timer.c 53.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched/signal.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/sched/nohz.h>
44
#include <linux/sched/debug.h>
45
#include <linux/slab.h>
46
#include <linux/compat.h>
L
Linus Torvalds 已提交
47

48
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
49 50 51 52 53
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

54 55
#include "tick-internal.h"

56 57 58
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
59
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
60 61 62

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
63
/*
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
 * level has a different granularity.
 *
 * The level granularity is:		LVL_CLK_DIV ^ lvl
 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
 *
 * The array level of a newly armed timer depends on the relative expiry
 * time. The farther the expiry time is away the higher the array level and
 * therefor the granularity becomes.
 *
 * Contrary to the original timer wheel implementation, which aims for 'exact'
 * expiry of the timers, this implementation removes the need for recascading
 * the timers into the lower array levels. The previous 'classic' timer wheel
 * implementation of the kernel already violated the 'exact' expiry by adding
 * slack to the expiry time to provide batched expiration. The granularity
 * levels provide implicit batching.
 *
 * This is an optimization of the original timer wheel implementation for the
 * majority of the timer wheel use cases: timeouts. The vast majority of
 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
 * the timeout expires it indicates that normal operation is disturbed, so it
 * does not matter much whether the timeout comes with a slight delay.
 *
 * The only exception to this are networking timers with a small expiry
 * time. They rely on the granularity. Those fit into the first wheel level,
 * which has HZ granularity.
 *
 * We don't have cascading anymore. timers with a expiry time above the
 * capacity of the last wheel level are force expired at the maximum timeout
 * value of the last wheel level. From data sampling we know that the maximum
 * value observed is 5 days (network connection tracking), so this should not
 * be an issue.
 *
 * The currently chosen array constants values are a good compromise between
 * array size and granularity.
 *
 * This results in the following granularity and range levels:
 *
 * HZ 1000 steps
 * Level Offset  Granularity            Range
 *  0      0         1 ms                0 ms -         63 ms
 *  1     64         8 ms               64 ms -        511 ms
 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 *
 * HZ  300
 * Level Offset  Granularity            Range
 *  0	   0         3 ms                0 ms -        210 ms
 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 *
 * HZ  250
 * Level Offset  Granularity            Range
 *  0	   0         4 ms                0 ms -        255 ms
 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 *
 * HZ  100
 * Level Offset  Granularity            Range
 *  0	   0         10 ms               0 ms -        630 ms
 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
L
Linus Torvalds 已提交
149 150
 */

151 152 153 154 155 156
/* Clock divisor for the next level */
#define LVL_CLK_SHIFT	3
#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
L
Linus Torvalds 已提交
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * The time start value for each level to select the bucket at enqueue
 * time.
 */
#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))

/* Size of each clock level */
#define LVL_BITS	6
#define LVL_SIZE	(1UL << LVL_BITS)
#define LVL_MASK	(LVL_SIZE - 1)
#define LVL_OFFS(n)	((n) * LVL_SIZE)

/* Level depth */
#if HZ > 100
# define LVL_DEPTH	9
# else
# define LVL_DEPTH	8
#endif

/* The cutoff (max. capacity of the wheel) */
#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))

/*
 * The resulting wheel size. If NOHZ is configured we allocate two
 * wheels so we have a separate storage for the deferrable timers.
 */
#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)

#ifdef CONFIG_NO_HZ_COMMON
# define NR_BASES	2
# define BASE_STD	0
# define BASE_DEF	1
#else
# define NR_BASES	1
# define BASE_STD	0
# define BASE_DEF	0
#endif
L
Linus Torvalds 已提交
196

197
struct timer_base {
198
	raw_spinlock_t		lock;
199 200
	struct timer_list	*running_timer;
	unsigned long		clk;
201
	unsigned long		next_expiry;
202 203 204
	unsigned int		cpu;
	bool			migration_enabled;
	bool			nohz_active;
205
	bool			is_idle;
206 207
	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
	struct hlist_head	vectors[WHEEL_SIZE];
208
} ____cacheline_aligned;
209

210
static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
211

212 213 214
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

215
void timers_update_migration(bool update_nohz)
216 217 218 219 220
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
221
	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
222 223 224
		return;

	for_each_possible_cpu(cpu) {
225 226
		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
227
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
228 229
		if (!update_nohz)
			continue;
230 231
		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
232
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
233 234 235 236 237 238 239 240 241 242 243
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
244
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
245
	if (!ret && write)
246
		timers_update_migration(false);
247 248 249 250 251
	mutex_unlock(&mutex);
	return ret;
}
#endif

252 253
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
275
	 * But never round down if @force_up is set.
276
	 */
277
	if (rem < HZ/4 && !force_up) /* round down */
278 279 280 281 282 283 284
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

285 286 287 288 289
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
290
}
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
316 317 318 319 320 321 322
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
323
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
324 325 326 327 328 329 330 331 332 333 334 335
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
336
 * The return value is the rounded version of the @j parameter.
337 338 339
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
340 341 342 343
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
344 345 346 347 348 349 350
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
351
 * round_jiffies() rounds an absolute time in the future (in jiffies)
352 353 354 355 356 357 358 359
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
360
 * The return value is the rounded version of the @j parameter.
361 362 363
 */
unsigned long round_jiffies(unsigned long j)
{
364
	return round_jiffies_common(j, raw_smp_processor_id(), false);
365 366 367 368 369 370 371
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
372
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
373 374 375 376 377 378 379 380
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
381
 * The return value is the rounded version of the @j parameter.
382 383 384 385 386 387 388
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

454

455
static inline unsigned int timer_get_idx(struct timer_list *timer)
456
{
457
	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
458 459
}

460
static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
L
Linus Torvalds 已提交
461
{
462 463 464
	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
			idx << TIMER_ARRAYSHIFT;
}
L
Linus Torvalds 已提交
465

466 467 468 469 470 471 472 473 474 475
/*
 * Helper function to calculate the array index for a given expiry
 * time.
 */
static inline unsigned calc_index(unsigned expires, unsigned lvl)
{
	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
	return LVL_OFFS(lvl) + (expires & LVL_MASK);
}

476
static int calc_wheel_index(unsigned long expires, unsigned long clk)
L
Linus Torvalds 已提交
477
{
478
	unsigned long delta = expires - clk;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	unsigned int idx;

	if (delta < LVL_START(1)) {
		idx = calc_index(expires, 0);
	} else if (delta < LVL_START(2)) {
		idx = calc_index(expires, 1);
	} else if (delta < LVL_START(3)) {
		idx = calc_index(expires, 2);
	} else if (delta < LVL_START(4)) {
		idx = calc_index(expires, 3);
	} else if (delta < LVL_START(5)) {
		idx = calc_index(expires, 4);
	} else if (delta < LVL_START(6)) {
		idx = calc_index(expires, 5);
	} else if (delta < LVL_START(7)) {
		idx = calc_index(expires, 6);
	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
		idx = calc_index(expires, 7);
	} else if ((long) delta < 0) {
498
		idx = clk & LVL_MASK;
L
Linus Torvalds 已提交
499
	} else {
500 501 502
		/*
		 * Force expire obscene large timeouts to expire at the
		 * capacity limit of the wheel.
L
Linus Torvalds 已提交
503
		 */
504 505
		if (expires >= WHEEL_TIMEOUT_CUTOFF)
			expires = WHEEL_TIMEOUT_MAX;
T
Thomas Gleixner 已提交
506

507
		idx = calc_index(expires, LVL_DEPTH - 1);
L
Linus Torvalds 已提交
508
	}
509 510
	return idx;
}
T
Thomas Gleixner 已提交
511

512 513 514 515 516 517 518 519
/*
 * Enqueue the timer into the hash bucket, mark it pending in
 * the bitmap and store the index in the timer flags.
 */
static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
			  unsigned int idx)
{
	hlist_add_head(&timer->entry, base->vectors + idx);
520 521
	__set_bit(idx, base->pending_map);
	timer_set_idx(timer, idx);
L
Linus Torvalds 已提交
522 523
}

524 525
static void
__internal_add_timer(struct timer_base *base, struct timer_list *timer)
526
{
527 528 529 530 531
	unsigned int idx;

	idx = calc_wheel_index(timer->expires, base->clk);
	enqueue_timer(base, timer, idx);
}
532

533 534 535
static void
trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
{
536 537
	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
		return;
538

539
	/*
540 541
	 * TODO: This wants some optimizing similar to the code below, but we
	 * will do that when we switch from push to pull for deferrable timers.
542
	 */
543 544
	if (timer->flags & TIMER_DEFERRABLE) {
		if (tick_nohz_full_cpu(base->cpu))
545
			wake_up_nohz_cpu(base->cpu);
546
		return;
547
	}
548 549

	/*
550 551 552
	 * We might have to IPI the remote CPU if the base is idle and the
	 * timer is not deferrable. If the other CPU is on the way to idle
	 * then it can't set base->is_idle as we hold the base lock:
553
	 */
554 555 556 557 558 559 560 561 562 563 564 565
	if (!base->is_idle)
		return;

	/* Check whether this is the new first expiring timer: */
	if (time_after_eq(timer->expires, base->next_expiry))
		return;

	/*
	 * Set the next expiry time and kick the CPU so it can reevaluate the
	 * wheel:
	 */
	base->next_expiry = timer->expires;
566 567 568 569 570 571 572 573
		wake_up_nohz_cpu(base->cpu);
}

static void
internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
	__internal_add_timer(base, timer);
	trigger_dyntick_cpu(base, timer);
574 575
}

576 577 578 579
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

580 581 582 583 584
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

585 586 587 588 589 590 591 592
static bool timer_is_static_object(void *addr)
{
	struct timer_list *timer = addr;

	return (timer->entry.pprev == NULL &&
		timer->entry.next == TIMER_ENTRY_STATIC);
}

593 594 595
/*
 * fixup_init is called when:
 * - an active object is initialized
596
 */
597
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
598 599 600 601 602 603 604
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
605
		return true;
606
	default:
607
		return false;
608 609 610
	}
}

611 612 613 614 615 616
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

617 618 619
/*
 * fixup_activate is called when:
 * - an active object is activated
620
 * - an unknown non-static object is activated
621
 */
622
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
623 624 625 626 627
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
628 629
		setup_timer(timer, stub_timer, 0);
		return true;
630 631 632 633 634

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
635
		return false;
636 637 638 639 640 641 642
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
643
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
644 645 646 647 648 649 650
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
651
		return true;
652
	default:
653
		return false;
654 655 656
	}
}

657 658 659 660
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
661
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
662 663 664 665 666
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
667 668
		setup_timer(timer, stub_timer, 0);
		return true;
669
	default:
670
		return false;
671 672 673
	}
}

674
static struct debug_obj_descr timer_debug_descr = {
675 676
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
677
	.is_static_object	= timer_is_static_object,
678 679 680 681
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

704 705 706 707 708
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
709 710
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
711

T
Tejun Heo 已提交
712 713
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
714 715
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
716
	do_init_timer(timer, flags, name, key);
717
}
718
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
719 720 721 722 723 724 725 726 727 728 729

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
730
static inline void debug_timer_assert_init(struct timer_list *timer) { }
731 732
#endif

733 734 735 736 737 738 739 740 741 742
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
743
	trace_timer_start(timer, expires, timer->flags);
744 745 746 747 748 749 750 751
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

752 753 754 755 756
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
757 758
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
759
{
760
	timer->entry.pprev = NULL;
761
	timer->flags = flags | raw_smp_processor_id();
762
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
763
}
764 765

/**
R
Randy Dunlap 已提交
766
 * init_timer_key - initialize a timer
767
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
768
 * @flags: timer flags
R
Randy Dunlap 已提交
769 770 771
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
772
 *
R
Randy Dunlap 已提交
773
 * init_timer_key() must be done to a timer prior calling *any* of the
774 775
 * other timer functions.
 */
T
Tejun Heo 已提交
776 777
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
778
{
779
	debug_init(timer);
T
Tejun Heo 已提交
780
	do_init_timer(timer, flags, name, key);
781
}
782
EXPORT_SYMBOL(init_timer_key);
783

784
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
785
{
786
	struct hlist_node *entry = &timer->entry;
787

788
	debug_deactivate(timer);
789

790
	__hlist_del(entry);
791
	if (clear_pending)
792 793
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
794 795
}

796
static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
797 798
			     bool clear_pending)
{
799 800
	unsigned idx = timer_get_idx(timer);

801 802 803
	if (!timer_pending(timer))
		return 0;

804 805 806
	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
		__clear_bit(idx, base->pending_map);

807 808 809 810
	detach_timer(timer, clear_pending);
	return 1;
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
{
	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);

	/*
	 * If the timer is deferrable and nohz is active then we need to use
	 * the deferrable base.
	 */
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
	    (tflags & TIMER_DEFERRABLE))
		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
	return base;
}

static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * If the timer is deferrable and nohz is active then we need to use
	 * the deferrable base.
	 */
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
	    (tflags & TIMER_DEFERRABLE))
		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
	return base;
}

static inline struct timer_base *get_timer_base(u32 tflags)
{
	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}

844 845
#ifdef CONFIG_NO_HZ_COMMON
static inline struct timer_base *
846
get_target_base(struct timer_base *base, unsigned tflags)
847
{
848
#ifdef CONFIG_SMP
849 850 851 852 853 854 855 856
	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
		return get_timer_this_cpu_base(tflags);
	return get_timer_cpu_base(tflags, get_nohz_timer_target());
#else
	return get_timer_this_cpu_base(tflags);
#endif
}

857 858
static inline void forward_timer_base(struct timer_base *base)
{
859 860
	unsigned long jnow = READ_ONCE(jiffies);

861 862 863 864
	/*
	 * We only forward the base when it's idle and we have a delta between
	 * base clock and jiffies.
	 */
865
	if (!base->is_idle || (long) (jnow - base->clk) < 2)
866 867 868 869 870 871
		return;

	/*
	 * If the next expiry value is > jiffies, then we fast forward to
	 * jiffies otherwise we forward to the next expiry value.
	 */
872 873
	if (time_after(base->next_expiry, jnow))
		base->clk = jnow;
874 875 876 877 878
	else
		base->clk = base->next_expiry;
}
#else
static inline struct timer_base *
879
get_target_base(struct timer_base *base, unsigned tflags)
880 881 882 883 884 885 886 887
{
	return get_timer_this_cpu_base(tflags);
}

static inline void forward_timer_base(struct timer_base *base) { }
#endif


888
/*
889 890 891
 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 * that all timers which are tied to this base are locked, and the base itself
 * is locked too.
892 893
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
894
 * be found in the base->vectors array.
895
 *
896 897
 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 * to wait until the migration is done.
898
 */
899
static struct timer_base *lock_timer_base(struct timer_list *timer,
900
					  unsigned long *flags)
901
	__acquires(timer->base->lock)
902 903
{
	for (;;) {
904
		struct timer_base *base;
905 906 907 908 909 910 911 912
		u32 tf;

		/*
		 * We need to use READ_ONCE() here, otherwise the compiler
		 * might re-read @tf between the check for TIMER_MIGRATING
		 * and spin_lock().
		 */
		tf = READ_ONCE(timer->flags);
913 914

		if (!(tf & TIMER_MIGRATING)) {
915
			base = get_timer_base(tf);
916
			raw_spin_lock_irqsave(&base->lock, *flags);
917
			if (timer->flags == tf)
918
				return base;
919
			raw_spin_unlock_irqrestore(&base->lock, *flags);
920 921 922 923 924
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
925
static inline int
926
__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
L
Linus Torvalds 已提交
927
{
928
	struct timer_base *base, *new_base;
929 930
	unsigned int idx = UINT_MAX;
	unsigned long clk = 0, flags;
931
	int ret = 0;
L
Linus Torvalds 已提交
932

933 934
	BUG_ON(!timer->function);

935
	/*
936 937 938
	 * This is a common optimization triggered by the networking code - if
	 * the timer is re-modified to have the same timeout or ends up in the
	 * same array bucket then just return:
939 940 941 942
	 */
	if (timer_pending(timer)) {
		if (timer->expires == expires)
			return 1;
943

944
		/*
945 946 947 948
		 * We lock timer base and calculate the bucket index right
		 * here. If the timer ends up in the same bucket, then we
		 * just update the expiry time and avoid the whole
		 * dequeue/enqueue dance.
949
		 */
950
		base = lock_timer_base(timer, &flags);
951

952
		clk = base->clk;
953 954 955 956 957 958 959 960 961
		idx = calc_wheel_index(expires, clk);

		/*
		 * Retrieve and compare the array index of the pending
		 * timer. If it matches set the expiry to the new value so a
		 * subsequent call will exit in the expires check above.
		 */
		if (idx == timer_get_idx(timer)) {
			timer->expires = expires;
962 963
			ret = 1;
			goto out_unlock;
964
		}
965 966
	} else {
		base = lock_timer_base(timer, &flags);
967 968
	}

969 970 971
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
972

973
	debug_activate(timer, expires);
974

975
	new_base = get_target_base(base, timer->flags);
976

977
	if (base != new_base) {
L
Linus Torvalds 已提交
978
		/*
979
		 * We are trying to schedule the timer on the new base.
980 981
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
982 983
		 * handler yet has not finished. This also guarantees that the
		 * timer is serialized wrt itself.
L
Linus Torvalds 已提交
984
		 */
985
		if (likely(base->running_timer != timer)) {
986
			/* See the comment in lock_timer_base() */
987 988
			timer->flags |= TIMER_MIGRATING;

989
			raw_spin_unlock(&base->lock);
990
			base = new_base;
991
			raw_spin_lock(&base->lock);
992 993
			WRITE_ONCE(timer->flags,
				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
L
Linus Torvalds 已提交
994 995 996
		}
	}

997 998 999
	/* Try to forward a stale timer base clock */
	forward_timer_base(base);

L
Linus Torvalds 已提交
1000
	timer->expires = expires;
1001 1002
	/*
	 * If 'idx' was calculated above and the base time did not advance
1003 1004 1005 1006
	 * between calculating 'idx' and possibly switching the base, only
	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
	 * we need to (re)calculate the wheel index via
	 * internal_add_timer().
1007 1008 1009 1010 1011 1012 1013
	 */
	if (idx != UINT_MAX && clk == base->clk) {
		enqueue_timer(base, timer, idx);
		trigger_dyntick_cpu(base, timer);
	} else {
		internal_add_timer(base, timer);
	}
I
Ingo Molnar 已提交
1014 1015

out_unlock:
1016
	raw_spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
1017 1018 1019 1020

	return ret;
}

1021
/**
I
Ingo Molnar 已提交
1022 1023 1024
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1025
 *
I
Ingo Molnar 已提交
1026 1027 1028 1029
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
1030
 */
I
Ingo Molnar 已提交
1031
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
1032
{
1033
	return __mod_timer(timer, expires, true);
L
Linus Torvalds 已提交
1034
}
I
Ingo Molnar 已提交
1035
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
1036

1037
/**
L
Linus Torvalds 已提交
1038 1039
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
1040
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1041
 *
1042
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
1059
	return __mod_timer(timer, expires, false);
L
Linus Torvalds 已提交
1060 1061 1062
}
EXPORT_SYMBOL(mod_timer);

I
Ingo Molnar 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
1093
	struct timer_base *new_base, *base;
I
Ingo Molnar 已提交
1094 1095 1096
	unsigned long flags;

	BUG_ON(timer_pending(timer) || !timer->function);
1097

1098 1099
	new_base = get_timer_cpu_base(timer->flags, cpu);

1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * If @timer was on a different CPU, it should be migrated with the
	 * old base locked to prevent other operations proceeding with the
	 * wrong base locked.  See lock_timer_base().
	 */
	base = lock_timer_base(timer, &flags);
	if (base != new_base) {
		timer->flags |= TIMER_MIGRATING;

1109
		raw_spin_unlock(&base->lock);
1110
		base = new_base;
1111
		raw_spin_lock(&base->lock);
1112 1113 1114 1115
		WRITE_ONCE(timer->flags,
			   (timer->flags & ~TIMER_BASEMASK) | cpu);
	}

1116
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
1117
	internal_add_timer(base, timer);
1118
	raw_spin_unlock_irqrestore(&base->lock, flags);
I
Ingo Molnar 已提交
1119
}
A
Andi Kleen 已提交
1120
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
1121

1122
/**
1123
 * del_timer - deactivate a timer.
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
1135
	struct timer_base *base;
L
Linus Torvalds 已提交
1136
	unsigned long flags;
1137
	int ret = 0;
L
Linus Torvalds 已提交
1138

1139 1140
	debug_assert_init(timer);

1141 1142
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1143
		ret = detach_if_pending(timer, base, true);
1144
		raw_spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
1145 1146
	}

1147
	return ret;
L
Linus Torvalds 已提交
1148 1149 1150
}
EXPORT_SYMBOL(del_timer);

1151 1152
/**
 * try_to_del_timer_sync - Try to deactivate a timer
1153
 * @timer: timer to delete
1154
 *
1155 1156 1157 1158 1159
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1160
	struct timer_base *base;
1161 1162 1163
	unsigned long flags;
	int ret = -1;

1164 1165
	debug_assert_init(timer);

1166 1167
	base = lock_timer_base(timer, &flags);

K
Kees Cook 已提交
1168
	if (base->running_timer != timer)
1169
		ret = detach_if_pending(timer, base, true);
K
Kees Cook 已提交
1170

1171
	raw_spin_unlock_irqrestore(&base->lock, flags);
1172 1173 1174

	return ret;
}
1175 1176
EXPORT_SYMBOL(try_to_del_timer_sync);

1177
#ifdef CONFIG_SMP
1178
/**
L
Linus Torvalds 已提交
1179 1180 1181 1182 1183 1184 1185
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1186
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1187
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1188 1189 1190 1191
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1192
 *
T
Tejun Heo 已提交
1193 1194 1195
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1212 1213 1214 1215
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1216
#ifdef CONFIG_LOCKDEP
1217 1218
	unsigned long flags;

1219 1220 1221 1222
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1223
	local_irq_save(flags);
1224 1225
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1226
	local_irq_restore(flags);
1227
#endif
1228 1229 1230 1231
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1232
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1233 1234 1235 1236
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1237
		cpu_relax();
1238
	}
L
Linus Torvalds 已提交
1239
}
1240
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1241 1242
#endif

1243 1244 1245
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1246
	int count = preempt_count();
1247 1248 1249 1250 1251 1252 1253 1254 1255

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1256 1257 1258
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1273
	if (count != preempt_count()) {
1274
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1275
			  fn, count, preempt_count());
1276 1277 1278 1279 1280 1281
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1282
		preempt_count_set(count);
1283 1284 1285
	}
}

1286
static void expire_timers(struct timer_base *base, struct hlist_head *head)
L
Linus Torvalds 已提交
1287
{
1288 1289 1290 1291
	while (!hlist_empty(head)) {
		struct timer_list *timer;
		void (*fn)(unsigned long);
		unsigned long data;
L
Linus Torvalds 已提交
1292

1293
		timer = hlist_entry(head->first, struct timer_list, entry);
1294

1295 1296
		base->running_timer = timer;
		detach_timer(timer, true);
1297

1298 1299 1300 1301
		fn = timer->function;
		data = timer->data;

		if (timer->flags & TIMER_IRQSAFE) {
1302
			raw_spin_unlock(&base->lock);
1303
			call_timer_fn(timer, fn, data);
1304
			raw_spin_lock(&base->lock);
1305
		} else {
1306
			raw_spin_unlock_irq(&base->lock);
1307
			call_timer_fn(timer, fn, data);
1308
			raw_spin_lock_irq(&base->lock);
1309
		}
1310 1311
	}
}
1312

1313 1314
static int __collect_expired_timers(struct timer_base *base,
				    struct hlist_head *heads)
1315 1316 1317 1318 1319
{
	unsigned long clk = base->clk;
	struct hlist_head *vec;
	int i, levels = 0;
	unsigned int idx;
1320

1321 1322 1323 1324 1325 1326 1327
	for (i = 0; i < LVL_DEPTH; i++) {
		idx = (clk & LVL_MASK) + i * LVL_SIZE;

		if (__test_and_clear_bit(idx, base->pending_map)) {
			vec = base->vectors + idx;
			hlist_move_list(vec, heads++);
			levels++;
L
Linus Torvalds 已提交
1328
		}
1329 1330 1331 1332 1333
		/* Is it time to look at the next level? */
		if (clk & LVL_CLK_MASK)
			break;
		/* Shift clock for the next level granularity */
		clk >>= LVL_CLK_SHIFT;
L
Linus Torvalds 已提交
1334
	}
1335
	return levels;
L
Linus Torvalds 已提交
1336 1337
}

1338
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1339
/*
1340 1341 1342
 * Find the next pending bucket of a level. Search from level start (@offset)
 * + @clk upwards and if nothing there, search from start of the level
 * (@offset) up to @offset + clk.
L
Linus Torvalds 已提交
1343
 */
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static int next_pending_bucket(struct timer_base *base, unsigned offset,
			       unsigned clk)
{
	unsigned pos, start = offset + clk;
	unsigned end = offset + LVL_SIZE;

	pos = find_next_bit(base->pending_map, end, start);
	if (pos < end)
		return pos - start;

	pos = find_next_bit(base->pending_map, start, offset);
	return pos < start ? pos + LVL_SIZE - start : -1;
}

/*
1359 1360
 * Search the first expiring timer in the various clock levels. Caller must
 * hold base->lock.
L
Linus Torvalds 已提交
1361
 */
1362
static unsigned long __next_timer_interrupt(struct timer_base *base)
L
Linus Torvalds 已提交
1363
{
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	unsigned long clk, next, adj;
	unsigned lvl, offset = 0;

	next = base->clk + NEXT_TIMER_MAX_DELTA;
	clk = base->clk;
	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);

		if (pos >= 0) {
			unsigned long tmp = clk + (unsigned long) pos;

			tmp <<= LVL_SHIFT(lvl);
			if (time_before(tmp, next))
				next = tmp;
L
Linus Torvalds 已提交
1378
		}
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		/*
		 * Clock for the next level. If the current level clock lower
		 * bits are zero, we look at the next level as is. If not we
		 * need to advance it by one because that's going to be the
		 * next expiring bucket in that level. base->clk is the next
		 * expiring jiffie. So in case of:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    0
		 *
		 * we have to look at all levels @index 0. With
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    2
		 *
		 * LVL0 has the next expiring bucket @index 2. The upper
		 * levels have the next expiring bucket @index 1.
		 *
		 * In case that the propagation wraps the next level the same
		 * rules apply:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    F    2
		 *
		 * So after looking at LVL0 we get:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1
		 *  0    0    0    1    0
		 *
		 * So no propagation from LVL1 to LVL2 because that happened
		 * with the add already, but then we need to propagate further
		 * from LVL2 to LVL3.
		 *
		 * So the simple check whether the lower bits of the current
		 * level are 0 or not is sufficient for all cases.
		 */
		adj = clk & LVL_CLK_MASK ? 1 : 0;
		clk >>= LVL_CLK_SHIFT;
		clk += adj;
L
Linus Torvalds 已提交
1418
	}
1419
	return next;
1420
}
1421

1422 1423 1424 1425
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1426
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1427
{
1428
	u64 nextevt = hrtimer_get_next_event();
1429

1430
	/*
1431 1432
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1433
	 */
1434 1435
	if (expires <= nextevt)
		return expires;
1436 1437

	/*
1438 1439
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1440
	 */
1441 1442
	if (nextevt <= basem)
		return basem;
1443

1444
	/*
1445 1446 1447 1448 1449 1450
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1451
	 */
1452
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1453
}
1454 1455

/**
1456 1457 1458 1459 1460 1461
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1462
 */
1463
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1464
{
1465
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1466 1467
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1468
	bool is_max_delta;
1469

1470 1471 1472 1473 1474
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1475 1476
		return expires;

1477
	raw_spin_lock(&base->lock);
1478
	nextevt = __next_timer_interrupt(base);
1479
	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1480 1481
	base->next_expiry = nextevt;
	/*
1482 1483 1484
	 * We have a fresh next event. Check whether we can forward the
	 * base. We can only do that when @basej is past base->clk
	 * otherwise we might rewind base->clk.
1485
	 */
1486 1487 1488 1489 1490 1491
	if (time_after(basej, base->clk)) {
		if (time_after(nextevt, basej))
			base->clk = basej;
		else if (time_after(nextevt, base->clk))
			base->clk = nextevt;
	}
1492

1493
	if (time_before_eq(nextevt, basej)) {
1494
		expires = basem;
1495 1496
		base->is_idle = false;
	} else {
1497
		if (!is_max_delta)
1498
			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1499 1500 1501 1502 1503
		/*
		 * If we expect to sleep more than a tick, mark the base idle:
		 */
		if ((expires - basem) > TICK_NSEC)
			base->is_idle = true;
1504
	}
1505
	raw_spin_unlock(&base->lock);
1506

1507
	return cmp_next_hrtimer_event(basem, expires);
1508
}
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/**
 * timer_clear_idle - Clear the idle state of the timer base
 *
 * Called with interrupts disabled
 */
void timer_clear_idle(void)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * We do this unlocked. The worst outcome is a remote enqueue sending
	 * a pointless IPI, but taking the lock would just make the window for
	 * sending the IPI a few instructions smaller for the cost of taking
	 * the lock in the exit from idle path.
	 */
	base->is_idle = false;
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static int collect_expired_timers(struct timer_base *base,
				  struct hlist_head *heads)
{
	/*
	 * NOHZ optimization. After a long idle sleep we need to forward the
	 * base to current jiffies. Avoid a loop by searching the bitfield for
	 * the next expiring timer.
	 */
	if ((long)(jiffies - base->clk) > 2) {
		unsigned long next = __next_timer_interrupt(base);

		/*
		 * If the next timer is ahead of time forward to current
1541
		 * jiffies, otherwise forward to the next expiry time:
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		 */
		if (time_after(next, jiffies)) {
			/* The call site will increment clock! */
			base->clk = jiffies - 1;
			return 0;
		}
		base->clk = next;
	}
	return __collect_expired_timers(base, heads);
}
#else
static inline int collect_expired_timers(struct timer_base *base,
					 struct hlist_head *heads)
{
	return __collect_expired_timers(base, heads);
}
L
Linus Torvalds 已提交
1558 1559 1560
#endif

/*
D
Daniel Walker 已提交
1561
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1569
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1570
	run_local_timers();
1571
	rcu_check_callbacks(user_tick);
1572 1573
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1574
		irq_work_tick();
1575
#endif
L
Linus Torvalds 已提交
1576
	scheduler_tick();
1577 1578
	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
		run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1579 1580
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 */
static inline void __run_timers(struct timer_base *base)
{
	struct hlist_head heads[LVL_DEPTH];
	int levels;

	if (!time_after_eq(jiffies, base->clk))
		return;

1593
	raw_spin_lock_irq(&base->lock);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

	while (time_after_eq(jiffies, base->clk)) {

		levels = collect_expired_timers(base, heads);
		base->clk++;

		while (levels--)
			expire_timers(base, heads + levels);
	}
	base->running_timer = NULL;
1604
	raw_spin_unlock_irq(&base->lock);
1605 1606
}

L
Linus Torvalds 已提交
1607 1608 1609
/*
 * This function runs timers and the timer-tq in bottom half context.
 */
1610
static __latent_entropy void run_timer_softirq(struct softirq_action *h)
L
Linus Torvalds 已提交
1611
{
1612
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
L
Linus Torvalds 已提交
1613

1614 1615 1616
	__run_timers(base);
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1624 1625
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

1626
	hrtimer_run_queues();
1627 1628 1629 1630 1631 1632 1633 1634 1635
	/* Raise the softirq only if required. */
	if (time_before(jiffies, base->clk)) {
		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
			return;
		/* CPU is awake, so check the deferrable base. */
		base++;
		if (time_before(jiffies, base->clk))
			return;
	}
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640
	raise_softirq(TIMER_SOFTIRQ);
}

static void process_timeout(unsigned long __data)
{
1641
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1655 1656
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process())".
L
Linus Torvalds 已提交
1657 1658
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1659 1660
 * delivered to the current task or the current task is explicitly woken
 * up.
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665 1666 1667 1668
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
1669 1670 1671
 * Returns 0 when the timer has expired otherwise the remaining time in
 * jiffies will be returned.  In all cases the return value is guaranteed
 * to be non-negative.
L
Linus Torvalds 已提交
1672
 */
1673
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1698
		if (timeout < 0) {
L
Linus Torvalds 已提交
1699
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1700 1701
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1702 1703 1704 1705 1706 1707 1708
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1709
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1710
	__mod_timer(&timer, expire, false);
L
Linus Torvalds 已提交
1711 1712 1713
	schedule();
	del_singleshot_timer_sync(&timer);

1714 1715 1716
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722 1723
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1724 1725 1726 1727
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1728 1729
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1730 1731
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1732 1733 1734
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1735 1736 1737 1738 1739 1740 1741
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1742 1743
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1744 1745
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1746 1747 1748
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
/*
 * Like schedule_timeout_uninterruptible(), except this task will not contribute
 * to load average.
 */
signed long __sched schedule_timeout_idle(signed long timeout)
{
	__set_current_state(TASK_IDLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);

L
Linus Torvalds 已提交
1760
#ifdef CONFIG_HOTPLUG_CPU
1761
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1762 1763
{
	struct timer_list *timer;
1764
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1765

1766 1767
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1768
		detach_timer(timer, false);
1769
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1770 1771 1772 1773
		internal_add_timer(new_base, timer);
	}
}

1774
int timers_dead_cpu(unsigned int cpu)
L
Linus Torvalds 已提交
1775
{
1776 1777
	struct timer_base *old_base;
	struct timer_base *new_base;
1778
	int b, i;
L
Linus Torvalds 已提交
1779 1780

	BUG_ON(cpu_online(cpu));
1781

1782 1783 1784 1785 1786 1787 1788
	for (b = 0; b < NR_BASES; b++) {
		old_base = per_cpu_ptr(&timer_bases[b], cpu);
		new_base = get_cpu_ptr(&timer_bases[b]);
		/*
		 * The caller is globally serialized and nobody else
		 * takes two locks at once, deadlock is not possible.
		 */
1789 1790
		raw_spin_lock_irq(&new_base->lock);
		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1791 1792 1793 1794 1795

		BUG_ON(old_base->running_timer);

		for (i = 0; i < WHEEL_SIZE; i++)
			migrate_timer_list(new_base, old_base->vectors + i);
1796

1797 1798
		raw_spin_unlock(&old_base->lock);
		raw_spin_unlock_irq(&new_base->lock);
1799 1800
		put_cpu_ptr(&timer_bases);
	}
1801
	return 0;
L
Linus Torvalds 已提交
1802 1803
}

1804
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1805

1806
static void __init init_timer_cpu(int cpu)
1807
{
1808 1809
	struct timer_base *base;
	int i;
1810

1811 1812 1813
	for (i = 0; i < NR_BASES; i++) {
		base = per_cpu_ptr(&timer_bases[i], cpu);
		base->cpu = cpu;
1814
		raw_spin_lock_init(&base->lock);
1815 1816
		base->clk = jiffies;
	}
1817 1818 1819
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1820
{
1821 1822
	int cpu;

1823 1824
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1825
}
1826

1827 1828 1829
void __init init_timers(void)
{
	init_timer_cpus();
1830
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1841 1842
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847
}

EXPORT_SYMBOL(msleep);

/**
1848
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1855 1856
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1857 1858 1859 1860
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1861 1862

/**
1863
 * usleep_range - Sleep for an approximate time
1864 1865
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
1866 1867 1868 1869 1870 1871
 *
 * In non-atomic context where the exact wakeup time is flexible, use
 * usleep_range() instead of udelay().  The sleep improves responsiveness
 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
 * power usage by allowing hrtimers to take advantage of an already-
 * scheduled interrupt instead of scheduling a new one just for this sleep.
1872
 */
1873
void __sched usleep_range(unsigned long min, unsigned long max)
1874
{
1875 1876 1877 1878 1879 1880 1881 1882 1883
	ktime_t exp = ktime_add_us(ktime_get(), min);
	u64 delta = (u64)(max - min) * NSEC_PER_USEC;

	for (;;) {
		__set_current_state(TASK_UNINTERRUPTIBLE);
		/* Do not return before the requested sleep time has elapsed */
		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
			break;
	}
1884 1885
}
EXPORT_SYMBOL(usleep_range);