core-transaction.c 32.9 KB
Newer Older
1 2
/*
 * Core IEEE1394 transaction logic
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

S
Stefan Richter 已提交
21
#include <linux/bug.h>
22
#include <linux/completion.h>
S
Stefan Richter 已提交
23 24
#include <linux/device.h>
#include <linux/errno.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26 27 28
#include <linux/firewire-constants.h>
#include <linux/fs.h>
#include <linux/init.h>
29
#include <linux/idr.h>
S
Stefan Richter 已提交
30
#include <linux/jiffies.h>
31 32
#include <linux/kernel.h>
#include <linux/list.h>
S
Stefan Richter 已提交
33 34 35 36 37 38 39 40
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/types.h>

#include <asm/byteorder.h>
41

42
#include "core.h"
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define HEADER_PRI(pri)			((pri) << 0)
#define HEADER_TCODE(tcode)		((tcode) << 4)
#define HEADER_RETRY(retry)		((retry) << 8)
#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
#define HEADER_DESTINATION(destination)	((destination) << 16)
#define HEADER_SOURCE(source)		((source) << 16)
#define HEADER_RCODE(rcode)		((rcode) << 12)
#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
#define HEADER_DATA_LENGTH(length)	((length) << 16)
#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)

#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)

64 65 66
#define HEADER_DESTINATION_IS_BROADCAST(q) \
	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))

67 68 69 70
#define PHY_PACKET_CONFIG	0x0
#define PHY_PACKET_LINK_ON	0x1
#define PHY_PACKET_SELF_ID	0x2

71 72 73
#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
#define PHY_IDENTIFIER(id)		((id) << 30)
74

75
static int close_transaction(struct fw_transaction *transaction,
76
			     struct fw_card *card, int rcode)
77
{
78
	struct fw_transaction *t;
79 80 81
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
82 83
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t == transaction) {
84
			list_del_init(&t->link);
85
			card->tlabel_mask &= ~(1ULL << t->tlabel);
86 87 88
			break;
		}
	}
89 90
	spin_unlock_irqrestore(&card->lock, flags);

91
	if (&t->link != &card->transaction_list) {
92
		del_timer_sync(&t->split_timeout_timer);
93
		t->callback(card, rcode, NULL, 0, t->callback_data);
94 95 96 97
		return 0;
	}

	return -ENOENT;
98 99
}

100 101 102 103
/*
 * Only valid for transactions that are potentially pending (ie have
 * been sent).
 */
104 105
int fw_cancel_transaction(struct fw_card *card,
			  struct fw_transaction *transaction)
106
{
107 108
	/*
	 * Cancel the packet transmission if it's still queued.  That
109
	 * will call the packet transmission callback which cancels
110 111
	 * the transaction.
	 */
112 113 114 115

	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
		return 0;

116 117 118 119
	/*
	 * If the request packet has already been sent, we need to see
	 * if the transaction is still pending and remove it in that case.
	 */
120

121
	return close_transaction(transaction, card, RCODE_CANCELLED);
122 123 124
}
EXPORT_SYMBOL(fw_cancel_transaction);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static void split_transaction_timeout_callback(unsigned long data)
{
	struct fw_transaction *t = (struct fw_transaction *)data;
	struct fw_card *card = t->card;
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (list_empty(&t->link)) {
		spin_unlock_irqrestore(&card->lock, flags);
		return;
	}
	list_del(&t->link);
	card->tlabel_mask &= ~(1ULL << t->tlabel);
	spin_unlock_irqrestore(&card->lock, flags);

	card->driver->cancel_packet(card, &t->packet);

	/*
	 * At this point cancel_packet will never call the transaction
	 * callback, since we just took the transaction out of the list.
	 * So do it here.
	 */
	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
}

150 151
static void transmit_complete_callback(struct fw_packet *packet,
				       struct fw_card *card, int status)
152 153 154 155 156 157
{
	struct fw_transaction *t =
	    container_of(packet, struct fw_transaction, packet);

	switch (status) {
	case ACK_COMPLETE:
158
		close_transaction(t, card, RCODE_COMPLETE);
159 160 161 162 163 164 165
		break;
	case ACK_PENDING:
		t->timestamp = packet->timestamp;
		break;
	case ACK_BUSY_X:
	case ACK_BUSY_A:
	case ACK_BUSY_B:
166
		close_transaction(t, card, RCODE_BUSY);
167 168
		break;
	case ACK_DATA_ERROR:
169
		close_transaction(t, card, RCODE_DATA_ERROR);
170
		break;
171
	case ACK_TYPE_ERROR:
172
		close_transaction(t, card, RCODE_TYPE_ERROR);
173 174
		break;
	default:
175 176 177 178
		/*
		 * In this case the ack is really a juju specific
		 * rcode, so just forward that to the callback.
		 */
179
		close_transaction(t, card, status);
180 181 182 183
		break;
	}
}

184
static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
185
		int destination_id, int source_id, int generation, int speed,
186
		unsigned long long offset, void *payload, size_t length)
187 188 189
{
	int ext_tcode;

190 191 192 193 194 195 196 197 198 199 200 201
	if (tcode == TCODE_STREAM_DATA) {
		packet->header[0] =
			HEADER_DATA_LENGTH(length) |
			destination_id |
			HEADER_TCODE(TCODE_STREAM_DATA);
		packet->header_length = 4;
		packet->payload = payload;
		packet->payload_length = length;

		goto common;
	}

202
	if (tcode > 0x10) {
203
		ext_tcode = tcode & ~0x10;
204 205 206 207 208
		tcode = TCODE_LOCK_REQUEST;
	} else
		ext_tcode = 0;

	packet->header[0] =
209 210 211
		HEADER_RETRY(RETRY_X) |
		HEADER_TLABEL(tlabel) |
		HEADER_TCODE(tcode) |
212
		HEADER_DESTINATION(destination_id);
213
	packet->header[1] =
214
		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
215 216 217 218 219 220 221 222 223 224 225 226 227
	packet->header[2] =
		offset;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
		packet->header[3] = *(u32 *)payload;
		packet->header_length = 16;
		packet->payload_length = 0;
		break;

	case TCODE_LOCK_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		packet->header[3] =
228 229
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
230 231 232 233 234 235 236 237 238 239 240 241
		packet->header_length = 16;
		packet->payload = payload;
		packet->payload_length = length;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		packet->header_length = 12;
		packet->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		packet->header[3] =
242 243
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
244 245 246
		packet->header_length = 16;
		packet->payload_length = 0;
		break;
247 248

	default:
249
		WARN(1, "wrong tcode %d", tcode);
250
	}
251
 common:
252 253
	packet->speed = speed;
	packet->generation = generation;
254
	packet->ack = 0;
255
	packet->payload_mapped = false;
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static int allocate_tlabel(struct fw_card *card)
{
	int tlabel;

	tlabel = card->current_tlabel;
	while (card->tlabel_mask & (1ULL << tlabel)) {
		tlabel = (tlabel + 1) & 0x3f;
		if (tlabel == card->current_tlabel)
			return -EBUSY;
	}

	card->current_tlabel = (tlabel + 1) & 0x3f;
	card->tlabel_mask |= 1ULL << tlabel;

	return tlabel;
}

275
/**
276 277 278 279 280 281 282 283 284 285 286 287
 * fw_send_request() - submit a request packet for transmission
 * @card:		interface to send the request at
 * @t:			transaction instance to which the request belongs
 * @tcode:		transaction code
 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 * @generation:		bus generation in which request and response are valid
 * @speed:		transmission speed
 * @offset:		48bit wide offset into destination's address space
 * @payload:		data payload for the request subaction
 * @length:		length of the payload, in bytes
 * @callback:		function to be called when the transaction is completed
 * @callback_data:	data to be passed to the transaction completion callback
288
 *
289 290 291
 * Submit a request packet into the asynchronous request transmission queue.
 * Can be called from atomic context.  If you prefer a blocking API, use
 * fw_run_transaction() in a context that can sleep.
292
 *
293 294
 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
295
 *
296 297
 * Make sure that the value in @destination_id is not older than the one in
 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
298
 *
299
 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
300
 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
 * It will contain tag, channel, and sy data instead of a node ID then.
 *
 * The payload buffer at @data is going to be DMA-mapped except in case of
 * quadlet-sized payload or of local (loopback) requests.  Hence make sure that
 * the buffer complies with the restrictions for DMA-mapped memory.  The
 * @payload must not be freed before the @callback is called.
 *
 * In case of request types without payload, @data is NULL and @length is 0.
 *
 * After the transaction is completed successfully or unsuccessfully, the
 * @callback will be called.  Among its parameters is the response code which
 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 * the firewire-core specific %RCODE_SEND_ERROR.
 *
 * Note some timing corner cases:  fw_send_request() may complete much earlier
 * than when the request packet actually hits the wire.  On the other hand,
 * transaction completion and hence execution of @callback may happen even
 * before fw_send_request() returns.
319
 */
320 321 322 323
void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
		     int destination_id, int generation, int speed,
		     unsigned long long offset, void *payload, size_t length,
		     fw_transaction_callback_t callback, void *callback_data)
324 325
{
	unsigned long flags;
326
	int tlabel;
327

328 329 330 331
	/*
	 * Allocate tlabel from the bitmap and put the transaction on
	 * the list while holding the card spinlock.
	 */
332 333 334

	spin_lock_irqsave(&card->lock, flags);

335 336
	tlabel = allocate_tlabel(card);
	if (tlabel < 0) {
337 338 339 340 341
		spin_unlock_irqrestore(&card->lock, flags);
		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
		return;
	}

J
Jay Fenlason 已提交
342
	t->node_id = destination_id;
343
	t->tlabel = tlabel;
344 345 346 347
	t->card = card;
	setup_timer(&t->split_timeout_timer,
		    split_transaction_timeout_callback, (unsigned long)t);
	/* FIXME: start this timer later, relative to t->timestamp */
348 349
	mod_timer(&t->split_timeout_timer,
		  jiffies + card->split_timeout_jiffies);
350 351 352
	t->callback = callback;
	t->callback_data = callback_data;

J
Jay Fenlason 已提交
353 354 355
	fw_fill_request(&t->packet, tcode, t->tlabel,
			destination_id, card->node_id, generation,
			speed, offset, payload, length);
356 357
	t->packet.callback = transmit_complete_callback;

358 359 360 361
	list_add_tail(&t->link, &card->transaction_list);

	spin_unlock_irqrestore(&card->lock, flags);

362 363 364 365
	card->driver->send_request(card, &t->packet);
}
EXPORT_SYMBOL(fw_send_request);

J
Jay Fenlason 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
struct transaction_callback_data {
	struct completion done;
	void *payload;
	int rcode;
};

static void transaction_callback(struct fw_card *card, int rcode,
				 void *payload, size_t length, void *data)
{
	struct transaction_callback_data *d = data;

	if (rcode == RCODE_COMPLETE)
		memcpy(d->payload, payload, length);
	d->rcode = rcode;
	complete(&d->done);
}

/**
384
 * fw_run_transaction() - send request and sleep until transaction is completed
J
Jay Fenlason 已提交
385
 *
386 387 388
 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 * Unlike fw_send_request(), @data points to the payload of the request or/and
 * to the payload of the response.
J
Jay Fenlason 已提交
389 390
 */
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
391
		       int generation, int speed, unsigned long long offset,
392
		       void *payload, size_t length)
J
Jay Fenlason 已提交
393 394 395 396
{
	struct transaction_callback_data d;
	struct fw_transaction t;

397
	init_timer_on_stack(&t.split_timeout_timer);
J
Jay Fenlason 已提交
398
	init_completion(&d.done);
399
	d.payload = payload;
J
Jay Fenlason 已提交
400
	fw_send_request(card, &t, tcode, destination_id, generation, speed,
401
			offset, payload, length, transaction_callback, &d);
J
Jay Fenlason 已提交
402
	wait_for_completion(&d.done);
403
	destroy_timer_on_stack(&t.split_timeout_timer);
J
Jay Fenlason 已提交
404 405 406 407 408

	return d.rcode;
}
EXPORT_SYMBOL(fw_run_transaction);

409 410
static DEFINE_MUTEX(phy_config_mutex);
static DECLARE_COMPLETION(phy_config_done);
411 412 413

static void transmit_phy_packet_callback(struct fw_packet *packet,
					 struct fw_card *card, int status)
414
{
415
	complete(&phy_config_done);
416 417
}

418 419 420 421 422 423 424
static struct fw_packet phy_config_packet = {
	.header_length	= 8,
	.payload_length	= 0,
	.speed		= SCODE_100,
	.callback	= transmit_phy_packet_callback,
};

425 426
void fw_send_phy_config(struct fw_card *card,
			int node_id, int generation, int gap_count)
427
{
428
	long timeout = DIV_ROUND_UP(HZ, 10);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);

	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
		data |= PHY_CONFIG_ROOT_ID(node_id);

	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
		gap_count = card->driver->read_phy_reg(card, 1);
		if (gap_count < 0)
			return;

		gap_count &= 63;
		if (gap_count == 63)
			return;
	}
	data |= PHY_CONFIG_GAP_COUNT(gap_count);
444

445 446 447 448 449 450 451 452 453
	mutex_lock(&phy_config_mutex);

	phy_config_packet.header[0] = data;
	phy_config_packet.header[1] = ~data;
	phy_config_packet.generation = generation;
	INIT_COMPLETION(phy_config_done);

	card->driver->send_request(card, &phy_config_packet);
	wait_for_completion_timeout(&phy_config_done, timeout);
454

455
	mutex_unlock(&phy_config_mutex);
456 457
}

458 459
static struct fw_address_handler *lookup_overlapping_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
460 461 462 463 464 465 466 467 468 469 470 471
{
	struct fw_address_handler *handler;

	list_for_each_entry(handler, list, link) {
		if (handler->offset < offset + length &&
		    offset < handler->offset + handler->length)
			return handler;
	}

	return NULL;
}

472 473 474 475 476 477 478
static bool is_enclosing_handler(struct fw_address_handler *handler,
				 unsigned long long offset, size_t length)
{
	return handler->offset <= offset &&
		offset + length <= handler->offset + handler->length;
}

479 480
static struct fw_address_handler *lookup_enclosing_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
481 482 483 484
{
	struct fw_address_handler *handler;

	list_for_each_entry(handler, list, link) {
485
		if (is_enclosing_handler(handler, offset, length))
486 487 488 489 490 491 492 493 494
			return handler;
	}

	return NULL;
}

static DEFINE_SPINLOCK(address_handler_lock);
static LIST_HEAD(address_handler_list);

495
const struct fw_address_region fw_high_memory_region =
496
	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
A
Adrian Bunk 已提交
497 498 499 500 501
EXPORT_SYMBOL(fw_high_memory_region);

#if 0
const struct fw_address_region fw_low_memory_region =
	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
502
const struct fw_address_region fw_private_region =
503
	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
504
const struct fw_address_region fw_csr_region =
505 506
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
507
const struct fw_address_region fw_unit_space_region =
508
	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
A
Adrian Bunk 已提交
509
#endif  /*  0  */
510

511 512 513 514 515 516
static bool is_in_fcp_region(u64 offset, size_t length)
{
	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
}

517
/**
518 519 520
 * fw_core_add_address_handler() - register for incoming requests
 * @handler:	callback
 * @region:	region in the IEEE 1212 node space address range
521 522 523 524 525 526
 *
 * region->start, ->end, and handler->length have to be quadlet-aligned.
 *
 * When a request is received that falls within the specified address range,
 * the specified callback is invoked.  The parameters passed to the callback
 * give the details of the particular request.
527 528
 *
 * Return value:  0 on success, non-zero otherwise.
529
 *
530 531
 * The start offset of the handler's address region is determined by
 * fw_core_add_address_handler() and is returned in handler->offset.
532 533
 *
 * Address allocations are exclusive, except for the FCP registers.
534
 */
535 536
int fw_core_add_address_handler(struct fw_address_handler *handler,
				const struct fw_address_region *region)
537 538 539 540 541
{
	struct fw_address_handler *other;
	unsigned long flags;
	int ret = -EBUSY;

542 543 544 545 546 547 548
	if (region->start & 0xffff000000000003ULL ||
	    region->end   & 0xffff000000000003ULL ||
	    region->start >= region->end ||
	    handler->length & 3 ||
	    handler->length == 0)
		return -EINVAL;

549 550
	spin_lock_irqsave(&address_handler_lock, flags);

551
	handler->offset = region->start;
552
	while (handler->offset + handler->length <= region->end) {
553 554 555 556 557 558
		if (is_in_fcp_region(handler->offset, handler->length))
			other = NULL;
		else
			other = lookup_overlapping_address_handler
					(&address_handler_list,
					 handler->offset, handler->length);
559
		if (other != NULL) {
560
			handler->offset += other->length;
561 562 563 564 565 566 567 568 569 570 571 572 573 574
		} else {
			list_add_tail(&handler->link, &address_handler_list);
			ret = 0;
			break;
		}
	}

	spin_unlock_irqrestore(&address_handler_lock, flags);

	return ret;
}
EXPORT_SYMBOL(fw_core_add_address_handler);

/**
575
 * fw_core_remove_address_handler() - unregister an address handler
576 577 578 579 580 581 582 583 584 585 586 587 588
 */
void fw_core_remove_address_handler(struct fw_address_handler *handler)
{
	unsigned long flags;

	spin_lock_irqsave(&address_handler_lock, flags);
	list_del(&handler->link);
	spin_unlock_irqrestore(&address_handler_lock, flags);
}
EXPORT_SYMBOL(fw_core_remove_address_handler);

struct fw_request {
	struct fw_packet response;
589
	u32 request_header[4];
590 591 592 593 594
	int ack;
	u32 length;
	u32 data[0];
};

595 596
static void free_response_callback(struct fw_packet *packet,
				   struct fw_card *card, int status)
597 598 599 600 601 602 603
{
	struct fw_request *request;

	request = container_of(packet, struct fw_request, response);
	kfree(request);
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
int fw_get_response_length(struct fw_request *r)
{
	int tcode, ext_tcode, data_length;

	tcode = HEADER_GET_TCODE(r->request_header[0]);

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		return 0;

	case TCODE_READ_QUADLET_REQUEST:
		return 4;

	case TCODE_READ_BLOCK_REQUEST:
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		return data_length;

	case TCODE_LOCK_REQUEST:
		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		switch (ext_tcode) {
		case EXTCODE_FETCH_ADD:
		case EXTCODE_LITTLE_ADD:
			return data_length;
		default:
			return data_length / 2;
		}

	default:
634
		WARN(1, "wrong tcode %d", tcode);
635 636 637 638
		return 0;
	}
}

639 640
void fw_fill_response(struct fw_packet *response, u32 *request_header,
		      int rcode, void *payload, size_t length)
641 642 643
{
	int tcode, tlabel, extended_tcode, source, destination;

644 645 646 647 648
	tcode          = HEADER_GET_TCODE(request_header[0]);
	tlabel         = HEADER_GET_TLABEL(request_header[0]);
	source         = HEADER_GET_DESTINATION(request_header[0]);
	destination    = HEADER_GET_SOURCE(request_header[1]);
	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
649 650

	response->header[0] =
651 652 653
		HEADER_RETRY(RETRY_1) |
		HEADER_TLABEL(tlabel) |
		HEADER_DESTINATION(destination);
654
	response->header[1] =
655 656
		HEADER_SOURCE(source) |
		HEADER_RCODE(rcode);
657 658 659 660 661
	response->header[2] = 0;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
662
		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
663 664 665 666 667 668
		response->header_length = 12;
		response->payload_length = 0;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		response->header[0] |=
669
			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
670 671 672 673
		if (payload != NULL)
			response->header[3] = *(u32 *)payload;
		else
			response->header[3] = 0;
674 675 676 677 678 679
		response->header_length = 16;
		response->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
680
		response->header[0] |= HEADER_TCODE(tcode + 2);
681
		response->header[3] =
682 683
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(extended_tcode);
684
		response->header_length = 16;
685 686
		response->payload = payload;
		response->payload_length = length;
687 688 689
		break;

	default:
690
		WARN(1, "wrong tcode %d", tcode);
691
	}
692

693
	response->payload_mapped = false;
694
}
695
EXPORT_SYMBOL(fw_fill_response);
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static u32 compute_split_timeout_timestamp(struct fw_card *card,
					   u32 request_timestamp)
{
	unsigned int cycles;
	u32 timestamp;

	cycles = card->split_timeout_cycles;
	cycles += request_timestamp & 0x1fff;

	timestamp = request_timestamp & ~0x1fff;
	timestamp += (cycles / 8000) << 13;
	timestamp |= cycles % 8000;

	return timestamp;
}

static struct fw_request *allocate_request(struct fw_card *card,
					   struct fw_packet *p)
715 716 717
{
	struct fw_request *request;
	u32 *data, length;
718
	int request_tcode;
719

720
	request_tcode = HEADER_GET_TCODE(p->header[0]);
721 722
	switch (request_tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
723
		data = &p->header[3];
724 725 726 727 728
		length = 4;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
729
		data = p->payload;
730
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
731 732 733 734 735 736 737 738 739
		break;

	case TCODE_READ_QUADLET_REQUEST:
		data = NULL;
		length = 4;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		data = NULL;
740
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
741 742 743
		break;

	default:
744 745
		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
			 p->header[0], p->header[1], p->header[2]);
746 747 748
		return NULL;
	}

749
	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
750 751 752
	if (request == NULL)
		return NULL;

753
	request->response.speed = p->speed;
754 755
	request->response.timestamp =
			compute_split_timeout_timestamp(card, p->timestamp);
756
	request->response.generation = p->generation;
757
	request->response.ack = 0;
758
	request->response.callback = free_response_callback;
759
	request->ack = p->ack;
760
	request->length = length;
761
	if (data)
762
		memcpy(request->data, data, length);
763

764
	memcpy(request->request_header, p->header, sizeof(p->header));
765 766 767 768

	return request;
}

769 770
void fw_send_response(struct fw_card *card,
		      struct fw_request *request, int rcode)
771
{
772 773 774
	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
		return;

775 776 777
	/* unified transaction or broadcast transaction: don't respond */
	if (request->ack != ACK_PENDING ||
	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
778
		kfree(request);
779
		return;
780
	}
781

782 783
	if (rcode == RCODE_COMPLETE)
		fw_fill_response(&request->response, request->request_header,
784 785
				 rcode, request->data,
				 fw_get_response_length(request));
786 787 788
	else
		fw_fill_response(&request->response, request->request_header,
				 rcode, NULL, 0);
789 790 791 792 793

	card->driver->send_response(card, &request->response);
}
EXPORT_SYMBOL(fw_send_response);

794 795 796 797
static void handle_exclusive_region_request(struct fw_card *card,
					    struct fw_packet *p,
					    struct fw_request *request,
					    unsigned long long offset)
798 799 800
{
	struct fw_address_handler *handler;
	unsigned long flags;
801
	int tcode, destination, source;
802

803
	destination = HEADER_GET_DESTINATION(p->header[0]);
804
	source      = HEADER_GET_SOURCE(p->header[1]);
805 806 807
	tcode       = HEADER_GET_TCODE(p->header[0]);
	if (tcode == TCODE_LOCK_REQUEST)
		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
808 809 810 811 812 813

	spin_lock_irqsave(&address_handler_lock, flags);
	handler = lookup_enclosing_address_handler(&address_handler_list,
						   offset, request->length);
	spin_unlock_irqrestore(&address_handler_lock, flags);

814 815
	/*
	 * FIXME: lookup the fw_node corresponding to the sender of
816 817 818
	 * this request and pass that to the address handler instead
	 * of the node ID.  We may also want to move the address
	 * allocations to fw_node so we only do this callback if the
819 820
	 * upper layers registered it for this node.
	 */
821 822 823 824 825 826

	if (handler == NULL)
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
	else
		handler->address_callback(card, request,
					  tcode, destination, source,
827
					  p->generation, offset,
828 829 830
					  request->data, request->length,
					  handler->callback_data);
}
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

static void handle_fcp_region_request(struct fw_card *card,
				      struct fw_packet *p,
				      struct fw_request *request,
				      unsigned long long offset)
{
	struct fw_address_handler *handler;
	unsigned long flags;
	int tcode, destination, source;

	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
	    request->length > 0x200) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);

		return;
	}

	tcode       = HEADER_GET_TCODE(p->header[0]);
	destination = HEADER_GET_DESTINATION(p->header[0]);
	source      = HEADER_GET_SOURCE(p->header[1]);

	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);

		return;
	}

	spin_lock_irqsave(&address_handler_lock, flags);
	list_for_each_entry(handler, &address_handler_list, link) {
		if (is_enclosing_handler(handler, offset, request->length))
			handler->address_callback(card, NULL, tcode,
						  destination, source,
865 866
						  p->generation, offset,
						  request->data,
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
						  request->length,
						  handler->callback_data);
	}
	spin_unlock_irqrestore(&address_handler_lock, flags);

	fw_send_response(card, request, RCODE_COMPLETE);
}

void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
{
	struct fw_request *request;
	unsigned long long offset;

	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
		return;

883
	request = allocate_request(card, p);
884 885 886 887 888 889 890 891 892 893 894 895 896 897
	if (request == NULL) {
		/* FIXME: send statically allocated busy packet. */
		return;
	}

	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
		p->header[2];

	if (!is_in_fcp_region(offset, request->length))
		handle_exclusive_region_request(card, p, request, offset);
	else
		handle_fcp_region_request(card, p, request, offset);

}
898 899
EXPORT_SYMBOL(fw_core_handle_request);

900
void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
901 902 903 904 905
{
	struct fw_transaction *t;
	unsigned long flags;
	u32 *data;
	size_t data_length;
906
	int tcode, tlabel, source, rcode;
907

908 909 910 911
	tcode	= HEADER_GET_TCODE(p->header[0]);
	tlabel	= HEADER_GET_TLABEL(p->header[0]);
	source	= HEADER_GET_SOURCE(p->header[1]);
	rcode	= HEADER_GET_RCODE(p->header[1]);
912 913 914 915

	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t->node_id == source && t->tlabel == tlabel) {
916
			list_del_init(&t->link);
917
			card->tlabel_mask &= ~(1ULL << t->tlabel);
918 919 920 921 922 923
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&t->link == &card->transaction_list) {
924 925
		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
			  source, tlabel);
926 927 928
		return;
	}

929 930 931 932
	/*
	 * FIXME: sanity check packet, is length correct, does tcodes
	 * and addresses match.
	 */
933 934 935

	switch (tcode) {
	case TCODE_READ_QUADLET_RESPONSE:
936
		data = (u32 *) &p->header[3];
937 938 939 940 941 942 943 944 945 946
		data_length = 4;
		break;

	case TCODE_WRITE_RESPONSE:
		data = NULL;
		data_length = 0;
		break;

	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_RESPONSE:
947
		data = p->payload;
948
		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
949 950 951 952 953 954 955 956 957
		break;

	default:
		/* Should never happen, this is just to shut up gcc. */
		data = NULL;
		data_length = 0;
		break;
	}

958 959
	del_timer_sync(&t->split_timeout_timer);

960 961 962 963 964 965
	/*
	 * The response handler may be executed while the request handler
	 * is still pending.  Cancel the request handler.
	 */
	card->driver->cancel_packet(card, &t->packet);

966 967 968 969
	t->callback(card, rcode, data, data_length, t->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_response);

970
static const struct fw_address_region topology_map_region =
971 972
	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
973

974 975
static void handle_topology_map(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
976 977
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
978
{
979
	int start;
980 981 982 983 984 985 986 987 988 989 990 991

	if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	if ((offset & 3) > 0 || (length & 3) > 0) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
		return;
	}

	start = (offset - topology_map_region.start) / 4;
992
	memcpy(payload, &card->topology_map[start], length);
993 994 995 996 997

	fw_send_response(card, request, RCODE_COMPLETE);
}

static struct fw_address_handler topology_map = {
998
	.length			= 0x400,
999 1000 1001
	.address_callback	= handle_topology_map,
};

1002
static const struct fw_address_region registers_region =
1003 1004
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static void update_split_timeout(struct fw_card *card)
{
	unsigned int cycles;

	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);

	cycles = max(cycles, 800u); /* minimum as per the spec */
	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */

	card->split_timeout_cycles = cycles;
	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
}

1019 1020
static void handle_registers(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
1021 1022
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
1023
{
1024
	int reg = offset & ~CSR_REGISTER_BASE;
1025
	__be32 *data = payload;
1026
	int rcode = RCODE_COMPLETE;
1027
	unsigned long flags;
1028 1029

	switch (reg) {
1030 1031 1032 1033 1034 1035
	case CSR_PRIORITY_BUDGET:
		if (!card->priority_budget_implemented) {
			rcode = RCODE_ADDRESS_ERROR;
			break;
		}
		/* else fall through */
1036

1037
	case CSR_NODE_IDS:
1038 1039 1040 1041
		/*
		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
		 */
1042 1043 1044 1045 1046 1047 1048
		/* fall through */

	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
	case CSR_CYCLE_TIME:
	case CSR_BUS_TIME:
	case CSR_BUSY_TIMEOUT:
1049
		if (tcode == TCODE_READ_QUADLET_REQUEST)
1050
			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1051
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1052
			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1053 1054 1055 1056
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1057
	case CSR_RESET_START:
1058
		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1059 1060
			card->driver->write_csr(card, CSR_STATE_CLEAR,
						CSR_STATE_BIT_ABDICATE);
1061
		else
1062 1063 1064
			rcode = RCODE_TYPE_ERROR;
		break;

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	case CSR_SPLIT_TIMEOUT_HI:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_hi);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_hi = be32_to_cpu(*data) & 7;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

	case CSR_SPLIT_TIMEOUT_LO:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_lo);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_lo =
					be32_to_cpu(*data) & 0xfff80000;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

1092 1093 1094 1095 1096 1097 1098 1099 1100
	case CSR_MAINT_UTILITY:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = card->maint_utility_register;
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->maint_utility_register = *data;
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1101 1102 1103 1104 1105 1106 1107 1108 1109
	case CSR_BROADCAST_CHANNEL:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->broadcast_channel);
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->broadcast_channel =
			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
			    BROADCAST_CHANNEL_INITIAL;
		else
			rcode = RCODE_TYPE_ERROR;
1110 1111 1112 1113 1114 1115
		break;

	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
1116 1117
		/*
		 * FIXME: these are handled by the OHCI hardware and
1118 1119 1120
		 * the stack never sees these request. If we add
		 * support for a new type of controller that doesn't
		 * handle this in hardware we need to deal with these
1121 1122
		 * transactions.
		 */
1123 1124 1125 1126
		BUG();
		break;

	default:
1127
		rcode = RCODE_ADDRESS_ERROR;
1128 1129
		break;
	}
1130 1131

	fw_send_response(card, request, rcode);
1132 1133 1134 1135 1136 1137 1138
}

static struct fw_address_handler registers = {
	.length			= 0x400,
	.address_callback	= handle_registers,
};

1139 1140 1141 1142
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
MODULE_LICENSE("GPL");

1143
static const u32 vendor_textual_descriptor[] = {
1144
	/* textual descriptor leaf () */
1145
	0x00060000,
1146 1147 1148 1149 1150
	0x00000000,
	0x00000000,
	0x4c696e75,		/* L i n u */
	0x78204669,		/* x   F i */
	0x72657769,		/* r e w i */
1151
	0x72650000,		/* r e     */
1152 1153
};

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static const u32 model_textual_descriptor[] = {
	/* model descriptor leaf () */
	0x00030000,
	0x00000000,
	0x00000000,
	0x4a756a75,		/* J u j u */
};

static struct fw_descriptor vendor_id_descriptor = {
	.length = ARRAY_SIZE(vendor_textual_descriptor),
	.immediate = 0x03d00d1e,
1165
	.key = 0x81000000,
1166 1167 1168 1169 1170 1171 1172 1173
	.data = vendor_textual_descriptor,
};

static struct fw_descriptor model_id_descriptor = {
	.length = ARRAY_SIZE(model_textual_descriptor),
	.immediate = 0x17000001,
	.key = 0x81000000,
	.data = model_textual_descriptor,
1174 1175 1176 1177
};

static int __init fw_core_init(void)
{
1178
	int ret;
1179

1180 1181 1182
	ret = bus_register(&fw_bus_type);
	if (ret < 0)
		return ret;
1183

1184 1185 1186 1187 1188 1189
	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
	if (fw_cdev_major < 0) {
		bus_unregister(&fw_bus_type);
		return fw_cdev_major;
	}

1190 1191 1192 1193
	fw_core_add_address_handler(&topology_map, &topology_map_region);
	fw_core_add_address_handler(&registers, &registers_region);
	fw_core_add_descriptor(&vendor_id_descriptor);
	fw_core_add_descriptor(&model_id_descriptor);
1194 1195 1196 1197 1198 1199

	return 0;
}

static void __exit fw_core_cleanup(void)
{
1200
	unregister_chrdev(fw_cdev_major, "firewire");
1201
	bus_unregister(&fw_bus_type);
1202
	idr_destroy(&fw_device_idr);
1203 1204 1205 1206
}

module_init(fw_core_init);
module_exit(fw_core_cleanup);