提交 94746d8e 编写于 作者: Y yygg_you

audio驱动使用系统内的dataqueue,修复一些缩进,乱码

上级 05496a5c
/*
* audio.c
* File : audio.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2017, RT-Thread Development Team
*
* Created on: 20161019
* Author: Urey
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2017-05-09 Urey first version
*/
#include <stdio.h>
......@@ -19,383 +36,70 @@
#define AUDIO_DBG(...)
#endif
rt_err_t _audio_queue_init(struct rt_audio_queue *queue, rt_uint16_t size, rt_uint16_t lwm)
static rt_err_t _audio_send_replay_frame(struct rt_audio_device *audio)
{
RT_ASSERT(queue != RT_NULL);
queue->count = 0;
queue->size = size;
queue->lwm = lwm;
queue->waiting_lwm = RT_FALSE;
queue->get_index = 0;
queue->put_index = 0;
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_frame frame;
rt_list_init(&(queue->suspended_push_list));
rt_list_init(&(queue->suspended_pop_list));
RT_ASSERT(audio != RT_NULL);
queue->queue = (struct rt_audio_frame *)rt_malloc(sizeof(struct rt_audio_frame) * size);
if (queue->queue == RT_NULL)
//check repaly queue is empty
if (rt_data_queue_peak(&audio->replay->queue, &frame.data_ptr, &frame.data_size) != RT_EOK)
{
return -RT_ENOMEM;
}
return RT_EOK;
}
rt_err_t _audio_queue_push(struct rt_audio_queue *queue, struct rt_audio_frame *frame, rt_int32_t timeout)
{
rt_ubase_t level;
rt_thread_t thread;
rt_err_t result;
RT_ASSERT(queue != RT_NULL);
result = RT_EOK;
thread = rt_thread_self();
AUDIO_DBG("%s count = %d\n",__func__,queue->count);
level = rt_hw_interrupt_disable();
while(queue->count == queue->size)
{// audio queue is full
queue->waiting_lwm = RT_TRUE;
/* queue is full */
if (timeout == 0)
{
result = -RT_ETIMEOUT;
goto __exit;
}
/* current context checking */
RT_DEBUG_NOT_IN_INTERRUPT;
AUDIO_DBG("TX queue is empty\n");
result = -RT_EEMPTY;
/* reset thread error number */
thread->error = RT_EOK;
/* suspend thread on the push list */
rt_thread_suspend(thread);
rt_list_insert_before(&(queue->suspended_push_list), &(thread->tlist));
/* start timer */
if (timeout > 0)
{
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
/* do schedule */
rt_schedule();
/* thread is waked up */
result = thread->error;
level = rt_hw_interrupt_disable();
if (result != RT_EOK) goto __exit;
}
queue->queue[queue->put_index].data_ptr = frame->data_ptr;
queue->queue[queue->put_index].data_size = frame->data_size;
queue->queue[queue->put_index].data_ofs = frame->data_ofs;
queue->put_index = (queue->put_index + 1) % queue->size;
queue->count ++;
if (!rt_list_isempty(&(queue->suspended_pop_list)))
{
/* there is at least one thread in suspended list */
/* get thread entry */
thread = rt_list_entry(queue->suspended_pop_list.next,
struct rt_thread,
tlist);
/* resume it */
rt_thread_resume(thread);
rt_hw_interrupt_enable(level);
/* perform a schedule */
rt_schedule();
return result;
}
__exit:
rt_hw_interrupt_enable(level);
return result;
}
rt_err_t _audio_queue_pop(struct rt_audio_queue *queue, struct rt_audio_frame *frame, rt_int32_t timeout)
{
rt_ubase_t level;
rt_thread_t thread;
rt_err_t result;
RT_ASSERT(queue != RT_NULL);
RT_ASSERT(frame != RT_NULL);
result = RT_EOK;
thread = rt_thread_self();
AUDIO_DBG("%s count = %d\n",__func__,queue->count);
level = rt_hw_interrupt_disable();
while (queue->count == 0)
{
/* queue is empty */
if (timeout == 0)
{
result = -RT_ETIMEOUT;
goto __exit;
}
/* current context checking */
RT_DEBUG_NOT_IN_INTERRUPT;
/* reset thread error number */
thread->error = RT_EOK;
/* suspend thread on the pop list */
rt_thread_suspend(thread);
rt_list_insert_before(&(queue->suspended_pop_list), &(thread->tlist));
/* start timer */
if (timeout > 0)
{
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
audio->replay->activated = RT_FALSE;
rt_hw_interrupt_enable(level);
/* do schedule */
rt_schedule();
/* thread is waked up */
result = thread->error;
level = rt_hw_interrupt_disable();
if (result != RT_EOK)
goto __exit;
goto _exit;
}
frame->data_ptr = queue->queue[queue->get_index].data_ptr;
frame->data_size = queue->queue[queue->get_index].data_size;
frame->data_ofs = queue->queue[queue->get_index].data_ofs;
queue->get_index = (queue->get_index + 1) % queue->size;
queue->count --;
if ((queue->waiting_lwm == RT_TRUE) &&
(queue->put_index - queue->get_index) <= queue->lwm)
if (audio->ops->transmit != RT_NULL)
{
queue->waiting_lwm = RT_FALSE;
/*
* there is at least one thread in suspended list
* and less than low water mark
*/
if (!rt_list_isempty(&(queue->suspended_push_list)))
AUDIO_DBG("audio transmit...\n");
if (audio->ops->transmit(audio, frame.data_ptr, RT_NULL, frame.data_size) != frame.data_size)
{
/* get thread entry */
thread = rt_list_entry(queue->suspended_push_list.next,
struct rt_thread,
tlist);
/* resume it */
rt_thread_resume(thread);
rt_hw_interrupt_enable(level);
result = -RT_EBUSY;
/* perform a schedule */
rt_schedule();
goto _exit;
}
return result;
}
__exit:
rt_hw_interrupt_enable(level);
return result;
}
rt_err_t _audio_queue_peak(struct rt_audio_queue *queue, struct rt_audio_frame *frame)
{
rt_ubase_t level;
RT_ASSERT(queue != RT_NULL);
AUDIO_DBG("%s count = %d\n",__func__,queue->count);
level = rt_hw_interrupt_disable();
if (queue->count == 0)
{
rt_hw_interrupt_enable(level);
return -RT_EEMPTY;
}
frame->data_ptr = queue->queue[queue->get_index].data_ptr;
frame->data_size = queue->queue[queue->get_index].data_size;
frame->data_ofs = queue->queue[queue->get_index].data_ofs;
rt_hw_interrupt_enable(level);
//pop the head frame...
rt_data_queue_pop(&audio->replay->queue, &frame.data_ptr, &frame.data_size, RT_WAITING_FOREVER);
return RT_EOK;
_exit: return result;
}
rt_err_t _audio_queue_unpeak(struct rt_audio_queue *queue, struct rt_audio_frame *frame)
static rt_err_t _audio_flush_replay_frame(struct rt_audio_device *audio)
{
rt_ubase_t level;
RT_ASSERT(queue != RT_NULL);
struct rt_audio_frame frame;
level = rt_hw_interrupt_disable();
if (queue->count == 0)
if (audio->replay == RT_NULL)
return -RT_EIO;
while (rt_data_queue_peak(&audio->replay->queue, &frame.data_ptr, &frame.data_size) == RT_EOK)
{
rt_hw_interrupt_enable(level);
//pop the head frame...
rt_data_queue_pop(&audio->replay->queue, &frame.data_ptr, &frame.data_size, RT_WAITING_FOREVER);
return -RT_EEMPTY;
/* notify transmitted complete. */
if (audio->parent.tx_complete != RT_NULL)
audio->parent.tx_complete(&audio->parent, (void *) frame.data_ptr);
}
queue->queue[queue->get_index].data_ptr = frame->data_ptr;
queue->queue[queue->get_index].data_size = frame->data_size;
queue->queue[queue->get_index].data_ofs = frame->data_ofs;
rt_hw_interrupt_enable(level);
return RT_EOK;
}
rt_err_t _audio_queue_reset(struct rt_audio_queue *queue)
{
struct rt_thread *thread;
register rt_ubase_t temp;
rt_enter_critical();
/* wakeup all suspend threads */
/* resume on pop list */
while (!rt_list_isempty(&(queue->suspended_pop_list)))
{
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* get next suspend thread */
thread = rt_list_entry(queue->suspended_pop_list.next,
struct rt_thread,
tlist);
/* set error code to RT_ERROR */
thread->error = -RT_ERROR;
/*
* resume thread
* In rt_thread_resume function, it will remove current thread from
* suspend list
*/
rt_thread_resume(thread);
/* enable interrupt */
rt_hw_interrupt_enable(temp);
}
/* resume on push list */
while (!rt_list_isempty(&(queue->suspended_push_list)))
{
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* get next suspend thread */
thread = rt_list_entry(queue->suspended_push_list.next,
struct rt_thread,
tlist);
/* set error code to RT_ERROR */
thread->error = -RT_ERROR;
/*
* resume thread
* In rt_thread_resume function, it will remove current thread from
* suspend list
*/
rt_thread_resume(thread);
/* enable interrupt */
rt_hw_interrupt_enable(temp);
}
rt_exit_critical();
rt_schedule();
}
static rt_err_t _audio_send_replay_frame(struct rt_audio_device *audio)
{
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_frame frame;
RT_ASSERT(audio != RT_NULL);
//check repaly queue is empty
if(_audio_queue_peak(&audio->replay->queue,&frame) != RT_EOK)
{
AUDIO_DBG("TX queue is empty\n");
result = -RT_EEMPTY;
level = rt_hw_interrupt_disable();
audio->replay->activated = RT_FALSE;
rt_hw_interrupt_enable(level);
goto _exit;
}
if(audio->ops->transmit != RT_NULL)
{
AUDIO_DBG("audio transmit...\n");
if(audio->ops->transmit(audio,frame.data_ptr,RT_NULL, frame.data_size) != frame.data_size)
{
result = -RT_EBUSY;
goto _exit;
}
}
//pop the head frame...
_audio_queue_pop(&audio->replay->queue,&frame,RT_WAITING_NO);
_exit:
return result;
}
static rt_err_t _audio_flush_replay_frame(struct rt_audio_device *audio)
{
struct rt_audio_frame frame;
if(audio->replay == RT_NULL)
return -RT_EIO;
while(_audio_queue_peak(&audio->replay->queue,&frame) == RT_EOK)
{
//pop the head frame...
_audio_queue_pop(&audio->replay->queue,&frame,RT_WAITING_NO);
/* notify transmitted complete. */
if(audio->parent.tx_complete != RT_NULL)
audio->parent.tx_complete(&audio->parent,(void *)frame.data_ptr);
}
return RT_EOK;
}
static rt_err_t _audio_dev_init(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
audio = (struct rt_audio_device *)dev;
audio = (struct rt_audio_device *) dev;
/* initialize replay & record */
audio->replay = RT_NULL;
......@@ -410,12 +114,12 @@ static rt_err_t _audio_dev_init(struct rt_device *dev)
static rt_err_t _audio_dev_open(struct rt_device *dev, rt_uint16_t oflag)
{
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_device *audio;
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
audio = (struct rt_audio_device *)dev;
audio = (struct rt_audio_device *) dev;
/* check device flag with the open flag */
if ((oflag & RT_DEVICE_OFLAG_RDONLY) && !(dev->flag & RT_DEVICE_FLAG_RDONLY))
......@@ -429,64 +133,65 @@ static rt_err_t _audio_dev_open(struct rt_device *dev, rt_uint16_t oflag)
/* initialize the Rx/Tx structure according to open flag */
if (oflag & RT_DEVICE_OFLAG_WRONLY)
{
AUDIO_DBG("open audio device ,oflag = %x\n",oflag);
if(audio->replay == RT_NULL)
{
struct rt_audio_replay *replay = (struct rt_audio_replay *)rt_malloc(sizeof(struct rt_audio_replay));
AUDIO_DBG("open audio device ,oflag = %x\n",oflag);
if (audio->replay == RT_NULL)
{
struct rt_audio_replay *replay = (struct rt_audio_replay *) rt_malloc(sizeof(struct rt_audio_replay));
if(replay == RT_NULL)
{
AUDIO_DBG("request memory for replay error\n");
return -RT_ENOMEM;
}
if (replay == RT_NULL)
{
AUDIO_DBG("request memory for replay error\n");
return -RT_ENOMEM;
}
//init queue for audio replay
_audio_queue_init(&replay->queue,CFG_AUDIO_REPLAY_QUEUE_COUNT,CFG_AUDIO_REPLAY_QUEUE_COUNT / 2);
//init queue for audio replay
rt_data_queue_init(&replay->queue, CFG_AUDIO_REPLAY_QUEUE_COUNT, CFG_AUDIO_REPLAY_QUEUE_COUNT / 2, RT_NULL);
replay->activated = RT_FALSE;
audio->replay = replay;
}
replay->activated = RT_FALSE;
audio->replay = replay;
}
dev->open_flag |= RT_DEVICE_OFLAG_WRONLY;
}
if(oflag & RT_DEVICE_OFLAG_RDONLY)
if (oflag & RT_DEVICE_OFLAG_RDONLY)
{
if(audio->record == RT_NULL)
{
struct rt_audio_record *record = (struct rt_audio_record *)rt_malloc(sizeof(struct rt_audio_record));
if(record == RT_NULL)
{
AUDIO_DBG("request memory for record error\n");
return -RT_ENOMEM;
}
//init pipe for record
{
rt_size_t size = CFG_AUDIO_RECORD_PIPE_SIZE;
rt_uint8_t *buf = rt_malloc(CFG_AUDIO_RECORD_PIPE_SIZE);
if(buf == RT_NULL)
{
rt_free(record);
AUDIO_DBG("request pipe memory error\n");
return -RT_ENOMEM;
}
rt_pipe_init(&record->pipe,"recpipe",RT_PIPE_FLAG_FORCE_WR | RT_PIPE_FLAG_BLOCK_RD,buf,CFG_AUDIO_RECORD_PIPE_SIZE);
}
record->activated = RT_FALSE;
audio->record = record;
}
//open record pipe
if(audio->record != RT_NULL)
{
rt_device_open(RT_DEVICE(&audio->record->pipe),RT_DEVICE_OFLAG_RDONLY);
}
if (audio->record == RT_NULL)
{
struct rt_audio_record *record = (struct rt_audio_record *) rt_malloc(sizeof(struct rt_audio_record));
if (record == RT_NULL)
{
AUDIO_DBG("request memory for record error\n");
return -RT_ENOMEM;
}
//init pipe for record
{
rt_size_t size = CFG_AUDIO_RECORD_PIPE_SIZE;
rt_uint8_t *buf = rt_malloc(CFG_AUDIO_RECORD_PIPE_SIZE);
if (buf == RT_NULL)
{
rt_free(record);
AUDIO_DBG("request pipe memory error\n");
return -RT_ENOMEM;
}
rt_pipe_init(&record->pipe, "recpipe", RT_PIPE_FLAG_FORCE_WR | RT_PIPE_FLAG_BLOCK_RD, buf,
CFG_AUDIO_RECORD_PIPE_SIZE);
}
record->activated = RT_FALSE;
audio->record = record;
}
//open record pipe
if (audio->record != RT_NULL)
{
rt_device_open(RT_DEVICE(&audio->record->pipe), RT_DEVICE_OFLAG_RDONLY);
}
dev->open_flag |= RT_DEVICE_OFLAG_RDONLY;
}
......@@ -496,96 +201,93 @@ static rt_err_t _audio_dev_open(struct rt_device *dev, rt_uint16_t oflag)
static rt_err_t _audio_dev_close(struct rt_device *dev)
{
struct rt_audio_device *audio;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
audio = (struct rt_audio_device *)dev;
audio = (struct rt_audio_device *) dev;
//shutdown the lower device
if(audio->ops->shutdown != RT_NULL)
audio->ops->shutdown(audio);
//shutdown the lower device
if (audio->ops->shutdown != RT_NULL)
audio->ops->shutdown(audio);
if(dev->open_flag & RT_DEVICE_OFLAG_WRONLY)
if (dev->open_flag & RT_DEVICE_OFLAG_WRONLY)
{
struct rt_audio_frame frame;
//stop replay stream
audio->ops->stop(audio,AUDIO_STREAM_REPLAY);
struct rt_audio_frame frame;
//stop replay stream
audio->ops->stop(audio, AUDIO_STREAM_REPLAY);
//flush all frame
while(_audio_queue_peak(&audio->replay->queue,&frame) == RT_EOK)
{
_audio_queue_pop(&audio->replay->queue,&frame,RT_WAITING_NO);
//flush all frame
while (rt_data_queue_peak(&audio->replay->queue, &frame.data_ptr, &frame.data_size) == RT_EOK)
{
//pop the head frame...
rt_data_queue_pop(&audio->replay->queue, &frame.data_ptr, &frame.data_size, RT_WAITING_FOREVER);
//indicate this frame complete(maybe upper device need free data)
if(dev->tx_complete != RT_NULL)
dev->tx_complete(dev,(void *)frame.data_ptr);
}
/* notify transmitted complete. */
if (audio->parent.tx_complete != RT_NULL)
audio->parent.tx_complete(&audio->parent, (void *) frame.data_ptr);
}
dev->open_flag &= ~RT_DEVICE_OFLAG_WRONLY;
dev->open_flag &= ~RT_DEVICE_OFLAG_WRONLY;
}
if(dev->open_flag & RT_DEVICE_OFLAG_RDONLY)
if (dev->open_flag & RT_DEVICE_OFLAG_RDONLY)
{
//stop record stream
audio->ops->stop(audio,AUDIO_STREAM_RECORD);
//stop record stream
audio->ops->stop(audio, AUDIO_STREAM_RECORD);
//close record pipe
if(audio->record != RT_NULL)
rt_device_close(RT_DEVICE(&audio->record->pipe));
//close record pipe
if (audio->record != RT_NULL)
rt_device_close(RT_DEVICE(&audio->record->pipe));
dev->open_flag &= ~RT_DEVICE_OFLAG_RDONLY;
dev->open_flag &= ~RT_DEVICE_OFLAG_RDONLY;
}
return RT_EOK;
return RT_EOK;
}
static rt_size_t _audio_dev_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size)
{
struct rt_audio_device *audio;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
audio = (struct rt_audio_device *)dev;
if(!(dev->open_flag & RT_DEVICE_OFLAG_RDONLY) || (audio->record == RT_NULL))
return 0;
audio = (struct rt_audio_device *) dev;
if (!(dev->open_flag & RT_DEVICE_OFLAG_RDONLY) || (audio->record == RT_NULL))
return 0;
return rt_device_read(RT_DEVICE(&audio->record->pipe), pos, buffer, size);
}
static rt_size_t _audio_dev_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_device *audio;
rt_err_t result = RT_EOK;
rt_base_t level;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
audio = (struct rt_audio_device *)dev;
audio = (struct rt_audio_device *) dev;
if(!(dev->open_flag & RT_DEVICE_OFLAG_WRONLY) || (audio->replay == RT_NULL))
return 0;
if (!(dev->open_flag & RT_DEVICE_OFLAG_WRONLY) || (audio->replay == RT_NULL))
return 0;
AUDIO_DBG("audio write : pos = %d,buffer = %x,size = %d\n",pos,(rt_uint32_t)buffer,size);
//push a new frame to tx queue
{
struct rt_audio_frame frame;
frame.data_ptr = buffer;
frame.data_size = size;
frame.data_ofs = 0;
result = _audio_queue_push(&audio->replay->queue,&frame,RT_WAITING_FOREVER);
if(result != RT_EOK)
result = rt_data_queue_push(&audio->replay->queue, buffer, size,
RT_WAITING_FOREVER);
if (result != RT_EOK)
{
AUDIO_DBG("TX frame queue push error\n");
rt_set_errno(-RT_EFULL);
AUDIO_DBG("TX frame queue push error\n");
rt_set_errno(-RT_EFULL);
return 0;
}
}
//check tx state...
level = rt_hw_interrupt_disable();
if(audio->replay->activated != RT_TRUE)
if (audio->replay->activated != RT_TRUE)
{
audio->replay->activated = RT_TRUE;
rt_hw_interrupt_enable(level);
audio->replay->activated = RT_TRUE;
rt_hw_interrupt_enable(level);
_audio_send_replay_frame(audio);
_audio_send_replay_frame(audio);
}
return size;
......@@ -593,251 +295,243 @@ static rt_size_t _audio_dev_write(struct rt_device *dev, rt_off_t pos, const voi
static rt_err_t _audio_dev_control(struct rt_device *dev, rt_uint8_t cmd, void *args)
{
rt_err_t result = RT_EOK;
struct rt_audio_device *audio;
rt_err_t result = RT_EOK;
struct rt_audio_device *audio;
RT_ASSERT(dev != RT_NULL);
audio = (struct rt_audio_device *)dev;
audio = (struct rt_audio_device *) dev;
//dev stat...
switch (cmd)
{
case AUDIO_CTL_GETCAPS:
{
struct rt_audio_caps *caps = (struct rt_audio_caps *) args;
AUDIO_DBG("AUDIO_CTL_GETCAPS: main_type = %d,sub_type = %d\n",caps->main_type,caps->sub_type);
if (audio->ops->getcaps != RT_NULL)
{
result = audio->ops->getcaps(audio, caps);
}
}
break;
case AUDIO_CTL_CONFIGURE:
{
struct rt_audio_caps *caps = (struct rt_audio_caps *) args;
AUDIO_DBG("AUDIO_CTL_CONFIGURE: main_type = %d,sub_type = %d\n",caps->main_type,caps->sub_type);
if (audio->ops->configure != RT_NULL)
{
result = audio->ops->configure(audio, caps);
}
}
break;
case AUDIO_CTL_SHUTDOWN:
{
AUDIO_DBG("AUDIO_CTL_SHUTDOWN\n");
if (audio->ops->shutdown != RT_NULL)
result = audio->ops->shutdown(audio);
//flush replay frame...
_audio_flush_replay_frame(audio);
}
break;
case AUDIO_CTL_START:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_START: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->start(audio, stream);
}
break;
case AUDIO_CTL_STOP:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_STOP: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->stop(audio, stream);
if(stream == AUDIO_STREAM_REPLAY)
{
_audio_flush_replay_frame(audio);
}
}
break;
case AUDIO_CTL_PAUSE:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_PAUSE: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->suspend(audio, stream);
}
break;
case AUDIO_CTL_RESUME:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_RESUME: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->resume(audio, stream);
//resume tx frame...
if(stream == AUDIO_STREAM_REPLAY)
_audio_send_replay_frame(audio);
}
break;
#ifdef AUDIO_DEVICE_USE_PRIVATE_BUFFER
case AUDIO_CTL_ALLOCBUFFER:
{
struct rt_audio_buf_desc *desc = (struct rt_audio_buf_desc *)args;
if((audio->ops->buffer_alloc != RT_NULL) && (desc != RT_NULL))
{
result = audio->ops->buffer_alloc(audio,&desc->data_ptr,&desc->data_size);
break;
}
result = -RT_EIO;
}
break;
case AUDIO_CTL_FREEBUFFER:
{
rt_uint8_t *data_ptr = (rt_uint8_t *)args;
if((audio->ops->buffer_free != RT_NULL) && (data_ptr != RT_NULL))
{
audio->ops->buffer_free(audio,data_ptr);
break;
}
}
break;
#endif
default:
result = audio->ops->control(audio, cmd, args);
break;
}
switch (cmd)
{
case AUDIO_CTL_GETCAPS:
{
struct rt_audio_caps *caps = (struct rt_audio_caps *) args;
AUDIO_DBG("AUDIO_CTL_GETCAPS: main_type = %d,sub_type = %d\n",caps->main_type,caps->sub_type);
if (audio->ops->getcaps != RT_NULL)
{
result = audio->ops->getcaps(audio, caps);
}
}
break;
case AUDIO_CTL_CONFIGURE:
{
struct rt_audio_caps *caps = (struct rt_audio_caps *) args;
AUDIO_DBG("AUDIO_CTL_CONFIGURE: main_type = %d,sub_type = %d\n",caps->main_type,caps->sub_type);
if (audio->ops->configure != RT_NULL)
{
result = audio->ops->configure(audio, caps);
}
}
break;
case AUDIO_CTL_SHUTDOWN:
{
AUDIO_DBG("AUDIO_CTL_SHUTDOWN\n");
if (audio->ops->shutdown != RT_NULL)
result = audio->ops->shutdown(audio);
//flush replay frame...
_audio_flush_replay_frame(audio);
}
break;
case AUDIO_CTL_START:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_START: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->start(audio, stream);
}
break;
case AUDIO_CTL_STOP:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_STOP: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->stop(audio, stream);
if (stream == AUDIO_STREAM_REPLAY)
{
_audio_flush_replay_frame(audio);
}
}
break;
case AUDIO_CTL_PAUSE:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_PAUSE: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->suspend(audio, stream);
}
break;
case AUDIO_CTL_RESUME:
{
int stream = *(int *) args;
AUDIO_DBG("AUDIO_CTL_RESUME: stream = %d\n",stream);
if (audio->ops->start != RT_NULL)
result = audio->ops->resume(audio, stream);
//resume tx frame...
if (stream == AUDIO_STREAM_REPLAY)
_audio_send_replay_frame(audio);
}
break;
case AUDIO_CTL_ALLOCBUFFER:
{
struct rt_audio_buf_desc *desc = (struct rt_audio_buf_desc *) args;
if (desc)
{
desc->data_size = AUDIO_DEVICE_DECODE_MP_BLOCK_SZ * 2;
desc->data_ptr = rt_mp_alloc(&audio->mp, RT_WAITING_FOREVER);
result = RT_EOK;
}
else result = -RT_EIO;
}
break;
case AUDIO_CTL_FREEBUFFER:
{
rt_uint8_t *data_ptr = (rt_uint8_t *) args;
if (data_ptr)
rt_mp_free(data_ptr);
}
break;
default:
result = audio->ops->control(audio, cmd, args);
break;
}
return result;
}
rt_err_t rt_audio_register(struct rt_audio_device *audio, const char *name, rt_uint32_t flag, void *data)
{
struct rt_device *device;
RT_ASSERT(audio != RT_NULL);
device = &(audio->parent);
device->type = RT_Device_Class_Sound;
device->type = RT_Device_Class_Sound;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->init = _audio_dev_init;
device->open = _audio_dev_open;
device->close = _audio_dev_close;
device->read = _audio_dev_read;
device->write = _audio_dev_write;
device->control = _audio_dev_control;
device->user_data = data;
device->init = _audio_dev_init;
device->open = _audio_dev_open;
device->close = _audio_dev_close;
device->read = _audio_dev_read;
device->write = _audio_dev_write;
device->control = _audio_dev_control;
device->user_data = data;
//init memory pool for replay
{
rt_uint8_t *mempool = rt_malloc(AUDIO_DEVICE_DECODE_MP_SZ);
rt_mp_init(&audio->mp, "adu_mp", mempool, AUDIO_DEVICE_DECODE_MP_SZ,
AUDIO_DEVICE_DECODE_MP_BLOCK_SZ * 2);
}
/* register a character device */
return rt_device_register(device, name, flag | RT_DEVICE_FLAG_REMOVABLE);
}
rt_size_t rt_audio_get_buffer_size(struct rt_audio_device *audio)
{
// return (audio->config.period_count * audio->config.period_size);
return 0;
}
int rt_audio_samplerate_to_speed(rt_uint32_t bitValue)
{
int speed = 0;
switch (bitValue)
{
case AUDIO_SAMP_RATE_8K:
speed = 8000;
break;
case AUDIO_SAMP_RATE_11K:
speed = 11052;
break;
case AUDIO_SAMP_RATE_16K:
speed = 16000;
break;
case AUDIO_SAMP_RATE_22K:
speed = 22050;
break;
case AUDIO_SAMP_RATE_32K:
speed = 32000;
break;
case AUDIO_SAMP_RATE_44K:
speed = 44100;
break;
case AUDIO_SAMP_RATE_48K:
speed = 48000;
break;
case AUDIO_SAMP_RATE_96K:
speed = 96000;
break;
case AUDIO_SAMP_RATE_128K:
speed = 128000;
break;
case AUDIO_SAMP_RATE_160K:
speed = 160000;
break;
case AUDIO_SAMP_RATE_172K:
speed = 176400;
break;
case AUDIO_SAMP_RATE_192K:
speed = 192000;
break;
default:
break;
}
return speed;
}
int speed = 0;
switch (bitValue)
{
case AUDIO_SAMP_RATE_8K:
speed = 8000;
break;
case AUDIO_SAMP_RATE_11K:
speed = 11052;
break;
case AUDIO_SAMP_RATE_16K:
speed = 16000;
break;
case AUDIO_SAMP_RATE_22K:
speed = 22050;
break;
case AUDIO_SAMP_RATE_32K:
speed = 32000;
break;
case AUDIO_SAMP_RATE_44K:
speed = 44100;
break;
case AUDIO_SAMP_RATE_48K:
speed = 48000;
break;
case AUDIO_SAMP_RATE_96K:
speed = 96000;
break;
case AUDIO_SAMP_RATE_128K:
speed = 128000;
break;
case AUDIO_SAMP_RATE_160K:
speed = 160000;
break;
case AUDIO_SAMP_RATE_172K:
speed = 176400;
break;
case AUDIO_SAMP_RATE_192K:
speed = 192000;
break;
default:
break;
}
return speed;
}
rt_uint32_t rt_audio_format_to_bits(rt_uint32_t format)
{
switch (format)
{
case AUDIO_FMT_PCM_U8:
case AUDIO_FMT_PCM_S8:
return 8;
case AUDIO_FMT_PCM_S16_LE:
case AUDIO_FMT_PCM_S16_BE:
case AUDIO_FMT_PCM_U16_LE:
case AUDIO_FMT_PCM_U16_BE:
return 16;
default:
return 32;
case AUDIO_FMT_PCM_U8:
case AUDIO_FMT_PCM_S8:
return 8;
case AUDIO_FMT_PCM_S16_LE:
case AUDIO_FMT_PCM_S16_BE:
case AUDIO_FMT_PCM_U16_LE:
case AUDIO_FMT_PCM_U16_BE:
return 16;
default:
return 32;
};
}
void rt_audio_tx_complete(struct rt_audio_device *audio,rt_uint8_t *pbuf)
void rt_audio_tx_complete(struct rt_audio_device *audio, rt_uint8_t *pbuf)
{
rt_err_t result;
AUDIO_DBG("audio tx complete ptr=%x...\n",(rt_uint32_t)pbuf);
//try to send all frame
do
{
result = _audio_send_replay_frame(audio);
}while(result == RT_EOK);
/* notify transmitted complete. */
if(audio->parent.tx_complete != RT_NULL)
audio->parent.tx_complete(&audio->parent,(void *)pbuf);
rt_err_t result;
AUDIO_DBG("audio tx complete ptr=%x...\n",(rt_uint32_t)pbuf);
//try to send all frame
do
{
result = _audio_send_replay_frame(audio);
} while (result == RT_EOK);
/* notify transmitted complete. */
if (audio->parent.tx_complete != RT_NULL)
audio->parent.tx_complete(&audio->parent, (void *) pbuf);
}
void rt_audio_rx_done(struct rt_audio_device *audio,rt_uint8_t *pbuf,rt_size_t len)
void rt_audio_rx_done(struct rt_audio_device *audio, rt_uint8_t *pbuf, rt_size_t len)
{
rt_err_t result = RT_EOK;
rt_err_t result = RT_EOK;
//save data to record pipe
rt_device_write(RT_DEVICE(RT_DEVICE(&audio->record->pipe)),0,pbuf,len);
rt_device_write(RT_DEVICE(RT_DEVICE(&audio->record->pipe)), 0, pbuf, len);
/* invoke callback */
if(audio->parent.rx_indicate != RT_NULL)
audio->parent.rx_indicate(&audio->parent,len);
if (audio->parent.rx_indicate != RT_NULL)
audio->parent.rx_indicate(&audio->parent, len);
}
/*
* File : audio.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2017-05-09 Urey first version
*/
#ifndef __AUDIO_H__
#define __AUDIO_H__
//#define AUDIO_DEVICE_USE_PRIVATE_BUFFER
/* AUDIO command */
#define _AUDIO_CTL(a) (0x10 + a)
#define _AUDIO_CTL(a) (0x10 + a)
#define AUDIO_CTL_GETCAPS _AUDIO_CTL(1)
#define AUDIO_CTL_CONFIGURE _AUDIO_CTL(2)
#define AUDIO_CTL_SHUTDOWN _AUDIO_CTL(3)
#define AUDIO_CTL_START _AUDIO_CTL(4)
#define AUDIO_CTL_STOP _AUDIO_CTL(5)
#define AUDIO_CTL_PAUSE _AUDIO_CTL(6)
#define AUDIO_CTL_RESUME _AUDIO_CTL(7)
#define AUDIO_CTL_GETBUFFERINFO _AUDIO_CTL(8)
#define AUDIO_CTL_ALLOCBUFFER _AUDIO_CTL(9)
#define AUDIO_CTL_FREEBUFFER _AUDIO_CTL(10)
#define AUDIO_CTL_HWRESET _AUDIO_CTL(11)
#define AUDIO_CTL_GETCAPS _AUDIO_CTL(1)
#define AUDIO_CTL_CONFIGURE _AUDIO_CTL(2)
#define AUDIO_CTL_SHUTDOWN _AUDIO_CTL(3)
#define AUDIO_CTL_START _AUDIO_CTL(4)
#define AUDIO_CTL_STOP _AUDIO_CTL(5)
#define AUDIO_CTL_PAUSE _AUDIO_CTL(6)
#define AUDIO_CTL_RESUME _AUDIO_CTL(7)
#define AUDIO_CTL_GETBUFFERINFO _AUDIO_CTL(8)
#define AUDIO_CTL_ALLOCBUFFER _AUDIO_CTL(9)
#define AUDIO_CTL_FREEBUFFER _AUDIO_CTL(10)
#define AUDIO_CTL_HWRESET _AUDIO_CTL(11)
/* Audio Device Types */
#define AUDIO_TYPE_QUERY 0x00
#define AUDIO_TYPE_INPUT 0x01
#define AUDIO_TYPE_OUTPUT 0x02
#define AUDIO_TYPE_MIXER 0x04
#define AUDIO_TYPE_SELECTOR 0x08
#define AUDIO_TYPE_EFFECT 0x10
#define AUDIO_TYPE_QUERY 0x00
#define AUDIO_TYPE_INPUT 0x01
#define AUDIO_TYPE_OUTPUT 0x02
#define AUDIO_TYPE_MIXER 0x04
#define AUDIO_TYPE_SELECTOR 0x08
#define AUDIO_TYPE_EFFECT 0x10
/* Audio Format Types */
#define AUDIO_FMT_PCM_U8 0x0001
#define AUDIO_FMT_PCM_S8 0x0002
#define AUDIO_FMT_PCM_U16_LE 0x0010
#define AUDIO_FMT_PCM_S16_BE 0x0020
#define AUDIO_FMT_PCM_S16_LE 0x0040
#define AUDIO_FMT_PCM_U16_BE 0x0080
#define AUDIO_FMT_PCM_U24_LE 0x0100
#define AUDIO_FMT_PCM_S24_BE 0x0200
#define AUDIO_FMT_PCM_S24_LE 0x0400
#define AUDIO_FMT_PCM_U24_BE 0x0800
#define AUDIO_FMT_PCM_U32_LE 0x1000
#define AUDIO_FMT_PCM_S32_BE 0x2000
#define AUDIO_FMT_PCM_S32_LE 0x4000
#define AUDIO_FMT_PCM_U32_BE 0x8000
#define AUDIO_FMT_PCM_U8 0x0001
#define AUDIO_FMT_PCM_S8 0x0002
#define AUDIO_FMT_PCM_U16_LE 0x0010
#define AUDIO_FMT_PCM_S16_BE 0x0020
#define AUDIO_FMT_PCM_S16_LE 0x0040
#define AUDIO_FMT_PCM_U16_BE 0x0080
#define AUDIO_FMT_PCM_U24_LE 0x0100
#define AUDIO_FMT_PCM_S24_BE 0x0200
#define AUDIO_FMT_PCM_S24_LE 0x0400
#define AUDIO_FMT_PCM_U24_BE 0x0800
#define AUDIO_FMT_PCM_U32_LE 0x1000
#define AUDIO_FMT_PCM_S32_BE 0x2000
#define AUDIO_FMT_PCM_S32_LE 0x4000
#define AUDIO_FMT_PCM_U32_BE 0x8000
/* Supported Sampling Rates */
#define AUDIO_SAMP_RATE_8K 0x0001
#define AUDIO_SAMP_RATE_11K 0x0002
#define AUDIO_SAMP_RATE_16K 0x0004
#define AUDIO_SAMP_RATE_22K 0x0008
#define AUDIO_SAMP_RATE_32K 0x0010
#define AUDIO_SAMP_RATE_44K 0x0020
#define AUDIO_SAMP_RATE_48K 0x0040
#define AUDIO_SAMP_RATE_96K 0x0080
#define AUDIO_SAMP_RATE_128K 0x0100
#define AUDIO_SAMP_RATE_160K 0x0200
#define AUDIO_SAMP_RATE_172K 0x0400
#define AUDIO_SAMP_RATE_192K 0x0800
#define AUDIO_SAMP_RATE_8K 0x0001
#define AUDIO_SAMP_RATE_11K 0x0002
#define AUDIO_SAMP_RATE_16K 0x0004
#define AUDIO_SAMP_RATE_22K 0x0008
#define AUDIO_SAMP_RATE_32K 0x0010
#define AUDIO_SAMP_RATE_44K 0x0020
#define AUDIO_SAMP_RATE_48K 0x0040
#define AUDIO_SAMP_RATE_96K 0x0080
#define AUDIO_SAMP_RATE_128K 0x0100
#define AUDIO_SAMP_RATE_160K 0x0200
#define AUDIO_SAMP_RATE_172K 0x0400
#define AUDIO_SAMP_RATE_192K 0x0800
/* Supported Bit Rates */
#define AUDIO_BIT_RATE_22K 0x01
#define AUDIO_BIT_RATE_44K 0x02
#define AUDIO_BIT_RATE_48K 0x04
#define AUDIO_BIT_RATE_96K 0x08
#define AUDIO_BIT_RATE_128K 0x10
#define AUDIO_BIT_RATE_160K 0x20
#define AUDIO_BIT_RATE_172K 0x40
#define AUDIO_BIT_RATE_192K 0x80
#define AUDIO_BIT_RATE_22K 0x01
#define AUDIO_BIT_RATE_44K 0x02
#define AUDIO_BIT_RATE_48K 0x04
#define AUDIO_BIT_RATE_96K 0x08
#define AUDIO_BIT_RATE_128K 0x10
#define AUDIO_BIT_RATE_160K 0x20
#define AUDIO_BIT_RATE_172K 0x40
#define AUDIO_BIT_RATE_192K 0x80
/* Support Dsp(input/output) Units controls */
#define AUDIO_DSP_PARAM 0 /* get/set all params */
#define AUDIO_DSP_SAMPLERATE 1 /* Ƶ */
#define AUDIO_DSP_FMT 2
#define AUDIO_DSP_CHANNELS 3
#define AUDIO_DSP_PARAM 0 /* get/set all params */
#define AUDIO_DSP_SAMPLERATE 1 /* Ƶ */
#define AUDIO_DSP_FMT 2
#define AUDIO_DSP_CHANNELS 3
/* Supported Mixer Units controls */
#define AUDIO_MIXER_QUERY 0x0000
#define AUDIO_MIXER_MUTE 0x0001
#define AUDIO_MIXER_VOLUME 0x0002
#define AUDIO_MIXER_BASS 0x0004
#define AUDIO_MIXER_MID 0x0008
#define AUDIO_MIXER_TREBLE 0x0010
#define AUDIO_MIXER_EQUALIZER 0x0020
#define AUDIO_MIXER_LINE 0x0040
#define AUDIO_MIXER_DIGITAL 0x0080
#define AUDIO_MIXER_MIC 0x0100
#define AUDIO_MIXER_EXTEND 0x8000 //extend mixer command
#define CFG_AUDIO_REPLAY_QUEUE_COUNT 4
#define CFG_AUDIO_RECORD_PIPE_SIZE (8 * 1024)
#define AUDIO_MIXER_QUERY 0x0000
#define AUDIO_MIXER_MUTE 0x0001
#define AUDIO_MIXER_VOLUME 0x0002
#define AUDIO_MIXER_BASS 0x0004
#define AUDIO_MIXER_MID 0x0008
#define AUDIO_MIXER_TREBLE 0x0010
#define AUDIO_MIXER_EQUALIZER 0x0020
#define AUDIO_MIXER_LINE 0x0040
#define AUDIO_MIXER_DIGITAL 0x0080
#define AUDIO_MIXER_MIC 0x0100
#define AUDIO_MIXER_EXTEND 0x8000 //extend mixer command
#define CFG_AUDIO_REPLAY_QUEUE_COUNT 4
#define CFG_AUDIO_RECORD_PIPE_SIZE (8 * 1024)
#define AUDIO_DEVICE_MP_CNT (4)
#define AUDIO_DEVICE_DECODE_MP_BLOCK_SZ (4352 * 4)
#define AUDIO_DEVICE_DECODE_MP_SZ ((AUDIO_DEVICE_DECODE_MP_BLOCK_SZ*2 + 4)*AUDIO_DEVICE_MP_CNT)
enum
{
......@@ -104,36 +129,19 @@ enum
/* the preferred number and size of audio pipeline buffer for the audio device */
struct rt_audio_buf_info
{
rt_uint32_t buffer_size; /* Preferred qty of buffers */
rt_uint32_t buffer_count; /* Preferred size of the buffers */
rt_uint32_t buffer_size; /* Preferred qty of buffers */
rt_uint32_t buffer_count; /* Preferred size of the buffers */
};
struct rt_audio_buf_desc
{
rt_uint8_t *data_ptr;
rt_size_t data_size;
rt_uint8_t *data_ptr;
rt_size_t data_size;
};
struct rt_audio_frame
{
const void *data_ptr;
rt_size_t data_size;
rt_size_t data_ofs;
};
struct rt_audio_queue
{
rt_uint16_t count;
rt_uint16_t size;
rt_uint16_t lwm;
rt_bool_t waiting_lwm;
rt_uint16_t get_index;
rt_uint16_t put_index;
struct rt_audio_frame *queue;
rt_list_t suspended_push_list;
rt_list_t suspended_pop_list;
};
struct rt_audio_device;
......@@ -141,25 +149,21 @@ struct rt_audio_caps;
struct rt_audio_configure;
struct rt_audio_ops
{
rt_err_t (*getcaps) (struct rt_audio_device *audio,struct rt_audio_caps *caps);
rt_err_t (*configure) (struct rt_audio_device *audio,struct rt_audio_caps *caps);
rt_err_t (*getcaps) (struct rt_audio_device *audio,struct rt_audio_caps *caps);
rt_err_t (*configure) (struct rt_audio_device *audio,struct rt_audio_caps *caps);
rt_err_t (*init) (struct rt_audio_device *audio);
rt_err_t (*shutdown) (struct rt_audio_device *audio);
rt_err_t (*start) (struct rt_audio_device *audio,int stream);
rt_err_t (*stop) (struct rt_audio_device *audio,int stream);
rt_err_t (*suspend) (struct rt_audio_device *audio,int stream);
rt_err_t (*resume) (struct rt_audio_device *audio,int stream);
rt_err_t (*init) (struct rt_audio_device *audio);
rt_err_t (*shutdown) (struct rt_audio_device *audio);
rt_err_t (*start) (struct rt_audio_device *audio,int stream);
rt_err_t (*stop) (struct rt_audio_device *audio,int stream);
rt_err_t (*suspend) (struct rt_audio_device *audio,int stream);
rt_err_t (*resume) (struct rt_audio_device *audio,int stream);
rt_err_t (*control) (struct rt_audio_device *audio, rt_uint8_t cmd, void *arg);
rt_size_t (*transmit) (struct rt_audio_device *audio, const void *writeBuf,void *readBuf, rt_size_t size);
rt_err_t (*control) (struct rt_audio_device *audio, rt_uint8_t cmd, void *arg);
rt_size_t (*transmit) (struct rt_audio_device *audio, const void *writeBuf,void *readBuf, rt_size_t size);
//get page size of codec or private buffer's info
void (*buffer_info) (struct rt_audio_device *audio,struct rt_audio_buf_info *info );
#ifdef AUDIO_DEVICE_USE_PRIVATE_BUFFER
rt_err_t (*buffer_alloc) (struct rt_audio_device *audio,rt_uint8_t **data_ptr,rt_size_t *size);
void (*buffer_free) (struct rt_audio_device *audio,rt_uint8_t *data_ptr);
#endif
void (*buffer_info) (struct rt_audio_device *audio,struct rt_audio_buf_info *info );
};
......@@ -174,42 +178,44 @@ struct rt_audio_configure
struct rt_audio_caps
{
int main_type;
int sub_type;
union
{
rt_uint32_t mask;
int value;
struct rt_audio_configure config;
}udata;
int main_type;
int sub_type;
union
{
rt_uint32_t mask;
int value;
struct rt_audio_configure config;
}udata;
};
struct rt_audio_replay
{
rt_bool_t activated;
struct rt_audio_queue queue;
struct rt_data_queue queue;
};
struct rt_audio_record
{
rt_bool_t activated;
struct rt_pipe_device pipe;
struct rt_pipe_device pipe;
};
struct rt_audio_device
{
struct rt_device parent;
struct rt_audio_ops *ops;
struct rt_audio_ops *ops;
struct rt_mempool mp;
struct rt_audio_replay *replay;
struct rt_audio_record *record;
struct rt_audio_replay *replay;
struct rt_audio_record *record;
};
rt_err_t rt_audio_register(struct rt_audio_device *audio, const char *name, rt_uint32_t flag, void *data);
void rt_audio_tx_complete(struct rt_audio_device *audio,rt_uint8_t *pbuf);
void rt_audio_rx_done(struct rt_audio_device *audio,rt_uint8_t *pbuf,rt_size_t len);
rt_uint32_t rt_audio_format_to_bits(rt_uint32_t format);
rt_err_t rt_audio_register (struct rt_audio_device *audio, const char *name, rt_uint32_t flag, void *data);
void rt_audio_tx_complete (struct rt_audio_device *audio,rt_uint8_t *pbuf);
void rt_audio_rx_done (struct rt_audio_device *audio,rt_uint8_t *pbuf,rt_size_t len);
rt_uint32_t rt_audio_format_to_bits (rt_uint32_t format);
/* Device Control Commands */
......@@ -219,7 +225,6 @@ rt_uint32_t rt_audio_format_to_bits(rt_uint32_t format);
#define CODEC_CMD_SAMPLERATE 3
#define CODEC_CMD_EQ 4
#define CODEC_CMD_3D 5
#define CODEC_CMD_SWITCH 6
#define CODEC_VOLUME_MAX (63)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册