rcupdate.h 42.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
L
Linus Torvalds 已提交
17
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20
 *
 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21
 *
22
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
L
Linus Torvalds 已提交
23 24 25 26 27 28
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
30 31 32 33 34 35
 *
 */

#ifndef __LINUX_RCUPDATE_H
#define __LINUX_RCUPDATE_H

36
#include <linux/types.h>
L
Linus Torvalds 已提交
37 38 39 40 41
#include <linux/cache.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/seqlock.h>
42
#include <linux/lockdep.h>
P
Paul E. McKenney 已提交
43
#include <linux/completion.h>
44
#include <linux/debugobjects.h>
45
#include <linux/bug.h>
46
#include <linux/compiler.h>
47
#include <asm/barrier.h>
L
Linus Torvalds 已提交
48

49
extern int rcu_expedited; /* for sysctl */
D
Dave Young 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#ifdef CONFIG_TINY_RCU
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
{
	return false;
}

static inline void rcu_expedite_gp(void)
{
}

static inline void rcu_unexpedite_gp(void)
{
}
#else /* #ifdef CONFIG_TINY_RCU */
bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
void rcu_expedite_gp(void);
void rcu_unexpedite_gp(void);
#endif /* #else #ifdef CONFIG_TINY_RCU */

71 72 73 74
enum rcutorture_type {
	RCU_FLAVOR,
	RCU_BH_FLAVOR,
	RCU_SCHED_FLAVOR,
75
	RCU_TASKS_FLAVOR,
76 77 78 79
	SRCU_FLAVOR,
	INVALID_RCU_FLAVOR
};

80
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
81 82
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed);
83 84 85 86 87 88 89
void rcutorture_record_test_transition(void);
void rcutorture_record_progress(unsigned long vernum);
void do_trace_rcu_torture_read(const char *rcutorturename,
			       struct rcu_head *rhp,
			       unsigned long secs,
			       unsigned long c_old,
			       unsigned long c);
90
#else
91 92 93 94 95 96 97 98 99
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
					  int *flags,
					  unsigned long *gpnum,
					  unsigned long *completed)
{
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
100 101 102 103 104 105
static inline void rcutorture_record_test_transition(void)
{
}
static inline void rcutorture_record_progress(unsigned long vernum)
{
}
106
#ifdef CONFIG_RCU_TRACE
107 108 109 110 111
void do_trace_rcu_torture_read(const char *rcutorturename,
			       struct rcu_head *rhp,
			       unsigned long secs,
			       unsigned long c_old,
			       unsigned long c);
112
#else
113 114
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
	do { } while (0)
115
#endif
116 117
#endif

118 119
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
120 121
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
122
#define ulong2long(a)		(*(long *)(&(a)))
123

124
/* Exported common interfaces */
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

#ifdef CONFIG_PREEMPT_RCU

/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing RCU read-side critical section.  On systems with more
 * than one CPU, this means that when "func()" is invoked, each CPU is
 * guaranteed to have executed a full memory barrier since the end of its
 * last RCU read-side critical section whose beginning preceded the call
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 * critical section that continues beyond the start of "func()" must have
 * executed a memory barrier after the call_rcu() but before the beginning
 * of that RCU read-side critical section.  Note that these guarantees
 * include CPUs that are offline, idle, or executing in user mode, as
 * well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 * guaranteed to execute a full memory barrier during the time interval
 * between the call to call_rcu() and the invocation of "func()" -- even
 * if CPU A and CPU B are the same CPU (but again only if the system has
 * more than one CPU).
159
 */
160 161
void call_rcu(struct rcu_head *head,
	      void (*func)(struct rcu_head *head));
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#else /* #ifdef CONFIG_PREEMPT_RCU */

/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define	call_rcu	call_rcu_sched

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/**
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_bh() assumes
 * that the read-side critical sections end on completion of a softirq
 * handler. This means that read-side critical sections in process
 * context must not be interrupted by softirqs. This interface is to be
 * used when most of the read-side critical sections are in softirq context.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 *  OR
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 *  These may be nested.
187 188 189
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
190
 */
191 192
void call_rcu_bh(struct rcu_head *head,
		 void (*func)(struct rcu_head *head));
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

/**
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_sched() assumes
 * that the read-side critical sections end on enabling of preemption
 * or on voluntary preemption.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 *  OR
 *  anything that disables preemption.
 *  These may be nested.
209 210 211
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
212
 */
213 214
void call_rcu_sched(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu));
215

216
void synchronize_sched(void);
217

P
Paul E. McKenney 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/**
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks() assumes
 * that the read-side critical sections end at a voluntary context
 * switch (not a preemption!), entry into idle, or transition to usermode
 * execution.  As such, there are no read-side primitives analogous to
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 * to determine that all tasks have passed through a safe state, not so
 * much for data-strcuture synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
237 238
void synchronize_rcu_tasks(void);
void rcu_barrier_tasks(void);
P
Paul E. McKenney 已提交
239

240 241
#ifdef CONFIG_PREEMPT_RCU

242 243 244
void __rcu_read_lock(void);
void __rcu_read_unlock(void);
void rcu_read_unlock_special(struct task_struct *t);
245 246
void synchronize_rcu(void);

247 248 249 250 251 252 253 254
/*
 * Defined as a macro as it is a very low level header included from
 * areas that don't even know about current.  This gives the rcu_read_lock()
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 */
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
#else /* #ifdef CONFIG_PREEMPT_RCU */

static inline void __rcu_read_lock(void)
{
	preempt_disable();
}

static inline void __rcu_read_unlock(void)
{
	preempt_enable();
}

static inline void synchronize_rcu(void)
{
	synchronize_sched();
}

static inline int rcu_preempt_depth(void)
{
	return 0;
}

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/* Internal to kernel */
280
void rcu_init(void);
281 282
void rcu_sched_qs(void);
void rcu_bh_qs(void);
283
void rcu_check_callbacks(int user);
284
struct notifier_block;
285 286 287 288
void rcu_idle_enter(void);
void rcu_idle_exit(void);
void rcu_irq_enter(void);
void rcu_irq_exit(void);
289

290 291 292 293 294 295 296 297 298 299 300 301
#ifdef CONFIG_RCU_STALL_COMMON
void rcu_sysrq_start(void);
void rcu_sysrq_end(void);
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
static inline void rcu_sysrq_start(void)
{
}
static inline void rcu_sysrq_end(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */

302
#ifdef CONFIG_RCU_USER_QS
303 304
void rcu_user_enter(void);
void rcu_user_exit(void);
305 306 307
#else
static inline void rcu_user_enter(void) { }
static inline void rcu_user_exit(void) { }
F
Frederic Weisbecker 已提交
308 309
static inline void rcu_user_hooks_switch(struct task_struct *prev,
					 struct task_struct *next) { }
310 311
#endif /* CONFIG_RCU_USER_QS */

312 313 314 315 316 317 318 319
#ifdef CONFIG_RCU_NOCB_CPU
void rcu_init_nohz(void);
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
static inline void rcu_init_nohz(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/**
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 * @a: Code that RCU needs to pay attention to.
 *
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 * in the inner idle loop, that is, between the rcu_idle_enter() and
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 * critical sections.  However, things like powertop need tracepoints
 * in the inner idle loop.
 *
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 * will tell RCU that it needs to pay attending, invoke its argument
 * (in this example, a call to the do_something_with_RCU() function),
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 * quite limited.  If deeper nesting is required, it will be necessary
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 */
#define RCU_NONIDLE(a) \
	do { \
340
		rcu_irq_enter(); \
341
		do { a; } while (0); \
342
		rcu_irq_exit(); \
343 344
	} while (0)

P
Paul E. McKenney 已提交
345 346 347 348 349
/*
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 * macro rather than an inline function to avoid #include hell.
 */
#ifdef CONFIG_TASKS_RCU
350 351
#define TASKS_RCU(x) x
extern struct srcu_struct tasks_rcu_exit_srcu;
P
Paul E. McKenney 已提交
352 353
#define rcu_note_voluntary_context_switch(t) \
	do { \
354
		rcu_all_qs(); \
P
Paul E. McKenney 已提交
355 356 357 358
		if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
			ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
	} while (0)
#else /* #ifdef CONFIG_TASKS_RCU */
359
#define TASKS_RCU(x) do { } while (0)
360
#define rcu_note_voluntary_context_switch(t)	rcu_all_qs()
P
Paul E. McKenney 已提交
361 362
#endif /* #else #ifdef CONFIG_TASKS_RCU */

363 364 365 366 367 368 369 370 371
/**
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 *
 * This macro resembles cond_resched(), except that it is defined to
 * report potential quiescent states to RCU-tasks even if the cond_resched()
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 */
#define cond_resched_rcu_qs() \
do { \
372 373
	if (!cond_resched()) \
		rcu_note_voluntary_context_switch(current); \
374 375
} while (0)

376
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
377
bool __rcu_is_watching(void);
378 379
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */

380 381 382 383 384 385 386 387 388
/*
 * Infrastructure to implement the synchronize_() primitives in
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 */

typedef void call_rcu_func_t(struct rcu_head *head,
			     void (*func)(struct rcu_head *head));
void wait_rcu_gp(call_rcu_func_t crf);

389
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
390
#include <linux/rcutree.h>
P
Paul E. McKenney 已提交
391
#elif defined(CONFIG_TINY_RCU)
392
#include <linux/rcutiny.h>
393 394
#else
#error "Unknown RCU implementation specified to kernel configuration"
395
#endif
396

397 398 399 400 401 402 403
/*
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 * initialization and destruction of rcu_head on the stack. rcu_head structures
 * allocated dynamically in the heap or defined statically don't need any
 * initialization.
 */
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
404 405
void init_rcu_head(struct rcu_head *head);
void destroy_rcu_head(struct rcu_head *head);
406 407
void init_rcu_head_on_stack(struct rcu_head *head);
void destroy_rcu_head_on_stack(struct rcu_head *head);
408
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
409 410 411 412 413 414 415 416
static inline void init_rcu_head(struct rcu_head *head)
{
}

static inline void destroy_rcu_head(struct rcu_head *head)
{
}

417 418 419 420 421 422 423
static inline void init_rcu_head_on_stack(struct rcu_head *head)
{
}

static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
{
}
424
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
425

426 427 428 429 430
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
bool rcu_lockdep_current_cpu_online(void);
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
static inline bool rcu_lockdep_current_cpu_online(void)
{
431
	return true;
432 433 434
}
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */

435
#ifdef CONFIG_DEBUG_LOCK_ALLOC
436

437 438
static inline void rcu_lock_acquire(struct lockdep_map *map)
{
439
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
440 441 442 443 444 445 446
}

static inline void rcu_lock_release(struct lockdep_map *map)
{
	lock_release(map, 1, _THIS_IP_);
}

447
extern struct lockdep_map rcu_lock_map;
448 449
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
450
extern struct lockdep_map rcu_callback_map;
451
int debug_lockdep_rcu_enabled(void);
452

453
int rcu_read_lock_held(void);
454
int rcu_read_lock_bh_held(void);
455 456

/**
457
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
458
 *
459 460 461 462 463
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 * RCU-sched read-side critical section.  In absence of
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 * critical section unless it can prove otherwise.  Note that disabling
 * of preemption (including disabling irqs) counts as an RCU-sched
464 465 466
 * read-side critical section.  This is useful for debug checks in functions
 * that required that they be called within an RCU-sched read-side
 * critical section.
467
 *
468 469
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 * and while lockdep is disabled.
470 471 472 473 474 475 476 477 478 479 480 481 482
 *
 * Note that if the CPU is in the idle loop from an RCU point of
 * view (ie: that we are in the section between rcu_idle_enter() and
 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 * that are in such a section, considering these as in extended quiescent
 * state, so such a CPU is effectively never in an RCU read-side critical
 * section regardless of what RCU primitives it invokes.  This state of
 * affairs is required --- we need to keep an RCU-free window in idle
 * where the CPU may possibly enter into low power mode. This way we can
 * notice an extended quiescent state to other CPUs that started a grace
 * period. Otherwise we would delay any grace period as long as we run in
 * the idle task.
483 484 485
 *
 * Similarly, we avoid claiming an SRCU read lock held if the current
 * CPU is offline.
486
 */
487
#ifdef CONFIG_PREEMPT_COUNT
488 489 490 491
static inline int rcu_read_lock_sched_held(void)
{
	int lockdep_opinion = 0;

492 493
	if (!debug_lockdep_rcu_enabled())
		return 1;
494
	if (!rcu_is_watching())
495
		return 0;
496 497
	if (!rcu_lockdep_current_cpu_online())
		return 0;
498 499
	if (debug_locks)
		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
500
	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
501
}
502
#else /* #ifdef CONFIG_PREEMPT_COUNT */
503 504 505
static inline int rcu_read_lock_sched_held(void)
{
	return 1;
506
}
507
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
508 509 510

#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

511 512
# define rcu_lock_acquire(a)		do { } while (0)
# define rcu_lock_release(a)		do { } while (0)
513 514 515 516 517 518 519 520 521 522 523

static inline int rcu_read_lock_held(void)
{
	return 1;
}

static inline int rcu_read_lock_bh_held(void)
{
	return 1;
}

524
#ifdef CONFIG_PREEMPT_COUNT
525 526
static inline int rcu_read_lock_sched_held(void)
{
527
	return preempt_count() != 0 || irqs_disabled();
528
}
529
#else /* #ifdef CONFIG_PREEMPT_COUNT */
530 531 532
static inline int rcu_read_lock_sched_held(void)
{
	return 1;
533
}
534
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
535 536 537 538 539

#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */

#ifdef CONFIG_PROVE_RCU

540 541 542
/**
 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 * @c: condition to check
543
 * @s: informative message
544
 */
545
#define rcu_lockdep_assert(c, s)					\
546
	do {								\
547
		static bool __section(.data.unlikely) __warned;		\
548 549
		if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {	\
			__warned = true;				\
550
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
551 552 553
		}							\
	} while (0)

554 555 556 557
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
static inline void rcu_preempt_sleep_check(void)
{
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
558
			   "Illegal context switch in RCU read-side critical section");
559 560 561 562 563 564 565
}
#else /* #ifdef CONFIG_PROVE_RCU */
static inline void rcu_preempt_sleep_check(void)
{
}
#endif /* #else #ifdef CONFIG_PROVE_RCU */

566 567
#define rcu_sleep_check()						\
	do {								\
568
		rcu_preempt_sleep_check();				\
569
		rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),	\
J
Joe Perches 已提交
570
				   "Illegal context switch in RCU-bh read-side critical section"); \
571
		rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),	\
J
Joe Perches 已提交
572
				   "Illegal context switch in RCU-sched read-side critical section"); \
573 574
	} while (0)

575 576
#else /* #ifdef CONFIG_PROVE_RCU */

577 578
#define rcu_lockdep_assert(c, s) do { } while (0)
#define rcu_sleep_check() do { } while (0)
579 580 581 582 583 584 585 586 587 588 589

#endif /* #else #ifdef CONFIG_PROVE_RCU */

/*
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 * and rcu_assign_pointer().  Some of these could be folded into their
 * callers, but they are left separate in order to ease introduction of
 * multiple flavors of pointers to match the multiple flavors of RCU
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 * the future.
 */
590 591 592 593 594 595 596 597

#ifdef __CHECKER__
#define rcu_dereference_sparse(p, space) \
	((void)(((typeof(*p) space *)p) == p))
#else /* #ifdef __CHECKER__ */
#define rcu_dereference_sparse(p, space)
#endif /* #else #ifdef __CHECKER__ */

598
#define __rcu_access_pointer(p, space) \
599 600 601 602 603
({ \
	typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
	rcu_dereference_sparse(p, space); \
	((typeof(*p) __force __kernel *)(_________p1)); \
})
604
#define __rcu_dereference_check(p, c, space) \
605
({ \
606 607
	/* Dependency order vs. p above. */ \
	typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
608 609
	rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
	rcu_dereference_sparse(p, space); \
610
	((typeof(*p) __force __kernel *)(________p1)); \
611
})
612
#define __rcu_dereference_protected(p, c, space) \
613 614 615 616 617
({ \
	rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
	rcu_dereference_sparse(p, space); \
	((typeof(*p) __force __kernel *)(p)); \
})
618

619
#define __rcu_access_index(p, space) \
620 621 622 623 624
({ \
	typeof(p) _________p1 = ACCESS_ONCE(p); \
	rcu_dereference_sparse(p, space); \
	(_________p1); \
})
625
#define __rcu_dereference_index_check(p, c) \
626
({ \
627 628
	/* Dependency order vs. p above. */ \
	typeof(p) _________p1 = lockless_dereference(p); \
629 630 631 632
	rcu_lockdep_assert(c, \
			   "suspicious rcu_dereference_index_check() usage"); \
	(_________p1); \
})
633 634 635 636 637 638 639

/**
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 * @v: The value to statically initialize with.
 */
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/**
 * lockless_dereference() - safely load a pointer for later dereference
 * @p: The pointer to load
 *
 * Similar to rcu_dereference(), but for situations where the pointed-to
 * object's lifetime is managed by something other than RCU.  That
 * "something other" might be reference counting or simple immortality.
 */
#define lockless_dereference(p) \
({ \
	typeof(p) _________p1 = ACCESS_ONCE(p); \
	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
	(_________p1); \
})

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
/**
 * rcu_assign_pointer() - assign to RCU-protected pointer
 * @p: pointer to assign to
 * @v: value to assign (publish)
 *
 * Assigns the specified value to the specified RCU-protected
 * pointer, ensuring that any concurrent RCU readers will see
 * any prior initialization.
 *
 * Inserts memory barriers on architectures that require them
 * (which is most of them), and also prevents the compiler from
 * reordering the code that initializes the structure after the pointer
 * assignment.  More importantly, this call documents which pointers
 * will be dereferenced by RCU read-side code.
 *
 * In some special cases, you may use RCU_INIT_POINTER() instead
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 * to the fact that it does not constrain either the CPU or the compiler.
 * That said, using RCU_INIT_POINTER() when you should have used
 * rcu_assign_pointer() is a very bad thing that results in
 * impossible-to-diagnose memory corruption.  So please be careful.
 * See the RCU_INIT_POINTER() comment header for details.
 *
 * Note that rcu_assign_pointer() evaluates each of its arguments only
 * once, appearances notwithstanding.  One of the "extra" evaluations
 * is in typeof() and the other visible only to sparse (__CHECKER__),
 * neither of which actually execute the argument.  As with most cpp
 * macros, this execute-arguments-only-once property is important, so
 * please be careful when making changes to rcu_assign_pointer() and the
 * other macros that it invokes.
 */
686
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
687 688 689 690 691 692 693 694 695 696 697 698

/**
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 * @p: The pointer to read
 *
 * Return the value of the specified RCU-protected pointer, but omit the
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 * when the value of this pointer is accessed, but the pointer is not
 * dereferenced, for example, when testing an RCU-protected pointer against
 * NULL.  Although rcu_access_pointer() may also be used in cases where
 * update-side locks prevent the value of the pointer from changing, you
 * should instead use rcu_dereference_protected() for this use case.
699 700 701 702 703 704 705
 *
 * It is also permissible to use rcu_access_pointer() when read-side
 * access to the pointer was removed at least one grace period ago, as
 * is the case in the context of the RCU callback that is freeing up
 * the data, or after a synchronize_rcu() returns.  This can be useful
 * when tearing down multi-linked structures after a grace period
 * has elapsed.
706 707 708
 */
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)

709
/**
710
 * rcu_dereference_check() - rcu_dereference with debug checking
711 712
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
713
 *
714
 * Do an rcu_dereference(), but check that the conditions under which the
715 716 717 718 719
 * dereference will take place are correct.  Typically the conditions
 * indicate the various locking conditions that should be held at that
 * point.  The check should return true if the conditions are satisfied.
 * An implicit check for being in an RCU read-side critical section
 * (rcu_read_lock()) is included.
720 721 722
 *
 * For example:
 *
723
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
724 725
 *
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
726
 * if either rcu_read_lock() is held, or that the lock required to replace
727 728 729 730 731 732
 * the bar struct at foo->bar is held.
 *
 * Note that the list of conditions may also include indications of when a lock
 * need not be held, for example during initialisation or destruction of the
 * target struct:
 *
733
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
734
 *					      atomic_read(&foo->usage) == 0);
735 736 737 738 739 740
 *
 * Inserts memory barriers on architectures that require them
 * (currently only the Alpha), prevents the compiler from refetching
 * (and from merging fetches), and, more importantly, documents exactly
 * which pointers are protected by RCU and checks that the pointer is
 * annotated as __rcu.
741 742
 */
#define rcu_dereference_check(p, c) \
743 744 745 746 747 748 749 750 751 752 753
	__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)

/**
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-bh counterpart to rcu_dereference_check().
 */
#define rcu_dereference_bh_check(p, c) \
	__rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
754

755
/**
756 757 758 759 760 761 762 763 764 765 766 767
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-sched counterpart to rcu_dereference_check().
 */
#define rcu_dereference_sched_check(p, c) \
	__rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
				__rcu)

#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/

768 769 770 771 772 773 774 775 776
/*
 * The tracing infrastructure traces RCU (we want that), but unfortunately
 * some of the RCU checks causes tracing to lock up the system.
 *
 * The tracing version of rcu_dereference_raw() must not call
 * rcu_read_lock_held().
 */
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)

777 778 779 780 781 782 783 784 785 786 787 788 789 790
/**
 * rcu_access_index() - fetch RCU index with no dereferencing
 * @p: The index to read
 *
 * Return the value of the specified RCU-protected index, but omit the
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 * when the value of this index is accessed, but the index is not
 * dereferenced, for example, when testing an RCU-protected index against
 * -1.  Although rcu_access_index() may also be used in cases where
 * update-side locks prevent the value of the index from changing, you
 * should instead use rcu_dereference_index_protected() for this use case.
 */
#define rcu_access_index(p) __rcu_access_index((p), __rcu)

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/**
 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * Similar to rcu_dereference_check(), but omits the sparse checking.
 * This allows rcu_dereference_index_check() to be used on integers,
 * which can then be used as array indices.  Attempting to use
 * rcu_dereference_check() on an integer will give compiler warnings
 * because the sparse address-space mechanism relies on dereferencing
 * the RCU-protected pointer.  Dereferencing integers is not something
 * that even gcc will put up with.
 *
 * Note that this function does not implicitly check for RCU read-side
 * critical sections.  If this function gains lots of uses, it might
 * make sense to provide versions for each flavor of RCU, but it does
 * not make sense as of early 2010.
 */
#define rcu_dereference_index_check(p, c) \
	__rcu_dereference_index_check((p), (c))

/**
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
816 817 818 819 820 821 822 823
 *
 * Return the value of the specified RCU-protected pointer, but omit
 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 * is useful in cases where update-side locks prevent the value of the
 * pointer from changing.  Please note that this primitive does -not-
 * prevent the compiler from repeating this reference or combining it
 * with other references, so it should not be used without protection
 * of appropriate locks.
824 825 826 827
 *
 * This function is only for update-side use.  Using this function
 * when protected only by rcu_read_lock() will result in infrequent
 * but very ugly failures.
828 829
 */
#define rcu_dereference_protected(p, c) \
830
	__rcu_dereference_protected((p), (c), __rcu)
831

832

833
/**
834 835
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
836
 *
837
 * This is a simple wrapper around rcu_dereference_check().
838
 */
839
#define rcu_dereference(p) rcu_dereference_check(p, 0)
840

L
Linus Torvalds 已提交
841
/**
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)

/**
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)

/**
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
L
Linus Torvalds 已提交
859
 *
860
 * When synchronize_rcu() is invoked on one CPU while other CPUs
L
Linus Torvalds 已提交
861
 * are within RCU read-side critical sections, then the
862
 * synchronize_rcu() is guaranteed to block until after all the other
L
Linus Torvalds 已提交
863 864 865 866 867 868
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 * on one CPU while other CPUs are within RCU read-side critical
 * sections, invocation of the corresponding RCU callback is deferred
 * until after the all the other CPUs exit their critical sections.
 *
 * Note, however, that RCU callbacks are permitted to run concurrently
869
 * with new RCU read-side critical sections.  One way that this can happen
L
Linus Torvalds 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883
 * is via the following sequence of events: (1) CPU 0 enters an RCU
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 * callback is invoked.  This is legal, because the RCU read-side critical
 * section that was running concurrently with the call_rcu() (and which
 * therefore might be referencing something that the corresponding RCU
 * callback would free up) has completed before the corresponding
 * RCU callback is invoked.
 *
 * RCU read-side critical sections may be nested.  Any deferred actions
 * will be deferred until the outermost RCU read-side critical section
 * completes.
 *
884 885 886 887 888
 * You can avoid reading and understanding the next paragraph by
 * following this rule: don't put anything in an rcu_read_lock() RCU
 * read-side critical section that would block in a !PREEMPT kernel.
 * But if you want the full story, read on!
 *
889 890
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 * it is illegal to block while in an RCU read-side critical section.
891
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
892 893 894 895 896
 * kernel builds, RCU read-side critical sections may be preempted,
 * but explicit blocking is illegal.  Finally, in preemptible RCU
 * implementations in real-time (with -rt patchset) kernel builds, RCU
 * read-side critical sections may be preempted and they may also block, but
 * only when acquiring spinlocks that are subject to priority inheritance.
L
Linus Torvalds 已提交
897
 */
898 899 900 901
static inline void rcu_read_lock(void)
{
	__rcu_read_lock();
	__acquire(RCU);
902
	rcu_lock_acquire(&rcu_lock_map);
903
	rcu_lockdep_assert(rcu_is_watching(),
904
			   "rcu_read_lock() used illegally while idle");
905
}
L
Linus Torvalds 已提交
906 907 908 909 910 911 912 913 914 915

/*
 * So where is rcu_write_lock()?  It does not exist, as there is no
 * way for writers to lock out RCU readers.  This is a feature, not
 * a bug -- this property is what provides RCU's performance benefits.
 * Of course, writers must coordinate with each other.  The normal
 * spinlock primitives work well for this, but any other technique may be
 * used as well.  RCU does not care how the writers keep out of each
 * others' way, as long as they do so.
 */
916 917

/**
918
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
919
 *
920 921 922 923 924 925
 * In most situations, rcu_read_unlock() is immune from deadlock.
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 * is responsible for deboosting, which it does via rt_mutex_unlock().
 * Unfortunately, this function acquires the scheduler's runqueue and
 * priority-inheritance spinlocks.  This means that deadlock could result
 * if the caller of rcu_read_unlock() already holds one of these locks or
926 927 928
 * any lock that is ever acquired while holding them; or any lock which
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 * does not disable irqs while taking ->wait_lock.
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
 *
 * That said, RCU readers are never priority boosted unless they were
 * preempted.  Therefore, one way to avoid deadlock is to make sure
 * that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with one of
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 * a number of ways, for example, by invoking preempt_disable() before
 * critical section's outermost rcu_read_lock().
 *
 * Given that the set of locks acquired by rt_mutex_unlock() might change
 * at any time, a somewhat more future-proofed approach is to make sure
 * that that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 * This approach relies on the fact that rt_mutex_unlock() currently only
 * acquires irq-disabled locks.
 *
 * The second of these two approaches is best in most situations,
 * however, the first approach can also be useful, at least to those
 * developers willing to keep abreast of the set of locks acquired by
 * rt_mutex_unlock().
 *
950 951
 * See rcu_read_lock() for more information.
 */
952 953
static inline void rcu_read_unlock(void)
{
954
	rcu_lockdep_assert(rcu_is_watching(),
955
			   "rcu_read_unlock() used illegally while idle");
956
	rcu_lock_release(&rcu_lock_map);
957 958 959
	__release(RCU);
	__rcu_read_unlock();
}
L
Linus Torvalds 已提交
960 961

/**
962
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
L
Linus Torvalds 已提交
963 964
 *
 * This is equivalent of rcu_read_lock(), but to be used when updates
965 966 967 968 969 970 971
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 * softirq handler to be a quiescent state, a process in RCU read-side
 * critical section must be protected by disabling softirqs. Read-side
 * critical sections in interrupt context can use just rcu_read_lock(),
 * though this should at least be commented to avoid confusing people
 * reading the code.
972 973 974 975 976
 *
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 * was invoked from some other task.
L
Linus Torvalds 已提交
977
 */
978 979
static inline void rcu_read_lock_bh(void)
{
980
	local_bh_disable();
981
	__acquire(RCU_BH);
982
	rcu_lock_acquire(&rcu_bh_lock_map);
983
	rcu_lockdep_assert(rcu_is_watching(),
984
			   "rcu_read_lock_bh() used illegally while idle");
985
}
L
Linus Torvalds 已提交
986 987 988 989 990 991

/*
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 *
 * See rcu_read_lock_bh() for more information.
 */
992 993
static inline void rcu_read_unlock_bh(void)
{
994
	rcu_lockdep_assert(rcu_is_watching(),
995
			   "rcu_read_unlock_bh() used illegally while idle");
996
	rcu_lock_release(&rcu_bh_lock_map);
997
	__release(RCU_BH);
998
	local_bh_enable();
999
}
L
Linus Torvalds 已提交
1000

1001
/**
1002
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
1003
 *
1004 1005 1006 1007
 * This is equivalent of rcu_read_lock(), but to be used when updates
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 * Read-side critical sections can also be introduced by anything that
 * disables preemption, including local_irq_disable() and friends.
1008 1009 1010 1011 1012
 *
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_sched() from process context if the matching
 * rcu_read_lock_sched() was invoked from an NMI handler.
1013
 */
1014 1015 1016
static inline void rcu_read_lock_sched(void)
{
	preempt_disable();
1017
	__acquire(RCU_SCHED);
1018
	rcu_lock_acquire(&rcu_sched_lock_map);
1019
	rcu_lockdep_assert(rcu_is_watching(),
1020
			   "rcu_read_lock_sched() used illegally while idle");
1021
}
1022 1023

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1024
static inline notrace void rcu_read_lock_sched_notrace(void)
1025 1026
{
	preempt_disable_notrace();
1027
	__acquire(RCU_SCHED);
1028
}
1029 1030 1031 1032 1033 1034

/*
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 *
 * See rcu_read_lock_sched for more information.
 */
1035 1036
static inline void rcu_read_unlock_sched(void)
{
1037
	rcu_lockdep_assert(rcu_is_watching(),
1038
			   "rcu_read_unlock_sched() used illegally while idle");
1039
	rcu_lock_release(&rcu_sched_lock_map);
1040
	__release(RCU_SCHED);
1041 1042
	preempt_enable();
}
1043 1044

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1045
static inline notrace void rcu_read_unlock_sched_notrace(void)
1046
{
1047
	__release(RCU_SCHED);
1048 1049
	preempt_enable_notrace();
}
1050

1051 1052 1053
/**
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 *
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
 * Initialize an RCU-protected pointer in special cases where readers
 * do not need ordering constraints on the CPU or the compiler.  These
 * special cases are:
 *
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
 * 2.	The caller has taken whatever steps are required to prevent
 *	RCU readers from concurrently accessing this pointer -or-
 * 3.	The referenced data structure has already been exposed to
 *	readers either at compile time or via rcu_assign_pointer() -and-
 *	a.	You have not made -any- reader-visible changes to
 *		this structure since then -or-
 *	b.	It is OK for readers accessing this structure from its
 *		new location to see the old state of the structure.  (For
 *		example, the changes were to statistical counters or to
 *		other state where exact synchronization is not required.)
 *
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 * result in impossible-to-diagnose memory corruption.  As in the structures
 * will look OK in crash dumps, but any concurrent RCU readers might
 * see pre-initialized values of the referenced data structure.  So
 * please be very careful how you use RCU_INIT_POINTER()!!!
 *
 * If you are creating an RCU-protected linked structure that is accessed
 * by a single external-to-structure RCU-protected pointer, then you may
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 * pointers, but you must use rcu_assign_pointer() to initialize the
 * external-to-structure pointer -after- you have completely initialized
 * the reader-accessible portions of the linked structure.
1082 1083 1084
 *
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 * ordering guarantees for either the CPU or the compiler.
1085 1086
 */
#define RCU_INIT_POINTER(p, v) \
1087
	do { \
1088
		rcu_dereference_sparse(p, __rcu); \
1089
		p = RCU_INITIALIZER(v); \
1090
	} while (0)
L
Lai Jiangshan 已提交
1091

1092 1093 1094 1095 1096 1097
/**
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 *
 * GCC-style initialization for an RCU-protected pointer in a structure field.
 */
#define RCU_POINTER_INITIALIZER(p, v) \
1098
		.p = RCU_INITIALIZER(v)
L
Lai Jiangshan 已提交
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * Does the specified offset indicate that the corresponding rcu_head
 * structure can be handled by kfree_rcu()?
 */
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)

/*
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 */
#define __kfree_rcu(head, offset) \
	do { \
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
P
Paul E. McKenney 已提交
1112
		kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1113 1114
	} while (0)

L
Lai Jiangshan 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 * kfree_rcu() - kfree an object after a grace period.
 * @ptr:	pointer to kfree
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
 *
 * Many rcu callbacks functions just call kfree() on the base structure.
 * These functions are trivial, but their size adds up, and furthermore
 * when they are used in a kernel module, that module must invoke the
 * high-latency rcu_barrier() function at module-unload time.
 *
 * The kfree_rcu() function handles this issue.  Rather than encoding a
 * function address in the embedded rcu_head structure, kfree_rcu() instead
 * encodes the offset of the rcu_head structure within the base structure.
 * Because the functions are not allowed in the low-order 4096 bytes of
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 * If the offset is larger than 4095 bytes, a compile-time error will
 * be generated in __kfree_rcu().  If this error is triggered, you can
 * either fall back to use of call_rcu() or rearrange the structure to
 * position the rcu_head structure into the first 4096 bytes.
 *
 * Note that the allowable offset might decrease in the future, for example,
 * to allow something like kmem_cache_free_rcu().
1137 1138 1139
 *
 * The BUILD_BUG_ON check must not involve any function calls, hence the
 * checks are done in macros here.
L
Lai Jiangshan 已提交
1140 1141 1142 1143
 */
#define kfree_rcu(ptr, rcu_head)					\
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))

1144
#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1145
static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
1146 1147 1148 1149 1150 1151
{
	*delta_jiffies = ULONG_MAX;
	return 0;
}
#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */

1152 1153 1154
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
#elif defined(CONFIG_RCU_NOCB_CPU)
1155
bool rcu_is_nocb_cpu(int cpu);
1156 1157
#else
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1158
#endif
1159 1160


1161 1162
/* Only for use by adaptive-ticks code. */
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1163 1164
bool rcu_sys_is_idle(void);
void rcu_sysidle_force_exit(void);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

static inline bool rcu_sys_is_idle(void)
{
	return false;
}

static inline void rcu_sysidle_force_exit(void)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */


L
Linus Torvalds 已提交
1179
#endif /* __LINUX_RCUPDATE_H */