memcontrol.c 142.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778 779 780 781 782 783 784 785 786 787 788
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

789
		mem_cgroup_threshold(memcg);
790
		if (unlikely(do_softlimit))
791
			mem_cgroup_update_tree(memcg, page);
792
#if MAX_NUMNODES > 1
793
		if (unlikely(do_numainfo))
794
			atomic_inc(&memcg->numainfo_events);
795
#endif
796 797
	} else
		preempt_enable();
798 799
}

G
Glauber Costa 已提交
800
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
801 802 803 804 805 806
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

807
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808
{
809 810 811 812 813 814 815 816
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

817 818 819 820
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

821
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822
{
823
	struct mem_cgroup *memcg = NULL;
824 825 826

	if (!mm)
		return NULL;
827 828 829 830 831 832 833
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
834 835
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
836
			break;
837
	} while (!css_tryget(&memcg->css));
838
	rcu_read_unlock();
839
	return memcg;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
862
{
863 864
	struct mem_cgroup *memcg = NULL;
	int id = 0;
865

866 867 868
	if (mem_cgroup_disabled())
		return NULL;

869 870
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
871

872 873
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
874

875 876
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
883

884
	while (!memcg) {
885
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886
		struct cgroup_subsys_state *css;
887

888 889 890 891 892 893 894 895 896 897 898
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
908 909
		rcu_read_unlock();

910 911 912 913 914 915 916
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
917 918 919 920 921

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
922
}
K
KAMEZAWA Hiroyuki 已提交
923

924 925 926 927 928 929 930
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
931 932 933 934 935 936
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
937

938 939 940 941 942 943
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
944
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945
	     iter != NULL;				\
946
	     iter = mem_cgroup_iter(root, iter, NULL))
947

948
#define for_each_mem_cgroup(iter)			\
949
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950
	     iter != NULL;				\
951
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
952

953
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954
{
955
	return (memcg == root_mem_cgroup);
956 957
}

958 959
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
960
	struct mem_cgroup *memcg;
961 962 963 964 965

	if (!mm)
		return;

	rcu_read_lock();
966 967
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
968 969 970 971
		goto out;

	switch (idx) {
	case PGFAULT:
972 973 974 975
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 977 978 979 980 981 982 983 984
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1034 1035
{
	struct mem_cgroup_per_zone *mz;
1036 1037
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1038

1039
	if (mem_cgroup_disabled())
1040 1041
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1042
	pc = lookup_page_cgroup(page);
1043
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044
	/*
1045 1046 1047 1048 1049 1050 1051
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
1052
	 */
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	smp_mb();
	/*
	 * If the page is uncharged, it may be freed soon, but it
	 * could also be swap cache (readahead, swapoff) that needs to
	 * be reclaimable in the future.  root_mem_cgroup will babysit
	 * it for the time being.
	 */
	if (PageCgroupUsed(pc)) {
		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
		smp_rmb();
		memcg = pc->mem_cgroup;
		SetPageCgroupAcctLRU(pc);
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1071
}
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1082
 */
1083
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084 1085
{
	struct mem_cgroup_per_zone *mz;
1086
	struct mem_cgroup *memcg;
1087 1088 1089 1090 1091 1092
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * root_mem_cgroup babysits uncharged LRU pages, but
	 * PageCgroupUsed is cleared when the page is about to get
	 * freed.  PageCgroupAcctLRU remembers whether the
	 * LRU-accounting happened against pc->mem_cgroup or
	 * root_mem_cgroup.
	 */
	if (TestClearPageCgroupAcctLRU(pc)) {
		VM_BUG_ON(!pc->mem_cgroup);
		memcg = pc->mem_cgroup;
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108 1109
}

1110
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	mem_cgroup_lru_del_list(page, page_lru(page));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1133
{
1134 1135 1136
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

1139
/*
1140
 * Checks whether given mem is same or in the root_mem_cgroup's
1141 1142
 * hierarchy subtree
 */
1143 1144
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1145
{
1146 1147 1148
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1149 1150 1151 1152 1153
	}

	return true;
}

1154
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1155 1156
{
	int ret;
1157
	struct mem_cgroup *curr = NULL;
1158
	struct task_struct *p;
1159

1160
	p = find_lock_task_mm(task);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1176 1177
	if (!curr)
		return 0;
1178
	/*
1179
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1180
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1181 1182
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1183
	 */
1184
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1185
	css_put(&curr->css);
1186 1187 1188
	return ret;
}

1189
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1190
{
1191 1192 1193
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1194
	unsigned long inactive;
1195
	unsigned long active;
1196
	unsigned long gb;
1197

1198 1199 1200 1201
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1202

1203 1204 1205 1206 1207 1208
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1209
	return inactive * inactive_ratio < active;
1210 1211
}

1212
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1213 1214 1215
{
	unsigned long active;
	unsigned long inactive;
1216 1217
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1218

1219 1220 1221 1222
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1223 1224 1225 1226

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1227 1228 1229
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1230
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1247 1248
	if (!PageCgroupUsed(pc))
		return NULL;
1249 1250
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1251
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1252 1253 1254
	return &mz->reclaim_stat;
}

1255 1256 1257
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1258
/**
1259 1260
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1261
 *
1262
 * Returns the maximum amount of memory @mem can be charged with, in
1263
 * pages.
1264
 */
1265
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1266
{
1267 1268
	unsigned long long margin;

1269
	margin = res_counter_margin(&memcg->res);
1270
	if (do_swap_account)
1271
		margin = min(margin, res_counter_margin(&memcg->memsw));
1272
	return margin >> PAGE_SHIFT;
1273 1274
}

1275
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1276 1277 1278 1279 1280 1281 1282
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1283
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1284 1285
}

1286
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1287 1288
{
	int cpu;
1289 1290

	get_online_cpus();
1291
	spin_lock(&memcg->pcp_counter_lock);
1292
	for_each_online_cpu(cpu)
1293 1294 1295
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1296
	put_online_cpus();
1297 1298 1299 1300

	synchronize_rcu();
}

1301
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1302 1303 1304
{
	int cpu;

1305
	if (!memcg)
1306
		return;
1307
	get_online_cpus();
1308
	spin_lock(&memcg->pcp_counter_lock);
1309
	for_each_online_cpu(cpu)
1310 1311 1312
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1313
	put_online_cpus();
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1327
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1328 1329
{
	VM_BUG_ON(!rcu_read_lock_held());
1330
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1331
}
1332

1333
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334
{
1335 1336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1337
	bool ret = false;
1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1347

1348 1349
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1350 1351
unlock:
	spin_unlock(&mc.lock);
1352 1353 1354
	return ret;
}

1355
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 1357
{
	if (mc.moving_task && current != mc.moving_task) {
1358
		if (mem_cgroup_under_move(memcg)) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1371
/**
1372
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1391
	if (!memcg || !p)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1438 1439 1440 1441
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1442
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1443 1444
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1445 1446
	struct mem_cgroup *iter;

1447
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1448
		num++;
1449 1450 1451
	return num;
}

D
David Rientjes 已提交
1452 1453 1454 1455 1456 1457 1458 1459
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1460 1461 1462
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1463 1464 1465 1466 1467 1468 1469 1470
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1517
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1518 1519
		int nid, bool noswap)
{
1520
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1521 1522 1523
		return true;
	if (noswap || !total_swap_pages)
		return false;
1524
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1525 1526 1527 1528
		return true;
	return false;

}
1529 1530 1531 1532 1533 1534 1535 1536
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1537
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1538 1539
{
	int nid;
1540 1541 1542 1543
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1544
	if (!atomic_read(&memcg->numainfo_events))
1545
		return;
1546
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1547 1548 1549
		return;

	/* make a nodemask where this memcg uses memory from */
1550
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1551 1552 1553

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1554 1555
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1556
	}
1557

1558 1559
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1574
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1575 1576 1577
{
	int node;

1578 1579
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1580

1581
	node = next_node(node, memcg->scan_nodes);
1582
	if (node == MAX_NUMNODES)
1583
		node = first_node(memcg->scan_nodes);
1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1593
	memcg->last_scanned_node = node;
1594 1595 1596
	return node;
}

1597 1598 1599 1600 1601 1602
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1603
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1604 1605 1606 1607 1608 1609 1610
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1611 1612
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1613
		     nid < MAX_NUMNODES;
1614
		     nid = next_node(nid, memcg->scan_nodes)) {
1615

1616
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1617 1618 1619 1620 1621 1622 1623
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1624
		if (node_isset(nid, memcg->scan_nodes))
1625
			continue;
1626
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1627 1628 1629 1630 1631
			return true;
	}
	return false;
}

1632
#else
1633
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1634 1635 1636
{
	return 0;
}
1637

1638
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1639
{
1640
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1641
}
1642 1643
#endif

1644 1645 1646 1647
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1648
{
1649
	struct mem_cgroup *victim = NULL;
1650
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1651
	int loop = 0;
1652
	unsigned long excess;
1653
	unsigned long nr_scanned;
1654 1655 1656 1657
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1658

1659
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1660

1661
	while (1) {
1662
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1663
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1664
			loop++;
1665 1666 1667 1668 1669 1670
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1671
				if (!total)
1672 1673
					break;
				/*
L
Lucas De Marchi 已提交
1674
				 * We want to do more targeted reclaim.
1675 1676 1677 1678 1679
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1680
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1681 1682
					break;
			}
1683
			continue;
1684
		}
1685
		if (!mem_cgroup_reclaimable(victim, false))
1686
			continue;
1687 1688 1689 1690
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1691
			break;
1692
	}
1693
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1694
	return total;
1695 1696
}

K
KAMEZAWA Hiroyuki 已提交
1697 1698 1699
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1700
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1701
 */
1702
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1703
{
1704
	struct mem_cgroup *iter, *failed = NULL;
1705

1706
	for_each_mem_cgroup_tree(iter, memcg) {
1707
		if (iter->oom_lock) {
1708 1709 1710 1711 1712
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1713 1714
			mem_cgroup_iter_break(memcg, iter);
			break;
1715 1716
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1717
	}
K
KAMEZAWA Hiroyuki 已提交
1718

1719
	if (!failed)
1720
		return true;
1721 1722 1723 1724 1725

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1726
	for_each_mem_cgroup_tree(iter, memcg) {
1727
		if (iter == failed) {
1728 1729
			mem_cgroup_iter_break(memcg, iter);
			break;
1730 1731 1732
		}
		iter->oom_lock = false;
	}
1733
	return false;
1734
}
1735

1736
/*
1737
 * Has to be called with memcg_oom_lock
1738
 */
1739
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1740
{
K
KAMEZAWA Hiroyuki 已提交
1741 1742
	struct mem_cgroup *iter;

1743
	for_each_mem_cgroup_tree(iter, memcg)
1744 1745 1746 1747
		iter->oom_lock = false;
	return 0;
}

1748
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1749 1750 1751
{
	struct mem_cgroup *iter;

1752
	for_each_mem_cgroup_tree(iter, memcg)
1753 1754 1755
		atomic_inc(&iter->under_oom);
}

1756
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1757 1758 1759
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762 1763 1764
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1765
	for_each_mem_cgroup_tree(iter, memcg)
1766
		atomic_add_unless(&iter->under_oom, -1, 0);
1767 1768
}

1769
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1770 1771
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1772 1773 1774 1775 1776 1777 1778 1779
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1780 1781
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1782 1783 1784
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1785
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1786 1787 1788 1789 1790

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1791 1792
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1793 1794 1795 1796
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1797
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1798
{
1799 1800
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1801 1802
}

1803
static void memcg_oom_recover(struct mem_cgroup *memcg)
1804
{
1805 1806
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1807 1808
}

K
KAMEZAWA Hiroyuki 已提交
1809 1810 1811
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1812
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1813
{
K
KAMEZAWA Hiroyuki 已提交
1814
	struct oom_wait_info owait;
1815
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1816

1817
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1818 1819 1820 1821
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1822
	need_to_kill = true;
1823
	mem_cgroup_mark_under_oom(memcg);
1824

1825
	/* At first, try to OOM lock hierarchy under memcg.*/
1826
	spin_lock(&memcg_oom_lock);
1827
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1828 1829 1830 1831 1832
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1833
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1834
	if (!locked || memcg->oom_kill_disable)
1835 1836
		need_to_kill = false;
	if (locked)
1837
		mem_cgroup_oom_notify(memcg);
1838
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1839

1840 1841
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1842
		mem_cgroup_out_of_memory(memcg, mask);
1843
	} else {
K
KAMEZAWA Hiroyuki 已提交
1844
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1845
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1846
	}
1847
	spin_lock(&memcg_oom_lock);
1848
	if (locked)
1849 1850
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1851
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1852

1853
	mem_cgroup_unmark_under_oom(memcg);
1854

K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1858
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1859
	return true;
1860 1861
}

1862 1863 1864
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1884
 */
1885

1886 1887
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1888
{
1889
	struct mem_cgroup *memcg;
1890 1891
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1892
	unsigned long uninitialized_var(flags);
1893

1894
	if (mem_cgroup_disabled())
1895 1896
		return;

1897
	rcu_read_lock();
1898 1899
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1900 1901
		goto out;
	/* pc->mem_cgroup is unstable ? */
1902
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1903
		/* take a lock against to access pc->mem_cgroup */
1904
		move_lock_page_cgroup(pc, &flags);
1905
		need_unlock = true;
1906 1907
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1908 1909
			goto out;
	}
1910 1911

	switch (idx) {
1912
	case MEMCG_NR_FILE_MAPPED:
1913 1914 1915
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1916
			ClearPageCgroupFileMapped(pc);
1917
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1918 1919 1920
		break;
	default:
		BUG();
1921
	}
1922

1923
	this_cpu_add(memcg->stat->count[idx], val);
1924

1925 1926
out:
	if (unlikely(need_unlock))
1927
		move_unlock_page_cgroup(pc, &flags);
1928 1929
	rcu_read_unlock();
	return;
1930
}
1931
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1932

1933 1934 1935 1936
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1937
#define CHARGE_BATCH	32U
1938 1939
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1940
	unsigned int nr_pages;
1941
	struct work_struct work;
1942 1943
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1944 1945
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1946
static DEFINE_MUTEX(percpu_charge_mutex);
1947 1948

/*
1949
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1950 1951 1952 1953
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1954
static bool consume_stock(struct mem_cgroup *memcg)
1955 1956 1957 1958 1959
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1960
	if (memcg == stock->cached && stock->nr_pages)
1961
		stock->nr_pages--;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1975 1976 1977 1978
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1979
		if (do_swap_account)
1980 1981
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1994
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1995 1996 1997 1998
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1999
 * This will be consumed by consume_stock() function, later.
2000
 */
2001
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2002 2003 2004
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2005
	if (stock->cached != memcg) { /* reset if necessary */
2006
		drain_stock(stock);
2007
		stock->cached = memcg;
2008
	}
2009
	stock->nr_pages += nr_pages;
2010 2011 2012 2013
	put_cpu_var(memcg_stock);
}

/*
2014
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2015 2016
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2017
 */
2018
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2019
{
2020
	int cpu, curcpu;
2021

2022 2023
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2024
	curcpu = get_cpu();
2025 2026
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2027
		struct mem_cgroup *memcg;
2028

2029 2030
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2031
			continue;
2032
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2033
			continue;
2034 2035 2036 2037 2038 2039
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2040
	}
2041
	put_cpu();
2042 2043 2044 2045 2046 2047

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2049 2050 2051
			flush_work(&stock->work);
	}
out:
2052
 	put_online_cpus();
2053 2054 2055 2056 2057 2058 2059 2060
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2061
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2062
{
2063 2064 2065 2066 2067
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2068
	drain_all_stock(root_memcg, false);
2069
	mutex_unlock(&percpu_charge_mutex);
2070 2071 2072
}

/* This is a synchronous drain interface. */
2073
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2074 2075
{
	/* called when force_empty is called */
2076
	mutex_lock(&percpu_charge_mutex);
2077
	drain_all_stock(root_memcg, true);
2078
	mutex_unlock(&percpu_charge_mutex);
2079 2080
}

2081 2082 2083 2084
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2085
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2086 2087 2088
{
	int i;

2089
	spin_lock(&memcg->pcp_counter_lock);
2090
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2091
		long x = per_cpu(memcg->stat->count[i], cpu);
2092

2093 2094
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2095
	}
2096
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2097
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2098

2099 2100
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2101
	}
2102
	/* need to clear ON_MOVE value, works as a kind of lock. */
2103 2104
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2105 2106
}

2107
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2108 2109 2110
{
	int idx = MEM_CGROUP_ON_MOVE;

2111 2112 2113
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2114 2115 2116
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2117 2118 2119 2120 2121
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2122
	struct mem_cgroup *iter;
2123

2124
	if ((action == CPU_ONLINE)) {
2125
		for_each_mem_cgroup(iter)
2126 2127 2128 2129
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2130
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2131
		return NOTIFY_OK;
2132

2133
	for_each_mem_cgroup(iter)
2134 2135
		mem_cgroup_drain_pcp_counter(iter, cpu);

2136 2137 2138 2139 2140
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2151
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2152
				unsigned int nr_pages, bool oom_check)
2153
{
2154
	unsigned long csize = nr_pages * PAGE_SIZE;
2155 2156 2157 2158 2159
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2160
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2161 2162 2163 2164

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2165
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2166 2167 2168
		if (likely(!ret))
			return CHARGE_OK;

2169
		res_counter_uncharge(&memcg->res, csize);
2170 2171 2172 2173
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2174
	/*
2175 2176
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2177 2178 2179 2180
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2181
	if (nr_pages == CHARGE_BATCH)
2182 2183 2184 2185 2186
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2187
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2188
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2189
		return CHARGE_RETRY;
2190
	/*
2191 2192 2193 2194 2195 2196 2197
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2198
	 */
2199
	if (nr_pages == 1 && ret)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2219 2220 2221
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2222
 */
2223
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2224
				   gfp_t gfp_mask,
2225
				   unsigned int nr_pages,
2226
				   struct mem_cgroup **ptr,
2227
				   bool oom)
2228
{
2229
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2230
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2231
	struct mem_cgroup *memcg = NULL;
2232
	int ret;
2233

K
KAMEZAWA Hiroyuki 已提交
2234 2235 2236 2237 2238 2239 2240 2241
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2242

2243
	/*
2244 2245
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2246 2247 2248
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2249
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2250 2251
		goto bypass;
again:
2252 2253 2254 2255
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2256
			goto done;
2257
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2258
			goto done;
2259
		css_get(&memcg->css);
2260
	} else {
K
KAMEZAWA Hiroyuki 已提交
2261
		struct task_struct *p;
2262

K
KAMEZAWA Hiroyuki 已提交
2263 2264 2265
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2266
		 * Because we don't have task_lock(), "p" can exit.
2267
		 * In that case, "memcg" can point to root or p can be NULL with
2268 2269 2270 2271 2272 2273
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2274
		 */
2275 2276
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2277 2278 2279
			rcu_read_unlock();
			goto done;
		}
2280
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2293
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2294 2295 2296 2297 2298
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2299

2300 2301
	do {
		bool oom_check;
2302

2303
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2304
		if (fatal_signal_pending(current)) {
2305
			css_put(&memcg->css);
2306
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2307
		}
2308

2309 2310 2311 2312
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2313
		}
2314

2315
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2316 2317 2318 2319
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2320
			batch = nr_pages;
2321 2322
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2323
			goto again;
2324
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2325
			css_put(&memcg->css);
2326 2327
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2328
			if (!oom) {
2329
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2330
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2331
			}
2332 2333 2334 2335
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2336
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2337
			goto bypass;
2338
		}
2339 2340
	} while (ret != CHARGE_OK);

2341
	if (batch > nr_pages)
2342 2343
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2344
done:
2345
	*ptr = memcg;
2346 2347
	return 0;
nomem:
2348
	*ptr = NULL;
2349
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2350
bypass:
2351
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2352
	return 0;
2353
}
2354

2355 2356 2357 2358 2359
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2360
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2361
				       unsigned int nr_pages)
2362
{
2363
	if (!mem_cgroup_is_root(memcg)) {
2364 2365
		unsigned long bytes = nr_pages * PAGE_SIZE;

2366
		res_counter_uncharge(&memcg->res, bytes);
2367
		if (do_swap_account)
2368
			res_counter_uncharge(&memcg->memsw, bytes);
2369
	}
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2391
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2392
{
2393
	struct mem_cgroup *memcg = NULL;
2394
	struct page_cgroup *pc;
2395
	unsigned short id;
2396 2397
	swp_entry_t ent;

2398 2399 2400
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2401
	lock_page_cgroup(pc);
2402
	if (PageCgroupUsed(pc)) {
2403 2404 2405
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2406
	} else if (PageSwapCache(page)) {
2407
		ent.val = page_private(page);
2408
		id = lookup_swap_cgroup_id(ent);
2409
		rcu_read_lock();
2410 2411 2412
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2413
		rcu_read_unlock();
2414
	}
2415
	unlock_page_cgroup(pc);
2416
	return memcg;
2417 2418
}

2419
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2420
				       struct page *page,
2421
				       unsigned int nr_pages,
2422
				       struct page_cgroup *pc,
2423
				       enum charge_type ctype)
2424
{
2425 2426 2427
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2428
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2429 2430 2431 2432 2433 2434
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2435
	pc->mem_cgroup = memcg;
2436 2437 2438 2439 2440 2441 2442
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2443
	smp_wmb();
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2457

2458
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2459
	unlock_page_cgroup(pc);
2460 2461 2462 2463 2464
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2465
	memcg_check_events(memcg, page);
2466
}
2467

2468 2469 2470 2471 2472 2473
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
2474 2475 2476
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2477
 */
2478
void mem_cgroup_split_huge_fixup(struct page *head)
2479 2480
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2481 2482
	struct page_cgroup *pc;
	int i;
2483

2484 2485
	if (mem_cgroup_disabled())
		return;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		/*
		 * LRU flags cannot be copied because we need to add tail
		 * page to LRU by generic call and our hooks will be called.
		 */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2496

2497 2498 2499 2500 2501 2502 2503
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;
		/*
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2504
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2505
		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2506
	}
2507 2508 2509
}
#endif

2510
/**
2511
 * mem_cgroup_move_account - move account of the page
2512
 * @page: the page
2513
 * @nr_pages: number of regular pages (>1 for huge pages)
2514 2515 2516
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2517
 * @uncharge: whether we should call uncharge and css_put against @from.
2518 2519
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2520
 * - page is not on LRU (isolate_page() is useful.)
2521
 * - compound_lock is held when nr_pages > 1
2522
 *
2523
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2524
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2525 2526
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2527
 */
2528 2529 2530 2531 2532 2533
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2534
{
2535 2536
	unsigned long flags;
	int ret;
2537

2538
	VM_BUG_ON(from == to);
2539
	VM_BUG_ON(PageLRU(page));
2540 2541 2542 2543 2544 2545 2546
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2547
	if (nr_pages > 1 && !PageTransHuge(page))
2548 2549 2550 2551 2552 2553 2554 2555 2556
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2557

2558
	if (PageCgroupFileMapped(pc)) {
2559 2560 2561 2562 2563
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2564
	}
2565
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2566 2567
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2568
		__mem_cgroup_cancel_charge(from, nr_pages);
2569

2570
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2571
	pc->mem_cgroup = to;
2572
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2573 2574 2575
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2576
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2577
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2578
	 * status here.
2579
	 */
2580 2581 2582
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2583
	unlock_page_cgroup(pc);
2584 2585 2586
	/*
	 * check events
	 */
2587 2588
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2589
out:
2590 2591 2592 2593 2594 2595 2596
	return ret;
}

/*
 * move charges to its parent.
 */

2597 2598
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2599 2600 2601 2602 2603 2604
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2605
	unsigned int nr_pages;
2606
	unsigned long uninitialized_var(flags);
2607 2608 2609 2610 2611 2612
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2613 2614 2615 2616 2617
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2618

2619
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2620

2621
	parent = mem_cgroup_from_cont(pcg);
2622
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2623
	if (ret || !parent)
2624
		goto put_back;
2625

2626
	if (nr_pages > 1)
2627 2628
		flags = compound_lock_irqsave(page);

2629
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2630
	if (ret)
2631
		__mem_cgroup_cancel_charge(parent, nr_pages);
2632

2633
	if (nr_pages > 1)
2634
		compound_unlock_irqrestore(page, flags);
2635
put_back:
K
KAMEZAWA Hiroyuki 已提交
2636
	putback_lru_page(page);
2637
put:
2638
	put_page(page);
2639
out:
2640 2641 2642
	return ret;
}

2643 2644 2645 2646 2647 2648 2649
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2650
				gfp_t gfp_mask, enum charge_type ctype)
2651
{
2652
	struct mem_cgroup *memcg = NULL;
2653
	unsigned int nr_pages = 1;
2654
	struct page_cgroup *pc;
2655
	bool oom = true;
2656
	int ret;
A
Andrea Arcangeli 已提交
2657

A
Andrea Arcangeli 已提交
2658
	if (PageTransHuge(page)) {
2659
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2660
		VM_BUG_ON(!PageTransHuge(page));
2661 2662 2663 2664 2665
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2666
	}
2667 2668

	pc = lookup_page_cgroup(page);
2669 2670
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2671 2672
		return ret;

2673
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2674 2675 2676
	return 0;
}

2677 2678
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2679
{
2680
	if (mem_cgroup_disabled())
2681
		return 0;
2682 2683 2684
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2685
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2686
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2687 2688
}

D
Daisuke Nishimura 已提交
2689 2690 2691 2692
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2693
static void
2694
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2695 2696 2697
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
2698 2699 2700 2701
	struct zone *zone = page_zone(page);
	unsigned long flags;
	bool removed = false;

2702 2703 2704 2705 2706
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
2707 2708 2709 2710 2711 2712
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(page)) {
		del_page_from_lru_list(zone, page, page_lru(page));
		ClearPageLRU(page);
		removed = true;
	}
2713
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2714 2715 2716 2717 2718
	if (removed) {
		add_page_to_lru_list(zone, page, page_lru(page));
		SetPageLRU(page);
	}
	spin_unlock_irqrestore(&zone->lru_lock, flags);
2719 2720 2721
	return;
}

2722 2723
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2724
{
2725
	struct mem_cgroup *memcg = NULL;
2726
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2727 2728
	int ret;

2729
	if (mem_cgroup_disabled())
2730
		return 0;
2731 2732
	if (PageCompound(page))
		return 0;
2733

2734
	if (unlikely(!mm))
2735
		mm = &init_mm;
2736 2737
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2738

2739 2740 2741 2742
	if (!PageSwapCache(page)) {
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
		WARN_ON_ONCE(PageLRU(page));
	} else { /* page is swapcache/shmem */
2743
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2744
		if (!ret)
2745 2746
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2747
	return ret;
2748 2749
}

2750 2751 2752
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2753
 * struct page_cgroup is acquired. This refcnt will be consumed by
2754 2755
 * "commit()" or removed by "cancel()"
 */
2756 2757
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2758
				 gfp_t mask, struct mem_cgroup **memcgp)
2759
{
2760
	struct mem_cgroup *memcg;
2761
	int ret;
2762

2763
	*memcgp = NULL;
2764

2765
	if (mem_cgroup_disabled())
2766 2767 2768 2769 2770 2771
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2772 2773 2774
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2775 2776
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2777
		goto charge_cur_mm;
2778 2779
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2780
		goto charge_cur_mm;
2781 2782
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2783
	css_put(&memcg->css);
2784
	return ret;
2785 2786 2787
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2788
	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2789 2790
}

D
Daisuke Nishimura 已提交
2791
static void
2792
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2793
					enum charge_type ctype)
2794
{
2795
	if (mem_cgroup_disabled())
2796
		return;
2797
	if (!memcg)
2798
		return;
2799
	cgroup_exclude_rmdir(&memcg->css);
2800

2801
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2802 2803 2804
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2805 2806 2807
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2808
	 */
2809
	if (do_swap_account && PageSwapCache(page)) {
2810
		swp_entry_t ent = {.val = page_private(page)};
2811
		struct mem_cgroup *swap_memcg;
2812 2813 2814 2815
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2816 2817
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2818 2819 2820 2821
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2822 2823 2824 2825 2826
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2827
		}
2828
		rcu_read_unlock();
2829
	}
2830 2831 2832 2833 2834
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2835
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2836 2837
}

2838 2839
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2840
{
2841 2842
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2843 2844
}

2845
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2846
{
2847
	if (mem_cgroup_disabled())
2848
		return;
2849
	if (!memcg)
2850
		return;
2851
	__mem_cgroup_cancel_charge(memcg, 1);
2852 2853
}

2854
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2855 2856
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2857 2858 2859
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2872
		batch->memcg = memcg;
2873 2874
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2875
	 * In those cases, all pages freed continuously can be expected to be in
2876 2877 2878 2879 2880 2881 2882 2883
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2884
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2885 2886
		goto direct_uncharge;

2887 2888 2889 2890 2891
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2892
	if (batch->memcg != memcg)
2893 2894
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2895
	batch->nr_pages++;
2896
	if (uncharge_memsw)
2897
		batch->memsw_nr_pages++;
2898 2899
	return;
direct_uncharge:
2900
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2901
	if (uncharge_memsw)
2902 2903 2904
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2905 2906
	return;
}
2907

2908
/*
2909
 * uncharge if !page_mapped(page)
2910
 */
2911
static struct mem_cgroup *
2912
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2913
{
2914
	struct mem_cgroup *memcg = NULL;
2915 2916
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2917

2918
	if (mem_cgroup_disabled())
2919
		return NULL;
2920

K
KAMEZAWA Hiroyuki 已提交
2921
	if (PageSwapCache(page))
2922
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2923

A
Andrea Arcangeli 已提交
2924
	if (PageTransHuge(page)) {
2925
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2926 2927
		VM_BUG_ON(!PageTransHuge(page));
	}
2928
	/*
2929
	 * Check if our page_cgroup is valid
2930
	 */
2931
	pc = lookup_page_cgroup(page);
2932
	if (unlikely(!PageCgroupUsed(pc)))
2933
		return NULL;
2934

2935
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2936

2937
	memcg = pc->mem_cgroup;
2938

K
KAMEZAWA Hiroyuki 已提交
2939 2940 2941 2942 2943
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2944
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2945 2946
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2958
	}
K
KAMEZAWA Hiroyuki 已提交
2959

2960
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2961

2962
	ClearPageCgroupUsed(pc);
2963 2964 2965 2966 2967 2968
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2969

2970
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2971
	/*
2972
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2973 2974
	 * will never be freed.
	 */
2975
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2976
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2977 2978
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2979
	}
2980 2981
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2982

2983
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2984 2985 2986

unlock_out:
	unlock_page_cgroup(pc);
2987
	return NULL;
2988 2989
}

2990 2991
void mem_cgroup_uncharge_page(struct page *page)
{
2992 2993 2994
	/* early check. */
	if (page_mapped(page))
		return;
2995
	VM_BUG_ON(page->mapping && !PageAnon(page));
2996 2997 2998 2999 3000 3001
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3002
	VM_BUG_ON(page->mapping);
3003 3004 3005
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3020 3021
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3042 3043 3044 3045 3046 3047
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3048
	memcg_oom_recover(batch->memcg);
3049 3050 3051 3052
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3053
#ifdef CONFIG_SWAP
3054
/*
3055
 * called after __delete_from_swap_cache() and drop "page" account.
3056 3057
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3058 3059
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3060 3061
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3062 3063 3064 3065 3066 3067
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3068

K
KAMEZAWA Hiroyuki 已提交
3069 3070 3071 3072 3073
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3074
		swap_cgroup_record(ent, css_id(&memcg->css));
3075
}
3076
#endif
3077 3078 3079 3080 3081 3082 3083

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3084
{
3085
	struct mem_cgroup *memcg;
3086
	unsigned short id;
3087 3088 3089 3090

	if (!do_swap_account)
		return;

3091 3092 3093
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3094
	if (memcg) {
3095 3096 3097 3098
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3099
		if (!mem_cgroup_is_root(memcg))
3100
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3101
		mem_cgroup_swap_statistics(memcg, false);
3102 3103
		mem_cgroup_put(memcg);
	}
3104
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3105
}
3106 3107 3108 3109 3110 3111

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3112
 * @need_fixup: whether we should fixup res_counters and refcounts.
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3123
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3124 3125 3126 3127 3128 3129 3130 3131
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3132
		mem_cgroup_swap_statistics(to, true);
3133
		/*
3134 3135 3136 3137 3138 3139
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3140 3141
		 */
		mem_cgroup_get(to);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3153 3154 3155 3156 3157 3158
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3159
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3160 3161 3162
{
	return -EINVAL;
}
3163
#endif
K
KAMEZAWA Hiroyuki 已提交
3164

3165
/*
3166 3167
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3168
 */
3169
int mem_cgroup_prepare_migration(struct page *page,
3170
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3171
{
3172
	struct mem_cgroup *memcg = NULL;
3173
	struct page_cgroup *pc;
3174
	enum charge_type ctype;
3175
	int ret = 0;
3176

3177
	*memcgp = NULL;
3178

A
Andrea Arcangeli 已提交
3179
	VM_BUG_ON(PageTransHuge(page));
3180
	if (mem_cgroup_disabled())
3181 3182
		return 0;

3183 3184 3185
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3186 3187
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3219
	}
3220
	unlock_page_cgroup(pc);
3221 3222 3223 3224
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3225
	if (!memcg)
3226
		return 0;
3227

3228 3229
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3230
	css_put(&memcg->css);/* drop extra refcnt */
3231
	if (ret || *memcgp == NULL) {
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3242
	}
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3256
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3257
	return ret;
3258
}
3259

3260
/* remove redundant charge if migration failed*/
3261
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3262
	struct page *oldpage, struct page *newpage, bool migration_ok)
3263
{
3264
	struct page *used, *unused;
3265 3266
	struct page_cgroup *pc;

3267
	if (!memcg)
3268
		return;
3269
	/* blocks rmdir() */
3270
	cgroup_exclude_rmdir(&memcg->css);
3271
	if (!migration_ok) {
3272 3273
		used = oldpage;
		unused = newpage;
3274
	} else {
3275
		used = newpage;
3276 3277
		unused = oldpage;
	}
3278
	/*
3279 3280 3281
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3282
	 */
3283 3284 3285 3286
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3287

3288 3289
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3290
	/*
3291 3292 3293 3294 3295 3296
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3297
	 */
3298 3299
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3300
	/*
3301 3302
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3303 3304 3305
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3306
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3307
}
3308

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3340
	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3341 3342
}

3343 3344 3345 3346 3347 3348
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3349 3350 3351 3352 3353
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3394 3395
static DEFINE_MUTEX(set_limit_mutex);

3396
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3397
				unsigned long long val)
3398
{
3399
	int retry_count;
3400
	u64 memswlimit, memlimit;
3401
	int ret = 0;
3402 3403
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3404
	int enlarge;
3405 3406 3407 3408 3409 3410 3411 3412 3413

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3414

3415
	enlarge = 0;
3416
	while (retry_count) {
3417 3418 3419 3420
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3421 3422 3423
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3424
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3425 3426 3427 3428 3429 3430
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3431 3432
			break;
		}
3433 3434 3435 3436 3437

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3438
		ret = res_counter_set_limit(&memcg->res, val);
3439 3440 3441 3442 3443 3444
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3445 3446 3447 3448 3449
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3450 3451
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3452 3453 3454 3455 3456 3457
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3458
	}
3459 3460
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3461

3462 3463 3464
	return ret;
}

L
Li Zefan 已提交
3465 3466
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3467
{
3468
	int retry_count;
3469
	u64 memlimit, memswlimit, oldusage, curusage;
3470 3471
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3472
	int enlarge = 0;
3473

3474 3475 3476
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3477 3478 3479 3480 3481 3482 3483 3484
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3485
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3486 3487 3488 3489 3490 3491 3492 3493
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3494 3495 3496
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3497
		ret = res_counter_set_limit(&memcg->memsw, val);
3498 3499 3500 3501 3502 3503
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3504 3505 3506 3507 3508
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3509 3510 3511
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3512
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3513
		/* Usage is reduced ? */
3514
		if (curusage >= oldusage)
3515
			retry_count--;
3516 3517
		else
			oldusage = curusage;
3518
	}
3519 3520
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3521 3522 3523
	return ret;
}

3524
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3525 3526
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3527 3528 3529 3530 3531 3532
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3533
	unsigned long long excess;
3534
	unsigned long nr_scanned;
3535 3536 3537 3538

	if (order > 0)
		return 0;

3539
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3553
		nr_scanned = 0;
3554 3555
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3556
		nr_reclaimed += reclaimed;
3557
		*total_scanned += nr_scanned;
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3580
				if (next_mz == mz)
3581
					css_put(&next_mz->mem->css);
3582
				else /* next_mz == NULL or other memcg */
3583 3584 3585 3586
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3587
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3588 3589 3590 3591 3592 3593 3594 3595
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3596 3597
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3616 3617 3618 3619
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3620
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3621
				int node, int zid, enum lru_list lru)
3622
{
K
KAMEZAWA Hiroyuki 已提交
3623 3624
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3625
	struct list_head *list;
3626 3627
	struct page *busy;
	struct zone *zone;
3628
	int ret = 0;
3629

K
KAMEZAWA Hiroyuki 已提交
3630
	zone = &NODE_DATA(node)->node_zones[zid];
3631
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3632
	list = &mz->lruvec.lists[lru];
3633

3634 3635 3636 3637 3638
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3639
		struct page_cgroup *pc;
3640 3641
		struct page *page;

3642
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3643
		spin_lock_irqsave(&zone->lru_lock, flags);
3644
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3645
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3646
			break;
3647
		}
3648 3649 3650
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3651
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3652
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3653 3654
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3655
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3656

3657
		pc = lookup_page_cgroup(page);
3658

3659
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3660
		if (ret == -ENOMEM)
3661
			break;
3662 3663 3664

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3665
			busy = page;
3666 3667 3668
			cond_resched();
		} else
			busy = NULL;
3669
	}
K
KAMEZAWA Hiroyuki 已提交
3670

3671 3672 3673
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3674 3675 3676 3677 3678 3679
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3680
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3681
{
3682 3683 3684
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3685
	struct cgroup *cgrp = memcg->css.cgroup;
3686

3687
	css_get(&memcg->css);
3688 3689

	shrink = 0;
3690 3691 3692
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3693
move_account:
3694
	do {
3695
		ret = -EBUSY;
3696 3697 3698 3699
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3700
			goto out;
3701 3702
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3703
		drain_all_stock_sync(memcg);
3704
		ret = 0;
3705
		mem_cgroup_start_move(memcg);
3706
		for_each_node_state(node, N_HIGH_MEMORY) {
3707
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3708
				enum lru_list l;
3709
				for_each_lru(l) {
3710
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3711
							node, zid, l);
3712 3713 3714
					if (ret)
						break;
				}
3715
			}
3716 3717 3718
			if (ret)
				break;
		}
3719 3720
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3721 3722 3723
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3724
		cond_resched();
3725
	/* "ret" should also be checked to ensure all lists are empty. */
3726
	} while (memcg->res.usage > 0 || ret);
3727
out:
3728
	css_put(&memcg->css);
3729
	return ret;
3730 3731

try_to_free:
3732 3733
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3734 3735 3736
		ret = -EBUSY;
		goto out;
	}
3737 3738
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3739 3740
	/* try to free all pages in this cgroup */
	shrink = 1;
3741
	while (nr_retries && memcg->res.usage > 0) {
3742
		int progress;
3743 3744 3745 3746 3747

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3748
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3749
						false);
3750
		if (!progress) {
3751
			nr_retries--;
3752
			/* maybe some writeback is necessary */
3753
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3754
		}
3755 3756

	}
K
KAMEZAWA Hiroyuki 已提交
3757
	lru_add_drain();
3758
	/* try move_account...there may be some *locked* pages. */
3759
	goto move_account;
3760 3761
}

3762 3763 3764 3765 3766 3767
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3768 3769 3770 3771 3772 3773 3774 3775 3776
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3777
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3778
	struct cgroup *parent = cont->parent;
3779
	struct mem_cgroup *parent_memcg = NULL;
3780 3781

	if (parent)
3782
		parent_memcg = mem_cgroup_from_cont(parent);
3783 3784 3785

	cgroup_lock();
	/*
3786
	 * If parent's use_hierarchy is set, we can't make any modifications
3787 3788 3789 3790 3791 3792
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3793
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3794 3795
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3796
			memcg->use_hierarchy = val;
3797 3798 3799 3800 3801 3802 3803 3804 3805
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3806

3807
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3808
					       enum mem_cgroup_stat_index idx)
3809
{
K
KAMEZAWA Hiroyuki 已提交
3810
	struct mem_cgroup *iter;
3811
	long val = 0;
3812

3813
	/* Per-cpu values can be negative, use a signed accumulator */
3814
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3815 3816 3817 3818 3819
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3820 3821
}

3822
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3823
{
K
KAMEZAWA Hiroyuki 已提交
3824
	u64 val;
3825

3826
	if (!mem_cgroup_is_root(memcg)) {
3827
		if (!swap)
3828
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3829
		else
3830
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3831 3832
	}

3833 3834
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3835

K
KAMEZAWA Hiroyuki 已提交
3836
	if (swap)
3837
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3838 3839 3840 3841

	return val << PAGE_SHIFT;
}

3842
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3843
{
3844
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3845
	u64 val;
3846 3847 3848 3849 3850 3851
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3852
		if (name == RES_USAGE)
3853
			val = mem_cgroup_usage(memcg, false);
3854
		else
3855
			val = res_counter_read_u64(&memcg->res, name);
3856 3857
		break;
	case _MEMSWAP:
3858
		if (name == RES_USAGE)
3859
			val = mem_cgroup_usage(memcg, true);
3860
		else
3861
			val = res_counter_read_u64(&memcg->memsw, name);
3862 3863 3864 3865 3866 3867
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3868
}
3869 3870 3871 3872
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3873 3874
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3875
{
3876
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3877
	int type, name;
3878 3879 3880
	unsigned long long val;
	int ret;

3881 3882 3883
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3884
	case RES_LIMIT:
3885 3886 3887 3888
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3889 3890
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3891 3892 3893
		if (ret)
			break;
		if (type == _MEM)
3894
			ret = mem_cgroup_resize_limit(memcg, val);
3895 3896
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3897
		break;
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3912 3913 3914 3915 3916
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3917 3918
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3947
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3948
{
3949
	struct mem_cgroup *memcg;
3950
	int type, name;
3951

3952
	memcg = mem_cgroup_from_cont(cont);
3953 3954 3955
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3956
	case RES_MAX_USAGE:
3957
		if (type == _MEM)
3958
			res_counter_reset_max(&memcg->res);
3959
		else
3960
			res_counter_reset_max(&memcg->memsw);
3961 3962
		break;
	case RES_FAILCNT:
3963
		if (type == _MEM)
3964
			res_counter_reset_failcnt(&memcg->res);
3965
		else
3966
			res_counter_reset_failcnt(&memcg->memsw);
3967 3968
		break;
	}
3969

3970
	return 0;
3971 3972
}

3973 3974 3975 3976 3977 3978
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3979
#ifdef CONFIG_MMU
3980 3981 3982
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3983
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3984 3985 3986 3987 3988 3989 3990 3991 3992

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3993
	memcg->move_charge_at_immigrate = val;
3994 3995 3996 3997
	cgroup_unlock();

	return 0;
}
3998 3999 4000 4001 4002 4003 4004
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4005

K
KAMEZAWA Hiroyuki 已提交
4006 4007 4008 4009 4010

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4011
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4012 4013
	MCS_PGPGIN,
	MCS_PGPGOUT,
4014
	MCS_SWAP,
4015 4016
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4027 4028
};

K
KAMEZAWA Hiroyuki 已提交
4029 4030 4031 4032 4033 4034
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4035
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4036 4037
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4038
	{"swap", "total_swap"},
4039 4040
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4041 4042 4043 4044 4045 4046 4047 4048
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4049
static void
4050
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4051 4052 4053 4054
{
	s64 val;

	/* per cpu stat */
4055
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4056
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4057
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4059
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4060
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4061
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4062
	s->stat[MCS_PGPGIN] += val;
4063
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4064
	s->stat[MCS_PGPGOUT] += val;
4065
	if (do_swap_account) {
4066
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4067 4068
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4069
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4070
	s->stat[MCS_PGFAULT] += val;
4071
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4072
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4073 4074

	/* per zone stat */
4075
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4076
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4077
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4078
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4079
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4080
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4081
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4082
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4083
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4084 4085 4086 4087
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4088
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4089
{
K
KAMEZAWA Hiroyuki 已提交
4090 4091
	struct mem_cgroup *iter;

4092
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4093
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4094 4095
}

4096 4097 4098 4099 4100 4101 4102 4103 4104
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4105
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4106 4107
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4108
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4109 4110 4111 4112
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4113
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4114 4115
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4116 4117
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4118 4119 4120 4121
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4122
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4123 4124
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4125 4126
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4127 4128 4129 4130
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4131
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4132 4133
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4134 4135
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4136 4137 4138 4139 4140 4141 4142
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4143 4144
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4145 4146
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4147
	struct mcs_total_stat mystat;
4148 4149
	int i;

K
KAMEZAWA Hiroyuki 已提交
4150 4151
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4152

4153

4154 4155 4156
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4157
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4158
	}
L
Lee Schermerhorn 已提交
4159

K
KAMEZAWA Hiroyuki 已提交
4160
	/* Hierarchical information */
4161 4162 4163 4164 4165 4166 4167
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4168

K
KAMEZAWA Hiroyuki 已提交
4169 4170
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4171 4172 4173
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4174
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4175
	}
K
KAMEZAWA Hiroyuki 已提交
4176

K
KOSAKI Motohiro 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4204 4205 4206
	return 0;
}

K
KOSAKI Motohiro 已提交
4207 4208 4209 4210
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4211
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4212 4213 4214 4215 4216 4217 4218
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4219

K
KOSAKI Motohiro 已提交
4220 4221 4222 4223 4224 4225 4226
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4227 4228 4229

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4230 4231
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4232 4233
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4234
		return -EINVAL;
4235
	}
K
KOSAKI Motohiro 已提交
4236 4237 4238

	memcg->swappiness = val;

4239 4240
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4241 4242 4243
	return 0;
}

4244 4245 4246 4247 4248 4249 4250 4251
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4252
		t = rcu_dereference(memcg->thresholds.primary);
4253
	else
4254
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4266
	i = t->current_threshold;
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4290
	t->current_threshold = i - 1;
4291 4292 4293 4294 4295 4296
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4297 4298 4299 4300 4301 4302 4303
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4314
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4315 4316 4317
{
	struct mem_cgroup_eventfd_list *ev;

4318
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4319 4320 4321 4322
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4323
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4324
{
K
KAMEZAWA Hiroyuki 已提交
4325 4326
	struct mem_cgroup *iter;

4327
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4328
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4329 4330 4331 4332
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4333 4334
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4335 4336
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4337 4338
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4339
	int i, size, ret;
4340 4341 4342 4343 4344 4345

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4346

4347
	if (type == _MEM)
4348
		thresholds = &memcg->thresholds;
4349
	else if (type == _MEMSWAP)
4350
		thresholds = &memcg->memsw_thresholds;
4351 4352 4353 4354 4355 4356
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4357
	if (thresholds->primary)
4358 4359
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4360
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4361 4362

	/* Allocate memory for new array of thresholds */
4363
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4364
			GFP_KERNEL);
4365
	if (!new) {
4366 4367 4368
		ret = -ENOMEM;
		goto unlock;
	}
4369
	new->size = size;
4370 4371

	/* Copy thresholds (if any) to new array */
4372 4373
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4374
				sizeof(struct mem_cgroup_threshold));
4375 4376
	}

4377
	/* Add new threshold */
4378 4379
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4380 4381

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4382
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4383 4384 4385
			compare_thresholds, NULL);

	/* Find current threshold */
4386
	new->current_threshold = -1;
4387
	for (i = 0; i < size; i++) {
4388
		if (new->entries[i].threshold < usage) {
4389
			/*
4390 4391
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4392 4393
			 * it here.
			 */
4394
			++new->current_threshold;
4395 4396 4397
		}
	}

4398 4399 4400 4401 4402
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4403

4404
	/* To be sure that nobody uses thresholds */
4405 4406 4407 4408 4409 4410 4411 4412
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4413
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4414
	struct cftype *cft, struct eventfd_ctx *eventfd)
4415 4416
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4417 4418
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4419 4420
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4421
	int i, j, size;
4422 4423 4424

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4425
		thresholds = &memcg->thresholds;
4426
	else if (type == _MEMSWAP)
4427
		thresholds = &memcg->memsw_thresholds;
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4443 4444 4445
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4446 4447 4448
			size++;
	}

4449
	new = thresholds->spare;
4450

4451 4452
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4453 4454
		kfree(new);
		new = NULL;
4455
		goto swap_buffers;
4456 4457
	}

4458
	new->size = size;
4459 4460

	/* Copy thresholds and find current threshold */
4461 4462 4463
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4464 4465
			continue;

4466 4467
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4468
			/*
4469
			 * new->current_threshold will not be used
4470 4471 4472
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4473
			++new->current_threshold;
4474 4475 4476 4477
		}
		j++;
	}

4478
swap_buffers:
4479 4480 4481
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4482

4483
	/* To be sure that nobody uses thresholds */
4484 4485 4486 4487
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4488

K
KAMEZAWA Hiroyuki 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4501
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4502 4503 4504 4505 4506

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4507
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4508
		eventfd_signal(eventfd, 1);
4509
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4510 4511 4512 4513

	return 0;
}

4514
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4515 4516
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4517
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4518 4519 4520 4521 4522
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4523
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4524

4525
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4526 4527 4528 4529 4530 4531
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4532
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4533 4534
}

4535 4536 4537
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4538
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4539

4540
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4541

4542
	if (atomic_read(&memcg->under_oom))
4543 4544 4545 4546 4547 4548 4549 4550 4551
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4552
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4564
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4565 4566 4567
		cgroup_unlock();
		return -EINVAL;
	}
4568
	memcg->oom_kill_disable = val;
4569
	if (!val)
4570
		memcg_oom_recover(memcg);
4571 4572 4573 4574
	cgroup_unlock();
	return 0;
}

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4591 4592 4593
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4594 4595 4596 4597 4598 4599 4600
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4601
	return mem_cgroup_sockets_init(cont, ss);
4602 4603
};

G
Glauber Costa 已提交
4604 4605 4606 4607 4608
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4609 4610 4611 4612 4613
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4614 4615 4616 4617 4618

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4619 4620
#endif

B
Balbir Singh 已提交
4621 4622
static struct cftype mem_cgroup_files[] = {
	{
4623
		.name = "usage_in_bytes",
4624
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4625
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4626 4627
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4628
	},
4629 4630
	{
		.name = "max_usage_in_bytes",
4631
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4632
		.trigger = mem_cgroup_reset,
4633 4634
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4635
	{
4636
		.name = "limit_in_bytes",
4637
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4638
		.write_string = mem_cgroup_write,
4639
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4640
	},
4641 4642 4643 4644 4645 4646
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4647 4648
	{
		.name = "failcnt",
4649
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4650
		.trigger = mem_cgroup_reset,
4651
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4652
	},
4653 4654
	{
		.name = "stat",
4655
		.read_map = mem_control_stat_show,
4656
	},
4657 4658 4659 4660
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4661 4662 4663 4664 4665
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4666 4667 4668 4669 4670
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4671 4672 4673 4674 4675
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4676 4677
	{
		.name = "oom_control",
4678 4679
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4680 4681 4682 4683
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4684 4685 4686 4687
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4688
		.mode = S_IRUGO,
4689 4690
	},
#endif
B
Balbir Singh 已提交
4691 4692
};

4693 4694 4695 4696 4697 4698
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4699 4700
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4736
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4737 4738
{
	struct mem_cgroup_per_node *pn;
4739
	struct mem_cgroup_per_zone *mz;
4740
	enum lru_list l;
4741
	int zone, tmp = node;
4742 4743 4744 4745 4746 4747 4748 4749
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4750 4751
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4752
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4753 4754
	if (!pn)
		return 1;
4755 4756 4757

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4758
		for_each_lru(l)
4759
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4760
		mz->usage_in_excess = 0;
4761
		mz->on_tree = false;
4762
		mz->mem = memcg;
4763
	}
4764
	memcg->info.nodeinfo[node] = pn;
4765 4766 4767
	return 0;
}

4768
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4769
{
4770
	kfree(memcg->info.nodeinfo[node]);
4771 4772
}

4773 4774 4775
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4776
	int size = sizeof(struct mem_cgroup);
4777

4778
	/* Can be very big if MAX_NUMNODES is very big */
4779
	if (size < PAGE_SIZE)
4780
		mem = kzalloc(size, GFP_KERNEL);
4781
	else
4782
		mem = vzalloc(size);
4783

4784 4785 4786
	if (!mem)
		return NULL;

4787
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4788 4789
	if (!mem->stat)
		goto out_free;
4790
	spin_lock_init(&mem->pcp_counter_lock);
4791
	return mem;
4792 4793 4794 4795 4796 4797 4798

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4799 4800
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4812
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4813
{
K
KAMEZAWA Hiroyuki 已提交
4814 4815
	int node;

4816 4817
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4818

K
KAMEZAWA Hiroyuki 已提交
4819
	for_each_node_state(node, N_POSSIBLE)
4820
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4821

4822
	free_percpu(memcg->stat);
4823
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4824
		kfree(memcg);
4825
	else
4826
		vfree(memcg);
4827 4828
}

4829
static void mem_cgroup_get(struct mem_cgroup *memcg)
4830
{
4831
	atomic_inc(&memcg->refcnt);
4832 4833
}

4834
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4835
{
4836 4837 4838
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4839 4840 4841
		if (parent)
			mem_cgroup_put(parent);
	}
4842 4843
}

4844
static void mem_cgroup_put(struct mem_cgroup *memcg)
4845
{
4846
	__mem_cgroup_put(memcg, 1);
4847 4848
}

4849 4850 4851
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4852
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4853
{
4854
	if (!memcg->res.parent)
4855
		return NULL;
4856
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4857
}
G
Glauber Costa 已提交
4858
EXPORT_SYMBOL(parent_mem_cgroup);
4859

4860 4861 4862
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4863
	if (!mem_cgroup_disabled() && really_do_swap_account)
4864 4865 4866 4867 4868 4869 4870 4871
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4884
			goto err_cleanup;
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904

err_cleanup:
	for_each_node_state(node, N_POSSIBLE) {
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4905 4906
}

L
Li Zefan 已提交
4907
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4908 4909
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4910
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4911
	long error = -ENOMEM;
4912
	int node;
B
Balbir Singh 已提交
4913

4914 4915
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4916
		return ERR_PTR(error);
4917

4918
	for_each_node_state(node, N_POSSIBLE)
4919
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4920
			goto free_out;
4921

4922
	/* root ? */
4923
	if (cont->parent == NULL) {
4924
		int cpu;
4925
		enable_swap_cgroup();
4926
		parent = NULL;
4927 4928
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4929
		root_mem_cgroup = memcg;
4930 4931 4932 4933 4934
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4935
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4936
	} else {
4937
		parent = mem_cgroup_from_cont(cont->parent);
4938 4939
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4940
	}
4941

4942
	if (parent && parent->use_hierarchy) {
4943 4944
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4945 4946 4947 4948 4949 4950 4951
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4952
	} else {
4953 4954
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4955
	}
4956 4957
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4958

K
KOSAKI Motohiro 已提交
4959
	if (parent)
4960 4961 4962 4963 4964
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4965
free_out:
4966
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4967
	return ERR_PTR(error);
B
Balbir Singh 已提交
4968 4969
}

4970
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4971 4972
					struct cgroup *cont)
{
4973
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4974

4975
	return mem_cgroup_force_empty(memcg, false);
4976 4977
}

B
Balbir Singh 已提交
4978 4979 4980
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4981
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4982

G
Glauber Costa 已提交
4983 4984
	kmem_cgroup_destroy(ss, cont);

4985
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4986 4987 4988 4989 4990
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4991 4992 4993 4994 4995 4996 4997
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
4998 4999 5000 5001

	if (!ret)
		ret = register_kmem_files(cont, ss);

5002
	return ret;
B
Balbir Singh 已提交
5003 5004
}

5005
#ifdef CONFIG_MMU
5006
/* Handlers for move charge at task migration. */
5007 5008
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5009
{
5010 5011
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5012
	struct mem_cgroup *memcg = mc.to;
5013

5014
	if (mem_cgroup_is_root(memcg)) {
5015 5016 5017 5018 5019 5020 5021 5022
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5023
		 * "memcg" cannot be under rmdir() because we've already checked
5024 5025 5026 5027
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5028
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5029
			goto one_by_one;
5030
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5031
						PAGE_SIZE * count, &dummy)) {
5032
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5049 5050 5051
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5052 5053 5054 5055
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5056 5057 5058 5059 5060 5061 5062 5063
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5064
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5065 5066 5067 5068 5069 5070
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5071 5072 5073
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5074 5075 5076 5077 5078
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5079
	swp_entry_t	ent;
5080 5081 5082 5083 5084
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5085
	MC_TARGET_SWAP,
5086 5087
};

D
Daisuke Nishimura 已提交
5088 5089
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5090
{
D
Daisuke Nishimura 已提交
5091
	struct page *page = vm_normal_page(vma, addr, ptent);
5092

D
Daisuke Nishimura 已提交
5093 5094 5095 5096 5097 5098
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5099 5100
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5119 5120
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5121
		return NULL;
5122
	}
D
Daisuke Nishimura 已提交
5123 5124 5125 5126 5127 5128
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5150 5151 5152 5153 5154 5155
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5156
		if (do_swap_account)
5157 5158
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5159
	}
5160
#endif
5161 5162 5163
	return page;
}

D
Daisuke Nishimura 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5176 5177
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5178 5179 5180

	if (!page && !ent.val)
		return 0;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5196 5197
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5198
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5199 5200 5201
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5214 5215
	split_huge_page_pmd(walk->mm, pmd);

5216 5217 5218 5219 5220 5221 5222
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5223 5224 5225
	return 0;
}

5226 5227 5228 5229 5230
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5231
	down_read(&mm->mmap_sem);
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5243
	up_read(&mm->mmap_sem);
5244 5245 5246 5247 5248 5249 5250 5251 5252

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5253 5254 5255 5256 5257
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5258 5259
}

5260 5261
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5262
{
5263 5264 5265
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5266
	/* we must uncharge all the leftover precharges from mc.to */
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5278
	}
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5313
	spin_lock(&mc.lock);
5314 5315
	mc.from = NULL;
	mc.to = NULL;
5316
	spin_unlock(&mc.lock);
5317
	mem_cgroup_end_move(from);
5318 5319
}

5320 5321
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5322
				struct cgroup_taskset *tset)
5323
{
5324
	struct task_struct *p = cgroup_taskset_first(tset);
5325
	int ret = 0;
5326
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5327

5328
	if (memcg->move_charge_at_immigrate) {
5329 5330 5331
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5332
		VM_BUG_ON(from == memcg);
5333 5334 5335 5336 5337

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5338 5339 5340 5341
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5342
			VM_BUG_ON(mc.moved_charge);
5343
			VM_BUG_ON(mc.moved_swap);
5344
			mem_cgroup_start_move(from);
5345
			spin_lock(&mc.lock);
5346
			mc.from = from;
5347
			mc.to = memcg;
5348
			spin_unlock(&mc.lock);
5349
			/* We set mc.moving_task later */
5350 5351 5352 5353

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5354 5355
		}
		mmput(mm);
5356 5357 5358 5359 5360 5361
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5362
				struct cgroup_taskset *tset)
5363
{
5364
	mem_cgroup_clear_mc();
5365 5366
}

5367 5368 5369
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5370
{
5371 5372 5373 5374 5375
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5376
	split_huge_page_pmd(walk->mm, pmd);
5377 5378 5379 5380 5381 5382 5383 5384
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5385
		swp_entry_t ent;
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5397 5398
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5399
				mc.precharge--;
5400 5401
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5402 5403 5404 5405 5406
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5407 5408
		case MC_TARGET_SWAP:
			ent = target.ent;
5409 5410
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5411
				mc.precharge--;
5412 5413 5414
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5415
			break;
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5430
		ret = mem_cgroup_do_precharge(1);
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5474
	up_read(&mm->mmap_sem);
5475 5476
}

B
Balbir Singh 已提交
5477 5478
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5479
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5480
{
5481
	struct task_struct *p = cgroup_taskset_first(tset);
5482
	struct mm_struct *mm = get_task_mm(p);
5483 5484

	if (mm) {
5485 5486 5487
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5488 5489
		mmput(mm);
	}
5490 5491
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5492
}
5493 5494 5495
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5496
				struct cgroup_taskset *tset)
5497 5498 5499 5500 5501
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5502
				struct cgroup_taskset *tset)
5503 5504 5505 5506
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5507
				struct cgroup_taskset *tset)
5508 5509 5510
{
}
#endif
B
Balbir Singh 已提交
5511

B
Balbir Singh 已提交
5512 5513 5514 5515
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5516
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5517 5518
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5519 5520
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5521
	.attach = mem_cgroup_move_task,
5522
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5523
	.use_id = 1,
B
Balbir Singh 已提交
5524
};
5525 5526

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5527 5528 5529
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5530
	if (!strcmp(s, "1"))
5531
		really_do_swap_account = 1;
5532
	else if (!strcmp(s, "0"))
5533 5534 5535
		really_do_swap_account = 0;
	return 1;
}
5536
__setup("swapaccount=", enable_swap_account);
5537 5538

#endif