# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test network script of LeNet.""" import mindspore.nn as nn import mindspore.ops.operations as P # import torch.nn as nn # import torch.nn.functional as F class TestLeNet(nn.Cell): """TestLeNet network.""" def __init__(self): self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, pad_mode='pad', has_bias=True) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, pad_mode='pad', has_bias=True) self.fc1 = nn.Dense(in_channels=16 * 5 * 5, out_channels=120) self.fc2 = nn.Dense(in_channels=120, out_channels=84) self.fc3 = nn.Dense(in_channels=84, out_channels=10) def construct(self, input_x): """Callback method.""" out = self.forward1(input_x) return out def forward1(self, input_x): """forward1 method.""" out = P.ReLU()(self.conv1(input_x)) out = P.MaxPool(2, None, 'valid')(out) out = P.ReLU()(self.conv2(out)) out = P.MaxPool(2, None, 'valid')(out) out = P.Reshape()(out, (P.Shape()(out)[0], -1,)) out = P.ReLU()(self.fc1(out)) out = P.ReLU()(self.fc2(out)) out = self.fc3(out) return out