intel_dp.c 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
36
#include "drm_dp_helper.h"
37

38

39 40 41 42 43
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

44 45
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)

46 47 48 49 50
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
51
	int dpms_mode;
52 53 54
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
55
	struct intel_encoder *intel_encoder;
56 57 58 59 60
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
61
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
62 63 64
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
65
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
66

67
void
68
intel_edp_link_config (struct intel_encoder *intel_encoder,
69 70
		int *lane_num, int *link_bw)
{
71
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
72 73 74 75 76 77 78 79

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

80
static int
81
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
82
{
83
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
99
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
100
{
101
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
126
intel_dp_link_required(struct drm_device *dev,
127
		       struct intel_encoder *intel_encoder, int pixel_clock)
128
{
129 130
	struct drm_i915_private *dev_priv = dev->dev_private;

131
	if (IS_eDP(intel_encoder))
132 133 134
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
135 136 137 138 139 140
}

static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
141 142 143
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
144

145
	if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
146
			> max_link_clock * max_lanes)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

208
static int
209
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
210 211 212
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
213
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
214
	uint32_t output_reg = dp_priv->output_reg;
215
	struct drm_device *dev = intel_encoder->base.dev;
216 217 218 219 220 221 222
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
223
	uint32_t aux_clock_divider;
224
	int try, precharge;
225 226

	/* The clock divider is based off the hrawclk,
227 228
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
229
	 */
230 231 232 233 234 235
	if (IS_eDP(intel_encoder)) {
		if (IS_GEN6(dev))
			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
		else
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
	} else if (HAS_PCH_SPLIT(dev))
236
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
237 238 239
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

240 241 242 243 244
	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

245 246 247 248
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
249
			uint32_t    d = pack_aux(send + i, send_bytes - i);
250 251 252 253 254 255 256
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
257
		       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
274
		I915_WRITE(ch_ctl, (status |
275 276 277 278 279
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
280 281 282 283
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
284
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
285
		return -EBUSY;
286 287 288 289 290
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
291
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
292
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
293 294
		return -EIO;
	}
295 296 297

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
298
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
299
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
300
		return -ETIMEDOUT;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
321
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
322 323 324 325 326 327 328 329 330 331 332
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
333
	msg[2] = address & 0xff;
334 335 336 337
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
338
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
339 340 341 342 343 344 345
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
346
			return -EIO;
347 348 349 350 351 352
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
353
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
354 355
			    uint16_t address, uint8_t byte)
{
356
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
357 358 359 360
}

/* read bytes from a native aux channel */
static int
361
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
380
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
381
				      reply, reply_bytes);
382 383 384
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
385 386 387 388 389 390 391 392 393
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
394
			return -EIO;
395 396 397 398
	}
}

static int
399 400
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
401
{
402
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
403 404 405
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
406
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
445
	  ret = intel_dp_aux_ch(intel_encoder,
446 447 448
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
449
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
450 451 452 453 454 455 456 457 458
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
459
			DRM_DEBUG_KMS("aux_ch nack\n");
460 461
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
462
			DRM_DEBUG_KMS("aux_ch defer\n");
463 464 465 466 467 468 469
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
470 471 472
}

static int
473
intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
474
{
475
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
476

Z
Zhenyu Wang 已提交
477
	DRM_DEBUG_KMS("i2c_init %s\n", name);
478 479 480 481 482 483 484
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
485 486
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
487
	dp_priv->adapter.algo_data = &dp_priv->algo;
488
	dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
489 490 491 492 493 494 495 496
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
497 498
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
499
	int lane_count, clock;
500 501
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
502 503 504 505 506 507
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;

508
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
509
					<= link_avail) {
510 511 512
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
513 514
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
570
	 * Find the lane count in the intel_encoder private
571 572
	 */
	list_for_each_entry(connector, &mode_config->connector_list, head) {
573 574
		struct intel_encoder *intel_encoder = to_intel_encoder(connector);
		struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
575 576 577 578

		if (!connector->encoder || connector->encoder->crtc != crtc)
			continue;

579
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
580 581 582 583 584 585 586 587 588 589 590 591 592
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

593
	if (HAS_PCH_SPLIT(dev)) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
609
	} else {
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
627 628 629 630 631 632 633
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
634
	struct drm_device *dev = encoder->dev;
635 636 637
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
638 639
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

640
	dp_priv->DP = (DP_VOLTAGE_0_4 |
641 642 643 644
			DP_PRE_EMPHASIS_0 |
			DP_SYNC_VS_HIGH |
			DP_SYNC_HS_HIGH);

645 646 647 648 649
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
	else
		dp_priv->DP |= DP_LINK_TRAIN_OFF;

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
	 * Check for DPCD version > 1.1,
	 * enable enahanced frame stuff in that case
	 */
	if (dp_priv->dpcd[0] >= 0x11) {
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

677 678
	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
679
		dp_priv->DP |= DP_PIPEB_SELECT;
680

681
	if (IS_eDP(intel_encoder)) {
682 683 684 685 686 687 688
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
689 690
}

691
static void ironlake_edp_backlight_on (struct drm_device *dev)
692 693 694 695
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

696
	DRM_DEBUG_KMS("\n");
697 698 699 700 701
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

702
static void ironlake_edp_backlight_off (struct drm_device *dev)
703 704 705 706
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

707
	DRM_DEBUG_KMS("\n");
708 709 710 711
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
712 713 714 715

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
716 717 718
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_device *dev = intel_encoder->base.dev;
719 720 721 722
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
723
		if (dp_reg & DP_PORT_EN) {
724 725
			intel_dp_link_down(intel_encoder, dp_priv->DP);
			if (IS_eDP(intel_encoder))
726
				ironlake_edp_backlight_off(dev);
727
		}
728
	} else {
729
		if (!(dp_reg & DP_PORT_EN)) {
730 731
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
			if (IS_eDP(intel_encoder))
732
				ironlake_edp_backlight_on(dev);
733
		}
734
	}
735
	dp_priv->dpms_mode = mode;
736 737 738 739 740 741 742
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
743
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
744 745 746 747
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

748
	ret = intel_dp_aux_native_read(intel_encoder,
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
825
intel_get_adjust_train(struct intel_encoder *intel_encoder,
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
	switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	}
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
961
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
962 963 964 965 966
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
967
	struct drm_device *dev = intel_encoder->base.dev;
968
	struct drm_i915_private *dev_priv = dev->dev_private;
969
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
970 971 972 973 974 975 976
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

977
	intel_dp_aux_native_write_1(intel_encoder,
978 979 980
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

981
	ret = intel_dp_aux_native_write(intel_encoder,
982 983 984 985 986 987 988 989
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
990
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
991 992
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
993
	struct drm_device *dev = intel_encoder->base.dev;
994
	struct drm_i915_private *dev_priv = dev->dev_private;
995
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
996 997 998 999 1000 1001 1002 1003
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;
1004
	u32 reg;
1005 1006

	/* Write the link configuration data */
1007
	intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
1008 1009 1010
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
1011 1012 1013 1014
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
	else
		DP &= ~DP_LINK_TRAIN_MASK;
1015 1016 1017 1018 1019 1020
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1021 1022 1023 1024 1025 1026 1027 1028
		uint32_t    signal_levels;
		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}
1029

1030 1031 1032 1033 1034 1035
		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_1;

		if (!intel_dp_set_link_train(intel_encoder, reg,
1036 1037 1038 1039 1040 1041
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
1042
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1067
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1068 1069 1070 1071 1072 1073 1074
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		uint32_t    signal_levels;

		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_2;
1089 1090

		/* channel eq pattern */
1091
		if (!intel_dp_set_link_train(intel_encoder, reg,
1092 1093 1094 1095 1096
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1097
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1110
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1111 1112 1113
		++tries;
	}

1114 1115 1116 1117 1118 1119
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		reg = DP | DP_LINK_TRAIN_OFF_CPT;
	else
		reg = DP | DP_LINK_TRAIN_OFF;

	I915_WRITE(dp_priv->output_reg, reg);
1120
	POSTING_READ(dp_priv->output_reg);
1121
	intel_dp_aux_native_write_1(intel_encoder,
1122 1123 1124 1125
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1126
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1127
{
1128
	struct drm_device *dev = intel_encoder->base.dev;
1129
	struct drm_i915_private *dev_priv = dev->dev_private;
1130
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1131

1132
	DRM_DEBUG_KMS("\n");
1133

1134
	if (IS_eDP(intel_encoder)) {
1135 1136 1137 1138 1139 1140
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1141 1142 1143 1144 1145 1146 1147 1148 1149
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
		POSTING_READ(dp_priv->output_reg);
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
		POSTING_READ(dp_priv->output_reg);
	}
1150 1151 1152

	udelay(17000);

1153
	if (IS_eDP(intel_encoder))
1154
		DP |= DP_LINK_TRAIN_OFF;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1169
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1170
{
1171
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1172 1173
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1174
	if (!intel_encoder->enc.crtc)
1175 1176
		return;

1177 1178
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1179 1180 1181 1182
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1183
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1184 1185
}

1186
static enum drm_connector_status
1187
ironlake_dp_detect(struct drm_connector *connector)
1188
{
1189 1190
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1191 1192 1193
	enum drm_connector_status status;

	status = connector_status_disconnected;
1194
	if (intel_dp_aux_native_read(intel_encoder,
1195 1196 1197 1198 1199 1200 1201 1202 1203
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1213 1214
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
1215
	struct drm_i915_private *dev_priv = dev->dev_private;
1216
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1217 1218 1219 1220 1221
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1222
	if (HAS_PCH_SPLIT(dev))
1223
		return ironlake_dp_detect(connector);
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	temp = I915_READ(PORT_HOTPLUG_EN);

	I915_WRITE(PORT_HOTPLUG_EN,
	       temp |
	       DPB_HOTPLUG_INT_EN |
	       DPC_HOTPLUG_INT_EN |
	       DPD_HOTPLUG_INT_EN);

	POSTING_READ(PORT_HOTPLUG_EN);

	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1255
	if (intel_dp_aux_native_read(intel_encoder,
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1267 1268
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
1269 1270
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;
1271 1272 1273 1274

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1275
	ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1276 1277 1278 1279
	if (ret)
		return ret;

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1280
	if (IS_eDP(intel_encoder)) {
1281 1282 1283 1284 1285 1286 1287 1288
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1289 1290 1291 1292 1293
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
1294
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1295

1296 1297
	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1298 1299
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1300
	kfree(intel_encoder);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.best_encoder = intel_best_encoder,
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1333
void
1334
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1335
{
1336
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1337 1338

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1339
		intel_dp_check_link_status(intel_encoder);
1340
}
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;
	struct intel_encoder *intel_encoder = NULL;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		if (!encoder || encoder->crtc != crtc)
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
			struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
			return dp_priv->output_reg;
		}
	}
	return -1;
}

1364 1365 1366 1367 1368
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1369
	struct intel_encoder *intel_encoder;
1370
	struct intel_dp_priv *dp_priv;
1371
	const char *name = NULL;
1372

1373
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1374
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1375
	if (!intel_encoder)
1376 1377
		return;

1378
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1379

1380
	connector = &intel_encoder->base;
1381 1382 1383 1384
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1385
	if (output_reg == DP_A)
1386
		intel_encoder->type = INTEL_OUTPUT_EDP;
1387
	else
1388
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1389

1390
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1391
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1392
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1393
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1394
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1395
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1396

1397 1398
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1399

1400
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1401 1402 1403
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1404
	dp_priv->intel_encoder = intel_encoder;
1405 1406
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1407
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1408
	intel_encoder->dev_priv = dp_priv;
1409

1410
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1411
			 DRM_MODE_ENCODER_TMDS);
1412
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1413

1414 1415
	drm_mode_connector_attach_encoder(&intel_encoder->base,
					  &intel_encoder->enc);
1416 1417 1418
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1419
	switch (output_reg) {
1420 1421 1422
		case DP_A:
			name = "DPDDC-A";
			break;
1423 1424
		case DP_B:
		case PCH_DP_B:
1425 1426
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1427 1428 1429 1430
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1431 1432
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1433 1434 1435 1436
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1437 1438
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1439 1440 1441 1442
			name = "DPDDC-D";
			break;
	}

1443
	intel_dp_i2c_init(intel_encoder, name);
1444

1445 1446
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	if (output_reg == DP_A) {
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1460 1461 1462 1463 1464 1465 1466 1467 1468
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}