intel_dp.c 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_dp.h"

#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	uint32_t save_DP;
	uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
	struct intel_output *intel_output;
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);

static int
intel_dp_max_lane_count(struct intel_output *intel_output)
{
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
intel_dp_max_link_bw(struct intel_output *intel_output)
{
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
intel_dp_link_required(int pixel_clock)
{
	return pixel_clock * 3;
}

static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
	struct intel_output *intel_output = to_intel_output(connector);
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
	int max_lanes = intel_dp_max_lane_count(intel_output);

	if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

static int
intel_dp_aux_ch(struct intel_output *intel_output,
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint32_t output_reg = dp_priv->output_reg;
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;

	/* Load the send data into the aux channel data registers */
	for (i = 0; i < send_bytes; i += 4) {
		uint32_t    d = pack_aux(send + i, send_bytes - i);;

		I915_WRITE(ch_data + i, d);
	}

	/* The clock divider is based off the hrawclk,
	 * and would like to run at 2MHz. The 133 below assumes
	 * a 266MHz hrawclk; need to figure out how we're supposed
	 * to know what hrawclk is...
	 */
	ctl = (DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_TIME_OUT_1600us |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
	       (133 << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
	       DP_AUX_CH_CTL_RECEIVE_ERROR);

	/* Send the command and wait for it to complete */
	I915_WRITE(ch_ctl, ctl);
	(void) I915_READ(ch_ctl);
	for (;;) {
		udelay(100);
		status = I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
	}

	/* Clear done status and any errors */
	I915_WRITE(ch_ctl, (ctl |
			DP_AUX_CH_CTL_DONE |
			DP_AUX_CH_CTL_TIME_OUT_ERROR |
			DP_AUX_CH_CTL_RECEIVE_ERROR));
	(void) I915_READ(ch_ctl);

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
		printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
		return -1;
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
	if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)) {
		printk(KERN_ERR "dp_aux_ch error status 0x%08x\n", status);
		return -1;
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_output *intel_output,
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
	msg[2] = address;
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -1;
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_output *intel_output,
			    uint16_t address, uint8_t byte)
{
	return intel_dp_aux_native_write(intel_output, address, &byte, 1);
}

/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_output *intel_output,
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
				      reply, reply_bytes);
		if (ret <= 0)
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -1;
	}
}

static int
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
		    uint8_t *send, int send_bytes,
		    uint8_t *recv, int recv_bytes)
{
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
	struct intel_output *intel_output = dp_priv->intel_output;

	return intel_dp_aux_ch(intel_output,
			       send, send_bytes, recv, recv_bytes);
}

static int
intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
{
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;

	DRM_ERROR("i2c_init %s\n", name);
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
	strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
	dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
	dp_priv->adapter.algo_data = &dp_priv->algo;
	dp_priv->adapter.dev.parent = &intel_output->base.kdev;
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct intel_output *intel_output = enc_to_intel_output(encoder);
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
	int lane_count, clock;
	int max_lane_count = intel_dp_max_lane_count(intel_output);
	int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;

			if (intel_dp_link_required(mode->clock) <= link_avail) {
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
				printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
	 * Find the lane count in the intel_output private
	 */
	list_for_each_entry(connector, &mode_config->connector_list, head) {
		struct intel_output *intel_output = to_intel_output(connector);
		struct intel_dp_priv *dp_priv = intel_output->dev_priv;

		if (!connector->encoder || connector->encoder->crtc != crtc)
			continue;

		if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

	if (intel_crtc->pipe == 0) {
		I915_WRITE(PIPEA_GMCH_DATA_M,
		       ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
		       m_n.gmch_m);
		I915_WRITE(PIPEA_GMCH_DATA_N,
		       m_n.gmch_n);
		I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
		I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
	} else {
		I915_WRITE(PIPEB_GMCH_DATA_M,
		       ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
		       m_n.gmch_m);
		I915_WRITE(PIPEB_GMCH_DATA_N,
		       m_n.gmch_n);
		I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
		I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct intel_output *intel_output = enc_to_intel_output(encoder);
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	struct drm_crtc *crtc = intel_output->enc.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	dp_priv->DP = (DP_LINK_TRAIN_OFF |
			DP_VOLTAGE_0_4 |
			DP_PRE_EMPHASIS_0 |
			DP_SYNC_VS_HIGH |
			DP_SYNC_HS_HIGH);

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
	 * Check for DPCD version > 1.1,
	 * enable enahanced frame stuff in that case
	 */
	if (dp_priv->dpcd[0] >= 0x11) {
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

	if (intel_crtc->pipe == 1)
		dp_priv->DP |= DP_PIPEB_SELECT;
}


static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
	struct intel_output *intel_output = enc_to_intel_output(encoder);
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
		if (dp_reg & DP_PORT_EN)
			intel_dp_link_down(intel_output, dp_priv->DP);
	} else {
		if (!(dp_reg & DP_PORT_EN))
			intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
	}
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
intel_dp_get_link_status(struct intel_output *intel_output,
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

	ret = intel_dp_aux_native_read(intel_output,
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static void
intel_dp_save(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	dp_priv->save_DP = I915_READ(dp_priv->output_reg);
	intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
				 dp_priv->save_link_configuration,
				 sizeof (dp_priv->save_link_configuration));
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
intel_get_adjust_train(struct intel_output *intel_output,
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
intel_dp_set_link_train(struct intel_output *intel_output,
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

	intel_dp_aux_native_write_1(intel_output,
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

	ret = intel_dp_aux_native_write(intel_output,
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;

	/* Write the link configuration data */
	intel_dp_aux_native_write(intel_output, 0x100,
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
	DP &= ~DP_LINK_TRAIN_MASK;
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
		if (!intel_dp_get_link_status(intel_output, link_status))
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

		/* channel eq pattern */
		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
		if (!intel_dp_get_link_status(intel_output, link_status))
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
		++tries;
	}

	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
	POSTING_READ(dp_priv->output_reg);
	intel_dp_aux_native_write_1(intel_output,
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
{
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

static void
intel_dp_restore(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	if (dp_priv->save_DP & DP_PORT_EN)
		intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
	else
		intel_dp_link_down(intel_output,  dp_priv->save_DP);
}

#if 0
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
intel_dp_check_link_status(struct intel_output *intel_output)
{
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint8_t link_status[DP_LINK_STATUS_SIZE];

	if (!intel_output->enc.crtc)
		return;

	if (!intel_dp_get_link_status(intel_output, link_status)) {
		intel_dp_link_down(intel_output, dp_priv->DP);
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
		intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
}
#endif

/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

	temp = I915_READ(PORT_HOTPLUG_EN);

	I915_WRITE(PORT_HOTPLUG_EN,
	       temp |
	       DPB_HOTPLUG_INT_EN |
	       DPC_HOTPLUG_INT_EN |
	       DPD_HOTPLUG_INT_EN);

	POSTING_READ(PORT_HOTPLUG_EN);

	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
	if (intel_dp_aux_native_read(intel_output,
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);

	/* We should parse the EDID data and find out if it has an audio sink
	 */

	return intel_ddc_get_modes(intel_output);
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);

	if (intel_output->i2c_bus)
		intel_i2c_destroy(intel_output->i2c_bus);
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
	kfree(intel_output);
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.save = intel_dp_save,
	.restore = intel_dp_restore,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.best_encoder = intel_best_encoder,
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
	struct intel_output *intel_output;
	struct intel_dp_priv *dp_priv;

	intel_output = kcalloc(sizeof(struct intel_output) + 
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
	if (!intel_output)
		return;

	dp_priv = (struct intel_dp_priv *)(intel_output + 1);

	connector = &intel_output->base;
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

	intel_output->type = INTEL_OUTPUT_DISPLAYPORT;

	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

	dp_priv->intel_output = intel_output;
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
	intel_output->dev_priv = dp_priv;

	drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);

	drm_mode_connector_attach_encoder(&intel_output->base,
					  &intel_output->enc);
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
	intel_dp_i2c_init(intel_output,
			  (output_reg == DP_B) ? "DPDDC-B" :
			  (output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
	intel_output->ddc_bus = &dp_priv->adapter;

	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}