/*! \file gd32f30x_spi.c \brief SPI driver */ /* Copyright (C) 2017 GigaDevice 2017-02-10, V1.0.1, firmware for GD32F30x */ #include "gd32f30x_spi.h" #define SPI_INIT_MASK ((uint32_t)0x00003040U) /*!< SPI parameter initialization mask */ #define I2S_INIT_MASK ((uint32_t)0x0000F047U) /*!< I2S parameter initialization mask */ #define I2S1_CLOCK_SEL ((uint32_t)0x00020000U) /* I2S1 clock source selection */ #define I2S2_CLOCK_SEL ((uint32_t)0x00040000U) /* I2S2 clock source selection */ #define I2S_CLOCK_MUL_MASK ((uint32_t)0x0000F000U) /* I2S clock multiplication mask */ #define I2S_CLOCK_DIV_MASK ((uint32_t)0x000000F0U) /* I2S clock division mask */ /*! \brief reset SPI and I2S \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_i2s_deinit(uint32_t spi_periph) { switch(spi_periph){ case SPI0: /* reset SPI0 */ rcu_periph_reset_enable(RCU_SPI0RST); rcu_periph_reset_disable(RCU_SPI0RST); break; case SPI1: /* reset SPI1 and I2S1 */ rcu_periph_reset_enable(RCU_SPI1RST); rcu_periph_reset_disable(RCU_SPI1RST); break; case SPI2: /* reset SPI2 and I2S2 */ rcu_periph_reset_enable(RCU_SPI2RST); rcu_periph_reset_disable(RCU_SPI2RST); break; default : break; } } /*! \brief initialize SPI parameter \param[in] spi_periph: SPIx(x=0,1,2) \param[in] spi_struct: SPI parameter initialization stuct members of the structure and the member values are shown as below: device_mode: SPI_MASTER, SPI_SLAVE trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY, SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT frame_size: SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT nss: SPI_NSS_SOFT, SPI_NSS_HARD endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256) \param[out] none \retval none */ void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct) { uint32_t reg = 0U; reg = SPI_CTL0(spi_periph); reg &= SPI_INIT_MASK; /* select SPI as master or slave */ reg |= spi_struct->device_mode; /* select SPI transfer mode */ reg |= spi_struct->trans_mode; /* select SPI frame size */ reg |= spi_struct->frame_size; /* select SPI NSS use hardware or software */ reg |= spi_struct->nss; /* select SPI LSB or MSB */ reg |= spi_struct->endian; /* select SPI polarity and phase */ reg |= spi_struct->clock_polarity_phase; /* select SPI prescale to adjust transmit speed */ reg |= spi_struct->prescale; /* write to SPI_CTL0 register */ SPI_CTL0(spi_periph) = (uint32_t)reg; SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL); } /*! \brief enable SPI \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_enable(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN; } /*! \brief disable SPI \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_disable(uint32_t spi_periph) { SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN); } /*! \brief configure I2S prescaler \param[in] spi_periph: SPIx(x=1,2) \param[in] audiosample: I2S audio sample rate \arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz \arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz \arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz \arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz \arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz \arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz \arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz \arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz \arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz \param[in] frameformat: I2S data length and channel length \arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit \arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit \arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit \arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit \param[in] mckout: I2S master clock output \arg I2S_MCKOUT_ENABLE: I2S master clock output enable \arg I2S_MCKOUT_DISABLE: I2S master clock output disable \param[out] none \retval none */ void i2s_psc_config(uint32_t spi_periph, uint32_t audiosample, uint32_t frameformat, uint32_t mckout) { uint32_t i2sdiv = 2U, i2sof = 0U; uint32_t clks = 0U; uint32_t i2sclock = 0U; #ifdef GD32F30X_CL uint32_t pll2mf_4 = 0U; #endif /* GD32F30X_CL */ /* deinit SPI_I2SPSC register */ SPI_I2SPSC(spi_periph) = 0x0002U; #ifdef GD32F30X_CL /* get the I2S clock source */ if(((uint32_t)spi_periph) == SPI1){ /* I2S1 clock source selection */ clks = I2S1_CLOCK_SEL; }else{ /* I2S2 clock source selection */ clks = I2S2_CLOCK_SEL; } if(0U != (RCU_CFG1 & clks)){ /* get RCU PLL2 clock multiplication factor */ clks = (uint32_t)((RCU_CFG1 & I2S_CLOCK_MUL_MASK) >> 12U); pll2mf_4 = RCU_CFG1 & RCU_CFG1_PLL2MF_4; if( 0U == pll2mf_4){ if((clks > 5U) && (clks < 15U)){ /* multiplier is between 8 and 16 */ clks += 2U; }else{ if(15U == clks){ /* multiplier is 20 */ clks = 20U; } } }else{ if(clks < 15U){ /* multiplier is between 18 and 32 */ clks += 18U; }else{ if(15U == clks){ /* multiplier is 40 */ clks = 40U; } } } /* get the PREDV1 value */ i2sclock = (uint32_t)(((RCU_CFG1 & I2S_CLOCK_DIV_MASK) >> 4U) + 1U); /* calculate i2sclock based on PLL2 and PREDV1 */ i2sclock = (uint32_t)((HXTAL_VALUE / i2sclock) * clks * 2U); }else{ /* get system clock */ i2sclock = rcu_clock_freq_get(CK_SYS); } #else /* get system clock */ i2sclock = rcu_clock_freq_get(CK_SYS); #endif /* GD32F30X_CL */ /* config the prescaler depending on the mclk output state, the frame format and audio sample rate */ if(I2S_MCKOUT_ENABLE == mckout){ clks = (uint32_t)(((i2sclock / 256U) * 10U) / audiosample); }else{ if(I2S_FRAMEFORMAT_DT16B_CH16B == frameformat){ clks = (uint32_t)(((i2sclock / 32U) *10U ) / audiosample); }else{ clks = (uint32_t)(((i2sclock / 64U) *10U ) / audiosample); } } /* remove the floating point */ clks = (clks + 5U) / 10U; i2sof = (clks & 0x00000001U); i2sdiv = ((clks - i2sof) / 2U); i2sof = (i2sof << 8U); /* set the default values */ if((i2sdiv < 2U) || (i2sdiv > 255U)){ i2sdiv = 2U; i2sof = 0U; } /* configure SPI_I2SPSC */ SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | mckout); /* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */ SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN | SPI_I2SCTL_CHLEN)); /* configure data frame format */ SPI_I2SCTL(spi_periph) |= (uint32_t)frameformat; } /*! \brief initialize I2S parameter \param[in] spi_periph: SPIx(x=1,2) \param[in] mode: I2S operation mode \arg I2S_MODE_SLAVETX: I2S slave transmit mode \arg I2S_MODE_SLAVERX: I2S slave receive mode \arg I2S_MODE_MASTERTX: I2S master transmit mode \arg I2S_MODE_MASTERRX: I2S master receive mode \param[in] standard: I2S standard \arg I2S_STD_PHILLIPS: I2S phillips standard \arg I2S_STD_MSB: I2S MSB standard \arg I2S_STD_LSB: I2S LSB standard \arg I2S_STD_PCMSHORT: I2S PCM short standard \arg I2S_STD_PCMLONG: I2S PCM long standard \param[in] ckpl: I2S idle state clock polarity \arg I2S_CKPL_LOW: I2S clock polarity low level \arg I2S_CKPL_HIGH: I2S clock polarity high level \param[out] none \retval none */ void i2s_init(uint32_t spi_periph, uint32_t mode, uint32_t standard, uint32_t ckpl) { uint32_t reg= 0U; reg = SPI_I2SCTL(spi_periph); reg &= I2S_INIT_MASK; /* enable I2S mode */ reg |= (uint32_t)SPI_I2SCTL_I2SSEL; /* select I2S mode */ reg |= (uint32_t)mode; /* select I2S standard */ reg |= (uint32_t)standard; /* select I2S polarity */ reg |= (uint32_t)ckpl; /* write to SPI_I2SCTL register */ SPI_I2SCTL(spi_periph) = (uint32_t)reg; } /*! \brief enable I2S \param[in] spi_periph: SPIx(x=1,2) \param[out] none \retval none */ void i2s_enable(uint32_t spi_periph) { SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN; } /*! \brief disable I2S \param[in] spi_periph: SPIx(x=1,2) \param[out] none \retval none */ void i2s_disable(uint32_t spi_periph) { SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN); } /*! \brief enable SPI NSS output \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_nss_output_enable(uint32_t spi_periph) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV; } /*! \brief disable SPI NSS output \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_nss_output_disable(uint32_t spi_periph) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV); } /*! \brief SPI NSS pin high level in software mode \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_nss_internal_high(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS; } /*! \brief SPI NSS pin low level in software mode \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_nss_internal_low(uint32_t spi_periph) { SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS); } /*! \brief enable SPI DMA send or receive \param[in] spi_periph: SPIx(x=0,1,2) \param[in] dma: SPI DMA mode \arg SPI_DMA_TRANSMIT: SPI transmit data use DMA \arg SPI_DMA_RECEIVE: SPI receive data use DMA \param[out] none \retval none */ void spi_dma_enable(uint32_t spi_periph, uint8_t dma) { if(SPI_DMA_TRANSMIT == dma){ SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN; }else{ SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN; } } /*! \brief disable SPI DMA send or receive \param[in] spi_periph: SPIx(x=0,1,2) \param[in] dma: SPI DMA mode \arg SPI_DMA_TRANSMIT: SPI transmit data use DMA \arg SPI_DMA_RECEIVE: SPI receive data use DMA \param[out] none \retval none */ void spi_dma_disable(uint32_t spi_periph, uint8_t dma) { if(SPI_DMA_TRANSMIT == dma){ SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN); }else{ SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN); } } /*! \brief configure SPI/I2S data frame format \param[in] spi_periph: SPIx(x=0,1,2) \param[in] frame_format: SPI frame size \arg SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits \arg SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits \param[out] none \retval none */ void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format) { /* clear SPI_CTL0_FF16 bit */ SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16); /* confige SPI_CTL0_FF16 bit */ SPI_CTL0(spi_periph) |= (uint32_t)frame_format; } /*! \brief SPI transmit data \param[in] spi_periph: SPIx(x=0,1,2) \param[in] data: 16-bit data \param[out] none \retval none */ void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data) { SPI_DATA(spi_periph) = (uint32_t)data; } /*! \brief SPI receive data \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval 16-bit data */ uint16_t spi_i2s_data_receive(uint32_t spi_periph) { return ((uint16_t)SPI_DATA(spi_periph)); } /*! \brief configure SPI bidirectional transfer direction \param[in] spi_periph: SPIx(x=0,1,2) \param[in] transfer_direction: SPI transfer direction \arg SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode \arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode \retval none */ void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction) { if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction){ /* set the transmit only mode */ SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT; }else{ /* set the receive only mode */ SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE; } } /*! \brief enable SPI and I2S interrupt \param[in] spi_periph: SPIx(x=0,1,2) \param[in] interrupt: SPI/I2S interrupt \arg SPI_I2S_INT_TBE: transmit buffer empty interrupt \arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt \arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error, transmission underrun error and format error interrupt \param[out] none \retval none */ void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt) { switch(interrupt){ /* SPI/I2S transmit buffer empty interrupt */ case SPI_I2S_INT_TBE: SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE; break; /* SPI/I2S receive buffer not empty interrupt */ case SPI_I2S_INT_RBNE: SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE; break; /* SPI/I2S error */ case SPI_I2S_INT_ERR: SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE; break; default: break; } } /*! \brief disable SPI and I2S interrupt \param[in] spi_periph: SPIx(x=0,1,2) \param[in] interrupt: SPI/I2S interrupt \arg SPI_I2S_INT_TBE: transmit buffer empty interrupt \arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt \arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error, transmission underrun error and format error interrupt \param[out] none \retval none */ void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt) { switch(interrupt){ /* SPI/I2S transmit buffer empty interrupt */ case SPI_I2S_INT_TBE: SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE); break; /* SPI/I2S receive buffer not empty interrupt */ case SPI_I2S_INT_RBNE: SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE); break; /* SPI/I2S error */ case SPI_I2S_INT_ERR: SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE); break; default : break; } } /*! \brief get SPI and I2S interrupt flag status \param[in] spi_periph: SPIx(x=0,1,2) \param[in] interrupt: SPI/I2S interrupt flag status \arg SPI_I2S_INT_FLAG_TBE: transmit buffer empty interrupt flag \arg SPI_I2S_INT_FLAG_RBNE: receive buffer not empty interrupt flag \arg SPI_I2S_INT_FLAG_RXORERR: overrun interrupt flag \arg SPI_INT_FLAG_CONFERR: config error interrupt flag \arg SPI_INT_FLAG_CRCERR: CRC error interrupt flag \arg I2S_INT_FLAG_TXURERR: underrun error interrupt flag \arg SPI_I2S_INT_FLAG_FERR: format error interrupt flag \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt) { uint32_t reg1 = SPI_STAT(spi_periph); uint32_t reg2 = SPI_CTL1(spi_periph); switch(interrupt){ /* SPI/I2S transmit buffer empty interrupt */ case SPI_I2S_INT_FLAG_TBE: reg1 = reg1 & SPI_STAT_TBE; reg2 = reg2 & SPI_CTL1_TBEIE; break; /* SPI/I2S receive buffer not empty interrupt */ case SPI_I2S_INT_FLAG_RBNE: reg1 = reg1 & SPI_STAT_RBNE; reg2 = reg2 & SPI_CTL1_RBNEIE; break; /* SPI/I2S overrun interrupt */ case SPI_I2S_INT_FLAG_RXORERR: reg1 = reg1 & SPI_STAT_RXORERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* SPI config error interrupt */ case SPI_INT_FLAG_CONFERR: reg1 = reg1 & SPI_STAT_CONFERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* SPI CRC error interrupt */ case SPI_INT_FLAG_CRCERR: reg1 = reg1 & SPI_STAT_CRCERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* I2S underrun error interrupt */ case I2S_INT_FLAG_TXURERR: reg1 = reg1 & SPI_STAT_TXURERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* SPI/I2S format error interrupt */ case SPI_I2S_INT_FLAG_FERR: reg1 = reg1 & SPI_STAT_FERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; default : break; } /*get SPI/I2S interrupt flag status */ if(reg1 && reg2){ return SET; }else{ return RESET; } } /*! \brief get SPI and I2S flag status \param[in] spi_periph: SPIx(x=0,1,2) \param[in] flag: SPI/I2S flag status \arg SPI_FLAG_TBE: transmit buffer empty flag \arg SPI_FLAG_RBNE: receive buffer not empty flag \arg SPI_FLAG_TRANS: transmit on-going flag \arg SPI_FLAG_RXORERR: receive overrun error flag \arg SPI_FLAG_CONFERR: mode config error flag \arg SPI_FLAG_CRCERR: CRC error flag \arg SPI_FLAG_FERR: format error interrupt flag \arg I2S_FLAG_TBE: transmit buffer empty flag \arg I2S_FLAG_RBNE: receive buffer not empty flag \arg I2S_FLAG_TRANS: transmit on-going flag \arg I2S_FLAG_RXORERR: overrun error flag \arg I2S_FLAG_TXURERR: underrun error flag \arg I2S_FLAG_CH: channel side flag \arg I2S_FLAG_FERR: format error interrupt flag \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag) { if(SPI_STAT(spi_periph) & flag){ return SET; }else{ return RESET; } } /*! \brief clear SPI CRC error flag status \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_crc_error_clear(uint32_t spi_periph) { SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR); } /*! \brief turn on CRC function \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_crc_on(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN; } /*! \brief turn off CRC function \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_crc_off(uint32_t spi_periph) { SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN); } /*! \brief set CRC polynomial \param[in] spi_periph: SPIx(x=0,1,2) \param[in] crc_poly: CRC polynomial value \param[out] none \retval none */ void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly) { /* enable SPI CRC */ SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN; /* set SPI CRC polynomial */ SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly; } /*! \brief get SPI CRC polynomial \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval 16-bit CRC polynomial */ uint16_t spi_crc_polynomial_get(uint32_t spi_periph) { return ((uint16_t)SPI_CRCPOLY(spi_periph)); } /*! \brief SPI next data is CRC value \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_crc_next(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT; } /*! \brief get SPI CRC send value or receive value \param[in] spi_periph: SPIx(x=0,1,2) \param[in] crc: SPI crc value \arg SPI_CRC_TX: get transmit crc value \arg SPI_CRC_RX: get receive crc value \param[out] none \retval 16-bit CRC value */ uint16_t spi_crc_get(uint32_t spi_periph,uint8_t crc) { if(SPI_CRC_TX == crc){ return ((uint16_t)(SPI_TCRC(spi_periph))); }else{ return ((uint16_t)(SPI_RCRC(spi_periph))); } } /*! \brief enable SPI TI mode \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_ti_mode_enable(uint32_t spi_periph) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD; } /*! \brief disable SPI TI mode \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_ti_mode_disable(uint32_t spi_periph) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD); } /*! \brief enable SPI NSS pulse mode \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_nssp_mode_enable(uint32_t spi_periph) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSP; } /*! \brief disable SPI NSS pulse mode \param[in] spi_periph: SPIx(x=0,1,2) \param[out] none \retval none */ void spi_nssp_mode_disable(uint32_t spi_periph) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSP); } /*! \brief enable quad wire SPI \param[in] spi_periph: SPIx(only x=0) \param[out] none \retval none */ void qspi_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD; } /*! \brief disable quad wire SPI \param[in] spi_periph: SPIx(only x=0) \param[out] none \retval none */ void qspi_disable(uint32_t spi_periph) { SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD); } /*! \brief enable quad wire SPI write \param[in] spi_periph: SPIx(only x=0) \param[out] none \retval none */ void qspi_write_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD); } /*! \brief enable quad wire SPI read \param[in] spi_periph: SPIx(only x=0) \param[out] none \retval none */ void qspi_read_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD; } /*! \brief enable SPI_IO2 and SPI_IO3 pin output \param[in] spi_periph: SPIx(only x=0) \param[out] none \retval none */ void qspi_io23_output_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV; } /*! \brief disable SPI_IO2 and SPI_IO3 pin output \param[in] spi_periph: SPIx(only x=0) \param[out] none \retval none */ void qspi_io23_output_disable(uint32_t spi_periph) { SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV); }