#include #include #include "stm32f10x.h" #include "board.h" #include "codec.h" #if CODEC_USE_SPI3 #define CODEC_I2S_PORT SPI3 #define CODEC_I2S_IRQ SPI3_IRQn #define CODEC_I2S_DMA DMA2_Channel2 #define CODEC_I2S_DMA_IRQ DMA2_Channel2_IRQn #define CODEC_I2S_RCC_APB1 RCC_APB1Periph_SPI3 #define CODEC_I2S_RCC_AHB RCC_AHBPeriph_DMA2 // I2S3_WS -> PA15 #define CODEC_I2S_WS_PIN GPIO_Pin_15 #define CODEC_I2S_WS_PORT GPIOA // I2S3_CK -> PB3 #define CODEC_I2S_CK_PIN GPIO_Pin_3 #define CODEC_I2S_CK_PORT GPIOB // I2S3_SD -> PB5 #define CODEC_I2S_SD_PIN GPIO_Pin_5 #define CODEC_I2S_SD_PORT GPIOB #else #define CODEC_I2S_PORT SPI2 #define CODEC_I2S_IRQ SPI2_IRQn #define CODEC_I2S_DMA DMA1_Channel5 #define CODEC_I2S_DMA_IRQ DMA1_Channel5_IRQn #define CODEC_I2S_RCC_APB1 RCC_APB1Periph_SPI2 #define CODEC_I2S_RCC_AHB RCC_AHBPeriph_DMA1 // I2S2_WS -> PB12 #define CODEC_I2S_WS_PIN GPIO_Pin_12 #define CODEC_I2S_WS_PORT GPIOB // I2S2_CK -> PB13 #define CODEC_I2S_CK_PIN GPIO_Pin_13 #define CODEC_I2S_CK_PORT GPIOB // I2S2_SD -> PB15 #define CODEC_I2S_SD_PIN GPIO_Pin_15 #define CODEC_I2S_SD_PORT GPIOB #endif // #if CODEC_USE_SPI3 /* SCLK PA5 SPI1_SCK SDIN PA7 SPI1_MOSI CSB PC5 */ #define CODEC_CSB_PORT GPIOC #define CODEC_CSB_PIN GPIO_Pin_5 #define codec_set_csb() do { CODEC_CSB_PORT->BSRR = CODEC_CSB_PIN; } while (0) #define codec_reset_csb() do { CODEC_CSB_PORT->BRR = CODEC_CSB_PIN; } while (0) void vol(uint16_t v); static void codec_send(rt_uint16_t s_data); #define DATA_NODE_MAX 5 /* data node for Tx Mode */ struct codec_data_node { rt_uint16_t *data_ptr; rt_size_t data_size; }; struct codec_device { /* inherit from rt_device */ struct rt_device parent; /* pcm data list */ struct codec_data_node data_list[DATA_NODE_MAX]; rt_uint16_t read_index, put_index; /* transmitted offset of current data node */ rt_size_t offset; }; struct codec_device codec; static uint16_t r06 = REG_CLOCK_GEN | CLKSEL_PLL | MCLK_DIV2 | BCLK_DIV8; static void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; /* DMA IRQ Channel configuration */ NVIC_InitStructure.NVIC_IRQChannel = CODEC_I2S_DMA_IRQ; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } static void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; /* Disable the JTAG interface and enable the SWJ interface */ GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); /* PC5 CODEC CS */ GPIO_InitStructure.GPIO_Pin = CODEC_CSB_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(CODEC_CSB_PORT, &GPIO_InitStructure); // WS GPIO_InitStructure.GPIO_Pin = CODEC_I2S_WS_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; #if CODEC_MASTER_MODE GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; #else GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; #endif GPIO_Init(CODEC_I2S_WS_PORT, &GPIO_InitStructure); // CK GPIO_InitStructure.GPIO_Pin = CODEC_I2S_CK_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; #if CODEC_MASTER_MODE GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; #else GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; #endif GPIO_Init(CODEC_I2S_CK_PORT, &GPIO_InitStructure); // SD GPIO_InitStructure.GPIO_Pin = CODEC_I2S_SD_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(CODEC_I2S_SD_PORT, &GPIO_InitStructure); #ifdef CODEC_USE_MCO /* MCO configure */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStructure); RCC_MCOConfig(RCC_MCO_HSE); #endif } static void DMA_Configuration(rt_uint32_t addr, rt_size_t size) { DMA_InitTypeDef DMA_InitStructure; /* DMA Channel configuration ----------------------------------------------*/ DMA_Cmd(CODEC_I2S_DMA, DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&(CODEC_I2S_PORT->DR)); DMA_InitStructure.DMA_MemoryBaseAddr = (u32) addr; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_BufferSize = size; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(CODEC_I2S_DMA, &DMA_InitStructure); /* Enable SPI DMA Tx request */ SPI_I2S_DMACmd(CODEC_I2S_PORT, SPI_I2S_DMAReq_Tx, ENABLE); DMA_ITConfig(CODEC_I2S_DMA, DMA_IT_TC, ENABLE); DMA_Cmd(CODEC_I2S_DMA, ENABLE); } static void I2S_Configuration(uint32_t I2S_AudioFreq) { I2S_InitTypeDef I2S_InitStructure; /* I2S peripheral configuration */ I2S_InitStructure.I2S_Standard = I2S_Standard_Phillips; I2S_InitStructure.I2S_DataFormat = I2S_DataFormat_16b; I2S_InitStructure.I2S_MCLKOutput = I2S_MCLKOutput_Disable; I2S_InitStructure.I2S_AudioFreq = I2S_AudioFreq; I2S_InitStructure.I2S_CPOL = I2S_CPOL_Low; /* I2S2 configuration */ #if CODEC_MASTER_MODE I2S_InitStructure.I2S_Mode = I2S_Mode_SlaveTx; #else I2S_InitStructure.I2S_Mode = I2S_Mode_MasterTx; #endif I2S_Init(CODEC_I2S_PORT, &I2S_InitStructure); } uint8_t SPI_WriteByte(unsigned char data) { //Wait until the transmit buffer is empty while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); // Send the byte SPI_I2S_SendData(SPI1, data); //Wait until a data is received while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); // Get the received data data = SPI_I2S_ReceiveData(SPI1); // Return the shifted data return data; } static void codec_send(rt_uint16_t s_data) { codec_reset_csb(); SPI_WriteByte((s_data >> 8) & 0xFF); SPI_WriteByte(s_data & 0xFF); codec_set_csb(); } static rt_err_t codec_init(rt_device_t dev) { codec_send(REG_SOFTWARE_RESET); // 1.5x boost power up sequence. // Mute all outputs. codec_send(REG_LOUT1_VOL | LOUT1MUTE); codec_send(REG_ROUT1_VOL | ROUT1MUTE); codec_send(REG_LOUT2_VOL | LOUT2MUTE); codec_send(REG_ROUT2_VOL | ROUT2MUTE); // Enable unused output chosen from L/ROUT2, OUT3 or OUT4. codec_send(REG_POWER_MANAGEMENT3 | OUT4EN); // Set BUFDCOPEN=1 and BUFIOEN=1 in register R1 codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN); // Set SPKBOOST=1 in register R49. codec_send(REG_OUTPUT | SPKBOOST); // Set VMIDSEL[1:0] to required value in register R1. codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN | VMIDSEL_75K); // Set L/RMIXEN=1 and DACENL/R=1 in register R3. codec_send(REG_POWER_MANAGEMENT3 | LMIXEN | RMIXEN | DACENL | DACENR); // Set BIASEN=1 in register R1. codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN | VMIDSEL_75K | BIASEN); // Set L/ROUT2EN=1 in register R3. codec_send(REG_POWER_MANAGEMENT3 | LMIXEN | RMIXEN | DACENL | DACENR | LOUT2EN | ROUT2EN); // Enable other mixers as required. // Enable other outputs as required. codec_send(REG_POWER_MANAGEMENT2 | LOUT1EN | ROUT1EN | BOOSTENL | BOOSTENR | INPPGAENL | INPPGAENR); // Digital inferface setup. codec_send(REG_AUDIO_INTERFACE | BCP_NORMAL | LRP_NORMAL | WL_16BITS | FMT_I2S); // PLL setup. // fs = 44.1KHz * 256fs = 11.2896MHz // F_PLL = 11.2896MHz * 4 * 2 = 90.3168MHz // R = 90.3168MHz / 12.288MHz = 7.35 // PLL_N = 7 // PLL_K = 0x59999A (0x5A5A5A for STM32's 44.117KHz fs generated from 72MHz clock) codec_send(REG_PLL_N | 7); #if CODEC_MASTER_MODE codec_send(REG_PLL_K1 | 0x16); codec_send(REG_PLL_K2 | 0xCC); codec_send(REG_PLL_K3 | 0x19A); #else codec_send(REG_PLL_K1 | 0x16); codec_send(REG_PLL_K2 | 0x12D); codec_send(REG_PLL_K3 | 0x5A); #endif codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN | VMIDSEL_75K | BIASEN | PLLEN); codec_send(r06); // Enable DAC 128x oversampling. codec_send(REG_DAC | DACOSR128); // Set LOUT2/ROUT2 in BTL operation. codec_send(REG_BEEP | INVROUT2); // Set output volume. vol(25); return RT_EOK; } // Exported functions #include void vol(uint16_t v) { v = (v & VOL_MASK) << VOL_POS; codec_send(REG_LOUT1_VOL | v); codec_send(REG_ROUT1_VOL | HPVU | v); codec_send(REG_LOUT2_VOL | v); codec_send(REG_ROUT2_VOL | SPKVU | v); } void eq(codec_eq_args_t args) { switch (args->channel) { case 1: codec_send(REG_EQ1 | ((args->frequency & EQC_MASK) << EQC_POS) | ((args->gain & EQG_MASK) << EQG_POS) | (args->mode_bandwidth ? EQ3DMODE_DAC : EQ3DMODE_ADC)); break; case 2: codec_send(REG_EQ2 | ((args->frequency & EQC_MASK) << EQC_POS) | ((args->gain & EQG_MASK) << EQG_POS) | (args->mode_bandwidth ? EQ2BW_WIDE : EQ2BW_NARROW)); break; case 3: codec_send(REG_EQ3 | ((args->frequency & EQC_MASK) << EQC_POS) | ((args->gain & EQG_MASK) << EQG_POS) | (args->mode_bandwidth ? EQ3BW_WIDE : EQ3BW_NARROW)); break; case 4: codec_send(REG_EQ4 | ((args->frequency & EQC_MASK) << EQC_POS) | ((args->gain & EQG_MASK) << EQG_POS) | (args->mode_bandwidth ? EQ4BW_WIDE : EQ4BW_NARROW)); break; case 5: codec_send(REG_EQ5 | ((args->frequency & EQC_MASK) << EQC_POS) | ((args->gain & EQG_MASK) << EQG_POS)); break; } } // TODO eq1() ~ eq5() are just for testing. To be removed. void eq1(uint8_t freq, uint8_t gain, uint8_t mode) { codec_send(REG_EQ1 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (mode ? EQ3DMODE_DAC : EQ3DMODE_ADC)); } void eq2(uint8_t freq, uint8_t gain, uint8_t bw) { codec_send(REG_EQ2 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (bw ? EQ2BW_WIDE : EQ2BW_NARROW)); } void eq3(uint8_t freq, uint8_t gain, uint8_t bw) { codec_send(REG_EQ3 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (bw ? EQ3BW_WIDE : EQ3BW_NARROW)); } void eq4(uint8_t freq, uint8_t gain, uint8_t bw) { codec_send(REG_EQ4 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (bw ? EQ4BW_WIDE : EQ4BW_NARROW)); } void eq5(uint8_t freq, uint8_t gain) { codec_send(REG_EQ2 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS)); } void eq3d(uint8_t depth) { codec_send(REG_3D | ((depth & DEPTH3D_MASK) << DEPTH3D_POS)); } rt_err_t sample_rate(int sr) { uint16_t r07 = REG_ADDITIONAL; switch (sr) { case 8000: r06 = REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV6 | BCLK_DIV8 | (r06 & MS); r07 |= SR_8KHZ; break; case 11025: r06 = REG_CLOCK_GEN | CLKSEL_PLL | MCLK_DIV8 | BCLK_DIV8 | (r06 & MS); r07 |= SR_12KHZ; break; #if CODEC_MASTER_MODE case 12000: r06 = REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV4 | BCLK_DIV8 | (r06 & MS); r07 |= SR_12KHZ; break; #endif case 16000: r06 = REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV3 | BCLK_DIV8 | (r06 & MS); r07 |= SR_16KHZ; break; case 22050: r06 = REG_CLOCK_GEN | CLKSEL_PLL | MCLK_DIV4 | BCLK_DIV8 | (r06 & MS); r07 |= SR_24KHZ; break; #if CODEC_MASTER_MODE case 24000: r06 = REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV2 | BCLK_DIV8 | (r06 & MS); r07 |= SR_24KHZ; break; #endif case 32000: r06 = REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV1_5 | BCLK_DIV8 | (r06 & MS); r07 |= SR_32KHZ; break; case 44100: r06 = REG_CLOCK_GEN | CLKSEL_PLL | MCLK_DIV2 | BCLK_DIV8 | (r06 & MS); r07 |= SR_48KHZ; break; case 48000: r06 = REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV1 | BCLK_DIV8 | (r06 & MS); r07 |= SR_48KHZ; break; default: return RT_ERROR; } codec_send(r06); codec_send(r07); #if !CODEC_MASTER_MODE I2S_Configuration((uint32_t) sr); #endif return RT_EOK; } FINSH_FUNCTION_EXPORT(vol, Set volume); FINSH_FUNCTION_EXPORT(eq1, Set EQ1(Cut-off, Gain, Mode)); FINSH_FUNCTION_EXPORT(eq2, Set EQ2(Center, Gain, Bandwidth)); FINSH_FUNCTION_EXPORT(eq3, Set EQ3(Center, Gain, Bandwidth)); FINSH_FUNCTION_EXPORT(eq4, Set EQ4(Center, Gain, Bandwidth)); FINSH_FUNCTION_EXPORT(eq5, Set EQ5(Cut-off, Gain)); FINSH_FUNCTION_EXPORT(eq3d, Set 3D(Depth)); FINSH_FUNCTION_EXPORT(sample_rate, Set sample rate); static rt_err_t codec_open(rt_device_t dev, rt_uint16_t oflag) { #if !CODEC_MASTER_MODE /* enable I2S */ I2S_Cmd(CODEC_I2S_PORT, ENABLE); #endif return RT_EOK; } static rt_err_t codec_close(rt_device_t dev) { #if CODEC_MASTER_MODE if (r06 & MS) { CODEC_I2S_DMA->CCR &= ~DMA_CCR1_EN; while ((CODEC_I2S_PORT->SR & SPI_I2S_FLAG_TXE) == 0); while ((CODEC_I2S_PORT->SR & SPI_I2S_FLAG_BSY) != 0); CODEC_I2S_PORT->I2SCFGR &= ~SPI_I2SCFGR_I2SE; r06 &= ~MS; codec_send(r06); /* remove all data node */ if (codec.parent.tx_complete != RT_NULL) { rt_base_t level = rt_hw_interrupt_disable(); do { codec.parent.tx_complete(&codec.parent, codec.data_list[codec.read_index].data_ptr); codec.read_index++; if (codec.read_index >= DATA_NODE_MAX) { codec.read_index = 0; } } while (codec.read_index != codec.put_index); rt_hw_interrupt_enable(level); } } #endif return RT_EOK; } static rt_err_t codec_control(rt_device_t dev, rt_uint8_t cmd, void *args) { switch (cmd) { case CODEC_CMD_RESET: codec_init(dev); break; case CODEC_CMD_VOLUME: vol(*((uint16_t*) args)); break; case CODEC_CMD_SAMPLERATE: sample_rate(*((int*) args)); break; case CODEC_CMD_EQ: eq((codec_eq_args_t) args); break; case CODEC_CMD_3D: eq3d(*((uint8_t*) args)); break; default: return RT_ERROR; } return RT_EOK; } static rt_size_t codec_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { struct codec_device* device; struct codec_data_node* node; rt_uint32_t level; rt_uint16_t next_index; device = (struct codec_device*) dev; RT_ASSERT(device != RT_NULL); next_index = device->put_index + 1; if (next_index >= DATA_NODE_MAX) next_index = 0; /* check data_list full */ if (next_index == device->read_index) { rt_set_errno(-RT_EFULL); return 0; } level = rt_hw_interrupt_disable(); node = &device->data_list[device->put_index]; device->put_index = next_index; /* set node attribute */ node->data_ptr = (rt_uint16_t*) buffer; node->data_size = size >> 1; /* size is byte unit, convert to half word unit */ next_index = device->read_index + 1; if (next_index >= DATA_NODE_MAX) next_index = 0; /* check data list whether is empty */ if (next_index == device->put_index) { DMA_Configuration((rt_uint32_t) node->data_ptr, node->data_size); #if CODEC_MASTER_MODE if ((r06 & MS) == 0) { CODEC_I2S_PORT->I2SCFGR |= SPI_I2SCFGR_I2SE; r06 |= MS; codec_send(r06); } #endif } rt_hw_interrupt_enable(level); return size; } rt_err_t codec_hw_init(void) { rt_device_t dev; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC, ENABLE); RCC_APB1PeriphClockCmd(CODEC_I2S_RCC_APB1, ENABLE); RCC_AHBPeriphClockCmd(CODEC_I2S_RCC_AHB, ENABLE); NVIC_Configuration(); GPIO_Configuration(); I2S_Configuration(I2S_AudioFreq_44k); dev = (rt_device_t) &codec; dev->type = RT_Device_Class_Sound; dev->rx_indicate = RT_NULL; dev->tx_complete = RT_NULL; dev->init = codec_init; dev->open = codec_open; dev->close = codec_close; dev->read = RT_NULL; dev->write = codec_write; dev->control = codec_control; dev->private = RT_NULL; /* set read_index and put index to 0 */ codec.read_index = 0; codec.put_index = 0; /* unselect */ codec_set_csb(); /* register the device */ return rt_device_register(&codec.parent, "snd", RT_DEVICE_FLAG_WRONLY | RT_DEVICE_FLAG_DMA_TX); } void codec_dma_isr(void) { /* switch to next buffer */ rt_uint16_t next_index; void* data_ptr; next_index = codec.read_index + 1; if (next_index >= DATA_NODE_MAX) next_index = 0; /* save current data pointer */ data_ptr = codec.data_list[codec.read_index].data_ptr; codec.read_index = next_index; if (next_index != codec.put_index) { /* enable next dma request */ DMA_Configuration((rt_uint32_t) codec.data_list[codec.read_index].data_ptr, codec.data_list[codec.read_index].data_size); #if CODEC_MASTER_MODE if ((r06 & MS) == 0) { CODEC_I2S_PORT->I2SCFGR |= SPI_I2SCFGR_I2SE; r06 |= MS; codec_send(r06); } #endif } else { #if CODEC_MASTER_MODE if (r06 & MS) { CODEC_I2S_DMA->CCR &= ~DMA_CCR1_EN; while ((CODEC_I2S_PORT->SR & SPI_I2S_FLAG_TXE) == 0); while ((CODEC_I2S_PORT->SR & SPI_I2S_FLAG_BSY) != 0); CODEC_I2S_PORT->I2SCFGR &= ~SPI_I2SCFGR_I2SE; r06 &= ~MS; codec_send(r06); } #endif rt_kprintf("*\n"); } /* notify transmitted complete. */ if (codec.parent.tx_complete != RT_NULL) { codec.parent.tx_complete(&codec.parent, data_ptr); } }