core.c 211.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126
	0;

#undef SCHED_FEAT

127 128 129 130 131 132
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

133 134 135 136 137 138 139 140
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
141
/*
P
Peter Zijlstra 已提交
142
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
143 144
 * default: 1s
 */
P
Peter Zijlstra 已提交
145
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
146

147
__read_mostly int scheduler_running;
148

P
Peter Zijlstra 已提交
149 150 151 152 153
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
154

155 156 157
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
158
/*
159
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
160
 */
A
Alexey Dobriyan 已提交
161
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
162 163
	__acquires(rq->lock)
{
164
	struct rq *rq;
L
Linus Torvalds 已提交
165 166 167

	local_irq_disable();
	rq = this_rq();
168
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
169 170 171 172

	return rq;
}

173 174 175
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
176
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 178 179 180 181 182 183 184 185 186
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187
			rf->cookie = lockdep_pin_lock(&rq->lock);
188 189 190 191 192 193 194 195 196 197 198 199
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
200
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 202 203 204 205 206
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
207
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227
			rf->cookie = lockdep_pin_lock(&rq->lock);
228 229 230
			return rq;
		}
		raw_spin_unlock(&rq->lock);
231
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 233 234 235 236 237

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

259
	raw_spin_lock(&rq->lock);
260
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
261
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
263 264 265 266

	return HRTIMER_NORESTART;
}

267
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
268

269
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
270 271 272
{
	struct hrtimer *timer = &rq->hrtick_timer;

273
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
274 275
}

276 277 278 279
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
280
{
281
	struct rq *rq = arg;
282

283
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
284
	__hrtick_restart(rq);
285
	rq->hrtick_csd_pending = 0;
286
	raw_spin_unlock(&rq->lock);
287 288
}

289 290 291 292 293
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
294
void hrtick_start(struct rq *rq, u64 delay)
295
{
296
	struct hrtimer *timer = &rq->hrtick_timer;
297 298 299 300 301 302 303 304 305
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
306

307
	hrtimer_set_expires(timer, time);
308 309

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
310
		__hrtick_restart(rq);
311
	} else if (!rq->hrtick_csd_pending) {
312
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 314
		rq->hrtick_csd_pending = 1;
	}
315 316
}

317 318 319 320 321 322
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
323
void hrtick_start(struct rq *rq, u64 delay)
324
{
W
Wanpeng Li 已提交
325 326 327 328 329
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
330 331
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
332 333
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
334

335
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
336
{
337 338
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
339

340 341 342 343
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
344

345 346
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
347
}
A
Andrew Morton 已提交
348
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
349 350 351 352 353 354 355
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
356
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

376
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 378 379 380 381 382 383 384 385 386
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
387 388 389 390 391 392 393 394 395 396

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
397
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 399 400 401 402 403 404 405 406 407 408 409 410 411

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

412 413 414 415 416 417
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
418 419 420 421 422 423 424

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
425 426
#endif

427 428 429 430 431 432 433 434 435 436
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
437
	 * barrier implied by the wakeup in wake_up_q().
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
473
/*
474
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
475 476 477 478 479
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
480
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
481
{
482
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
483 484
	int cpu;

485
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
486

487
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
488 489
		return;

490
	cpu = cpu_of(rq);
491

492
	if (cpu == smp_processor_id()) {
493
		set_tsk_need_resched(curr);
494
		set_preempt_need_resched();
I
Ingo Molnar 已提交
495
		return;
496
	}
I
Ingo Molnar 已提交
497

498
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
499
		smp_send_reschedule(cpu);
500 501
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
502 503
}

504
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
505 506 507 508
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

509
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
510
		return;
511
	resched_curr(rq);
512
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
513
}
514

515
#ifdef CONFIG_SMP
516
#ifdef CONFIG_NO_HZ_COMMON
517 518 519 520 521 522 523 524
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
525
int get_nohz_timer_target(void)
526
{
527
	int i, cpu = smp_processor_id();
528 529
	struct sched_domain *sd;

530
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 532
		return cpu;

533
	rcu_read_lock();
534
	for_each_domain(cpu, sd) {
535
		for_each_cpu(i, sched_domain_span(sd)) {
536 537 538 539
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 541 542 543
				cpu = i;
				goto unlock;
			}
		}
544
	}
545 546 547

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
548 549
unlock:
	rcu_read_unlock();
550 551
	return cpu;
}
552 553 554 555 556 557 558 559 560 561
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
562
static void wake_up_idle_cpu(int cpu)
563 564 565 566 567 568
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

569
	if (set_nr_and_not_polling(rq->idle))
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
573 574
}

575
static bool wake_up_full_nohz_cpu(int cpu)
576
{
577 578 579 580 581 582
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
583
	if (tick_nohz_full_cpu(cpu)) {
584 585
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
586
			tick_nohz_full_kick_cpu(cpu);
587 588 589 590 591 592 593 594
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
595
	if (!wake_up_full_nohz_cpu(cpu))
596 597 598
		wake_up_idle_cpu(cpu);
}

599
static inline bool got_nohz_idle_kick(void)
600
{
601
	int cpu = smp_processor_id();
602 603 604 605 606 607 608 609 610 611 612 613 614

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
615 616
}

617
#else /* CONFIG_NO_HZ_COMMON */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ_COMMON */
625

626
#ifdef CONFIG_NO_HZ_FULL
627
bool sched_can_stop_tick(struct rq *rq)
628
{
629 630 631 632 633 634
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

635
	/*
636 637
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
638
	 */
639 640 641 642 643
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
644 645
	}

646 647 648 649 650 651 652 653 654 655 656 657 658 659
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
660
		return false;
661

662
	return true;
663 664
}
#endif /* CONFIG_NO_HZ_FULL */
665

666
void sched_avg_update(struct rq *rq)
667
{
668 669
	s64 period = sched_avg_period();

670
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 672 673 674 675 676
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
677 678 679
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
680 681
}

682
#endif /* CONFIG_SMP */
683

684 685
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686
/*
687 688 689 690
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
691
 */
692
int walk_tg_tree_from(struct task_group *from,
693
			     tg_visitor down, tg_visitor up, void *data)
694 695
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
696
	int ret;
697

698 699
	parent = from;

700
down:
P
Peter Zijlstra 已提交
701 702
	ret = (*down)(parent, data);
	if (ret)
703
		goto out;
704 705 706 707 708 709 710
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
711
	ret = (*up)(parent, data);
712 713
	if (ret || parent == from)
		goto out;
714 715 716 717 718

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
719
out:
P
Peter Zijlstra 已提交
720
	return ret;
721 722
}

723
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
724
{
725
	return 0;
P
Peter Zijlstra 已提交
726
}
727 728
#endif

729 730
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
731 732 733
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
734 735 736
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
737
	if (idle_policy(p->policy)) {
738
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
739
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
740 741
		return;
	}
742

743 744
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
745 746
}

747
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748
{
749
	update_rq_clock(rq);
750 751
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
752
	p->sched_class->enqueue_task(rq, p, flags);
753 754
}

755
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756
{
757
	update_rq_clock(rq);
758 759
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
760
	p->sched_class->dequeue_task(rq, p, flags);
761 762
}

763
void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 765 766 767
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

768
	enqueue_task(rq, p, flags);
769 770
}

771
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 773 774 775
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

776
	dequeue_task(rq, p, flags);
777 778
}

779
static void update_rq_clock_task(struct rq *rq, s64 delta)
780
{
781 782 783 784 785 786 787 788
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
789
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
811 812
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813
	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 815 816 817 818 819 820 821 822 823 824
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

825 826
	rq->clock_task += delta;

827
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 830
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

863
/*
I
Ingo Molnar 已提交
864
 * __normal_prio - return the priority that is based on the static prio
865 866 867
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
868
	return p->static_prio;
869 870
}

871 872 873 874 875 876 877
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
878
static inline int normal_prio(struct task_struct *p)
879 880 881
{
	int prio;

882 883 884
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
885 886 887 888 889 890 891 892 893 894 895 896 897
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
898
static int effective_prio(struct task_struct *p)
899 900 901 902 903 904 905 906 907 908 909 910
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
911 912 913
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
914 915
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
916
 */
917
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
918 919 920 921
{
	return cpu_curr(task_cpu(p)) == p;
}

922
/*
923 924 925 926 927
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
928
 */
929 930
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
931
				       int oldprio)
932 933 934
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
935
			prev_class->switched_from(rq, p);
936

P
Peter Zijlstra 已提交
937
		p->sched_class->switched_to(rq, p);
938
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
939
		p->sched_class->prio_changed(rq, p, oldprio);
940 941
}

942
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 944 945 946 947 948 949 950 951 952
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
953
				resched_curr(rq);
954 955 956 957 958 959 960 961 962
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
963
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964
		rq_clock_skip_update(rq, true);
965 966
}

L
Linus Torvalds 已提交
967
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
987
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
988 989 990 991
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
992
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1001
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1021
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1022 1023
{
	if (unlikely(!cpu_active(dest_cpu)))
1024
		return rq;
P
Peter Zijlstra 已提交
1025 1026 1027

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028
		return rq;
P
Peter Zijlstra 已提交
1029

1030 1031 1032
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1043 1044
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1070 1071 1072 1073
	local_irq_enable();
	return 0;
}

1074 1075 1076 1077 1078
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1079 1080 1081 1082 1083
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1084 1085
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1086 1087 1088
	struct rq *rq = task_rq(p);
	bool queued, running;

1089
	lockdep_assert_held(&p->pi_lock);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1100
		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 1102 1103 1104
	}
	if (running)
		put_prev_task(rq, p);

1105
	p->sched_class->set_cpus_allowed(p, new_mask);
1106 1107 1108 1109

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1110
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 1112
}

P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1122 1123
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1124
{
1125
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1126
	unsigned int dest_cpu;
1127 1128
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1129 1130
	int ret = 0;

1131
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1132

1133 1134 1135 1136 1137 1138 1139
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1149 1150 1151
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1152
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1153 1154 1155 1156 1157 1158
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1169 1170 1171 1172
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1173
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1174 1175 1176
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1177
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1178 1179 1180
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1181 1182 1183 1184 1185
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1186
		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187
		rq = move_queued_task(rq, p, dest_cpu);
1188
		lockdep_repin_lock(&rq->lock, rf.cookie);
1189
	}
P
Peter Zijlstra 已提交
1190
out:
1191
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1192 1193 1194

	return ret;
}
1195 1196 1197 1198 1199

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1200 1201
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1202
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1203
{
1204 1205 1206 1207 1208
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1209
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1210
			!p->on_rq);
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1221
#ifdef CONFIG_LOCKDEP
1222 1223 1224 1225 1226
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1227
	 * see task_group().
1228 1229 1230 1231
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1232 1233 1234
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1235 1236
#endif

1237
	trace_sched_migrate_task(p, new_cpu);
1238

1239
	if (task_cpu(p) != new_cpu) {
1240
		if (p->sched_class->migrate_task_rq)
1241
			p->sched_class->migrate_task_rq(p);
1242
		p->se.nr_migrations++;
1243
		perf_event_task_migrate(p);
1244
	}
I
Ingo Molnar 已提交
1245 1246

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1247 1248
}

1249 1250
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1251
	if (task_on_rq_queued(p)) {
1252 1253 1254 1255 1256
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1257
		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 1259 1260
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1261
		p->on_rq = TASK_ON_RQ_QUEUED;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1284 1285 1286
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1287 1288 1289
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1290 1291
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1292
	double_rq_lock(src_rq, dst_rq);
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1313 1314
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1337 1338 1339 1340
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1350
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 1352 1353 1354 1355 1356
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1357 1358 1359
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1360 1361 1362 1363 1364 1365 1366
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1373
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1374
{
1375
	int running, queued;
1376
	struct rq_flags rf;
R
Roland McGrath 已提交
1377
	unsigned long ncsw;
1378
	struct rq *rq;
L
Linus Torvalds 已提交
1379

1380 1381 1382 1383 1384 1385 1386 1387
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1400 1401 1402
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1403
			cpu_relax();
R
Roland McGrath 已提交
1404
		}
1405

1406 1407 1408 1409 1410
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1411
		rq = task_rq_lock(p, &rf);
1412
		trace_sched_wait_task(p);
1413
		running = task_running(rq, p);
1414
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1415
		ncsw = 0;
1416
		if (!match_state || p->state == match_state)
1417
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418
		task_rq_unlock(rq, p, &rf);
1419

R
Roland McGrath 已提交
1420 1421 1422 1423 1424 1425
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1436

1437 1438 1439 1440 1441
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1442
		 * So if it was still runnable (but just not actively
1443 1444 1445
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1446
		if (unlikely(queued)) {
1447 1448 1449 1450
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 1452
			continue;
		}
1453

1454 1455 1456 1457 1458 1459 1460
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1461 1462

	return ncsw;
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1472
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1478
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1488
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1489

1490
/*
1491
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1511
 */
1512 1513
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1514 1515
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1516 1517
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1534
	}
1535

1536 1537
	for (;;) {
		/* Any allowed, online CPU? */
1538
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 1540 1541
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1542 1543 1544
				continue;
			goto out;
		}
1545

1546
		/* No more Mr. Nice Guy. */
1547 1548
		switch (state) {
		case cpuset:
1549 1550 1551 1552 1553 1554
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1574
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575 1576
					task_pid_nr(p), p->comm, cpu);
		}
1577 1578 1579 1580 1581
	}

	return dest_cpu;
}

1582
/*
1583
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584
 */
1585
static inline
1586
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587
{
1588 1589
	lockdep_assert_held(&p->pi_lock);

1590
	if (tsk_nr_cpus_allowed(p) > 1)
1591
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592 1593
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1605
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1606
		     !cpu_online(cpu)))
1607
		cpu = select_fallback_rq(task_cpu(p), p);
1608 1609

	return cpu;
1610
}
1611 1612 1613 1614 1615 1616

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1617 1618 1619 1620 1621 1622 1623 1624 1625

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1626
#endif /* CONFIG_SMP */
1627

P
Peter Zijlstra 已提交
1628
static void
1629
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1630
{
P
Peter Zijlstra 已提交
1631
#ifdef CONFIG_SCHEDSTATS
1632 1633
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644
		rcu_read_lock();
P
Peter Zijlstra 已提交
1645 1646 1647 1648 1649 1650
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1651
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1652
	}
1653 1654 1655 1656

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1657 1658 1659
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1660
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1661 1662

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1663
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1664 1665 1666 1667

#endif /* CONFIG_SCHEDSTATS */
}

1668
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1669
{
T
Tejun Heo 已提交
1670
	activate_task(rq, p, en_flags);
1671
	p->on_rq = TASK_ON_RQ_QUEUED;
1672 1673 1674 1675

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1676 1677
}

1678 1679 1680
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1681 1682
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
			   struct pin_cookie cookie)
T
Tejun Heo 已提交
1683 1684 1685
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1686 1687
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1688
#ifdef CONFIG_SMP
1689 1690
	if (p->sched_class->task_woken) {
		/*
1691 1692
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1693
		 */
1694
		lockdep_unpin_lock(&rq->lock, cookie);
T
Tejun Heo 已提交
1695
		p->sched_class->task_woken(rq, p);
1696
		lockdep_repin_lock(&rq->lock, cookie);
1697
	}
T
Tejun Heo 已提交
1698

1699
	if (rq->idle_stamp) {
1700
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1701
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1702

1703 1704 1705
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1706
			rq->avg_idle = max;
1707

T
Tejun Heo 已提交
1708 1709 1710 1711 1712
		rq->idle_stamp = 0;
	}
#endif
}

1713
static void
1714 1715
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
		 struct pin_cookie cookie)
1716
{
1717 1718
	int en_flags = ENQUEUE_WAKEUP;

1719 1720
	lockdep_assert_held(&rq->lock);

1721 1722 1723
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1724 1725

	if (wake_flags & WF_MIGRATED)
1726
		en_flags |= ENQUEUE_MIGRATED;
1727 1728
#endif

1729
	ttwu_activate(rq, p, en_flags);
1730
	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1741
	struct rq_flags rf;
1742 1743 1744
	struct rq *rq;
	int ret = 0;

1745
	rq = __task_rq_lock(p, &rf);
1746
	if (task_on_rq_queued(p)) {
1747 1748
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1749
		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750 1751
		ret = 1;
	}
1752
	__task_rq_unlock(rq, &rf);
1753 1754 1755 1756

	return ret;
}

1757
#ifdef CONFIG_SMP
1758
void sched_ttwu_pending(void)
1759 1760
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1761
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1762
	struct pin_cookie cookie;
P
Peter Zijlstra 已提交
1763
	struct task_struct *p;
1764
	unsigned long flags;
1765

1766 1767 1768 1769
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1770
	cookie = lockdep_pin_lock(&rq->lock);
1771

P
Peter Zijlstra 已提交
1772
	while (llist) {
P
Peter Zijlstra 已提交
1773 1774
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1775 1776
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1777 1778 1779 1780 1781

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

		ttwu_do_activate(rq, p, wake_flags, cookie);
1782 1783
	}

1784
	lockdep_unpin_lock(&rq->lock, cookie);
1785
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1786 1787 1788 1789
}

void scheduler_ipi(void)
{
1790 1791 1792 1793 1794
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1795
	preempt_fold_need_resched();
1796

1797
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1814
	sched_ttwu_pending();
1815 1816 1817 1818

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1819
	if (unlikely(got_nohz_idle_kick())) {
1820
		this_rq()->idle_balance = 1;
1821
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1822
	}
1823
	irq_exit();
1824 1825
}

P
Peter Zijlstra 已提交
1826
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827
{
1828 1829
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1830 1831
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1832 1833 1834 1835 1836 1837
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1838
}
1839

1840 1841 1842 1843 1844
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1845 1846 1847 1848
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1859 1860 1861

out:
	rcu_read_unlock();
1862 1863
}

1864
bool cpus_share_cache(int this_cpu, int that_cpu)
1865 1866 1867
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1868
#endif /* CONFIG_SMP */
1869

1870
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871 1872
{
	struct rq *rq = cpu_rq(cpu);
1873
	struct pin_cookie cookie;
1874

1875
#if defined(CONFIG_SMP)
1876
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1878
		ttwu_queue_remote(p, cpu, wake_flags);
1879 1880 1881 1882
		return;
	}
#endif

1883
	raw_spin_lock(&rq->lock);
1884
	cookie = lockdep_pin_lock(&rq->lock);
1885
	ttwu_do_activate(rq, p, wake_flags, cookie);
1886
	lockdep_unpin_lock(&rq->lock, cookie);
1887
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1888 1889
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1940
 *   2) smp_cond_load_acquire(!X->on_cpu)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1951
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1977
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1978 1979 1980
 *
 */

T
Tejun Heo 已提交
1981
/**
L
Linus Torvalds 已提交
1982
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1983
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1984
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1985
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990 1991 1992
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1993
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1994
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1995
 */
1996 1997
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1998 1999
{
	unsigned long flags;
2000
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2001

2002 2003 2004 2005 2006 2007 2008
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2009
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2010
	if (!(p->state & state))
L
Linus Torvalds 已提交
2011 2012
		goto out;

2013 2014
	trace_sched_waking(p);

2015
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2016 2017
	cpu = task_cpu(p);

2018 2019
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2020 2021

#ifdef CONFIG_SMP
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2041
	/*
2042 2043
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2044 2045 2046 2047 2048
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2049
	 */
2050
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2051

2052
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2053
	p->state = TASK_WAKING;
2054

2055
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056 2057
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2058
		set_task_cpu(p, cpu);
2059
	}
L
Linus Torvalds 已提交
2060 2061
#endif /* CONFIG_SMP */

2062
	ttwu_queue(p, cpu, wake_flags);
2063
stat:
2064 2065
	if (schedstat_enabled())
		ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2066
out:
2067
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2068 2069 2070 2071

	return success;
}

T
Tejun Heo 已提交
2072 2073 2074 2075
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2076
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2077
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078
 * the current task.
T
Tejun Heo 已提交
2079
 */
2080
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
T
Tejun Heo 已提交
2081 2082 2083
{
	struct rq *rq = task_rq(p);

2084 2085 2086 2087
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2088 2089
	lockdep_assert_held(&rq->lock);

2090
	if (!raw_spin_trylock(&p->pi_lock)) {
2091 2092 2093 2094 2095 2096
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2097
		lockdep_unpin_lock(&rq->lock, cookie);
2098 2099 2100
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2101
		lockdep_repin_lock(&rq->lock, cookie);
2102 2103
	}

T
Tejun Heo 已提交
2104
	if (!(p->state & TASK_NORMAL))
2105
		goto out;
T
Tejun Heo 已提交
2106

2107 2108
	trace_sched_waking(p);

2109
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2110 2111
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2112
	ttwu_do_wakeup(rq, p, 0, cookie);
2113 2114
	if (schedstat_enabled())
		ttwu_stat(p, smp_processor_id(), 0);
2115 2116
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2117 2118
}

2119 2120 2121 2122 2123
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2124 2125 2126
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2127 2128 2129 2130
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2131
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2132
{
2133
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2134 2135 2136
}
EXPORT_SYMBOL(wake_up_process);

2137
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2138 2139 2140 2141
{
	return try_to_wake_up(p, state, 0);
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2154 2155 2156

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2157 2158
}

L
Linus Torvalds 已提交
2159 2160 2161
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2162 2163 2164
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2165
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2166
{
P
Peter Zijlstra 已提交
2167 2168 2169
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2170 2171
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2172
	p->se.prev_sum_exec_runtime	= 0;
2173
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2174
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2175
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2176

2177 2178 2179 2180
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2181
#ifdef CONFIG_SCHEDSTATS
2182
	/* Even if schedstat is disabled, there should not be garbage */
2183
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2184
#endif
N
Nick Piggin 已提交
2185

2186
	RB_CLEAR_NODE(&p->dl.rb_node);
2187
	init_dl_task_timer(&p->dl);
2188
	__dl_clear_params(p);
2189

P
Peter Zijlstra 已提交
2190
	INIT_LIST_HEAD(&p->rt.run_list);
2191 2192 2193 2194
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2195

2196 2197 2198
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2199 2200 2201

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203 2204 2205
		p->mm->numa_scan_seq = 0;
	}

2206 2207 2208 2209 2210
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2211 2212
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214
	p->numa_work.next = &p->numa_work;
2215
	p->numa_faults = NULL;
2216 2217
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2218 2219

	p->numa_group = NULL;
2220
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2221 2222
}

2223 2224
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2225
#ifdef CONFIG_NUMA_BALANCING
2226

2227 2228 2229
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2230
		static_branch_enable(&sched_numa_balancing);
2231
	else
2232
		static_branch_disable(&sched_numa_balancing);
2233
}
2234 2235 2236 2237 2238 2239 2240

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2241
	int state = static_branch_likely(&sched_numa_balancing);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2257

2258 2259
#ifdef CONFIG_SCHEDSTATS

2260
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261
static bool __initdata __sched_schedstats = false;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2285 2286 2287 2288 2289
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2290
	if (!strcmp(str, "enable")) {
2291
		__sched_schedstats = true;
2292 2293
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2294
		__sched_schedstats = false;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2305 2306 2307 2308 2309
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2330 2331 2332 2333
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2334 2335 2336 2337

/*
 * fork()/clone()-time setup:
 */
2338
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2339
{
2340
	unsigned long flags;
I
Ingo Molnar 已提交
2341 2342
	int cpu = get_cpu();

2343
	__sched_fork(clone_flags, p);
2344
	/*
2345
	 * We mark the process as NEW here. This guarantees that
2346 2347 2348
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2349
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2350

2351 2352 2353 2354 2355
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2356 2357 2358 2359
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2360
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361
			p->policy = SCHED_NORMAL;
2362
			p->static_prio = NICE_TO_PRIO(0);
2363 2364 2365 2366 2367 2368
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2369

2370 2371 2372 2373 2374 2375
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2376

2377 2378 2379 2380 2381 2382
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2383
		p->sched_class = &fair_sched_class;
2384
	}
2385

2386
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2387

2388 2389 2390 2391 2392 2393 2394
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2395
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2396 2397 2398 2399 2400 2401 2402
	/*
	 * We're setting the cpu for the first time, we don't migrate,
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2403
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2404

2405
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2406
	if (likely(sched_info_on()))
2407
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2408
#endif
P
Peter Zijlstra 已提交
2409 2410
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2411
#endif
2412
	init_task_preempt_count(p);
2413
#ifdef CONFIG_SMP
2414
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2415
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2416
#endif
2417

N
Nick Piggin 已提交
2418
	put_cpu();
2419
	return 0;
L
Linus Torvalds 已提交
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2441 2442
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2443 2444 2445
	return &cpu_rq(i)->rd->dl_bw;
}

2446
static inline int dl_bw_cpus(int i)
2447
{
2448 2449 2450
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2451 2452
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2453 2454 2455 2456
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2457 2458 2459 2460 2461 2462 2463
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2464
static inline int dl_bw_cpus(int i)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2477 2478 2479
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2480 2481 2482 2483 2484 2485
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2486
	u64 period = attr->sched_period ?: attr->sched_deadline;
2487 2488
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2489
	int cpus, err = -1;
2490

2491 2492
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2493 2494 2495 2496 2497 2498 2499 2500
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2501
	cpus = dl_bw_cpus(task_cpu(p));
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2522 2523 2524 2525 2526 2527 2528
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2529
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2530
{
2531
	struct rq_flags rf;
I
Ingo Molnar 已提交
2532
	struct rq *rq;
2533

2534
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2535
	p->state = TASK_RUNNING;
2536 2537 2538 2539 2540
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
2541 2542 2543
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2544
	 */
2545
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2546
#endif
2547
	rq = __task_rq_lock(p, &rf);
2548
	post_init_entity_util_avg(&p->se);
2549

P
Peter Zijlstra 已提交
2550
	activate_task(rq, p, 0);
2551
	p->on_rq = TASK_ON_RQ_QUEUED;
2552
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2553
	check_preempt_curr(rq, p, WF_FORK);
2554
#ifdef CONFIG_SMP
2555 2556 2557 2558 2559
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2560
		lockdep_unpin_lock(&rq->lock, rf.cookie);
2561
		p->sched_class->task_woken(rq, p);
2562
		lockdep_repin_lock(&rq->lock, rf.cookie);
2563
	}
2564
#endif
2565
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2566 2567
}

2568 2569
#ifdef CONFIG_PREEMPT_NOTIFIERS

2570 2571
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2584
/**
2585
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2586
 * @notifier: notifier struct to register
2587 2588 2589
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2590 2591 2592
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2593 2594 2595 2596 2597 2598
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2599
 * @notifier: notifier struct to unregister
2600
 *
2601
 * This is *not* safe to call from within a preemption notifier.
2602 2603 2604 2605 2606 2607 2608
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2609
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610 2611 2612
{
	struct preempt_notifier *notifier;

2613
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2614 2615 2616
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2617 2618 2619 2620 2621 2622
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2623
static void
2624 2625
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2626 2627 2628
{
	struct preempt_notifier *notifier;

2629
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2630 2631 2632
		notifier->ops->sched_out(notifier, next);
}

2633 2634 2635 2636 2637 2638 2639 2640
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2641
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2642

2643
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644 2645 2646
{
}

2647
static inline void
2648 2649 2650 2651 2652
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2653
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2654

2655 2656 2657
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2658
 * @prev: the current task that is being switched out
2659 2660 2661 2662 2663 2664 2665 2666 2667
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2668 2669 2670
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2671
{
2672
	sched_info_switch(rq, prev, next);
2673
	perf_event_task_sched_out(prev, next);
2674
	fire_sched_out_preempt_notifiers(prev, next);
2675 2676 2677 2678
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2679 2680 2681 2682
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2683 2684 2685 2686
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2687 2688
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2689
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2690 2691
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2692 2693 2694 2695 2696
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2697
 */
2698
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2699 2700
	__releases(rq->lock)
{
2701
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2702
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2703
	long prev_state;
L
Linus Torvalds 已提交
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2716 2717 2718 2719
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2720

L
Linus Torvalds 已提交
2721 2722 2723 2724
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2725
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2726 2727
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2728 2729 2730 2731 2732
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2733
	 */
O
Oleg Nesterov 已提交
2734
	prev_state = prev->state;
2735
	vtime_task_switch(prev);
2736
	perf_event_task_sched_in(prev, current);
2737
	finish_lock_switch(rq, prev);
2738
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2739

2740
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2741 2742
	if (mm)
		mmdrop(mm);
2743
	if (unlikely(prev_state == TASK_DEAD)) {
2744 2745 2746
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2747 2748 2749
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2750
		 */
2751
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2752
		put_task_struct(prev);
2753
	}
2754

2755
	tick_nohz_task_switch();
2756
	return rq;
L
Linus Torvalds 已提交
2757 2758
}

2759 2760 2761
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2762
static void __balance_callback(struct rq *rq)
2763
{
2764 2765 2766
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2767

2768 2769 2770 2771 2772 2773 2774 2775
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2776

2777
		func(rq);
2778
	}
2779 2780 2781 2782 2783 2784 2785
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2786 2787 2788
}

#else
2789

2790
static inline void balance_callback(struct rq *rq)
2791
{
L
Linus Torvalds 已提交
2792 2793
}

2794 2795
#endif

L
Linus Torvalds 已提交
2796 2797 2798 2799
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2800
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2801 2802
	__releases(rq->lock)
{
2803
	struct rq *rq;
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2814
	rq = finish_task_switch(prev);
2815
	balance_callback(rq);
2816
	preempt_enable();
2817

L
Linus Torvalds 已提交
2818
	if (current->set_child_tid)
2819
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2820 2821 2822
}

/*
2823
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2824
 */
2825
static __always_inline struct rq *
2826
context_switch(struct rq *rq, struct task_struct *prev,
2827
	       struct task_struct *next, struct pin_cookie cookie)
L
Linus Torvalds 已提交
2828
{
I
Ingo Molnar 已提交
2829
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2830

2831
	prepare_task_switch(rq, prev, next);
2832

I
Ingo Molnar 已提交
2833 2834
	mm = next->mm;
	oldmm = prev->active_mm;
2835 2836 2837 2838 2839
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2840
	arch_start_context_switch(prev);
2841

2842
	if (!mm) {
L
Linus Torvalds 已提交
2843 2844 2845 2846
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2847
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2848

2849
	if (!prev->mm) {
L
Linus Torvalds 已提交
2850 2851 2852
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2853 2854 2855 2856 2857 2858
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2859
	lockdep_unpin_lock(&rq->lock, cookie);
2860
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2861 2862 2863

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2864
	barrier();
2865 2866

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2867 2868 2869
}

/*
2870
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2871 2872
 *
 * externally visible scheduler statistics: current number of runnable
2873
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2883
}
L
Linus Torvalds 已提交
2884

2885 2886
/*
 * Check if only the current task is running on the cpu.
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2897 2898 2899
 */
bool single_task_running(void)
{
2900
	return raw_rq()->nr_running == 1;
2901 2902 2903
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2904
unsigned long long nr_context_switches(void)
2905
{
2906 2907
	int i;
	unsigned long long sum = 0;
2908

2909
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2910
		sum += cpu_rq(i)->nr_switches;
2911

L
Linus Torvalds 已提交
2912 2913
	return sum;
}
2914

L
Linus Torvalds 已提交
2915 2916 2917
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2918

2919
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2920
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2921

L
Linus Torvalds 已提交
2922 2923
	return sum;
}
2924

2925
unsigned long nr_iowait_cpu(int cpu)
2926
{
2927
	struct rq *this = cpu_rq(cpu);
2928 2929
	return atomic_read(&this->nr_iowait);
}
2930

2931 2932
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2933 2934 2935
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2936 2937
}

I
Ingo Molnar 已提交
2938
#ifdef CONFIG_SMP
2939

2940
/*
P
Peter Zijlstra 已提交
2941 2942
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2943
 */
P
Peter Zijlstra 已提交
2944
void sched_exec(void)
2945
{
P
Peter Zijlstra 已提交
2946
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2947
	unsigned long flags;
2948
	int dest_cpu;
2949

2950
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2951
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2952 2953
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2954

2955
	if (likely(cpu_active(dest_cpu))) {
2956
		struct migration_arg arg = { p, dest_cpu };
2957

2958 2959
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2960 2961
		return;
	}
2962
unlock:
2963
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2964
}
I
Ingo Molnar 已提交
2965

L
Linus Torvalds 已提交
2966 2967 2968
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2969
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2970 2971

EXPORT_PER_CPU_SYMBOL(kstat);
2972
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2973

2974 2975 2976 2977 2978 2979 2980
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2981
	struct rq_flags rf;
2982
	struct rq *rq;
2983
	u64 ns;
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2994 2995
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2996
	 */
2997
	if (!p->on_cpu || !task_on_rq_queued(p))
2998 2999 3000
		return p->se.sum_exec_runtime;
#endif

3001
	rq = task_rq_lock(p, &rf);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3012
	task_rq_unlock(rq, p, &rf);
3013 3014 3015

	return ns;
}
3016

3017 3018 3019 3020 3021 3022 3023 3024
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3025
	struct task_struct *curr = rq->curr;
3026 3027

	sched_clock_tick();
I
Ingo Molnar 已提交
3028

3029
	raw_spin_lock(&rq->lock);
3030
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3031
	curr->sched_class->task_tick(rq, curr, 0);
3032
	cpu_load_update_active(rq);
3033
	calc_global_load_tick(rq);
3034
	raw_spin_unlock(&rq->lock);
3035

3036
	perf_event_task_tick();
3037

3038
#ifdef CONFIG_SMP
3039
	rq->idle_balance = idle_cpu(cpu);
3040
	trigger_load_balance(rq);
3041
#endif
3042
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3056 3057
 *
 * Return: Maximum deferment in nanoseconds.
3058 3059 3060 3061
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3062
	unsigned long next, now = READ_ONCE(jiffies);
3063 3064 3065 3066 3067 3068

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3069
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3070
}
3071
#endif
L
Linus Torvalds 已提交
3072

3073 3074
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3089

3090
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3091
{
3092
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3093 3094 3095
	/*
	 * Underflow?
	 */
3096 3097
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3098
#endif
3099
	__preempt_count_add(val);
3100
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3101 3102 3103
	/*
	 * Spinlock count overflowing soon?
	 */
3104 3105
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3106
#endif
3107
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3108
}
3109
EXPORT_SYMBOL(preempt_count_add);
3110
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3122
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3123
{
3124
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3125 3126 3127
	/*
	 * Underflow?
	 */
3128
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3129
		return;
L
Linus Torvalds 已提交
3130 3131 3132
	/*
	 * Is the spinlock portion underflowing?
	 */
3133 3134 3135
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3136
#endif
3137

3138
	preempt_latency_stop(val);
3139
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3140
}
3141
EXPORT_SYMBOL(preempt_count_sub);
3142
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3143

3144 3145 3146
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3147 3148 3149
#endif

/*
I
Ingo Molnar 已提交
3150
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3151
 */
I
Ingo Molnar 已提交
3152
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3153
{
3154 3155 3156
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3157 3158
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3159

I
Ingo Molnar 已提交
3160
	debug_show_held_locks(prev);
3161
	print_modules();
I
Ingo Molnar 已提交
3162 3163
	if (irqs_disabled())
		print_irqtrace_events(prev);
3164 3165 3166 3167 3168 3169 3170
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3171 3172 3173
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3174
	dump_stack();
3175
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3176
}
L
Linus Torvalds 已提交
3177

I
Ingo Molnar 已提交
3178 3179 3180 3181 3182
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3183
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3184 3185
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3186
#endif
3187

3188
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3189
		__schedule_bug(prev);
3190 3191
		preempt_count_set(PREEMPT_DISABLED);
	}
3192
	rcu_sleep_check();
I
Ingo Molnar 已提交
3193

L
Linus Torvalds 已提交
3194 3195
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3196
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3197 3198 3199 3200 3201 3202
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3203
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
I
Ingo Molnar 已提交
3204
{
3205
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3206
	struct task_struct *p;
L
Linus Torvalds 已提交
3207 3208

	/*
I
Ingo Molnar 已提交
3209 3210
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3211
	 */
3212
	if (likely(prev->sched_class == class &&
3213
		   rq->nr_running == rq->cfs.h_nr_running)) {
3214
		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3215 3216 3217 3218 3219
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3220
			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3221 3222

		return p;
L
Linus Torvalds 已提交
3223 3224
	}

3225
again:
3226
	for_each_class(class) {
3227
		p = class->pick_next_task(rq, prev, cookie);
3228 3229 3230
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3231
			return p;
3232
		}
I
Ingo Molnar 已提交
3233
	}
3234 3235

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3236
}
L
Linus Torvalds 已提交
3237

I
Ingo Molnar 已提交
3238
/*
3239
 * __schedule() is the main scheduler function.
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3274
 *
3275
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3276
 */
3277
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3278 3279
{
	struct task_struct *prev, *next;
3280
	unsigned long *switch_count;
3281
	struct pin_cookie cookie;
I
Ingo Molnar 已提交
3282
	struct rq *rq;
3283
	int cpu;
I
Ingo Molnar 已提交
3284 3285 3286 3287 3288

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3300
	schedule_debug(prev);
L
Linus Torvalds 已提交
3301

3302
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3303
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3304

3305 3306 3307
	local_irq_disable();
	rcu_note_context_switch();

3308 3309 3310 3311 3312 3313
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3314
	raw_spin_lock(&rq->lock);
3315
	cookie = lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3316

3317 3318
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3319
	switch_count = &prev->nivcsw;
3320
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3321
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3322
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3323
		} else {
3324 3325 3326
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3327
			/*
3328 3329 3330
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3331 3332 3333 3334
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3335
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3336
				if (to_wakeup)
3337
					try_to_wake_up_local(to_wakeup, cookie);
T
Tejun Heo 已提交
3338 3339
			}
		}
I
Ingo Molnar 已提交
3340
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3341 3342
	}

3343
	if (task_on_rq_queued(prev))
3344 3345
		update_rq_clock(rq);

3346
	next = pick_next_task(rq, prev, cookie);
3347
	clear_tsk_need_resched(prev);
3348
	clear_preempt_need_resched();
3349
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3356
		trace_sched_switch(preempt, prev, next);
3357
		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3358
	} else {
3359
		lockdep_unpin_lock(&rq->lock, cookie);
3360
		raw_spin_unlock_irq(&rq->lock);
3361
	}
L
Linus Torvalds 已提交
3362

3363
	balance_callback(rq);
L
Linus Torvalds 已提交
3364
}
3365
STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3366

3367 3368
static inline void sched_submit_work(struct task_struct *tsk)
{
3369
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3370 3371 3372 3373 3374 3375 3376 3377 3378
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3379
asmlinkage __visible void __sched schedule(void)
3380
{
3381 3382 3383
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3384
	do {
3385
		preempt_disable();
3386
		__schedule(false);
3387
		sched_preempt_enable_no_resched();
3388
	} while (need_resched());
3389
}
L
Linus Torvalds 已提交
3390 3391
EXPORT_SYMBOL(schedule);

3392
#ifdef CONFIG_CONTEXT_TRACKING
3393
asmlinkage __visible void __sched schedule_user(void)
3394 3395 3396 3397 3398 3399
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3400 3401
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3402
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3403
	 * too frequently to make sense yet.
3404
	 */
3405
	enum ctx_state prev_state = exception_enter();
3406
	schedule();
3407
	exception_exit(prev_state);
3408 3409 3410
}
#endif

3411 3412 3413 3414 3415 3416 3417
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3418
	sched_preempt_enable_no_resched();
3419 3420 3421 3422
	schedule();
	preempt_disable();
}

3423
static void __sched notrace preempt_schedule_common(void)
3424 3425
{
	do {
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3439
		preempt_disable_notrace();
3440
		preempt_latency_start(1);
3441
		__schedule(true);
3442
		preempt_latency_stop(1);
3443
		preempt_enable_no_resched_notrace();
3444 3445 3446 3447 3448 3449 3450 3451

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3452 3453
#ifdef CONFIG_PREEMPT
/*
3454
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3455
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3456 3457
 * occur there and call schedule directly.
 */
3458
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3459 3460 3461
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3462
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3463
	 */
3464
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3465 3466
		return;

3467
	preempt_schedule_common();
L
Linus Torvalds 已提交
3468
}
3469
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3470
EXPORT_SYMBOL(preempt_schedule);
3471 3472

/**
3473
 * preempt_schedule_notrace - preempt_schedule called by tracing
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3486
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3487 3488 3489 3490 3491 3492 3493
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3507
		preempt_disable_notrace();
3508
		preempt_latency_start(1);
3509 3510 3511 3512 3513 3514
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3515
		__schedule(true);
3516 3517
		exception_exit(prev_ctx);

3518
		preempt_latency_stop(1);
3519
		preempt_enable_no_resched_notrace();
3520 3521
	} while (need_resched());
}
3522
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3523

3524
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3525 3526

/*
3527
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3528 3529 3530 3531
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3532
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3533
{
3534
	enum ctx_state prev_state;
3535

3536
	/* Catch callers which need to be fixed */
3537
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3538

3539 3540
	prev_state = exception_enter();

3541
	do {
3542
		preempt_disable();
3543
		local_irq_enable();
3544
		__schedule(true);
3545
		local_irq_disable();
3546
		sched_preempt_enable_no_resched();
3547
	} while (need_resched());
3548 3549

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3550 3551
}

P
Peter Zijlstra 已提交
3552
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3553
			  void *key)
L
Linus Torvalds 已提交
3554
{
P
Peter Zijlstra 已提交
3555
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3556 3557 3558
}
EXPORT_SYMBOL(default_wake_function);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3569 3570
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3571
 */
3572
void rt_mutex_setprio(struct task_struct *p, int prio)
3573
{
3574
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3575
	const struct sched_class *prev_class;
3576 3577
	struct rq_flags rf;
	struct rq *rq;
3578

3579
	BUG_ON(prio > MAX_PRIO);
3580

3581
	rq = __task_rq_lock(p, &rf);
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3601
	trace_sched_pi_setprio(p, prio);
3602
	oldprio = p->prio;
3603 3604 3605 3606

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3607
	prev_class = p->sched_class;
3608
	queued = task_on_rq_queued(p);
3609
	running = task_current(rq, p);
3610
	if (queued)
3611
		dequeue_task(rq, p, queue_flag);
3612
	if (running)
3613
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3614

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3625 3626 3627
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3628
			p->dl.dl_boosted = 1;
3629
			queue_flag |= ENQUEUE_REPLENISH;
3630 3631
		} else
			p->dl.dl_boosted = 0;
3632
		p->sched_class = &dl_sched_class;
3633 3634 3635 3636
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3637
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3638
		p->sched_class = &rt_sched_class;
3639 3640 3641
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3642 3643
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3644
		p->sched_class = &fair_sched_class;
3645
	}
I
Ingo Molnar 已提交
3646

3647 3648
	p->prio = prio;

3649 3650
	if (running)
		p->sched_class->set_curr_task(rq);
3651
	if (queued)
3652
		enqueue_task(rq, p, queue_flag);
3653

P
Peter Zijlstra 已提交
3654
	check_class_changed(rq, p, prev_class, oldprio);
3655
out_unlock:
3656
	preempt_disable(); /* avoid rq from going away on us */
3657
	__task_rq_unlock(rq, &rf);
3658 3659 3660

	balance_callback(rq);
	preempt_enable();
3661 3662
}
#endif
3663

3664
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3665
{
3666
	int old_prio, delta, queued;
3667
	struct rq_flags rf;
3668
	struct rq *rq;
L
Linus Torvalds 已提交
3669

3670
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3676
	rq = task_rq_lock(p, &rf);
L
Linus Torvalds 已提交
3677 3678 3679 3680
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3681
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3682
	 */
3683
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3684 3685 3686
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3687 3688
	queued = task_on_rq_queued(p);
	if (queued)
3689
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3690 3691

	p->static_prio = NICE_TO_PRIO(nice);
3692
	set_load_weight(p);
3693 3694 3695
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3696

3697
	if (queued) {
3698
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3699
		/*
3700 3701
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3702
		 */
3703
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3704
			resched_curr(rq);
L
Linus Torvalds 已提交
3705 3706
	}
out_unlock:
3707
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3708 3709 3710
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3711 3712 3713 3714 3715
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3716
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3717
{
3718
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3719
	int nice_rlim = nice_to_rlimit(nice);
3720

3721
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3722 3723 3724
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3734
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3735
{
3736
	long nice, retval;
L
Linus Torvalds 已提交
3737 3738 3739 3740 3741 3742

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3743
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3744
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3745

3746
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3747 3748 3749
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3764
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3765 3766 3767
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3768
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3776 3777
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3778 3779 3780
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3795 3796 3797 3798 3799
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3800 3801
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3802
 */
3803
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3811 3812
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3813
 */
A
Alexey Dobriyan 已提交
3814
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3815
{
3816
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3817 3818
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3834
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3835
	dl_se->flags = attr->sched_flags;
3836
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3857 3858
}

3859 3860 3861 3862 3863 3864
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3865 3866
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3867
{
3868 3869
	int policy = attr->sched_policy;

3870
	if (policy == SETPARAM_POLICY)
3871 3872
		policy = p->policy;

L
Linus Torvalds 已提交
3873
	p->policy = policy;
3874

3875 3876
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3877
	else if (fair_policy(policy))
3878 3879
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3880 3881 3882 3883 3884 3885
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3886
	p->normal_prio = normal_prio(p);
3887 3888
	set_load_weight(p);
}
3889

3890 3891
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3892
			   const struct sched_attr *attr, bool keep_boost)
3893 3894
{
	__setscheduler_params(p, attr);
3895

3896
	/*
3897 3898
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3899
	 */
3900 3901 3902 3903
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3904

3905 3906 3907
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3908 3909 3910
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3911
}
3912 3913 3914 3915 3916 3917 3918 3919 3920

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3921
	attr->sched_period = dl_se->dl_period;
3922 3923 3924 3925 3926 3927
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3928
 * than the runtime, as well as the period of being zero or
3929
 * greater than deadline. Furthermore, we have to be sure that
3930 3931 3932 3933
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3934 3935 3936 3937
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3964 3965
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3976 3977
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3978 3979 3980 3981
	rcu_read_unlock();
	return match;
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3996 3997
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3998
				bool user, bool pi)
L
Linus Torvalds 已提交
3999
{
4000 4001
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4002
	int retval, oldprio, oldpolicy = -1, queued, running;
4003
	int new_effective_prio, policy = attr->sched_policy;
4004
	const struct sched_class *prev_class;
4005
	struct rq_flags rf;
4006
	int reset_on_fork;
4007
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4008
	struct rq *rq;
L
Linus Torvalds 已提交
4009

4010 4011
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4012 4013
recheck:
	/* double check policy once rq lock held */
4014 4015
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4016
		policy = oldpolicy = p->policy;
4017
	} else {
4018
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4019

4020
		if (!valid_policy(policy))
4021 4022 4023
			return -EINVAL;
	}

4024 4025 4026
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4027 4028
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4029 4030
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4031
	 */
4032
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4033
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4034
		return -EINVAL;
4035 4036
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4037 4038
		return -EINVAL;

4039 4040 4041
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4042
	if (user && !capable(CAP_SYS_NICE)) {
4043
		if (fair_policy(policy)) {
4044
			if (attr->sched_nice < task_nice(p) &&
4045
			    !can_nice(p, attr->sched_nice))
4046 4047 4048
				return -EPERM;
		}

4049
		if (rt_policy(policy)) {
4050 4051
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4052 4053 4054 4055 4056 4057

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4058 4059
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4060 4061
				return -EPERM;
		}
4062

4063 4064 4065 4066 4067 4068 4069 4070 4071
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4072
		/*
4073 4074
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4075
		 */
4076
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4077
			if (!can_nice(p, task_nice(p)))
4078 4079
				return -EPERM;
		}
4080

4081
		/* can't change other user's priorities */
4082
		if (!check_same_owner(p))
4083
			return -EPERM;
4084 4085 4086 4087

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4088
	}
L
Linus Torvalds 已提交
4089

4090
	if (user) {
4091
		retval = security_task_setscheduler(p);
4092 4093 4094 4095
		if (retval)
			return retval;
	}

4096 4097 4098
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4099
	 *
L
Lucas De Marchi 已提交
4100
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4101 4102
	 * runqueue lock must be held.
	 */
4103
	rq = task_rq_lock(p, &rf);
4104

4105 4106 4107 4108
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4109
		task_rq_unlock(rq, p, &rf);
4110 4111 4112
		return -EINVAL;
	}

4113
	/*
4114 4115
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4116
	 */
4117
	if (unlikely(policy == p->policy)) {
4118
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4119 4120 4121
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4122
		if (dl_policy(policy) && dl_param_changed(p, attr))
4123
			goto change;
4124

4125
		p->sched_reset_on_fork = reset_on_fork;
4126
		task_rq_unlock(rq, p, &rf);
4127 4128
		return 0;
	}
4129
change:
4130

4131
	if (user) {
4132
#ifdef CONFIG_RT_GROUP_SCHED
4133 4134 4135 4136 4137
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4138 4139
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4140
			task_rq_unlock(rq, p, &rf);
4141 4142 4143
			return -EPERM;
		}
#endif
4144 4145 4146 4147 4148 4149 4150 4151 4152
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4153 4154
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4155
				task_rq_unlock(rq, p, &rf);
4156 4157 4158 4159 4160
				return -EPERM;
			}
		}
#endif
	}
4161

L
Linus Torvalds 已提交
4162 4163 4164
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4165
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4166 4167
		goto recheck;
	}
4168 4169 4170 4171 4172 4173

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4174
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4175
		task_rq_unlock(rq, p, &rf);
4176 4177 4178
		return -EBUSY;
	}

4179 4180 4181
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4182 4183 4184 4185 4186 4187 4188 4189 4190
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4191 4192
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4193 4194
	}

4195
	queued = task_on_rq_queued(p);
4196
	running = task_current(rq, p);
4197
	if (queued)
4198
		dequeue_task(rq, p, queue_flags);
4199
	if (running)
4200
		put_prev_task(rq, p);
4201

4202
	prev_class = p->sched_class;
4203
	__setscheduler(rq, p, attr, pi);
4204

4205 4206
	if (running)
		p->sched_class->set_curr_task(rq);
4207
	if (queued) {
4208 4209 4210 4211
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4212 4213
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4214

4215
		enqueue_task(rq, p, queue_flags);
4216
	}
4217

P
Peter Zijlstra 已提交
4218
	check_class_changed(rq, p, prev_class, oldprio);
4219
	preempt_disable(); /* avoid rq from going away on us */
4220
	task_rq_unlock(rq, p, &rf);
4221

4222 4223
	if (pi)
		rt_mutex_adjust_pi(p);
4224

4225 4226 4227 4228 4229
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4230

L
Linus Torvalds 已提交
4231 4232
	return 0;
}
4233

4234 4235 4236 4237 4238 4239 4240 4241 4242
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4243 4244
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4245 4246 4247 4248 4249
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4250
	return __sched_setscheduler(p, &attr, check, true);
4251
}
4252 4253 4254 4255 4256 4257
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4258 4259
 * Return: 0 on success. An error code otherwise.
 *
4260 4261 4262
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4263
		       const struct sched_param *param)
4264
{
4265
	return _sched_setscheduler(p, policy, param, true);
4266
}
L
Linus Torvalds 已提交
4267 4268
EXPORT_SYMBOL_GPL(sched_setscheduler);

4269 4270
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4271
	return __sched_setscheduler(p, attr, true, true);
4272 4273 4274
}
EXPORT_SYMBOL_GPL(sched_setattr);

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4285 4286
 *
 * Return: 0 on success. An error code otherwise.
4287 4288
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4289
			       const struct sched_param *param)
4290
{
4291
	return _sched_setscheduler(p, policy, param, false);
4292
}
4293
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4294

I
Ingo Molnar 已提交
4295 4296
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4297 4298 4299
{
	struct sched_param lparam;
	struct task_struct *p;
4300
	int retval;
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4306 4307 4308

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4309
	p = find_process_by_pid(pid);
4310 4311 4312
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4313

L
Linus Torvalds 已提交
4314 4315 4316
	return retval;
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4379
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4380

4381
	return 0;
4382 4383 4384

err_size:
	put_user(sizeof(*attr), &uattr->size);
4385
	return -E2BIG;
4386 4387
}

L
Linus Torvalds 已提交
4388 4389 4390 4391 4392
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4393 4394
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4395
 */
4396 4397
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4398
{
4399 4400 4401 4402
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4403 4404 4405 4406 4407 4408 4409
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4410 4411
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4412
 */
4413
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4414
{
4415
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4416 4417
}

4418 4419 4420
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4421
 * @uattr: structure containing the extended parameters.
4422
 * @flags: for future extension.
4423
 */
4424 4425
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4426 4427 4428 4429 4430
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4431
	if (!uattr || pid < 0 || flags)
4432 4433
		return -EINVAL;

4434 4435 4436
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4437

4438
	if ((int)attr.sched_policy < 0)
4439
		return -EINVAL;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4451 4452 4453
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4454 4455 4456
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4457
 */
4458
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4459
{
4460
	struct task_struct *p;
4461
	int retval;
L
Linus Torvalds 已提交
4462 4463

	if (pid < 0)
4464
		return -EINVAL;
L
Linus Torvalds 已提交
4465 4466

	retval = -ESRCH;
4467
	rcu_read_lock();
L
Linus Torvalds 已提交
4468 4469 4470 4471
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4472 4473
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4474
	}
4475
	rcu_read_unlock();
L
Linus Torvalds 已提交
4476 4477 4478 4479
	return retval;
}

/**
4480
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4481 4482
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4483 4484 4485
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4486
 */
4487
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4488
{
4489
	struct sched_param lp = { .sched_priority = 0 };
4490
	struct task_struct *p;
4491
	int retval;
L
Linus Torvalds 已提交
4492 4493

	if (!param || pid < 0)
4494
		return -EINVAL;
L
Linus Torvalds 已提交
4495

4496
	rcu_read_lock();
L
Linus Torvalds 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4506 4507
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4508
	rcu_read_unlock();
L
Linus Torvalds 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4518
	rcu_read_unlock();
L
Linus Torvalds 已提交
4519 4520 4521
	return retval;
}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4545
				return -EFBIG;
4546 4547 4548 4549 4550
		}

		attr->size = usize;
	}

4551
	ret = copy_to_user(uattr, attr, attr->size);
4552 4553 4554
	if (ret)
		return -EFAULT;

4555
	return 0;
4556 4557 4558
}

/**
4559
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4560
 * @pid: the pid in question.
J
Juri Lelli 已提交
4561
 * @uattr: structure containing the extended parameters.
4562
 * @size: sizeof(attr) for fwd/bwd comp.
4563
 * @flags: for future extension.
4564
 */
4565 4566
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4567 4568 4569 4570 4571 4572 4573 4574
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4575
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4589 4590
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4591 4592 4593
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4594 4595
		attr.sched_priority = p->rt_priority;
	else
4596
		attr.sched_nice = task_nice(p);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4608
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4609
{
4610
	cpumask_var_t cpus_allowed, new_mask;
4611 4612
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4613

4614
	rcu_read_lock();
L
Linus Torvalds 已提交
4615 4616 4617

	p = find_process_by_pid(pid);
	if (!p) {
4618
		rcu_read_unlock();
L
Linus Torvalds 已提交
4619 4620 4621
		return -ESRCH;
	}

4622
	/* Prevent p going away */
L
Linus Torvalds 已提交
4623
	get_task_struct(p);
4624
	rcu_read_unlock();
L
Linus Torvalds 已提交
4625

4626 4627 4628 4629
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4630 4631 4632 4633 4634 4635 4636 4637
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4638
	retval = -EPERM;
E
Eric W. Biederman 已提交
4639 4640 4641 4642
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4643
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4644 4645 4646
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4647

4648
	retval = security_task_setscheduler(p);
4649
	if (retval)
4650
		goto out_free_new_mask;
4651

4652 4653 4654 4655

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4656 4657 4658 4659 4660 4661 4662
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4663 4664 4665
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4666
			retval = -EBUSY;
4667
			rcu_read_unlock();
4668
			goto out_free_new_mask;
4669
		}
4670
		rcu_read_unlock();
4671 4672
	}
#endif
P
Peter Zijlstra 已提交
4673
again:
4674
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4675

P
Paul Menage 已提交
4676
	if (!retval) {
4677 4678
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4679 4680 4681 4682 4683
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4684
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4685 4686 4687
			goto again;
		}
	}
4688
out_free_new_mask:
4689 4690 4691 4692
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4693 4694 4695 4696 4697
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4698
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4699
{
4700 4701 4702 4703 4704
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4713 4714
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4715
 */
4716 4717
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4718
{
4719
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4720 4721
	int retval;

4722 4723
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4724

4725 4726 4727 4728 4729
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4730 4731
}

4732
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4733
{
4734
	struct task_struct *p;
4735
	unsigned long flags;
L
Linus Torvalds 已提交
4736 4737
	int retval;

4738
	rcu_read_lock();
L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4745 4746 4747 4748
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4749
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4750
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4751
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4752 4753

out_unlock:
4754
	rcu_read_unlock();
L
Linus Torvalds 已提交
4755

4756
	return retval;
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761 4762 4763
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4764
 *
4765 4766
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4767
 */
4768 4769
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4770 4771
{
	int ret;
4772
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4773

A
Anton Blanchard 已提交
4774
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4775 4776
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4777 4778
		return -EINVAL;

4779 4780
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4781

4782 4783
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4784
		size_t retlen = min_t(size_t, len, cpumask_size());
4785 4786

		if (copy_to_user(user_mask_ptr, mask, retlen))
4787 4788
			ret = -EFAULT;
		else
4789
			ret = retlen;
4790 4791
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4792

4793
	return ret;
L
Linus Torvalds 已提交
4794 4795 4796 4797 4798
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4799 4800
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4801 4802
 *
 * Return: 0.
L
Linus Torvalds 已提交
4803
 */
4804
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4805
{
4806
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4807

4808
	schedstat_inc(rq, yld_count);
4809
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4810 4811 4812 4813 4814 4815

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4816
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4817
	do_raw_spin_unlock(&rq->lock);
4818
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823 4824

	schedule();

	return 0;
}

4825
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4826
{
4827
	if (should_resched(0)) {
4828
		preempt_schedule_common();
L
Linus Torvalds 已提交
4829 4830 4831 4832
		return 1;
	}
	return 0;
}
4833
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4834 4835

/*
4836
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4837 4838
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4839
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4840 4841 4842
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4843
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4844
{
4845
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4846 4847
	int ret = 0;

4848 4849
	lockdep_assert_held(lock);

4850
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4851
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4852
		if (resched)
4853
			preempt_schedule_common();
N
Nick Piggin 已提交
4854 4855
		else
			cpu_relax();
J
Jan Kara 已提交
4856
		ret = 1;
L
Linus Torvalds 已提交
4857 4858
		spin_lock(lock);
	}
J
Jan Kara 已提交
4859
	return ret;
L
Linus Torvalds 已提交
4860
}
4861
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4862

4863
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4864 4865 4866
{
	BUG_ON(!in_softirq());

4867
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4868
		local_bh_enable();
4869
		preempt_schedule_common();
L
Linus Torvalds 已提交
4870 4871 4872 4873 4874
		local_bh_disable();
		return 1;
	}
	return 0;
}
4875
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4876 4877 4878 4879

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4906 4907 4908 4909
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4910 4911
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4912 4913 4914 4915
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4916
 * Return:
4917 4918 4919
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4920
 */
4921
int __sched yield_to(struct task_struct *p, bool preempt)
4922 4923 4924 4925
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4926
	int yielded = 0;
4927 4928 4929 4930 4931 4932

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4933 4934 4935 4936 4937 4938 4939 4940 4941
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4942
	double_rq_lock(rq, p_rq);
4943
	if (task_rq(p) != p_rq) {
4944 4945 4946 4947 4948
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4949
		goto out_unlock;
4950 4951

	if (curr->sched_class != p->sched_class)
4952
		goto out_unlock;
4953 4954

	if (task_running(p_rq, p) || p->state)
4955
		goto out_unlock;
4956 4957

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4958
	if (yielded) {
4959
		schedstat_inc(rq, yld_count);
4960 4961 4962 4963 4964
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4965
			resched_curr(p_rq);
4966
	}
4967

4968
out_unlock:
4969
	double_rq_unlock(rq, p_rq);
4970
out_irq:
4971 4972
	local_irq_restore(flags);

4973
	if (yielded > 0)
4974 4975 4976 4977 4978 4979
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4980
/*
I
Ingo Molnar 已提交
4981
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4982 4983 4984 4985
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4986 4987
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4988 4989
	long ret;

4990
	current->in_iowait = 1;
4991
	blk_schedule_flush_plug(current);
4992

4993
	delayacct_blkio_start();
4994
	rq = raw_rq();
L
Linus Torvalds 已提交
4995 4996
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4997
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4998
	atomic_dec(&rq->nr_iowait);
4999
	delayacct_blkio_end();
5000

L
Linus Torvalds 已提交
5001 5002
	return ret;
}
5003
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5009 5010 5011
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5012
 */
5013
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020 5021
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5022
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5023
	case SCHED_NORMAL:
5024
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5025
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5036 5037 5038
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5039
 */
5040
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5049
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5050
	case SCHED_NORMAL:
5051
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5052
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5065 5066 5067
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5068
 */
5069
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5070
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5071
{
5072
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5073
	unsigned int time_slice;
5074 5075
	struct rq_flags rf;
	struct timespec t;
5076
	struct rq *rq;
5077
	int retval;
L
Linus Torvalds 已提交
5078 5079

	if (pid < 0)
5080
		return -EINVAL;
L
Linus Torvalds 已提交
5081 5082

	retval = -ESRCH;
5083
	rcu_read_lock();
L
Linus Torvalds 已提交
5084 5085 5086 5087 5088 5089 5090 5091
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5092
	rq = task_rq_lock(p, &rf);
5093 5094 5095
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5096
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5097

5098
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5099
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5100 5101
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5102

L
Linus Torvalds 已提交
5103
out_unlock:
5104
	rcu_read_unlock();
L
Linus Torvalds 已提交
5105 5106 5107
	return retval;
}

5108
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5109

5110
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5111 5112
{
	unsigned long free = 0;
5113
	int ppid;
5114
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5115

5116 5117
	if (state)
		state = __ffs(state) + 1;
5118
	printk(KERN_INFO "%-15.15s %c", p->comm,
5119
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5120
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5121
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5122
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5123
	else
P
Peter Zijlstra 已提交
5124
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5125 5126
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5127
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5128
	else
P
Peter Zijlstra 已提交
5129
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5130 5131
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5132
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5133
#endif
5134
	ppid = 0;
5135
	rcu_read_lock();
5136 5137
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5138
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5139
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5140
		task_pid_nr(p), ppid,
5141
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5142

5143
	print_worker_info(KERN_INFO, p);
5144
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5145 5146
}

I
Ingo Molnar 已提交
5147
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5148
{
5149
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5150

5151
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5152 5153
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5154
#else
P
Peter Zijlstra 已提交
5155 5156
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5157
#endif
5158
	rcu_read_lock();
5159
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5160 5161
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5162
		 * console might take a lot of time:
5163 5164 5165
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5166 5167
		 */
		touch_nmi_watchdog();
5168
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5169
		if (!state_filter || (p->state & state_filter))
5170
			sched_show_task(p);
5171
	}
L
Linus Torvalds 已提交
5172

I
Ingo Molnar 已提交
5173
#ifdef CONFIG_SCHED_DEBUG
5174 5175
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5176
#endif
5177
	rcu_read_unlock();
I
Ingo Molnar 已提交
5178 5179 5180
	/*
	 * Only show locks if all tasks are dumped:
	 */
5181
	if (!state_filter)
I
Ingo Molnar 已提交
5182
		debug_show_all_locks();
L
Linus Torvalds 已提交
5183 5184
}

5185
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5186
{
I
Ingo Molnar 已提交
5187
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5188 5189
}

5190 5191 5192 5193 5194 5195 5196 5197
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5198
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5199
{
5200
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5201 5202
	unsigned long flags;

5203 5204
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5205

5206
	__sched_fork(0, idle);
5207
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5208 5209
	idle->se.exec_start = sched_clock();

5210 5211
	kasan_unpoison_task_stack(idle);

5212 5213 5214 5215 5216 5217 5218 5219 5220
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5232
	__set_task_cpu(idle, cpu);
5233
	rcu_read_unlock();
L
Linus Torvalds 已提交
5234 5235

	rq->curr = rq->idle = idle;
5236
	idle->on_rq = TASK_ON_RQ_QUEUED;
5237
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5238
	idle->on_cpu = 1;
5239
#endif
5240 5241
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5242 5243

	/* Set the preempt count _outside_ the spinlocks! */
5244
	init_idle_preempt_count(idle, cpu);
5245

I
Ingo Molnar 已提交
5246 5247 5248 5249
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5250
	ftrace_graph_init_idle_task(idle, cpu);
5251
	vtime_init_idle(idle, cpu);
5252
#ifdef CONFIG_SMP
5253 5254
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5255 5256
}

5257 5258 5259 5260 5261 5262 5263
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5264 5265 5266
	if (!cpumask_weight(cur))
		return ret;

5267
	rcu_read_lock_sched();
5268 5269 5270 5271 5272 5273 5274 5275
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5276
	rcu_read_unlock_sched();
5277 5278 5279 5280

	return ret;
}

5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5305
		struct dl_bw *dl_b;
5306 5307 5308 5309
		bool overflow;
		int cpus;
		unsigned long flags;

5310 5311
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5327
		rcu_read_unlock_sched();
5328 5329 5330 5331 5332 5333 5334

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5335 5336
#ifdef CONFIG_SMP

5337 5338
static bool sched_smp_initialized __read_mostly;

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5354
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5355 5356
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5357 5358 5359 5360 5361 5362 5363

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5364
	bool queued, running;
5365 5366
	struct rq_flags rf;
	struct rq *rq;
5367

5368
	rq = task_rq_lock(p, &rf);
5369
	queued = task_on_rq_queued(p);
5370 5371
	running = task_current(rq, p);

5372
	if (queued)
5373
		dequeue_task(rq, p, DEQUEUE_SAVE);
5374
	if (running)
5375
		put_prev_task(rq, p);
5376 5377 5378 5379 5380

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5381
	if (queued)
5382
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5383
	task_rq_unlock(rq, p, &rf);
5384
}
P
Peter Zijlstra 已提交
5385
#endif /* CONFIG_NUMA_BALANCING */
5386

L
Linus Torvalds 已提交
5387
#ifdef CONFIG_HOTPLUG_CPU
5388
/*
5389 5390
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5391
 */
5392
void idle_task_exit(void)
L
Linus Torvalds 已提交
5393
{
5394
	struct mm_struct *mm = current->active_mm;
5395

5396
	BUG_ON(cpu_online(smp_processor_id()));
5397

5398
	if (mm != &init_mm) {
5399
		switch_mm_irqs_off(mm, &init_mm, current);
5400 5401
		finish_arch_post_lock_switch();
	}
5402
	mmdrop(mm);
L
Linus Torvalds 已提交
5403 5404 5405
}

/*
5406 5407
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5408 5409 5410
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5411 5412
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5413
 */
5414
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5415
{
5416
	long delta = calc_load_fold_active(rq, 1);
5417 5418
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5419 5420
}

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5437
/*
5438 5439 5440 5441 5442 5443
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5444
 */
5445
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5446
{
5447
	struct rq *rq = dead_rq;
5448
	struct task_struct *next, *stop = rq->stop;
5449
	struct pin_cookie cookie;
5450
	int dest_cpu;
L
Linus Torvalds 已提交
5451 5452

	/*
5453 5454 5455 5456 5457 5458 5459
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5460
	 */
5461
	rq->stop = NULL;
5462

5463 5464 5465 5466 5467 5468 5469
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5470
	for (;;) {
5471 5472 5473 5474 5475
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5476
			break;
5477

5478
		/*
W
Wanpeng Li 已提交
5479
		 * pick_next_task assumes pinned rq->lock.
5480
		 */
5481 5482
		cookie = lockdep_pin_lock(&rq->lock);
		next = pick_next_task(rq, &fake_task, cookie);
5483
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5484
		next->sched_class->put_prev_task(rq, next);
5485

W
Wanpeng Li 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5495
		lockdep_unpin_lock(&rq->lock, cookie);
W
Wanpeng Li 已提交
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5510
		/* Find suitable destination for @next, with force if needed. */
5511
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5512

5513 5514 5515 5516 5517 5518
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5519
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5520
	}
5521

5522
	rq->stop = stop;
5523
}
L
Linus Torvalds 已提交
5524 5525
#endif /* CONFIG_HOTPLUG_CPU */

5526 5527 5528 5529 5530
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5531
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5551
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5552 5553 5554 5555
		rq->online = 0;
	}
}

5556
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5557
{
5558
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5559

5560 5561 5562
	rq->age_stamp = sched_clock_cpu(cpu);
}

5563 5564
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5565
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5566

5567
static __read_mostly int sched_debug_enabled;
5568

5569
static int __init sched_debug_setup(char *str)
5570
{
5571
	sched_debug_enabled = 1;
5572 5573 5574

	return 0;
}
5575 5576 5577 5578 5579 5580
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5581

5582
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5583
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5584
{
I
Ingo Molnar 已提交
5585
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5586

5587
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5588 5589 5590 5591

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5592
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5593
		if (sd->parent)
P
Peter Zijlstra 已提交
5594 5595
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5596
		return -1;
N
Nick Piggin 已提交
5597 5598
	}

5599 5600
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5601

5602
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5603 5604
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5605
	}
5606
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5607 5608
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5609
	}
L
Linus Torvalds 已提交
5610

I
Ingo Molnar 已提交
5611
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5612
	do {
I
Ingo Molnar 已提交
5613
		if (!group) {
P
Peter Zijlstra 已提交
5614 5615
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5616 5617 5618
			break;
		}

5619
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5620 5621
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5622 5623
			break;
		}
L
Linus Torvalds 已提交
5624

5625 5626
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5627 5628
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5629 5630
			break;
		}
L
Linus Torvalds 已提交
5631

5632
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5633

5634 5635
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5636
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5637 5638
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5639
		}
L
Linus Torvalds 已提交
5640

I
Ingo Molnar 已提交
5641 5642
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5643
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5644

5645
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5646
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5647

5648 5649
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5650 5651
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5652 5653
	return 0;
}
L
Linus Torvalds 已提交
5654

I
Ingo Molnar 已提交
5655 5656 5657
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5658

5659
	if (!sched_debug_enabled)
5660 5661
		return;

I
Ingo Molnar 已提交
5662 5663 5664 5665
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5666

I
Ingo Molnar 已提交
5667 5668 5669
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5670
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5671
			break;
L
Linus Torvalds 已提交
5672 5673
		level++;
		sd = sd->parent;
5674
		if (!sd)
I
Ingo Molnar 已提交
5675 5676
			break;
	}
L
Linus Torvalds 已提交
5677
}
5678
#else /* !CONFIG_SCHED_DEBUG */
5679
# define sched_domain_debug(sd, cpu) do { } while (0)
5680 5681 5682 5683
static inline bool sched_debug(void)
{
	return false;
}
5684
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5685

5686
static int sd_degenerate(struct sched_domain *sd)
5687
{
5688
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5689 5690 5691 5692 5693 5694
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5695
			 SD_BALANCE_EXEC |
5696
			 SD_SHARE_CPUCAPACITY |
5697 5698
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5699 5700 5701 5702 5703
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5704
	if (sd->flags & (SD_WAKE_AFFINE))
5705 5706 5707 5708 5709
		return 0;

	return 1;
}

5710 5711
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5712 5713 5714 5715 5716 5717
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5718
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5719 5720 5721 5722 5723 5724 5725
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5726
				SD_BALANCE_EXEC |
5727
				SD_SHARE_CPUCAPACITY |
5728
				SD_SHARE_PKG_RESOURCES |
5729 5730
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5731 5732
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5733 5734 5735 5736 5737 5738 5739
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5740
static void free_rootdomain(struct rcu_head *rcu)
5741
{
5742
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5743

5744
	cpupri_cleanup(&rd->cpupri);
5745
	cpudl_cleanup(&rd->cpudl);
5746
	free_cpumask_var(rd->dlo_mask);
5747 5748 5749 5750 5751 5752
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5753 5754
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5755
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5756 5757
	unsigned long flags;

5758
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5759 5760

	if (rq->rd) {
I
Ingo Molnar 已提交
5761
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5762

5763
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5764
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5765

5766
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5767

I
Ingo Molnar 已提交
5768
		/*
5769
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5770 5771 5772 5773 5774
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5775 5776 5777 5778 5779
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5780
	cpumask_set_cpu(rq->cpu, rd->span);
5781
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5782
		set_rq_online(rq);
G
Gregory Haskins 已提交
5783

5784
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5785 5786

	if (old_rd)
5787
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5788 5789
}

5790
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5791 5792 5793
{
	memset(rd, 0, sizeof(*rd));

5794
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5795
		goto out;
5796
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5797
		goto free_span;
5798
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5799
		goto free_online;
5800
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5801
		goto free_dlo_mask;
5802

5803
	init_dl_bw(&rd->dl_bw);
5804 5805
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5806

5807
	if (cpupri_init(&rd->cpupri) != 0)
5808
		goto free_rto_mask;
5809
	return 0;
5810

5811 5812
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5813 5814
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5815 5816 5817 5818
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5819
out:
5820
	return -ENOMEM;
G
Gregory Haskins 已提交
5821 5822
}

5823 5824 5825 5826 5827 5828
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5829 5830
static void init_defrootdomain(void)
{
5831
	init_rootdomain(&def_root_domain);
5832

G
Gregory Haskins 已提交
5833 5834 5835
	atomic_set(&def_root_domain.refcount, 1);
}

5836
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5837 5838 5839 5840 5841 5842 5843
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5844
	if (init_rootdomain(rd) != 0) {
5845 5846 5847
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5848 5849 5850 5851

	return rd;
}

5852
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5863 5864
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5865 5866 5867 5868 5869 5870

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5871 5872 5873
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5874 5875 5876 5877 5878 5879 5880 5881

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5882
		kfree(sd->groups->sgc);
5883
		kfree(sd->groups);
5884
	}
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5899 5900 5901 5902 5903 5904 5905
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5906
 * two cpus are in the same cache domain, see cpus_share_cache().
5907 5908
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5909
DEFINE_PER_CPU(int, sd_llc_size);
5910
DEFINE_PER_CPU(int, sd_llc_id);
5911
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5912 5913
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5914 5915 5916 5917

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5918
	struct sched_domain *busy_sd = NULL;
5919
	int id = cpu;
5920
	int size = 1;
5921 5922

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5923
	if (sd) {
5924
		id = cpumask_first(sched_domain_span(sd));
5925
		size = cpumask_weight(sched_domain_span(sd));
5926
		busy_sd = sd->parent; /* sd_busy */
5927
	}
5928
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5929 5930

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5931
	per_cpu(sd_llc_size, cpu) = size;
5932
	per_cpu(sd_llc_id, cpu) = id;
5933 5934 5935

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5936 5937 5938

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5939 5940
}

L
Linus Torvalds 已提交
5941
/*
I
Ingo Molnar 已提交
5942
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5943 5944
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5945 5946
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5947
{
5948
	struct rq *rq = cpu_rq(cpu);
5949 5950 5951
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5952
	for (tmp = sd; tmp; ) {
5953 5954 5955
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5956

5957
		if (sd_parent_degenerate(tmp, parent)) {
5958
			tmp->parent = parent->parent;
5959 5960
			if (parent->parent)
				parent->parent->child = tmp;
5961 5962 5963 5964 5965 5966 5967
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5968
			destroy_sched_domain(parent, cpu);
5969 5970
		} else
			tmp = tmp->parent;
5971 5972
	}

5973
	if (sd && sd_degenerate(sd)) {
5974
		tmp = sd;
5975
		sd = sd->parent;
5976
		destroy_sched_domain(tmp, cpu);
5977 5978 5979
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5980

5981
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5982

G
Gregory Haskins 已提交
5983
	rq_attach_root(rq, rd);
5984
	tmp = rq->sd;
N
Nick Piggin 已提交
5985
	rcu_assign_pointer(rq->sd, sd);
5986
	destroy_sched_domains(tmp, cpu);
5987 5988

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5989 5990 5991 5992 5993
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
5994 5995
	int ret;

R
Rusty Russell 已提交
5996
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5997 5998 5999 6000 6001
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
6002 6003
	return 1;
}
I
Ingo Molnar 已提交
6004
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6005

6006
struct s_data {
6007
	struct sched_domain ** __percpu sd;
6008 6009 6010
	struct root_domain	*rd;
};

6011 6012
enum s_alloc {
	sa_rootdomain,
6013
	sa_sd,
6014
	sa_sd_storage,
6015 6016 6017
	sa_none,
};

P
Peter Zijlstra 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6056 6057 6058 6059 6060 6061 6062
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6063
	struct sched_domain *sibling;
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6074
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6075 6076

		/* See the comment near build_group_mask(). */
6077
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6078 6079
			continue;

6080
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6081
				GFP_KERNEL, cpu_to_node(cpu));
6082 6083 6084 6085 6086

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6087 6088 6089
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6090 6091 6092 6093
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6094 6095
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6096 6097
			build_group_mask(sd, sg);

6098
		/*
6099
		 * Initialize sgc->capacity such that even if we mess up the
6100 6101 6102
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6103
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6104

P
Peter Zijlstra 已提交
6105 6106 6107 6108 6109
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6110
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6111
		    group_balance_cpu(sg) == cpu)
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6131
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6132
{
6133 6134
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6135

6136 6137
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6138

6139
	if (sg) {
6140
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6141 6142
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6143
	}
6144 6145

	return cpu;
6146 6147
}

6148
/*
6149 6150
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6151
 * and ->cpu_capacity to 0.
6152 6153
 *
 * Assumes the sched_domain tree is fully constructed
6154
 */
6155 6156
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6157
{
6158 6159 6160
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6161
	struct cpumask *covered;
6162
	int i;
6163

6164 6165 6166
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6167
	if (cpu != cpumask_first(span))
6168 6169
		return 0;

6170 6171 6172
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6173
	cpumask_clear(covered);
6174

6175 6176
	for_each_cpu(i, span) {
		struct sched_group *sg;
6177
		int group, j;
6178

6179 6180
		if (cpumask_test_cpu(i, covered))
			continue;
6181

6182
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6183
		cpumask_setall(sched_group_mask(sg));
6184

6185 6186 6187
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6188

6189 6190 6191
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6192

6193 6194 6195 6196 6197 6198 6199
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6200 6201

	return 0;
6202
}
6203

6204
/*
6205
 * Initialize sched groups cpu_capacity.
6206
 *
6207
 * cpu_capacity indicates the capacity of sched group, which is used while
6208
 * distributing the load between different sched groups in a sched domain.
6209 6210 6211 6212
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6213
 */
6214
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6215
{
6216
	struct sched_group *sg = sd->groups;
6217

6218
	WARN_ON(!sg);
6219 6220 6221 6222 6223

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6224

P
Peter Zijlstra 已提交
6225
	if (cpu != group_balance_cpu(sg))
6226
		return;
6227

6228 6229
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6230 6231
}

6232 6233 6234 6235 6236
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6237
static int default_relax_domain_level = -1;
6238
int sched_domain_level_max;
6239 6240 6241

static int __init setup_relax_domain_level(char *str)
{
6242 6243
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6244

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6263
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6264 6265
	} else {
		/* turn on idle balance on this domain */
6266
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6267 6268 6269
	}
}

6270 6271 6272
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6273 6274 6275 6276 6277
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6278 6279
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6280 6281
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6282
	case sa_sd_storage:
6283
		__sdt_free(cpu_map); /* fall through */
6284 6285 6286 6287
	case sa_none:
		break;
	}
}
6288

6289 6290 6291
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6292 6293
	memset(d, 0, sizeof(*d));

6294 6295
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6296 6297 6298
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6299
	d->rd = alloc_rootdomain();
6300
	if (!d->rd)
6301
		return sa_sd;
6302 6303
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6304

6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6317
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6318
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6319

6320 6321
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6322 6323
}

6324 6325
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6326
enum numa_topology_type sched_numa_topology_type;
6327
static int *sched_domains_numa_distance;
6328
int sched_max_numa_distance;
6329 6330
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6331
#endif
6332

6333 6334 6335
/*
 * SD_flags allowed in topology descriptions.
 *
6336
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6337 6338
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6339
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6340 6341 6342 6343 6344
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6345
	(SD_SHARE_CPUCAPACITY |		\
6346 6347
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6348 6349
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6350 6351

static struct sched_domain *
6352
sd_init(struct sched_domain_topology_level *tl, int cpu)
6353 6354
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6371 6372 6373 6374 6375

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6376
		.imbalance_pct		= 125,
6377 6378 6379 6380

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6381 6382 6383 6384 6385 6386
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6387 6388
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6389
					| 0*SD_BALANCE_WAKE
6390
					| 1*SD_WAKE_AFFINE
6391
					| 0*SD_SHARE_CPUCAPACITY
6392
					| 0*SD_SHARE_PKG_RESOURCES
6393
					| 0*SD_SERIALIZE
6394
					| 0*SD_PREFER_SIBLING
6395 6396
					| 0*SD_NUMA
					| sd_flags
6397
					,
6398

6399 6400
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6401
		.smt_gain		= 0,
6402 6403
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6404 6405 6406
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6407 6408 6409
	};

	/*
6410
	 * Convert topological properties into behaviour.
6411
	 */
6412

6413
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6414
		sd->flags |= SD_PREFER_SIBLING;
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6445 6446 6447 6448

	return sd;
}

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6463 6464
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6476 6477 6478 6479 6480
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6502
bool find_numa_distance(int distance)
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6542
	if (sched_domains_numa_levels <= 1) {
6543
		sched_numa_topology_type = NUMA_DIRECT;
6544 6545
		return;
	}
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6614
		}
6615 6616 6617 6618 6619 6620

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6621
	}
6622 6623 6624 6625

	if (!level)
		return;

6626 6627 6628 6629
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6630
	 * The sched_domains_numa_distance[] array includes the actual distance
6631 6632 6633
	 * numbers.
	 */

6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6660
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6661 6662 6663 6664 6665
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6666
			for_each_node(k) {
6667
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6668 6669 6670 6671 6672 6673 6674
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6675 6676 6677
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6678
	tl = kzalloc((i + level + 1) *
6679 6680 6681 6682 6683 6684 6685
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6686 6687
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6688 6689 6690 6691 6692 6693 6694

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6695
			.sd_flags = cpu_numa_flags,
6696 6697
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6698
			SD_INIT_NAME(NUMA)
6699 6700 6701 6702
		};
	}

	sched_domain_topology = tl;
6703 6704

	sched_domains_numa_levels = level;
6705
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6706 6707

	init_numa_topology_type();
6708
}
6709

6710
static void sched_domains_numa_masks_set(unsigned int cpu)
6711 6712
{
	int node = cpu_to_node(cpu);
6713
	int i, j;
6714 6715 6716 6717 6718 6719 6720 6721 6722

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6723
static void sched_domains_numa_masks_clear(unsigned int cpu)
6724 6725
{
	int i, j;
6726

6727 6728 6729 6730 6731 6732
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6733
#else
6734 6735 6736
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6737 6738
#endif /* CONFIG_NUMA */

6739 6740 6741 6742 6743
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6744
	for_each_sd_topology(tl) {
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6755 6756
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6757 6758
			return -ENOMEM;

6759 6760 6761
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6762
			struct sched_group_capacity *sgc;
6763

P
Peter Zijlstra 已提交
6764
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6776 6777
			sg->next = sg;

6778
			*per_cpu_ptr(sdd->sg, j) = sg;
6779

6780
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6781
					GFP_KERNEL, cpu_to_node(j));
6782
			if (!sgc)
6783 6784
				return -ENOMEM;

6785
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6797
	for_each_sd_topology(tl) {
6798 6799 6800
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6812 6813
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6814 6815
		}
		free_percpu(sdd->sd);
6816
		sdd->sd = NULL;
6817
		free_percpu(sdd->sg);
6818
		sdd->sg = NULL;
6819 6820
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6821 6822 6823
	}
}

6824
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6825 6826
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6827
{
6828
	struct sched_domain *sd = sd_init(tl, cpu);
6829
	if (!sd)
6830
		return child;
6831 6832

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6833 6834 6835
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6836
		child->parent = sd;
6837
		sd->child = child;
P
Peter Zijlstra 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6852
	}
6853
	set_domain_attribute(sd, attr);
6854 6855 6856 6857

	return sd;
}

6858 6859 6860 6861
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6862 6863
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6864
{
6865
	enum s_alloc alloc_state;
6866
	struct sched_domain *sd;
6867
	struct s_data d;
6868
	int i, ret = -ENOMEM;
6869

6870 6871 6872
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6873

6874
	/* Set up domains for cpus specified by the cpu_map. */
6875
	for_each_cpu(i, cpu_map) {
6876 6877
		struct sched_domain_topology_level *tl;

6878
		sd = NULL;
6879
		for_each_sd_topology(tl) {
6880
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6881 6882
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6883 6884
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6885 6886
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6887
		}
6888 6889 6890 6891 6892 6893
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6894 6895 6896 6897 6898 6899 6900
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6901
		}
6902
	}
6903

6904
	/* Calculate CPU capacity for physical packages and nodes */
6905 6906 6907
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6908

6909 6910
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6911
			init_sched_groups_capacity(i, sd);
6912
		}
6913
	}
6914

L
Linus Torvalds 已提交
6915
	/* Attach the domains */
6916
	rcu_read_lock();
6917
	for_each_cpu(i, cpu_map) {
6918
		sd = *per_cpu_ptr(d.sd, i);
6919
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6920
	}
6921
	rcu_read_unlock();
6922

6923
	ret = 0;
6924
error:
6925
	__free_domain_allocs(&d, alloc_state, cpu_map);
6926
	return ret;
L
Linus Torvalds 已提交
6927
}
P
Paul Jackson 已提交
6928

6929
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6930
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6931 6932
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6933 6934 6935

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6936 6937
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6938
 */
6939
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6940

6941 6942 6943 6944 6945
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6946
int __weak arch_update_cpu_topology(void)
6947
{
6948
	return 0;
6949 6950
}

6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6976
/*
I
Ingo Molnar 已提交
6977
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6978 6979
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6980
 */
6981
static int init_sched_domains(const struct cpumask *cpu_map)
6982
{
6983 6984
	int err;

6985
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6986
	ndoms_cur = 1;
6987
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6988
	if (!doms_cur)
6989 6990
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6991
	err = build_sched_domains(doms_cur[0], NULL);
6992
	register_sched_domain_sysctl();
6993 6994

	return err;
6995 6996 6997 6998 6999 7000
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7001
static void detach_destroy_domains(const struct cpumask *cpu_map)
7002 7003 7004
{
	int i;

7005
	rcu_read_lock();
7006
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7007
		cpu_attach_domain(NULL, &def_root_domain, i);
7008
	rcu_read_unlock();
7009 7010
}

7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7027 7028
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7029
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7030 7031 7032
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7033
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7034 7035 7036
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7037 7038 7039
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7040 7041 7042 7043 7044 7045
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7046
 *
7047
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7048 7049
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7050
 *
P
Paul Jackson 已提交
7051 7052
 * Call with hotplug lock held
 */
7053
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7054
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7055
{
7056
	int i, j, n;
7057
	int new_topology;
P
Paul Jackson 已提交
7058

7059
	mutex_lock(&sched_domains_mutex);
7060

7061 7062 7063
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7064 7065 7066
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7067
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7068 7069 7070

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7071
		for (j = 0; j < n && !new_topology; j++) {
7072
			if (cpumask_equal(doms_cur[i], doms_new[j])
7073
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7074 7075 7076
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7077
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7078 7079 7080 7081
match1:
		;
	}

7082
	n = ndoms_cur;
7083
	if (doms_new == NULL) {
7084
		n = 0;
7085
		doms_new = &fallback_doms;
7086
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7087
		WARN_ON_ONCE(dattr_new);
7088 7089
	}

P
Paul Jackson 已提交
7090 7091
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7092
		for (j = 0; j < n && !new_topology; j++) {
7093
			if (cpumask_equal(doms_new[i], doms_cur[j])
7094
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7095 7096 7097
				goto match2;
		}
		/* no match - add a new doms_new */
7098
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7099 7100 7101 7102 7103
match2:
		;
	}

	/* Remember the new sched domains */
7104 7105
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7106
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7107
	doms_cur = doms_new;
7108
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7109
	ndoms_cur = ndoms_new;
7110 7111

	register_sched_domain_sysctl();
7112

7113
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7114 7115
}

7116 7117
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7118
/*
7119 7120 7121
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7122 7123 7124
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7125
 */
7126
static void cpuset_cpu_active(void)
7127
{
7128
	if (cpuhp_tasks_frozen) {
7129 7130 7131 7132 7133 7134 7135 7136 7137
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7138
			return;
7139 7140 7141 7142 7143 7144
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7145
	}
7146
	cpuset_update_active_cpus(true);
7147
}
7148

7149
static int cpuset_cpu_inactive(unsigned int cpu)
7150
{
7151 7152
	unsigned long flags;
	struct dl_bw *dl_b;
7153 7154
	bool overflow;
	int cpus;
7155

7156
	if (!cpuhp_tasks_frozen) {
7157 7158
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7159

7160 7161 7162 7163
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7164

7165
		rcu_read_unlock_sched();
7166

7167
		if (overflow)
7168
			return -EBUSY;
7169
		cpuset_update_active_cpus(false);
7170
	} else {
7171 7172
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7173
	}
7174
	return 0;
7175 7176
}

7177
int sched_cpu_activate(unsigned int cpu)
7178
{
7179 7180 7181
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7182
	set_cpu_active(cpu, true);
7183

7184
	if (sched_smp_initialized) {
7185
		sched_domains_numa_masks_set(cpu);
7186
		cpuset_cpu_active();
7187
	}
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7207
	return 0;
7208 7209
}

7210
int sched_cpu_deactivate(unsigned int cpu)
7211 7212 7213
{
	int ret;

7214
	set_cpu_active(cpu, false);
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7229 7230 7231 7232 7233 7234 7235 7236

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7237
	}
7238 7239
	sched_domains_numa_masks_clear(cpu);
	return 0;
7240 7241
}

7242 7243 7244 7245 7246 7247 7248 7249
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

7250 7251 7252
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7253
	sched_rq_cpu_starting(cpu);
7254
	return 0;
7255 7256
}

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7275
	nohz_balance_exit_idle(cpu);
7276
	hrtick_clear(rq);
7277 7278 7279 7280
	return 0;
}
#endif

L
Linus Torvalds 已提交
7281 7282
void __init sched_init_smp(void)
{
7283 7284 7285
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7286
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7287

7288 7289
	sched_init_numa();

7290 7291 7292 7293 7294
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7295
	mutex_lock(&sched_domains_mutex);
7296
	init_sched_domains(cpu_active_mask);
7297 7298 7299
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7300
	mutex_unlock(&sched_domains_mutex);
7301

7302
	/* Move init over to a non-isolated CPU */
7303
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7304
		BUG();
I
Ingo Molnar 已提交
7305
	sched_init_granularity();
7306
	free_cpumask_var(non_isolated_cpus);
7307

7308
	init_sched_rt_class();
7309
	init_sched_dl_class();
7310
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7311
}
7312 7313 7314

static int __init migration_init(void)
{
7315
	sched_rq_cpu_starting(smp_processor_id());
7316
	return 0;
L
Linus Torvalds 已提交
7317
}
7318 7319
early_initcall(migration_init);

L
Linus Torvalds 已提交
7320 7321 7322
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7323
	sched_init_granularity();
L
Linus Torvalds 已提交
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7334
#ifdef CONFIG_CGROUP_SCHED
7335 7336 7337 7338
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7339
struct task_group root_task_group;
7340
LIST_HEAD(task_groups);
7341 7342 7343

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7344
#endif
P
Peter Zijlstra 已提交
7345

7346
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7347

L
Linus Torvalds 已提交
7348 7349
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7350
	int i, j;
7351 7352 7353 7354 7355 7356 7357 7358 7359
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7360
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7361 7362

#ifdef CONFIG_FAIR_GROUP_SCHED
7363
		root_task_group.se = (struct sched_entity **)ptr;
7364 7365
		ptr += nr_cpu_ids * sizeof(void **);

7366
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7367
		ptr += nr_cpu_ids * sizeof(void **);
7368

7369
#endif /* CONFIG_FAIR_GROUP_SCHED */
7370
#ifdef CONFIG_RT_GROUP_SCHED
7371
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7372 7373
		ptr += nr_cpu_ids * sizeof(void **);

7374
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7375 7376
		ptr += nr_cpu_ids * sizeof(void **);

7377
#endif /* CONFIG_RT_GROUP_SCHED */
7378
	}
7379
#ifdef CONFIG_CPUMASK_OFFSTACK
7380 7381 7382
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7383
	}
7384
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7385

7386 7387 7388
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7389
			global_rt_period(), global_rt_runtime());
7390

G
Gregory Haskins 已提交
7391 7392 7393 7394
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7395
#ifdef CONFIG_RT_GROUP_SCHED
7396
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7397
			global_rt_period(), global_rt_runtime());
7398
#endif /* CONFIG_RT_GROUP_SCHED */
7399

D
Dhaval Giani 已提交
7400
#ifdef CONFIG_CGROUP_SCHED
7401 7402
	task_group_cache = KMEM_CACHE(task_group, 0);

7403 7404
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7405
	INIT_LIST_HEAD(&root_task_group.siblings);
7406
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7407
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7408

7409
	for_each_possible_cpu(i) {
7410
		struct rq *rq;
L
Linus Torvalds 已提交
7411 7412

		rq = cpu_rq(i);
7413
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7414
		rq->nr_running = 0;
7415 7416
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7417
		init_cfs_rq(&rq->cfs);
7418 7419
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7420
#ifdef CONFIG_FAIR_GROUP_SCHED
7421
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7422
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7423
		/*
7424
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7425 7426 7427 7428
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7429
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7430 7431 7432
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7433
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7434 7435 7436
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7437
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7438
		 *
7439 7440
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7441
		 */
7442
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7443
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7444 7445 7446
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7447
#ifdef CONFIG_RT_GROUP_SCHED
7448
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7449
#endif
L
Linus Torvalds 已提交
7450

I
Ingo Molnar 已提交
7451 7452
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7453

L
Linus Torvalds 已提交
7454
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7455
		rq->sd = NULL;
G
Gregory Haskins 已提交
7456
		rq->rd = NULL;
7457
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7458
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7459
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7460
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7461
		rq->push_cpu = 0;
7462
		rq->cpu = i;
7463
		rq->online = 0;
7464 7465
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7466
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7467 7468 7469

		INIT_LIST_HEAD(&rq->cfs_tasks);

7470
		rq_attach_root(rq, &def_root_domain);
7471
#ifdef CONFIG_NO_HZ_COMMON
7472
		rq->last_load_update_tick = jiffies;
7473
		rq->nohz_flags = 0;
7474
#endif
7475 7476 7477
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7479
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7480 7481 7482
		atomic_set(&rq->nr_iowait, 0);
	}

7483
	set_load_weight(&init_task);
7484

7485 7486 7487 7488
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7489 7490 7491 7492 7493 7494
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7495 7496 7497 7498 7499
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7500 7501 7502 7503 7504 7505 7506
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7507 7508 7509

	calc_load_update = jiffies + LOAD_FREQ;

7510
#ifdef CONFIG_SMP
7511
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7512 7513 7514
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7515
	idle_thread_set_boot_cpu();
7516
	set_cpu_rq_start_time(smp_processor_id());
7517 7518
#endif
	init_sched_fair_class();
7519

7520 7521
	init_schedstats();

7522
	scheduler_running = 1;
L
Linus Torvalds 已提交
7523 7524
}

7525
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7526 7527
static inline int preempt_count_equals(int preempt_offset)
{
7528
	int nested = preempt_count() + rcu_preempt_depth();
7529

A
Arnd Bergmann 已提交
7530
	return (nested == preempt_offset);
7531 7532
}

7533
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7534
{
P
Peter Zijlstra 已提交
7535 7536 7537 7538 7539
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7540
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7541 7542 7543 7544
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7545
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7546

7547 7548 7549 7550 7551
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7552 7553 7554
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7555
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7556 7557
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7558
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7559 7560 7561 7562 7563
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7564 7565 7566 7567 7568 7569 7570
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7571

7572 7573 7574
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7575 7576 7577
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7578 7579 7580 7581 7582 7583 7584
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7585
	dump_stack();
L
Linus Torvalds 已提交
7586
}
7587
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7588 7589 7590
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7591
void normalize_rt_tasks(void)
7592
{
7593
	struct task_struct *g, *p;
7594 7595 7596
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7597

7598
	read_lock(&tasklist_lock);
7599
	for_each_process_thread(g, p) {
7600 7601 7602
		/*
		 * Only normalize user tasks:
		 */
7603
		if (p->flags & PF_KTHREAD)
7604 7605
			continue;

I
Ingo Molnar 已提交
7606 7607
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7608 7609 7610
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7611
#endif
I
Ingo Molnar 已提交
7612

7613
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7614 7615 7616 7617
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7618
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7619
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7620
			continue;
I
Ingo Molnar 已提交
7621
		}
L
Linus Torvalds 已提交
7622

7623
		__sched_setscheduler(p, &attr, false, false);
7624
	}
7625
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7626 7627 7628
}

#endif /* CONFIG_MAGIC_SYSRQ */
7629

7630
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7631
/*
7632
 * These functions are only useful for the IA64 MCA handling, or kdb.
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7646 7647
 *
 * Return: The current task for @cpu.
7648
 */
7649
struct task_struct *curr_task(int cpu)
7650 7651 7652 7653
{
	return cpu_curr(cpu);
}

7654 7655 7656
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7657 7658 7659 7660 7661 7662
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7663 7664
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7665 7666 7667 7668 7669 7670 7671
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7672
void set_curr_task(int cpu, struct task_struct *p)
7673 7674 7675 7676 7677
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7678

D
Dhaval Giani 已提交
7679
#ifdef CONFIG_CGROUP_SCHED
7680 7681 7682
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7683
static void sched_free_group(struct task_group *tg)
7684 7685 7686
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7687
	autogroup_free(tg);
7688
	kmem_cache_free(task_group_cache, tg);
7689 7690 7691
}

/* allocate runqueue etc for a new task group */
7692
struct task_group *sched_create_group(struct task_group *parent)
7693 7694 7695
{
	struct task_group *tg;

7696
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7697 7698 7699
	if (!tg)
		return ERR_PTR(-ENOMEM);

7700
	if (!alloc_fair_sched_group(tg, parent))
7701 7702
		goto err;

7703
	if (!alloc_rt_sched_group(tg, parent))
7704 7705
		goto err;

7706 7707 7708
	return tg;

err:
7709
	sched_free_group(tg);
7710 7711 7712 7713 7714 7715 7716
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7717
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7718
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7719 7720 7721 7722 7723

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7724
	list_add_rcu(&tg->siblings, &parent->children);
7725
	spin_unlock_irqrestore(&task_group_lock, flags);
7726 7727

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7728 7729
}

7730
/* rcu callback to free various structures associated with a task group */
7731
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7732 7733
{
	/* now it should be safe to free those cfs_rqs */
7734
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7735 7736
}

7737
void sched_destroy_group(struct task_group *tg)
7738 7739
{
	/* wait for possible concurrent references to cfs_rqs complete */
7740
	call_rcu(&tg->rcu, sched_free_group_rcu);
7741 7742 7743
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7744
{
7745
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7746

7747
	/* end participation in shares distribution */
7748
	unregister_fair_sched_group(tg);
7749 7750

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7751
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7752
	list_del_rcu(&tg->siblings);
7753
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7754 7755
}

7756
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
7757
{
P
Peter Zijlstra 已提交
7758
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7759

7760 7761 7762 7763 7764 7765
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7766 7767 7768 7769
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7770
#ifdef CONFIG_FAIR_GROUP_SCHED
7771 7772
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
7773
	else
P
Peter Zijlstra 已提交
7774
#endif
7775
		set_task_rq(tsk, task_cpu(tsk));
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
	if (unlikely(running))
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
7802

7803 7804
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7805
	if (queued)
7806
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
S
Srivatsa Vaddagiri 已提交
7807

7808
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7809
}
D
Dhaval Giani 已提交
7810
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7811

7812 7813 7814 7815 7816
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7817

P
Peter Zijlstra 已提交
7818 7819
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7820
{
P
Peter Zijlstra 已提交
7821
	struct task_struct *g, *p;
7822

7823 7824 7825 7826 7827 7828
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7829
	for_each_process_thread(g, p) {
7830
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7831
			return 1;
7832
	}
7833

P
Peter Zijlstra 已提交
7834 7835
	return 0;
}
7836

P
Peter Zijlstra 已提交
7837 7838 7839 7840 7841
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7842

7843
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7844 7845 7846 7847 7848
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7849

P
Peter Zijlstra 已提交
7850 7851
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7852

P
Peter Zijlstra 已提交
7853 7854 7855
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7856 7857
	}

7858 7859 7860 7861 7862
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7863

7864 7865 7866
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7867 7868
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7869

P
Peter Zijlstra 已提交
7870
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7871

7872 7873 7874 7875 7876
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7877

7878 7879 7880
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7881 7882 7883
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7884

P
Peter Zijlstra 已提交
7885 7886 7887 7888
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7889

P
Peter Zijlstra 已提交
7890
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7891
	}
P
Peter Zijlstra 已提交
7892

P
Peter Zijlstra 已提交
7893 7894 7895 7896
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7897 7898
}

P
Peter Zijlstra 已提交
7899
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7900
{
7901 7902
	int ret;

P
Peter Zijlstra 已提交
7903 7904 7905 7906 7907 7908
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7909 7910 7911 7912 7913
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7914 7915
}

7916
static int tg_set_rt_bandwidth(struct task_group *tg,
7917
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7918
{
P
Peter Zijlstra 已提交
7919
	int i, err = 0;
P
Peter Zijlstra 已提交
7920

7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7932
	mutex_lock(&rt_constraints_mutex);
7933
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7934 7935
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7936
		goto unlock;
P
Peter Zijlstra 已提交
7937

7938
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7939 7940
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7941 7942 7943 7944

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7945
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7946
		rt_rq->rt_runtime = rt_runtime;
7947
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7948
	}
7949
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7950
unlock:
7951
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7952 7953 7954
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7955 7956
}

7957
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7958 7959 7960 7961 7962 7963 7964 7965
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7966
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7967 7968
}

7969
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7970 7971 7972
{
	u64 rt_runtime_us;

7973
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7974 7975
		return -1;

7976
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7977 7978 7979
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7980

7981
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7982 7983 7984
{
	u64 rt_runtime, rt_period;

7985
	rt_period = rt_period_us * NSEC_PER_USEC;
7986 7987
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7988
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7989 7990
}

7991
static long sched_group_rt_period(struct task_group *tg)
7992 7993 7994 7995 7996 7997 7998
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7999
#endif /* CONFIG_RT_GROUP_SCHED */
8000

8001
#ifdef CONFIG_RT_GROUP_SCHED
8002 8003 8004 8005 8006
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8007
	read_lock(&tasklist_lock);
8008
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8009
	read_unlock(&tasklist_lock);
8010 8011 8012 8013
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8014

8015
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8016 8017 8018 8019 8020 8021 8022 8023
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8024
#else /* !CONFIG_RT_GROUP_SCHED */
8025 8026
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8027
	unsigned long flags;
8028
	int i;
8029

8030
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8031 8032 8033
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8034
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8035
		rt_rq->rt_runtime = global_rt_runtime();
8036
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8037
	}
8038
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8039

8040
	return 0;
8041
}
8042
#endif /* CONFIG_RT_GROUP_SCHED */
8043

8044
static int sched_dl_global_validate(void)
8045
{
8046 8047
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8048
	u64 new_bw = to_ratio(period, runtime);
8049
	struct dl_bw *dl_b;
8050
	int cpu, ret = 0;
8051
	unsigned long flags;
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8062
	for_each_possible_cpu(cpu) {
8063 8064
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8065

8066
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8067 8068
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8069
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8070

8071 8072
		rcu_read_unlock_sched();

8073 8074
		if (ret)
			break;
8075 8076
	}

8077
	return ret;
8078 8079
}

8080
static void sched_dl_do_global(void)
8081
{
8082
	u64 new_bw = -1;
8083
	struct dl_bw *dl_b;
8084
	int cpu;
8085
	unsigned long flags;
8086

8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8097 8098
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8099

8100
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8101
		dl_b->bw = new_bw;
8102
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8103 8104

		rcu_read_unlock_sched();
8105
	}
8106 8107 8108 8109 8110 8111 8112
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8113 8114
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8115 8116 8117 8118 8119 8120 8121 8122 8123
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8124 8125
}

8126
int sched_rt_handler(struct ctl_table *table, int write,
8127
		void __user *buffer, size_t *lenp,
8128 8129 8130 8131
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8132
	int ret;
8133 8134 8135 8136 8137

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8138
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8139 8140

	if (!ret && write) {
8141 8142 8143 8144
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8145
		ret = sched_dl_global_validate();
8146 8147 8148
		if (ret)
			goto undo;

8149
		ret = sched_rt_global_constraints();
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8160 8161 8162 8163 8164
	}
	mutex_unlock(&mutex);

	return ret;
}
8165

8166
int sched_rr_handler(struct ctl_table *table, int write,
8167 8168 8169 8170 8171 8172 8173 8174
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8175 8176
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8177
	if (!ret && write) {
8178 8179
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8180 8181 8182 8183 8184
	}
	mutex_unlock(&mutex);
	return ret;
}

8185
#ifdef CONFIG_CGROUP_SCHED
8186

8187
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8188
{
8189
	return css ? container_of(css, struct task_group, css) : NULL;
8190 8191
}

8192 8193
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8194
{
8195 8196
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8197

8198
	if (!parent) {
8199
		/* This is early initialization for the top cgroup */
8200
		return &root_task_group.css;
8201 8202
	}

8203
	tg = sched_create_group(parent);
8204 8205 8206
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8207 8208
	sched_online_group(tg, parent);

8209 8210 8211
	return &tg->css;
}

8212
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8213
{
8214
	struct task_group *tg = css_tg(css);
8215

8216
	sched_offline_group(tg);
8217 8218
}

8219
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8220
{
8221
	struct task_group *tg = css_tg(css);
8222

8223 8224 8225 8226
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8227 8228
}

8229 8230 8231 8232
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
8233
static void cpu_cgroup_fork(struct task_struct *task)
8234
{
8235 8236 8237 8238 8239 8240 8241 8242
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
8243 8244
}

8245
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8246
{
8247
	struct task_struct *task;
8248
	struct cgroup_subsys_state *css;
8249
	int ret = 0;
8250

8251
	cgroup_taskset_for_each(task, css, tset) {
8252
#ifdef CONFIG_RT_GROUP_SCHED
8253
		if (!sched_rt_can_attach(css_tg(css), task))
8254
			return -EINVAL;
8255
#else
8256 8257 8258
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8259
#endif
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
8276
	}
8277
	return ret;
8278
}
8279

8280
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8281
{
8282
	struct task_struct *task;
8283
	struct cgroup_subsys_state *css;
8284

8285
	cgroup_taskset_for_each(task, css, tset)
8286
		sched_move_task(task);
8287 8288
}

8289
#ifdef CONFIG_FAIR_GROUP_SCHED
8290 8291
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8292
{
8293
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8294 8295
}

8296 8297
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8298
{
8299
	struct task_group *tg = css_tg(css);
8300

8301
	return (u64) scale_load_down(tg->shares);
8302
}
8303 8304

#ifdef CONFIG_CFS_BANDWIDTH
8305 8306
static DEFINE_MUTEX(cfs_constraints_mutex);

8307 8308 8309
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8310 8311
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8312 8313
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8314
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8315
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8336 8337 8338 8339 8340
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8341 8342 8343 8344 8345
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8346
	runtime_enabled = quota != RUNTIME_INF;
8347
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8348 8349 8350 8351 8352 8353
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8354 8355 8356
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8357

P
Paul Turner 已提交
8358
	__refill_cfs_bandwidth_runtime(cfs_b);
8359
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8360 8361
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8362 8363
	raw_spin_unlock_irq(&cfs_b->lock);

8364
	for_each_online_cpu(i) {
8365
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8366
		struct rq *rq = cfs_rq->rq;
8367 8368

		raw_spin_lock_irq(&rq->lock);
8369
		cfs_rq->runtime_enabled = runtime_enabled;
8370
		cfs_rq->runtime_remaining = 0;
8371

8372
		if (cfs_rq->throttled)
8373
			unthrottle_cfs_rq(cfs_rq);
8374 8375
		raw_spin_unlock_irq(&rq->lock);
	}
8376 8377
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8378 8379
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8380
	put_online_cpus();
8381

8382
	return ret;
8383 8384 8385 8386 8387 8388
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8389
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8402
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8403 8404
		return -1;

8405
	quota_us = tg->cfs_bandwidth.quota;
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8416
	quota = tg->cfs_bandwidth.quota;
8417 8418 8419 8420 8421 8422 8423 8424

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8425
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8426 8427 8428 8429 8430
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8431 8432
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8433
{
8434
	return tg_get_cfs_quota(css_tg(css));
8435 8436
}

8437 8438
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8439
{
8440
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8441 8442
}

8443 8444
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8445
{
8446
	return tg_get_cfs_period(css_tg(css));
8447 8448
}

8449 8450
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8451
{
8452
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8453 8454
}

8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8487
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8488 8489 8490 8491 8492
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8493
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8494 8495

		quota = normalize_cfs_quota(tg, d);
8496
		parent_quota = parent_b->hierarchical_quota;
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8507
	cfs_b->hierarchical_quota = quota;
8508 8509 8510 8511 8512 8513

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8514
	int ret;
8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8526 8527 8528 8529 8530
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8531
}
8532

8533
static int cpu_stats_show(struct seq_file *sf, void *v)
8534
{
8535
	struct task_group *tg = css_tg(seq_css(sf));
8536
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8537

8538 8539 8540
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8541 8542 8543

	return 0;
}
8544
#endif /* CONFIG_CFS_BANDWIDTH */
8545
#endif /* CONFIG_FAIR_GROUP_SCHED */
8546

8547
#ifdef CONFIG_RT_GROUP_SCHED
8548 8549
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8550
{
8551
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8552 8553
}

8554 8555
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8556
{
8557
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8558
}
8559

8560 8561
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8562
{
8563
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8564 8565
}

8566 8567
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8568
{
8569
	return sched_group_rt_period(css_tg(css));
8570
}
8571
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8572

8573
static struct cftype cpu_files[] = {
8574
#ifdef CONFIG_FAIR_GROUP_SCHED
8575 8576
	{
		.name = "shares",
8577 8578
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8579
	},
8580
#endif
8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8592 8593
	{
		.name = "stat",
8594
		.seq_show = cpu_stats_show,
8595
	},
8596
#endif
8597
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8598
	{
P
Peter Zijlstra 已提交
8599
		.name = "rt_runtime_us",
8600 8601
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8602
	},
8603 8604
	{
		.name = "rt_period_us",
8605 8606
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8607
	},
8608
#endif
8609
	{ }	/* terminate */
8610 8611
};

8612
struct cgroup_subsys cpu_cgrp_subsys = {
8613
	.css_alloc	= cpu_cgroup_css_alloc,
8614
	.css_released	= cpu_cgroup_css_released,
8615
	.css_free	= cpu_cgroup_css_free,
8616
	.fork		= cpu_cgroup_fork,
8617 8618
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8619
	.legacy_cftypes	= cpu_files,
8620
	.early_init	= true,
8621 8622
};

8623
#endif	/* CONFIG_CGROUP_SCHED */
8624

8625 8626 8627 8628 8629
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};