......
......@@ -48,15 +48,6 @@
#define POISON_FREE 0x6b /* for use-after-free poisoning */
#define POISON_END 0xa5 /* end-byte of poisoning */
/********** mm/hugetlb.c **********/
/*
* Private mappings of hugetlb pages use this poisoned value for
* page->mapping. The core VM should not be doing anything with this mapping
* but futex requires the existence of some page->mapping value even though it
* is unused if PAGE_MAPPING_ANON is set.
*/
#define HUGETLB_POISON ((void *)(0x00300300 + POISON_POINTER_DELTA + PAGE_MAPPING_ANON))
/********** arch/$ARCH/mm/init.c **********/
#define POISON_FREE_INITMEM 0xcc
......
......@@ -168,6 +168,11 @@ void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned lon
void page_add_file_rmap(struct page *);
void page_remove_rmap(struct page *);
void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
unsigned long);
void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
unsigned long);
static inline void page_dup_rmap(struct page *page)
{
atomic_inc(&page->_mapcount);
......
......@@ -18,6 +18,9 @@
#include <linux/bootmem.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <asm/page.h>
#include <asm/pgtable.h>
......@@ -220,6 +223,12 @@ static pgoff_t vma_hugecache_offset(struct hstate *h,
(vma->vm_pgoff >> huge_page_order(h));
}
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address)
{
return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
/*
* Return the size of the pages allocated when backing a VMA. In the majority
* cases this will be same size as used by the page table entries.
......@@ -552,6 +561,7 @@ static void free_huge_page(struct page *page)
set_page_private(page, 0);
page->mapping = NULL;
BUG_ON(page_count(page));
BUG_ON(page_mapcount(page));
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
......@@ -605,6 +615,8 @@ int PageHuge(struct page *page)
return dtor == free_huge_page;
}
EXPORT_SYMBOL_GPL(PageHuge);
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
......@@ -2129,6 +2141,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
entry = huge_ptep_get(src_pte);
ptepage = pte_page(entry);
get_page(ptepage);
page_dup_rmap(ptepage);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
spin_unlock(&src->page_table_lock);
......@@ -2140,6 +2153,19 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
return -ENOMEM;
}
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
swp_entry_t swp;
if (huge_pte_none(pte) || pte_present(pte))
return 0;
swp = pte_to_swp_entry(pte);
if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
return 1;
} else
return 0;
}
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page)
{
......@@ -2198,6 +2224,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
if (huge_pte_none(pte))
continue;
/*
* HWPoisoned hugepage is already unmapped and dropped reference
*/
if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
continue;
page = pte_page(pte);
if (pte_dirty(pte))
set_page_dirty(page);
......@@ -2207,6 +2239,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
flush_tlb_range(vma, start, end);
mmu_notifier_invalidate_range_end(mm, start, end);
list_for_each_entry_safe(page, tmp, &page_list, lru) {
page_remove_rmap(page);
list_del(&page->lru);
put_page(page);
}
......@@ -2272,6 +2305,9 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
return 1;
}
/*
* Hugetlb_cow() should be called with page lock of the original hugepage held.
*/
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte,
struct page *pagecache_page)
......@@ -2286,8 +2322,13 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
retry_avoidcopy:
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
avoidcopy = (page_count(old_page) == 1);
avoidcopy = (page_mapcount(old_page) == 1);
if (avoidcopy) {
if (!trylock_page(old_page)) {
if (PageAnon(old_page))
page_move_anon_rmap(old_page, vma, address);
} else
unlock_page(old_page);
set_huge_ptep_writable(vma, address, ptep);
return 0;
}
......@@ -2338,6 +2379,13 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
return -PTR_ERR(new_page);
}
/*
* When the original hugepage is shared one, it does not have
* anon_vma prepared.
*/
if (unlikely(anon_vma_prepare(vma)))
return VM_FAULT_OOM;
copy_huge_page(new_page, old_page, address, vma);
__SetPageUptodate(new_page);
......@@ -2355,6 +2403,8 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
huge_ptep_clear_flush(vma, address, ptep);
set_huge_pte_at(mm, address, ptep,
make_huge_pte(vma, new_page, 1));
page_remove_rmap(old_page);
hugepage_add_anon_rmap(new_page, vma, address);
/* Make the old page be freed below */
new_page = old_page;
mmu_notifier_invalidate_range_end(mm,
......@@ -2458,10 +2508,29 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
page_dup_rmap(page);
} else {
lock_page(page);
page->mapping = HUGETLB_POISON;
if (unlikely(anon_vma_prepare(vma))) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
hugepage_add_new_anon_rmap(page, vma, address);
}
} else {
page_dup_rmap(page);
}
/*
* Since memory error handler replaces pte into hwpoison swap entry
* at the time of error handling, a process which reserved but not have
* the mapping to the error hugepage does not have hwpoison swap entry.
* So we need to block accesses from such a process by checking
* PG_hwpoison bit here.
*/
if (unlikely(PageHWPoison(page))) {
ret = VM_FAULT_HWPOISON;
goto backout_unlocked;
}
/*
......@@ -2513,10 +2582,18 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
pte_t *ptep;
pte_t entry;
int ret;
struct page *page = NULL;
struct page *pagecache_page = NULL;
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
struct hstate *h = hstate_vma(vma);
ptep = huge_pte_offset(mm, address);
if (ptep) {
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON;
}
ptep = huge_pte_alloc(mm, address, huge_page_size(h));
if (!ptep)
return VM_FAULT_OOM;
......@@ -2554,6 +2631,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
vma, address);
}
if (!pagecache_page) {
page = pte_page(entry);
lock_page(page);
}
spin_lock(&mm->page_table_lock);
/* Check for a racing update before calling hugetlb_cow */
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
......@@ -2579,6 +2661,8 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (pagecache_page) {
unlock_page(pagecache_page);
put_page(pagecache_page);
} else {
unlock_page(page);
}
out_mutex:
......@@ -2791,3 +2875,19 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
hugetlb_put_quota(inode->i_mapping, (chg - freed));
hugetlb_acct_memory(h, -(chg - freed));
}
/*
* This function is called from memory failure code.
* Assume the caller holds page lock of the head page.
*/
void __isolate_hwpoisoned_huge_page(struct page *hpage)
{
struct hstate *h = page_hstate(hpage);
int nid = page_to_nid(hpage);
spin_lock(&hugetlb_lock);
list_del(&hpage->lru);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
spin_unlock(&hugetlb_lock);
}
......@@ -5,6 +5,7 @@
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/hugetlb.h>
#include "internal.h"
static struct dentry *hwpoison_dir;
......@@ -13,6 +14,7 @@ static int hwpoison_inject(void *data, u64 val)
{
unsigned long pfn = val;
struct page *p;
struct page *hpage;
int err;
if (!capable(CAP_SYS_ADMIN))
......@@ -24,18 +26,19 @@ static int hwpoison_inject(void *data, u64 val)
return -ENXIO;
p = pfn_to_page(pfn);
hpage = compound_head(p);
/*
* This implies unable to support free buddy pages.
*/
if (!get_page_unless_zero(p))
if (!get_page_unless_zero(hpage))
return 0;
if (!PageLRU(p))
if (!PageLRU(p) && !PageHuge(p))
shake_page(p, 0);
/*
* This implies unable to support non-LRU pages.
*/
if (!PageLRU(p))
if (!PageLRU(p) && !PageHuge(p))
return 0;
/*
......@@ -44,9 +47,9 @@ static int hwpoison_inject(void *data, u64 val)
* We temporarily take page lock for try_get_mem_cgroup_from_page().
* __memory_failure() will redo the check reliably inside page lock.
*/
lock_page(p);
err = hwpoison_filter(p);
unlock_page(p);
lock_page(hpage);
err = hwpoison_filter(hpage);
unlock_page(hpage);
if (err)
return 0;
......
......@@ -46,6 +46,7 @@
#include <linux/suspend.h>
#include <linux/slab.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include "internal.h"
int sysctl_memory_failure_early_kill __read_mostly = 0;
......@@ -690,17 +691,29 @@ static int me_swapcache_clean(struct page *p, unsigned long pfn)
/*
* Huge pages. Needs work.
* Issues:
* No rmap support so we cannot find the original mapper. In theory could walk
* all MMs and look for the mappings, but that would be non atomic and racy.
* Need rmap for hugepages for this. Alternatively we could employ a heuristic,
* like just walking the current process and hoping it has it mapped (that
* should be usually true for the common "shared database cache" case)
* Should handle free huge pages and dequeue them too, but this needs to
* handle huge page accounting correctly.
* - Error on hugepage is contained in hugepage unit (not in raw page unit.)
* To narrow down kill region to one page, we need to break up pmd.
* - To support soft-offlining for hugepage, we need to support hugepage
* migration.
*/
static int me_huge_page(struct page *p, unsigned long pfn)
{
return FAILED;
struct page *hpage = compound_head(p);
/*
* We can safely recover from error on free or reserved (i.e.
* not in-use) hugepage by dequeuing it from freelist.
* To check whether a hugepage is in-use or not, we can't use
* page->lru because it can be used in other hugepage operations,
* such as __unmap_hugepage_range() and gather_surplus_pages().
* So instead we use page_mapping() and PageAnon().
* We assume that this function is called with page lock held,
* so there is no race between isolation and mapping/unmapping.
*/
if (!(page_mapping(hpage) || PageAnon(hpage))) {
__isolate_hwpoisoned_huge_page(hpage);
return RECOVERED;
}
return DELAYED;
}
/*
......@@ -838,6 +851,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
int ret;
int i;
int kill = 1;
struct page *hpage = compound_head(p);
if (PageReserved(p) || PageSlab(p))
return SWAP_SUCCESS;
......@@ -846,10 +860,10 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* This check implies we don't kill processes if their pages
* are in the swap cache early. Those are always late kills.
*/
if (!page_mapped(p))
if (!page_mapped(hpage))
return SWAP_SUCCESS;
if (PageCompound(p) || PageKsm(p))
if (PageKsm(p))
return SWAP_FAIL;
if (PageSwapCache(p)) {
......@@ -864,10 +878,11 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* XXX: the dirty test could be racy: set_page_dirty() may not always
* be called inside page lock (it's recommended but not enforced).
*/
mapping = page_mapping(p);
if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
if (page_mkclean(p)) {
SetPageDirty(p);
mapping = page_mapping(hpage);
if (!PageDirty(hpage) && mapping &&
mapping_cap_writeback_dirty(mapping)) {
if (page_mkclean(hpage)) {
SetPageDirty(hpage);
} else {
kill = 0;
ttu |= TTU_IGNORE_HWPOISON;
......@@ -886,14 +901,14 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* there's nothing that can be done.
*/
if (kill)
collect_procs(p, &tokill);
collect_procs(hpage, &tokill);
/*
* try_to_unmap can fail temporarily due to races.
* Try a few times (RED-PEN better strategy?)
*/
for (i = 0; i < N_UNMAP_TRIES; i++) {
ret = try_to_unmap(p, ttu);
ret = try_to_unmap(hpage, ttu);
if (ret == SWAP_SUCCESS)
break;
pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
......@@ -901,7 +916,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
if (ret != SWAP_SUCCESS)
printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
pfn, page_mapcount(p));
pfn, page_mapcount(hpage));
/*
* Now that the dirty bit has been propagated to the
......@@ -912,17 +927,35 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* use a more force-full uncatchable kill to prevent
* any accesses to the poisoned memory.
*/
kill_procs_ao(&tokill, !!PageDirty(p), trapno,
kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
ret != SWAP_SUCCESS, pfn);
return ret;
}
static void set_page_hwpoison_huge_page(struct page *hpage)
{
int i;
int nr_pages = 1 << compound_order(hpage);
for (i = 0; i < nr_pages; i++)
SetPageHWPoison(hpage + i);
}
static void clear_page_hwpoison_huge_page(struct page *hpage)
{
int i;
int nr_pages = 1 << compound_order(hpage);
for (i = 0; i < nr_pages; i++)
ClearPageHWPoison(hpage + i);
}
int __memory_failure(unsigned long pfn, int trapno, int flags)
{
struct page_state *ps;
struct page *p;
struct page *hpage;
int res;
unsigned int nr_pages;
if (!sysctl_memory_failure_recovery)
panic("Memory failure from trap %d on page %lx", trapno, pfn);
......@@ -935,12 +968,14 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
}
p = pfn_to_page(pfn);
hpage = compound_head(p);
if (TestSetPageHWPoison(p)) {
printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
return 0;
}
atomic_long_add(1, &mce_bad_pages);
nr_pages = 1 << compound_order(hpage);
atomic_long_add(nr_pages, &mce_bad_pages);
/*
* We need/can do nothing about count=0 pages.
......@@ -954,7 +989,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
* that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
*/
if (!(flags & MF_COUNT_INCREASED) &&
!get_page_unless_zero(compound_head(p))) {
!get_page_unless_zero(hpage)) {
if (is_free_buddy_page(p)) {
action_result(pfn, "free buddy", DELAYED);
return 0;
......@@ -972,9 +1007,9 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
* The check (unnecessarily) ignores LRU pages being isolated and
* walked by the page reclaim code, however that's not a big loss.
*/
if (!PageLRU(p))
if (!PageLRU(p) && !PageHuge(p))
shake_page(p, 0);
if (!PageLRU(p)) {
if (!PageLRU(p) && !PageHuge(p)) {
/*
* shake_page could have turned it free.
*/
......@@ -992,7 +1027,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
* It's very difficult to mess with pages currently under IO
* and in many cases impossible, so we just avoid it here.
*/
lock_page_nosync(p);
lock_page_nosync(hpage);
/*
* unpoison always clear PG_hwpoison inside page lock
......@@ -1004,12 +1039,32 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
}
if (hwpoison_filter(p)) {
if (TestClearPageHWPoison(p))
atomic_long_dec(&mce_bad_pages);
unlock_page(p);
put_page(p);
atomic_long_sub(nr_pages, &mce_bad_pages);
unlock_page(hpage);
put_page(hpage);
return 0;
}
/*
* For error on the tail page, we should set PG_hwpoison
* on the head page to show that the hugepage is hwpoisoned
*/
if (PageTail(p) && TestSetPageHWPoison(hpage)) {
action_result(pfn, "hugepage already hardware poisoned",
IGNORED);
unlock_page(hpage);
put_page(hpage);
return 0;
}
/*
* Set PG_hwpoison on all pages in an error hugepage,
* because containment is done in hugepage unit for now.
* Since we have done TestSetPageHWPoison() for the head page with
* page lock held, we can safely set PG_hwpoison bits on tail pages.
*/
if (PageHuge(p))
set_page_hwpoison_huge_page(hpage);
wait_on_page_writeback(p);
/*
......@@ -1039,7 +1094,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
}
}
out:
unlock_page(p);
unlock_page(hpage);
return res;
}
EXPORT_SYMBOL_GPL(__memory_failure);
......@@ -1083,6 +1138,7 @@ int unpoison_memory(unsigned long pfn)
struct page *page;
struct page *p;
int freeit = 0;
unsigned int nr_pages;
if (!pfn_valid(pfn))
return -ENXIO;
......@@ -1095,9 +1151,11 @@ int unpoison_memory(unsigned long pfn)
return 0;
}
nr_pages = 1 << compound_order(page);
if (!get_page_unless_zero(page)) {
if (TestClearPageHWPoison(p))
atomic_long_dec(&mce_bad_pages);
atomic_long_sub(nr_pages, &mce_bad_pages);
pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
return 0;
}
......@@ -1109,11 +1167,13 @@ int unpoison_memory(unsigned long pfn)
* the PG_hwpoison page will be caught and isolated on the entrance to
* the free buddy page pool.
*/
if (TestClearPageHWPoison(p)) {
if (TestClearPageHWPoison(page)) {
pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
atomic_long_dec(&mce_bad_pages);
atomic_long_sub(nr_pages, &mce_bad_pages);
freeit = 1;
}
if (PageHuge(p))
clear_page_hwpoison_huge_page(page);
unlock_page(page);
put_page(page);
......
......@@ -56,6 +56,7 @@
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
#include <linux/hugetlb.h>
#include <asm/tlbflush.h>
......@@ -350,6 +351,8 @@ vma_address(struct page *page, struct vm_area_struct *vma)
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
unsigned long address;
if (unlikely(is_vm_hugetlb_page(vma)))
pgoff = page->index << huge_page_order(page_hstate(page));
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
/* page should be within @vma mapping range */
......@@ -394,6 +397,12 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm,
pte_t *pte;
spinlock_t *ptl;
if (unlikely(PageHuge(page))) {
pte = huge_pte_offset(mm, address);
ptl = &mm->page_table_lock;
goto check;
}
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
return NULL;
......@@ -414,6 +423,7 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm,
}
ptl = pte_lockptr(mm, pmd);
check:
spin_lock(ptl);
if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
*ptlp = ptl;
......@@ -916,6 +926,12 @@ void page_remove_rmap(struct page *page)
page_clear_dirty(page);
set_page_dirty(page);
}
/*
* Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
* and not charged by memcg for now.
*/
if (unlikely(PageHuge(page)))
return;
if (PageAnon(page)) {
mem_cgroup_uncharge_page(page);
__dec_zone_page_state(page, NR_ANON_PAGES);
......@@ -1524,3 +1540,46 @@ int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
return rmap_walk_file(page, rmap_one, arg);
}
#endif /* CONFIG_MIGRATION */
#ifdef CONFIG_HUGETLB_PAGE
/*
* The following three functions are for anonymous (private mapped) hugepages.
* Unlike common anonymous pages, anonymous hugepages have no accounting code
* and no lru code, because we handle hugepages differently from common pages.
*/
static void __hugepage_set_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, int exclusive)
{
struct anon_vma *anon_vma = vma->anon_vma;
BUG_ON(!anon_vma);
if (!exclusive) {
struct anon_vma_chain *avc;
avc = list_entry(vma->anon_vma_chain.prev,
struct anon_vma_chain, same_vma);
anon_vma = avc->anon_vma;
}
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
page->index = linear_page_index(vma, address);
}
void hugepage_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
struct anon_vma *anon_vma = vma->anon_vma;
int first;
BUG_ON(!anon_vma);
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
first = atomic_inc_and_test(&page->_mapcount);
if (first)
__hugepage_set_anon_rmap(page, vma, address, 0);
}
void hugepage_add_new_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
atomic_set(&page->_mapcount, 0);
__hugepage_set_anon_rmap(page, vma, address, 1);
}
#endif /* CONFIG_HUGETLB_PAGE */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册