Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
d3cc7a89
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
8
Star
4
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d3cc7a89
编写于
7月 20, 2020
作者:
Y
yuximiao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove profiler user interface.
上级
f674ae3e
变更
35
隐藏空白更改
内联
并排
Showing
35 changed file
with
67448 addition
and
2927 deletion
+67448
-2927
mindinsight/profiler/__init__.py
mindinsight/profiler/__init__.py
+1
-13
mindinsight/profiler/analyser/analyser_factory.py
mindinsight/profiler/analyser/analyser_factory.py
+1
-1
mindinsight/profiler/analyser/timeline_analyser.py
mindinsight/profiler/analyser/timeline_analyser.py
+42
-1
mindinsight/profiler/parser/__init__.py
mindinsight/profiler/parser/__init__.py
+0
-14
mindinsight/profiler/parser/aicpu_data_parser.py
mindinsight/profiler/parser/aicpu_data_parser.py
+0
-182
mindinsight/profiler/parser/container.py
mindinsight/profiler/parser/container.py
+0
-113
mindinsight/profiler/parser/framework_parser.py
mindinsight/profiler/parser/framework_parser.py
+0
-598
mindinsight/profiler/parser/hwts_log_parser.py
mindinsight/profiler/parser/hwts_log_parser.py
+0
-109
mindinsight/profiler/parser/minddata_parser.py
mindinsight/profiler/parser/minddata_parser.py
+0
-93
mindinsight/profiler/parser/minddata_pipeline_parser.py
mindinsight/profiler/parser/minddata_pipeline_parser.py
+0
-289
mindinsight/profiler/parser/optime_parser.py
mindinsight/profiler/parser/optime_parser.py
+0
-247
mindinsight/profiler/parser/step_trace_parser.py
mindinsight/profiler/parser/step_trace_parser.py
+0
-382
mindinsight/profiler/profiling.py
mindinsight/profiler/profiling.py
+0
-461
tests/st/func/profiler/conftest.py
tests/st/func/profiler/conftest.py
+2
-22
tests/st/func/profiler/test_analyse.py
tests/st/func/profiler/test_analyse.py
+4
-19
tests/st/func/profiler/test_minddata_pipeline_analyser.py
tests/st/func/profiler/test_minddata_pipeline_analyser.py
+2
-23
tests/st/func/profiler/test_op_analyser.py
tests/st/func/profiler/test_op_analyser.py
+2
-21
tests/ut/profiler/parser/__init__.py
tests/ut/profiler/parser/__init__.py
+0
-14
tests/ut/profiler/parser/test_aicpu_parser.py
tests/ut/profiler/parser/test_aicpu_parser.py
+0
-74
tests/ut/profiler/parser/test_framework_parser.py
tests/ut/profiler/parser/test_framework_parser.py
+0
-158
tests/ut/profiler/parser/test_minddata_pipeline_parser.py
tests/ut/profiler/parser/test_minddata_pipeline_parser.py
+0
-93
tests/utils/resource/run_1/normal_run/profiler/aicore_intermediate_1_detail.csv
...un_1/normal_run/profiler/aicore_intermediate_1_detail.csv
+200
-0
tests/utils/resource/run_1/normal_run/profiler/aicore_intermediate_1_type.csv
.../run_1/normal_run/profiler/aicore_intermediate_1_type.csv
+30
-0
tests/utils/resource/run_1/normal_run/profiler/framework_raw_1.csv
...ls/resource/run_1/normal_run/profiler/framework_raw_1.csv
+200
-0
tests/utils/resource/run_1/normal_run/profiler/min_cycle_counter_1.txt
...esource/run_1/normal_run/profiler/min_cycle_counter_1.txt
+1
-0
tests/utils/resource/run_1/normal_run/profiler/minddata_pipeline_raw_1.csv
...rce/run_1/normal_run/profiler/minddata_pipeline_raw_1.csv
+5
-0
tests/utils/resource/run_1/normal_run/profiler/output_format_data_hwts_1.txt
...e/run_1/normal_run/profiler/output_format_data_hwts_1.txt
+62850
-0
tests/utils/resource/run_1/normal_run/profiler/output_op_compute_time_1.txt
...ce/run_1/normal_run/profiler/output_op_compute_time_1.txt
+203
-0
tests/utils/resource/run_1/normal_run/profiler/output_op_compute_time_detail_1.txt
...1/normal_run/profiler/output_op_compute_time_detail_1.txt
+705
-0
tests/utils/resource/run_1/normal_run/profiler/output_timeline_data_1.txt
...urce/run_1/normal_run/profiler/output_timeline_data_1.txt
+2818
-0
tests/utils/resource/run_1/normal_run/profiler/pipeline_profiling_1.json
...ource/run_1/normal_run/profiler/pipeline_profiling_1.json
+55
-0
tests/utils/resource/run_1/normal_run/profiler/step_trace_point_info.json
...urce/run_1/normal_run/profiler/step_trace_point_info.json
+1
-0
tests/utils/resource/run_1/normal_run/profiler/step_trace_raw_1_detail_time.csv
...un_1/normal_run/profiler/step_trace_raw_1_detail_time.csv
+324
-0
tests/utils/resource/run_1/normal_run/profiler/timeline_display_1.json
...esource/run_1/normal_run/profiler/timeline_display_1.json
+1
-0
tests/utils/resource/run_1/normal_run/profiler/timeline_summary_1.json
...esource/run_1/normal_run/profiler/timeline_summary_1.json
+1
-0
未找到文件。
mindinsight/profiler/__init__.py
浏览文件 @
d3cc7a89
...
...
@@ -12,16 +12,4 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Profiler Module Introduction.
This module provides Python APIs to enable the profiling of MindSpore neural networks.
Users can import the mindinsight.profiler.Profiler, initialize the Profiler object to start profiling,
and use Profiler.analyse() to stop profiling and analyse the results.
To visualize the profiling results, users can open MindInsight Web, find the corresponding run
and click the profile link.
Now, Profiler supports the AICore operator analysis.
"""
from
mindinsight.profiler.profiling
import
Profiler
__all__
=
[
"Profiler"
]
"""Profiler Module Introduction."""
mindinsight/profiler/analyser/analyser_factory.py
浏览文件 @
d3cc7a89
...
...
@@ -15,7 +15,7 @@
"""The analyser factory."""
import
threading
import
mindinsight.profiler.
analyser
as
analyser_module
from
mindinsight.profiler
import
analyser
as
analyser_module
from
mindinsight.profiler.common.exceptions.exceptions
import
\
ProfilerAnalyserNotExistException
...
...
mindinsight/profiler/analyser/timeline_analyser.py
浏览文件 @
d3cc7a89
...
...
@@ -17,7 +17,6 @@ import json
import
os
from
mindinsight.profiler.analyser.base_analyser
import
BaseAnalyser
from
mindinsight.profiler.parser.container
import
TimelineContainer
from
mindinsight.profiler.common.exceptions.exceptions
import
ProfilerFileNotFoundException
,
\
ProfilerIOException
from
mindinsight.profiler.common.log
import
logger
...
...
@@ -27,6 +26,48 @@ from mindinsight.profiler.common.validator.validate_path import validate_and_nor
SIZE_LIMIT
=
20
*
1024
*
1024
# 20MB
class
TimelineContainer
:
"""
A container of operator computation metadata.
Args:
split_list (list): The split list of metadata in op_compute output file.
"""
def
__init__
(
self
,
split_list
):
self
.
_op_name
=
split_list
[
0
]
self
.
_stream_id
=
int
(
split_list
[
1
])
self
.
_start_time
=
float
(
split_list
[
2
])
self
.
_duration
=
float
(
split_list
[
3
])
self
.
_pid
=
None
if
len
(
split_list
)
==
5
:
self
.
_pid
=
int
(
split_list
[
4
])
@
property
def
op_name
(
self
):
"""Get the name of the operator."""
return
self
.
_op_name
@
property
def
stream_id
(
self
):
"""Get the stream id of the operator."""
return
self
.
_stream_id
@
property
def
start_time
(
self
):
"""Get the execution start time of the operator."""
return
self
.
_start_time
@
property
def
duration
(
self
):
"""Get the duration of the operator execution."""
return
self
.
_duration
@
property
def
pid
(
self
):
"""Get the pid of the operator execution."""
return
self
.
_pid
class
TimelineAnalyser
(
BaseAnalyser
):
"""
Analyse timeline data from file.
...
...
mindinsight/profiler/parser/__init__.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
mindinsight/profiler/parser/aicpu_data_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
The parser for AI CPU preprocess data.
"""
import
os
from
tabulate
import
tabulate
from
mindinsight.profiler.common._utils
import
fwrite_format
,
get_file_join_name
from
mindinsight.profiler.common.log
import
logger
class
DataPreProcessParser
:
"""
The Parser for AI CPU preprocess data.
Args:
input_path(str): The profiling job path.
output_filename(str): The output data path and name.
"""
_source_file_target
=
'DATA_PREPROCESS.dev.AICPU.'
_dst_file_title
=
'title:DATA_PREPROCESS AICPU'
_dst_file_column_title
=
[
'serial_number'
,
'node_type_name'
,
'total_time(ms)'
,
'dispatch_time(ms)'
,
'run_start'
,
'run_end'
]
_ms_unit
=
1000
def
__init__
(
self
,
input_path
,
output_filename
):
self
.
_input_path
=
input_path
self
.
_output_filename
=
output_filename
self
.
_source_file_name
=
self
.
_get_source_file
()
self
.
_ms_kernel_flag
=
3
self
.
_other_kernel_flag
=
6
self
.
_thread_flag
=
7
self
.
_ms_kernel_run_end_index
=
2
self
.
_other_kernel_run_end_index
=
5
self
.
_result_list
=
[]
self
.
_min_cycle_counter
=
float
(
'inf'
)
def
_get_source_file
(
self
):
"""Get log file name, which was created by ada service."""
file_name
=
get_file_join_name
(
self
.
_input_path
,
self
.
_source_file_target
)
if
not
file_name
:
data_path
=
os
.
path
.
join
(
self
.
_input_path
,
"data"
)
file_name
=
get_file_join_name
(
data_path
,
self
.
_source_file_target
)
return
file_name
def
_get_kernel_result
(
self
,
number
,
node_list
,
thread_list
):
"""Get the profiling data form different aicpu kernel"""
try
:
if
len
(
node_list
)
==
self
.
_ms_kernel_flag
and
len
(
thread_list
)
==
self
.
_thread_flag
:
node_type_name
=
node_list
[
0
].
split
(
':'
)[
-
1
]
run_end_index
=
self
.
_ms_kernel_run_end_index
elif
len
(
node_list
)
==
self
.
_other_kernel_flag
and
len
(
thread_list
)
==
self
.
_thread_flag
:
node_type_name
=
node_list
[
0
].
split
(
':'
)[
-
1
].
split
(
'/'
)[
-
1
].
split
(
'-'
)[
0
]
run_end_index
=
self
.
_other_kernel_run_end_index
else
:
logger
.
warning
(
"the data format can't support 'node_list':%s"
,
str
(
node_list
))
return
None
run_start
=
node_list
[
1
].
split
(
':'
)[
-
1
].
split
(
' '
)[
0
]
run_end
=
node_list
[
run_end_index
].
split
(
':'
)[
-
1
].
split
(
' '
)[
0
]
total_time
=
float
(
thread_list
[
-
1
].
split
(
'='
)[
-
1
].
split
()[
0
])
/
self
.
_ms_unit
dispatch_time
=
float
(
thread_list
[
-
2
].
split
(
'='
)[
-
1
].
split
()[
0
])
/
self
.
_ms_unit
return
[
number
,
node_type_name
,
total_time
,
dispatch_time
,
run_start
,
run_end
]
except
IndexError
as
e
:
logger
.
exception
(
e
)
return
None
def
execute
(
self
):
"""Execute the parser, get result data, and write it to the output file."""
if
not
os
.
path
.
exists
(
self
.
_source_file_name
):
logger
.
info
(
"Did not find the aicpu profiling source file"
)
return
with
open
(
self
.
_source_file_name
,
'rb'
)
as
ai_cpu_data
:
ai_cpu_str
=
str
(
ai_cpu_data
.
read
().
replace
(
b
'
\n\x00
'
,
b
' ___ '
)
.
replace
(
b
'
\x00
'
,
b
' ___ '
))[
2
:
-
1
]
ai_cpu_lines
=
ai_cpu_str
.
split
(
" ___ "
)
result_list
=
list
()
ai_cpu_total_time_summary
=
0
# Node serial number.
serial_number
=
1
for
i
in
range
(
len
(
ai_cpu_lines
)
-
1
):
node_line
=
ai_cpu_lines
[
i
]
thread_line
=
ai_cpu_lines
[
i
+
1
]
result
=
[]
if
"Node"
in
node_line
and
"Thread"
in
thread_line
:
# Get the node data from node_line
node_list
=
node_line
.
split
(
','
)
thread_list
=
thread_line
.
split
(
','
)
result
=
self
.
_get_kernel_result
(
serial_number
,
node_list
,
thread_list
)
if
result
is
None
:
continue
result_list
.
append
(
result
)
# Calculate the total time.
total_time
=
result
[
2
]
ai_cpu_total_time_summary
+=
total_time
# Increase node serial number.
serial_number
+=
1
elif
"Node"
in
node_line
and
"Thread"
not
in
thread_line
:
node_type_name
=
node_line
.
split
(
','
)[
0
].
split
(
':'
)[
-
1
]
logger
.
warning
(
"The node type:%s cannot find thread data"
,
node_type_name
)
if
result_list
:
ai_cpu_total_time
=
format
(
ai_cpu_total_time_summary
,
'.6f'
)
result_list
.
append
([
"AI CPU Total Time(ms):"
,
ai_cpu_total_time
])
fwrite_format
(
self
.
_output_filename
,
data_source
=
self
.
_dst_file_title
,
is_print
=
True
,
is_start
=
True
)
fwrite_format
(
self
.
_output_filename
,
data_source
=
tabulate
(
result_list
,
self
.
_dst_file_column_title
,
tablefmt
=
'simple'
),
is_start
=
True
,
is_print
=
True
)
# For timeline display.
self
.
_result_list
=
result_list
def
query_aicpu_data
(
self
):
"""
Get execution time of AI CPU operator.
Returns:
a dict, the metadata of AI CPU operator execution time.
"""
stream_id
=
0
# Default stream id for AI CPU.
pid
=
9000
# Default pid for AI CPU.
factor
=
1000
# Convert time unit from 1us to 1ms
total_time
=
0
min_cycle_counter
=
float
(
'inf'
)
aicpu_info
=
[]
op_count_list
=
[]
for
aicpu_item
in
self
.
_result_list
:
if
"AI CPU Total Time(ms):"
in
aicpu_item
:
total_time
=
aicpu_item
[
-
1
]
continue
op_name
=
aicpu_item
[
1
]
start_time
=
float
(
aicpu_item
[
4
])
/
factor
min_cycle_counter
=
min
(
min_cycle_counter
,
start_time
)
end_time
=
float
(
aicpu_item
[
5
])
/
factor
duration
=
end_time
-
start_time
aicpu_info
.
append
([
op_name
,
stream_id
,
start_time
,
duration
,
pid
])
# Record the number of operator types.
if
op_name
not
in
op_count_list
:
op_count_list
.
append
(
op_name
)
self
.
_min_cycle_counter
=
min_cycle_counter
aicpu_dict
=
{
'info'
:
aicpu_info
,
'total_time'
:
float
(
total_time
),
'op_exe_times'
:
len
(
aicpu_info
),
'num_of_ops'
:
len
(
op_count_list
),
'num_of_streams'
:
1
}
return
aicpu_dict
@
property
def
min_cycle_counter
(
self
):
"""Get minimum cycle counter in AI CPU."""
return
self
.
_min_cycle_counter
mindinsight/profiler/parser/container.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The container of metadata used in profiler parser."""
class
HWTSContainer
:
"""
HWTS output container.
Args:
split_list (list): The split list of metadata in HWTS output file.
"""
def
__init__
(
self
,
split_list
):
self
.
_op_name
=
''
self
.
_duration
=
None
self
.
_status
=
split_list
[
0
]
self
.
_task_id
=
split_list
[
6
]
self
.
_cycle_counter
=
float
(
split_list
[
7
])
self
.
_stream_id
=
split_list
[
8
]
@
property
def
status
(
self
):
"""Get the status of the operator, i.e. Start or End."""
return
self
.
_status
@
property
def
task_id
(
self
):
"""Get the task id of the operator."""
return
self
.
_task_id
@
property
def
cycle_counter
(
self
):
"""Get the cycle counter."""
return
self
.
_cycle_counter
@
property
def
stream_id
(
self
):
"""Get the stream id of the operator."""
return
self
.
_stream_id
@
property
def
op_name
(
self
):
"""Get the name of the operator."""
return
self
.
_op_name
@
op_name
.
setter
def
op_name
(
self
,
name
):
"""Set the name of the operator."""
self
.
_op_name
=
name
@
property
def
duration
(
self
):
"""Get the duration of the operator execution."""
return
self
.
_duration
@
duration
.
setter
def
duration
(
self
,
value
):
"""Set the duration of the operator execution."""
self
.
_duration
=
value
class
TimelineContainer
:
"""
A container of operator computation metadata.
Args:
split_list (list): The split list of metadata in op_compute output file.
"""
def
__init__
(
self
,
split_list
):
self
.
_op_name
=
split_list
[
0
]
self
.
_stream_id
=
int
(
split_list
[
1
])
self
.
_start_time
=
float
(
split_list
[
2
])
self
.
_duration
=
float
(
split_list
[
3
])
self
.
_pid
=
None
if
len
(
split_list
)
==
5
:
self
.
_pid
=
int
(
split_list
[
4
])
@
property
def
op_name
(
self
):
"""Get the name of the operator."""
return
self
.
_op_name
@
property
def
stream_id
(
self
):
"""Get the stream id of the operator."""
return
self
.
_stream_id
@
property
def
start_time
(
self
):
"""Get the execution start time of the operator."""
return
self
.
_start_time
@
property
def
duration
(
self
):
"""Get the duration of the operator execution."""
return
self
.
_duration
@
property
def
pid
(
self
):
"""Get the pid of the operator execution."""
return
self
.
_pid
mindinsight/profiler/parser/framework_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Thr parser for parsing framework files."""
import
csv
import
enum
import
json
import
os
import
re
from
marshmallow
import
ValidationError
from
mindinsight.profiler.common.exceptions.exceptions
import
\
ProfilerPathErrorException
,
ProfilerDirNotFoundException
,
\
ProfilerFileNotFoundException
,
ProfilerDeviceIdMismatchException
,
\
ProfilerRawFileException
,
ProfilerParamValueErrorException
from
mindinsight.profiler.common.validator.validate_path
import
\
validate_and_normalize_path
class
VmDataType
(
enum
.
IntEnum
):
"""Definition of vm data type."""
NUMBER_TYPE_BEGIN
=
26
NUMBER_TYPE_BOOL
=
27
NUMBER_TYPE_INT
=
28
NUMBER_TYPE_INT8
=
29
NUMBER_TYPE_INT16
=
30
NUMBER_TYPE_INT32
=
31
NUMBER_TYPE_INT64
=
32
NUMBER_TYPE_UINT
=
33
NUMBER_TYPE_UINT8
=
34
NUMBER_TYPE_UINT16
=
35
NUMBER_TYPE_UINT32
=
36
NUMBER_TYPE_UINT64
=
37
NUMBER_TYPE_FLOAT
=
38
NUMBER_TYPE_FLOAT16
=
39
NUMBER_TYPE_FLOAT32
=
40
NUMBER_TYPE_FLOAT64
=
41
NUMBER_TYPE_END
=
42
@
classmethod
def
get_data_type_name
(
cls
,
num
):
"""
Get the name of data type by enum number.
Args:
num (int): Enum number.
Returns:
str, the name of data type.
"""
data_type
=
cls
.
_value2member_map_
.
get
(
num
)
return
'UNKNOWN'
if
data_type
is
None
else
data_type
.
name
class
GeDataType
(
enum
.
IntEnum
):
"""Definition of ge data type."""
DT_FLOAT
=
0
DT_FLOAT16
=
1
DT_INT8
=
2
DT_INT16
=
6
DT_UINT16
=
7
DT_UINT8
=
4
DT_INT32
=
3
DT_INT64
=
9
DT_UINT32
=
8
DT_UINT64
=
10
DT_BOOL
=
12
DT_DOUBLE
=
11
DT_STRING
=
13
DT_DUAL_SUB_INT8
=
14
DT_DUAL_SUB_UINT8
=
15
DT_COMPLEX64
=
16
DT_COMPLEX128
=
17
DT_QINT8
=
18
DT_QINT16
=
19
DT_QINT32
=
20
DT_QUINT8
=
21
DT_QUINT16
=
22
DT_RESOURCE
=
23
DT_STRING_REF
=
24
DT_DUAL
=
25
DT_UNDEFINED
=
26
@
classmethod
def
get_data_type_name
(
cls
,
num
):
"""
Get the name of data type by enum number.
Args:
num (int): Enum number.
Returns:
str, the name of data type.
"""
data_type
=
cls
.
_value2member_map_
.
get
(
num
)
return
'UNKNOWN'
if
data_type
is
None
else
data_type
.
name
class
GeFormat
(
enum
.
IntEnum
):
"""Definition of ge format type."""
FORMAT_NCHW
=
0
FORMAT_NHWC
=
1
FORMAT_ND
=
2
FORMAT_NC1HWC0
=
3
FORMAT_FRACTAL_Z
=
4
FORMAT_NC1C0HWPAD
=
5
FORMAT_NHWC1C0
=
6
FORMAT_FSR_NCHW
=
7
FORMAT_FRACTAL_DECONV
=
8
FORMAT_C1HWNC0
=
9
FORMAT_FRACTAL_DECONV_TRANSPOSE
=
10
FORMAT_FRACTAL_DECONV_SP_STRIDE_TRANS
=
11
FORMAT_NC1HWC0_C04
=
12
FORMAT_FRACTAL_Z_C04
=
13
FORMAT_CHWN
=
14
FORMAT_FRACTAL_DECONV_SP_STRIDE8_TRANS
=
15
FORMAT_HWCN
=
16
FORMAT_NC1KHKWHWC0
=
17
FORMAT_BN_WEIGHT
=
18
FORMAT_FILTER_HWCK
=
19
FORMAT_HASHTABLE_LOOKUP_LOOKUPS
=
20
FORMAT_HASHTABLE_LOOKUP_KEYS
=
21
FORMAT_HASHTABLE_LOOKUP_VALUE
=
22
FORMAT_HASHTABLE_LOOKUP_OUTPUT
=
23
FORMAT_HASHTABLE_LOOKUP_HITS
=
24
FORMAT_C1HWNCOC0
=
25
FORMAT_MD
=
26
FORMAT_NDHWC
=
27
FORMAT_FRACTAL_ZZ
=
28
FORMAT_FRACTAL_NZ
=
29
FORMAT_NCDHW
=
30
FORMAT_DHWCN
=
31
FORMAT_NDC1HWC0
=
32
FORMAT_FRACTAL_Z_3D
=
33
FORMAT_CN
=
34
FORMAT_NC
=
35
FORMAT_DHWNC
=
36
FORMAT_FRACTAL_Z_3D_TRANSPOSE
=
37
FORMAT_RESERVED
=
38
FORMAT_ALL
=
39
@
classmethod
def
get_format_name
(
cls
,
num
):
"""
Get the name of format type by enum number.
Args:
num (int): Enum number.
Returns:
str, the name of format type.
"""
format_type
=
cls
.
_value2member_map_
.
get
(
num
)
return
'UNKNOWN'
if
format_type
is
None
else
format_type
.
name
class
FrameworkParser
:
"""
Thr parser for parsing framework files.
Args:
profiling_id (str): The profiling ID.
device_id (str): The device ID.
output_path (str): The directory of the parsed file. Default: `./`.
"""
_raw_data_dir
=
'/var/log/npu/profiling'
_regex_framework
=
r
'Framework\.host\.(?P<data_type>.+)\.(?P<device_id>\d).+'
_regex_framework_in_data
=
r
'Framework\.host\.(?P<data_type>.+)\.'
\
r
'(?P<device_id>\d)\.(?P<profiling_id>[a-zA-Z0-9]+).+'
_col_names
=
[
'task_id'
,
'stream_id'
,
'block_dim'
,
'full_op_name'
,
'op_name'
,
'op_type'
,
'subgraph'
,
'op_info'
]
_graph_attr_name
=
[
'input_format'
,
'input_data_type'
,
'input_shape'
,
'output_format'
,
'output_data_type'
,
'output_shape'
]
# if the task id is less than the task id threshold, The combination of
# task id and Stream id represents one operator, else the task id represents
# one operator
_task_id_threshold
=
25000
def
__init__
(
self
,
profiling_id
,
device_id
,
output_path
=
'./'
):
self
.
_profiling_path
=
self
.
_get_raw_profiling_path
(
profiling_id
)
self
.
_backend_type
=
None
self
.
_framework_path
=
{
'graph'
:
[],
'task'
:
[],
'point'
:
[]}
self
.
_search_file
(
profiling_id
,
device_id
)
self
.
_device_id
=
device_id
self
.
_save_path
=
self
.
_get_save_path
(
device_id
,
output_path
)
self
.
_task_id_full_op_name_dict
=
{}
self
.
_task_cache
=
{}
self
.
_point_info
=
{}
self
.
_parse_task_files
()
self
.
_parse_point_files
()
@
property
def
save_path
(
self
):
"""
The property of save path.
Returns:
str, the save path.
"""
return
self
.
_save_path
@
property
def
point_info
(
self
):
"""
The property of the framework point information.
Returns:
dict, the framework point information.
"""
return
self
.
_point_info
def
to_task_id_full_op_name_dict
(
self
):
"""
Get the task id and full operator name dict.
Returns:
dict, the task id and full operator name dict.
"""
return
self
.
_task_id_full_op_name_dict
def
parse
(
self
):
"""Parse the framework files."""
self
.
_parse_graph_files_and_save
(
self
.
_task_cache
)
del
self
.
_task_cache
def
check_op_name
(
self
,
op_name
,
is_prefix
=
True
):
"""
Check whether the operator name exists.
Args:
op_name (str): The operator name or operator name prefix.
is_prefix (bool): `True` if the op_name is prefix, else `False`.
Default: True.
Returns:
bool, `True` if the operator name does exist in framework file, else
`False`.
"""
if
not
op_name
:
raise
ProfilerParamValueErrorException
(
'The op_name should exist.'
)
for
full_op_name
in
self
.
_task_id_full_op_name_dict
.
values
():
if
full_op_name
:
if
is_prefix
and
full_op_name
.
startswith
(
op_name
):
return
True
if
not
is_prefix
and
op_name
==
full_op_name
:
return
True
return
False
def
_get_raw_profiling_path
(
self
,
profiling_id
):
"""
Get raw profiling path.
Args:
profiling_id (str): The profiling ID.
Returns:
str, the raw profiling path.
Raises:
ProfilerPathErrorException: If the profiling path is invalid.
ProfilerDirNotFoundException: If the profiling dir is not found.
"""
profiling_path
=
os
.
path
.
join
(
self
.
_raw_data_dir
,
profiling_id
)
try
:
profiling_path
=
validate_and_normalize_path
(
profiling_path
,
'profiler'
)
except
ValidationError
:
raise
ProfilerPathErrorException
(
'Profiling path is invalid.'
)
if
not
os
.
path
.
isdir
(
profiling_path
):
raise
ProfilerDirNotFoundException
(
profiling_path
)
return
profiling_path
def
_search_file
(
self
,
profiling_id
,
device_id
):
"""
Search all framework files in raw profiling path.
Args:
profiling_id (str): The profiling ID.
device_id (str): The device ID.
Raises:
ProfilerFileNotFoundException: If the framework files are not found.
"""
# first search in the JOB dir, and if not, search in the sub directory
# in the JOB
self
.
_search_file_from_job_path
(
device_id
,
search_in_sub_path
=
False
)
if
self
.
_backend_type
is
None
:
self
.
_search_file_from_job_path
(
device_id
,
search_in_sub_path
=
True
)
self
.
_search_file_from_data_path
(
profiling_id
,
device_id
)
if
self
.
_backend_type
is
None
:
raise
ProfilerFileNotFoundException
(
'Framework'
)
self
.
_framework_path
[
'graph'
].
sort
()
self
.
_framework_path
[
'task'
].
sort
()
def
_search_file_from_job_path
(
self
,
device_id
,
search_in_sub_path
=
False
):
"""
Search framework files from job path.
Args:
device_id (str): The device ID.
search_in_sub_path (bool): `True` if search file in profiling dir,
else search in profiling sub dir. Default: False.
Raises:
ProfilerRawFileException: If the framework file type is inconsistent.
ProfilerDeviceIdMismatchException: If the device id is mismatch
with framework in the raw dir.
"""
profiling_dir
=
os
.
path
.
join
(
self
.
_profiling_path
,
'data'
)
\
if
search_in_sub_path
else
self
.
_profiling_path
if
not
os
.
path
.
isdir
(
profiling_dir
):
return
files
=
os
.
listdir
(
profiling_dir
)
for
file
in
files
:
pattern
=
re
.
search
(
self
.
_regex_framework
,
file
)
if
not
pattern
or
file
.
endswith
(
'.done'
):
continue
attrs
=
pattern
.
groupdict
()
device_id_in_path
=
attrs
.
get
(
'device_id'
)
if
device_id_in_path
!=
device_id
:
raise
ProfilerDeviceIdMismatchException
()
data_type
=
attrs
.
get
(
'data_type'
)
if
data_type
.
startswith
(
'vm.'
):
if
self
.
_backend_type
and
self
.
_backend_type
!=
'vm'
:
raise
ProfilerRawFileException
(
'Backend type is inconsistent.'
)
self
.
_backend_type
=
'vm'
data_type
=
data_type
.
split
(
'.'
)[
1
]
else
:
if
self
.
_backend_type
and
self
.
_backend_type
!=
'ge'
:
raise
ProfilerRawFileException
(
'Backend type is inconsistent.'
)
self
.
_backend_type
=
'ge'
if
data_type
.
startswith
(
'graph_desc_info'
):
self
.
_framework_path
[
'graph'
].
append
(
os
.
path
.
join
(
profiling_dir
,
file
)
)
elif
data_type
.
startswith
(
'task_desc_info'
):
self
.
_framework_path
[
'task'
].
append
(
os
.
path
.
join
(
profiling_dir
,
file
)
)
elif
data_type
.
startswith
(
'point'
):
self
.
_framework_path
[
'point'
].
append
(
os
.
path
.
join
(
profiling_dir
,
file
)
)
def
_search_file_from_data_path
(
self
,
profiling_id
,
device_id
):
"""
Search framework files from data path.
Args:
profiling_id (str): The profiling ID.
device_id (str): The device ID.
Raises:
ProfilerRawFileException: If the framework file type is inconsistent.
ProfilerDeviceIdMismatchException: If the device id is mismatch
with framework in the raw dir.
"""
profiling_data_path
=
os
.
path
.
join
(
self
.
_raw_data_dir
,
'container'
,
device_id
,
'data'
)
if
not
os
.
path
.
isdir
(
profiling_data_path
):
return
files
=
os
.
listdir
(
profiling_data_path
)
for
file
in
files
:
pattern
=
re
.
search
(
self
.
_regex_framework_in_data
,
file
)
if
not
pattern
or
file
.
endswith
(
'.done'
)
or
file
.
endswith
(
'.zip'
):
continue
attrs
=
pattern
.
groupdict
()
profiling_id_in_path
=
attrs
.
get
(
'profiling_id'
)
if
profiling_id_in_path
!=
profiling_id
:
continue
device_id_in_path
=
attrs
.
get
(
'device_id'
)
if
device_id_in_path
!=
device_id
:
raise
ProfilerDeviceIdMismatchException
()
data_type
=
attrs
.
get
(
'data_type'
)
if
data_type
.
startswith
(
'vm.'
):
if
self
.
_backend_type
and
self
.
_backend_type
!=
'vm'
:
raise
ProfilerRawFileException
(
'Backend type is inconsistent.'
)
self
.
_backend_type
=
'vm'
data_type
=
data_type
.
split
(
'.'
)[
1
]
else
:
if
self
.
_backend_type
and
self
.
_backend_type
!=
'ge'
:
raise
ProfilerRawFileException
(
'Backend type is inconsistent.'
)
self
.
_backend_type
=
'ge'
if
data_type
.
startswith
(
'graph_desc_info'
):
self
.
_framework_path
[
'graph'
].
append
(
os
.
path
.
join
(
profiling_data_path
,
file
)
)
elif
data_type
.
startswith
(
'task_desc_info'
):
self
.
_framework_path
[
'task'
].
append
(
os
.
path
.
join
(
profiling_data_path
,
file
)
)
elif
data_type
.
startswith
(
'point'
):
self
.
_framework_path
[
'point'
].
append
(
os
.
path
.
join
(
profiling_data_path
,
file
)
)
def
_get_save_path
(
self
,
device_id
,
output_path
):
"""
Get the save path.
Args:
device_id (str): The device ID.
output_path (str): The output dir.
Returns:
str, the save path.
Raises:
ProfilerPathErrorException: If the output path is invalid.
ProfilerDirNotFoundException: If the output dir is not found.
"""
try
:
output_dir
=
validate_and_normalize_path
(
output_path
,
'profiler'
)
except
ValidationError
:
raise
ProfilerPathErrorException
(
'Output path is invalid.'
)
if
not
os
.
path
.
isdir
(
output_dir
):
raise
ProfilerDirNotFoundException
(
output_dir
)
return
os
.
path
.
join
(
output_dir
,
'_'
.
join
([
'framework'
,
'raw'
,
device_id
])
+
'.csv'
)
def
_parse_task_files
(
self
):
"""Parse the framework task files."""
for
path
in
self
.
_framework_path
[
'task'
]:
with
open
(
path
,
'r'
)
as
file
:
for
task_info
in
file
:
infos
=
task_info
.
strip
(
'
\n
'
).
split
(
' '
)
# key is op name, values is task id, stream id, block_dim
self
.
_task_cache
[
infos
[
0
]]
=
[
infos
[
2
],
infos
[
3
],
infos
[
1
]]
# if the task id is less than the task id threshold, the
# stream id and task id correspond to an operator
task_id
=
infos
[
2
]
if
int
(
task_id
)
<
self
.
_task_id_threshold
:
task_id
=
'_'
.
join
([
infos
[
3
],
task_id
])
self
.
_task_id_full_op_name_dict
[
task_id
]
=
infos
[
0
]
def
_parse_graph_files_and_save
(
self
,
task_cache
):
"""
Parse the framework graph files and save the framework information.
Args:
task_cache (dict): The task information cache.
"""
with
open
(
self
.
_save_path
,
'w'
)
as
save_file
:
csv_writer
=
csv
.
writer
(
save_file
)
csv_writer
.
writerow
(
self
.
_col_names
)
for
path
in
self
.
_framework_path
[
'graph'
]:
with
open
(
path
,
'r'
)
as
graph_file
:
for
graph_info
in
graph_file
:
result
=
self
.
_parse_one_row_graph_info
(
graph_info
)
task_info
=
task_cache
.
get
(
result
[
0
])
if
task_info
:
task_info
.
extend
(
result
)
csv_writer
.
writerow
(
task_info
)
del
task_cache
[
result
[
0
]]
else
:
save_info
=
[
None
,
None
,
None
]
save_info
.
extend
(
result
)
csv_writer
.
writerow
(
save_info
)
none_list
=
[
None
,
None
,
None
,
None
]
for
key
,
value
in
task_cache
.
items
():
value
.
append
(
key
)
value
.
extend
(
none_list
)
csv_writer
.
writerow
(
value
)
def
_parse_one_row_graph_info
(
self
,
row_info
):
"""
Parse the graph information in one row.
Args:
row_info (str): One row graph information.
Returns:
list[str], the parsed graph information.
"""
full_op_name
=
None
op_name
=
None
subgraph_name
=
None
op_type
=
None
op_info
=
dict
()
cur_op_info_key
=
None
infos
=
row_info
.
strip
(
'
\n
'
).
split
(
' '
)
for
info
in
infos
:
attr_name
,
attr_value
=
info
.
split
(
':'
,
1
)
if
attr_name
==
'op_name'
:
full_op_name
=
attr_value
subgraph_name
=
self
.
_get_subgraph_name
(
full_op_name
)
op_name
=
self
.
_get_op_name
(
full_op_name
,
subgraph_name
)
elif
attr_name
==
'op_type'
:
op_type
=
attr_value
elif
attr_name
in
[
'input_id'
,
'output_id'
]:
cur_op_info_key
=
'{}_{}'
.
format
(
attr_name
.
split
(
'_'
)[
0
],
attr_value
)
op_info
[
cur_op_info_key
]
=
dict
()
elif
attr_name
in
self
.
_graph_attr_name
:
op_attr
=
attr_name
.
split
(
'_'
,
1
)[
1
]
if
op_attr
==
'shape'
:
attr_value
=
attr_value
.
strip
(
'"'
)
if
self
.
_backend_type
==
'vm'
:
if
op_attr
==
'data_type'
:
attr_value
=
VmDataType
.
get_data_type_name
(
int
(
attr_value
)
)
else
:
if
op_attr
==
'data_type'
:
attr_value
=
GeDataType
.
get_data_type_name
(
int
(
attr_value
)
)
elif
op_attr
==
'format'
:
attr_value
=
GeFormat
.
get_format_name
(
int
(
attr_value
))
op_info
[
cur_op_info_key
][
op_attr
]
=
attr_value
# the list info are full_op_name, op_name, op_type, subgraph, op_info
return
[
full_op_name
,
op_name
,
op_type
,
subgraph_name
,
json
.
dumps
(
op_info
)]
def
_get_subgraph_name
(
self
,
full_op_name
):
"""
Get subgraph name.
Args:
full_op_name (str): The full operator name.
Returns:
str, the subgraph name.
"""
subgraph_name
=
full_op_name
.
split
(
'/'
,
1
)[
0
]
if
subgraph_name
in
[
'Default'
,
'Gradients'
]:
return
subgraph_name
return
None
def
_get_op_name
(
self
,
full_op_name
,
subgraph_name
):
"""
Get operator name.
Args:
full_op_name (str): The full operator name.
subgraph_name (str): The subgraph name.
Returns:
str, the operator name.
"""
if
subgraph_name
is
None
:
return
full_op_name
if
self
.
_backend_type
==
'vm'
:
return
full_op_name
.
split
(
'/'
)[
-
1
]
strs
=
full_op_name
.
split
(
subgraph_name
+
'/'
)
op_name
=
None
for
name_str
in
strs
:
if
not
name_str
:
continue
if
op_name
is
None
:
op_name
=
name_str
.
split
(
'/'
)[
-
1
]
else
:
op_name
=
'+'
.
join
([
op_name
,
name_str
.
split
(
'/'
)[
-
1
]])
return
op_name
def
_parse_point_files
(
self
):
"""Parse the framework point files."""
for
path
in
self
.
_framework_path
[
'point'
]:
with
open
(
path
,
'r'
)
as
file
:
for
point_info
in
file
:
infos
=
point_info
.
strip
(
'
\n
'
).
split
(
' '
)
self
.
_point_info
[
int
(
infos
[
0
])]
=
infos
[
1
]
mindinsight/profiler/parser/hwts_log_parser.py
已删除
100755 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The parser for hwts log file."""
import
os
import
struct
from
mindinsight.profiler.common._utils
import
fwrite_format
,
get_file_join_name
from
mindinsight.profiler.common.log
import
logger
class
HWTSLogParser
:
"""
The Parser for hwts log files.
Args:
_input_path (str): The profiling job path. Such as: '/var/log/npu/profiling/JOBAIFGJEJFEDCBAEADIFJAAAAAAAAAA".
output_filename (str): The output data path and name. Such as: './output_format_data_hwts_0.txt'.
"""
_source_file_target
=
'hwts.log.data.45.dev.profiler_default_tag'
_dst_file_title
=
'title:45 HWTS data'
_dst_file_column_title
=
'Type cnt Core_ID Block_ID Task_ID Cycle_counter Stream_ID'
def
__init__
(
self
,
input_path
,
output_filename
):
self
.
_input_path
=
input_path
self
.
_output_filename
=
output_filename
self
.
_source_flie_name
=
self
.
_get_source_file
()
def
_get_source_file
(
self
):
"""Get hwts log file name, which was created by ada service."""
file_name
=
get_file_join_name
(
self
.
_input_path
,
self
.
_source_file_target
)
if
not
file_name
:
data_path
=
os
.
path
.
join
(
self
.
_input_path
,
"data"
)
file_name
=
get_file_join_name
(
data_path
,
self
.
_source_file_target
)
if
not
file_name
:
msg
=
(
"Fail to find hwts log file, under profiling directory"
)
raise
RuntimeError
(
msg
)
return
file_name
def
execute
(
self
):
"""
Execute the parser, get result data, and write it to the output file.
Returns:
bool, whether succeed to analyse hwts log.
"""
content_format
=
[
'QIIIIIIIIIIII'
,
'QIIQIIIIIIII'
,
'IIIIQIIIIIIII'
]
log_type
=
[
'Start of task'
,
'End of task'
,
'Start of block'
,
'End of block'
,
'Block PMU'
]
result_data
=
""
with
open
(
self
.
_source_flie_name
,
'rb'
)
as
hwts_data
:
while
True
:
line
=
hwts_data
.
read
(
64
)
if
line
:
if
not
line
.
strip
():
continue
else
:
break
byte_first_four
=
struct
.
unpack
(
'BBHHH'
,
line
[
0
:
8
])
byte_first
=
bin
(
byte_first_four
[
0
]).
replace
(
'0b'
,
''
).
zfill
(
8
)
ms_type
=
byte_first
[
-
3
:]
is_warn_res0_ov
=
byte_first
[
4
]
cnt
=
int
(
byte_first
[
0
:
4
],
2
)
core_id
=
byte_first_four
[
1
]
blk_id
,
task_id
=
byte_first_four
[
3
],
byte_first_four
[
4
]
if
ms_type
in
[
'000'
,
'001'
,
'010'
]:
# log type 0,1,2
result
=
struct
.
unpack
(
content_format
[
0
],
line
[
8
:])
syscnt
=
result
[
0
]
stream_id
=
result
[
1
]
elif
ms_type
==
'011'
:
# log type 3
result
=
struct
.
unpack
(
content_format
[
1
],
line
[
8
:])
syscnt
=
result
[
0
]
stream_id
=
result
[
1
]
elif
ms_type
==
'100'
:
# log type 4
result
=
struct
.
unpack
(
content_format
[
2
],
line
[
8
:])
stream_id
=
result
[
2
]
if
is_warn_res0_ov
==
'0'
:
syscnt
=
result
[
4
]
else
:
syscnt
=
None
else
:
logger
.
info
(
"Profiling: invalid hwts log record type %s"
,
ms_type
)
continue
if
int
(
task_id
)
<
25000
:
task_id
=
str
(
stream_id
)
+
"_"
+
str
(
task_id
)
result_data
+=
(
"%-14s %-4s %-8s %-9s %-8s %-15s %s
\n
"
%
(
log_type
[
int
(
ms_type
,
2
)],
cnt
,
core_id
,
blk_id
,
task_id
,
syscnt
,
stream_id
))
fwrite_format
(
self
.
_output_filename
,
data_source
=
self
.
_dst_file_title
,
is_start
=
True
)
fwrite_format
(
self
.
_output_filename
,
data_source
=
self
.
_dst_file_column_title
)
fwrite_format
(
self
.
_output_filename
,
data_source
=
result_data
)
return
True
mindinsight/profiler/parser/minddata_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Minddata aicpu parser."""
import
os
from
tabulate
import
tabulate
from
mindinsight.profiler.common._utils
import
get_file_join_name
,
fwrite_format
from
mindinsight.profiler.common.log
import
logger
class
MinddataParser
:
"""Minddata Aicpu Parser."""
@
staticmethod
def
parse_minddata_aicpu_data
(
minddata_aicpu_source_path
):
"""
Parse minddata get_next info which contains queue size and execute time.
Args:
minddata_aicpu_source_path (str): the source file path.
Returns:
list[Union[str, float]], the converted data.
"""
result
=
list
()
try
:
with
open
(
minddata_aicpu_source_path
)
as
source_data_file
:
source_data
=
source_data_file
.
read
()
step_data
=
source_data
.
split
(
"
\x00
"
)
for
one_step
in
step_data
:
if
one_step
:
node_info
=
one_step
.
split
(
", "
)
node_name
,
node_start
,
node_end
,
queue_size
=
""
,
0
,
0
,
0
if
node_info
:
node_name
=
node_info
[
0
].
replace
(
"Node:"
,
""
)
if
len
(
node_info
)
>
2
:
node_start
=
node_info
[
1
].
replace
(
"Run start:"
,
""
)
if
node_start
.
isdigit
():
node_start
=
int
(
node_start
)
node_end
=
node_info
[
2
].
replace
(
"Run end:"
,
""
)
if
node_end
.
isdigit
():
node_end
=
int
(
node_end
)
if
len
(
node_info
)
>
3
:
queue_size
=
node_info
[
3
].
replace
(
"queue size:"
,
""
)
if
queue_size
.
isdigit
():
queue_size
=
int
(
queue_size
)
one_step_list
=
[
node_name
,
node_start
,
node_end
,
queue_size
]
result
.
append
(
one_step_list
)
except
OSError
:
logger
.
error
(
"Open get_next profiling file error."
)
return
result
@
staticmethod
def
execute
(
source_path
,
output_path
,
device_id
):
"""
Execute the parser.
Args:
source_path (str): the source file path.
output_path (str): the output file path.
device_id (str): the device id.
"""
col_names
=
[
"node_name"
,
"start_time"
,
"end_time"
,
"queue_size"
]
minddata_aicpu_source_path
=
get_file_join_name
(
input_path
=
source_path
,
file_name
=
'DATA_PREPROCESS.dev.AICPUMI'
)
if
not
minddata_aicpu_source_path
:
minddata_aicpu_source_path
=
get_file_join_name
(
input_path
=
os
.
path
.
join
(
source_path
,
"data"
),
file_name
=
'DATA_PREPROCESS.dev.AICPUMI'
)
if
not
minddata_aicpu_source_path
:
return
minddata_aicpu_output_path
=
os
.
path
.
join
(
output_path
,
"minddata_aicpu_"
+
device_id
+
".txt"
)
minddata_aicpu_data
=
MinddataParser
.
parse_minddata_aicpu_data
(
minddata_aicpu_source_path
)
if
minddata_aicpu_data
:
fwrite_format
(
minddata_aicpu_output_path
,
tabulate
(
minddata_aicpu_data
,
col_names
,
tablefmt
=
'simple'
),
is_start
=
True
)
mindinsight/profiler/parser/minddata_pipeline_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Thr parser for parsing minddata pipeline files."""
import
csv
import
json
import
os
from
queue
import
Queue
from
marshmallow
import
ValidationError
from
mindinsight.profiler.common.exceptions.exceptions
import
\
ProfilerPathErrorException
,
ProfilerFileNotFoundException
,
\
ProfilerDirNotFoundException
,
ProfilerRawFileException
from
mindinsight.profiler.common.log
import
logger
from
mindinsight.profiler.common.validator.validate_path
import
\
validate_and_normalize_path
class
MinddataPipelineParser
:
"""
Thr parser for parsing minddata pipeline files.
Args:
source_dir (str): The minddata pipeline source dir.
device_id (str): The device ID.
output_path (str): The directory of the parsed file. Default: `./`.
Raises:
ProfilerPathErrorException: If the minddata pipeline file path or
the output path is invalid.
ProfilerFileNotFoundException: If the minddata pipeline file or
the output dir does not exist.
"""
_raw_pipeline_file_name
=
'pipeline_profiling_{}.json'
_parsed_pipeline_file_name
=
'minddata_pipeline_raw_{}.csv'
_col_names
=
[
'op_id'
,
'op_type'
,
'num_workers'
,
'output_queue_size'
,
'output_queue_average_size'
,
'output_queue_length'
,
'output_queue_usage_rate'
,
'sample_interval'
,
'parent_id'
,
'children_id'
]
def
__init__
(
self
,
source_dir
,
device_id
,
output_path
=
'./'
):
self
.
_device_id
=
device_id
self
.
_pipeline_path
=
self
.
_get_pipeline_path
(
source_dir
)
self
.
_save_path
=
self
.
_get_save_path
(
output_path
)
@
property
def
save_path
(
self
):
"""
The property of save path.
Returns:
str, the save path.
"""
return
self
.
_save_path
def
parse
(
self
):
"""
Parse the minddata pipeline files.
Raises:
ProfilerRawFileException: If fails to parse the raw file of
minddata pipeline or the file is empty.
"""
with
open
(
self
.
_pipeline_path
,
'r'
)
as
file
:
try
:
pipeline_info
=
json
.
load
(
file
)
except
(
json
.
JSONDecodeError
,
TypeError
)
as
err
:
logger
.
exception
(
err
)
raise
ProfilerRawFileException
(
'Fail to parse minddata pipeline file.'
)
if
not
pipeline_info
:
logger
.
warning
(
'The minddata pipeline file is empty.'
)
raise
ProfilerRawFileException
(
'The minddata pipeline file is empty.'
)
self
.
_parse_and_save
(
pipeline_info
)
def
_get_pipeline_path
(
self
,
source_dir
):
"""
Get the minddata pipeline file path.
Args:
source_dir (str): The minddata pipeline source dir.
Returns:
str, the minddata pipeline file path.
"""
pipeline_path
=
os
.
path
.
join
(
source_dir
,
self
.
_raw_pipeline_file_name
.
format
(
self
.
_device_id
)
)
try
:
pipeline_path
=
validate_and_normalize_path
(
pipeline_path
,
'profiler'
)
except
ValidationError
:
logger
.
warning
(
'Minddata pipeline file is invalid.'
)
raise
ProfilerPathErrorException
(
'Minddata pipeline file is invalid.'
)
if
not
os
.
path
.
isfile
(
pipeline_path
):
logger
.
warning
(
'The minddata pipeline file <%s> not found.'
,
pipeline_path
)
raise
ProfilerFileNotFoundException
(
pipeline_path
)
return
pipeline_path
def
_get_save_path
(
self
,
output_path
):
"""
Get the save path.
Args:
output_path (str): The output dir.
Returns:
str, the save path.
"""
try
:
output_dir
=
validate_and_normalize_path
(
output_path
,
'profiler'
)
except
ValidationError
:
logger
.
warning
(
'Output path is invalid.'
)
raise
ProfilerPathErrorException
(
'Output path is invalid.'
)
if
not
os
.
path
.
isdir
(
output_dir
):
logger
.
warning
(
'The output dir <%s> not found.'
,
output_dir
)
raise
ProfilerDirNotFoundException
(
output_dir
)
return
os
.
path
.
join
(
output_dir
,
self
.
_parsed_pipeline_file_name
.
format
(
self
.
_device_id
)
)
def
_parse_and_save
(
self
,
pipeline_info
):
"""
Parse and save the parsed minddata pipeline file.
Args:
pipeline_info (dict): The pipeline info reads from the raw file of
the minddata pipeline.
Raises:
ProfilerRawFileException: If the format of minddata pipeline raw
file is wrong.
"""
sample_interval
=
pipeline_info
.
get
(
'sampling_interval'
)
op_info
=
pipeline_info
.
get
(
'op_info'
)
if
sample_interval
is
None
or
not
op_info
:
raise
ProfilerRawFileException
(
'The format of minddata pipeline raw file is wrong.'
)
op_id_info_cache
=
{}
for
item
in
op_info
:
op_id_info_cache
[
item
.
get
(
'op_id'
)]
=
item
with
open
(
self
.
_save_path
,
'w'
)
as
save_file
:
csv_writer
=
csv
.
writer
(
save_file
)
csv_writer
.
writerow
(
self
.
_col_names
)
self
.
_parse_and_save_op_info
(
csv_writer
,
op_id_info_cache
,
sample_interval
)
def
_parse_and_save_op_info
(
self
,
csv_writer
,
op_id_info_cache
,
sample_interval
):
"""
Parse and save the minddata pipeline operator information.
Args:
csv_writer (csv.writer): The csv writer.
op_id_info_cache (dict): The operator id and information cache.
sample_interval (int): The sample interval.
Raises:
ProfilerRawFileException: If the operator that id is 0 does not exist.
"""
queue
=
Queue
()
root_node
=
op_id_info_cache
.
get
(
0
)
if
not
root_node
:
raise
ProfilerRawFileException
(
'The format of minddata pipeline raw file is wrong, '
'the operator that id is 0 does not exist.'
)
root_node
[
'parent_id'
]
=
None
queue
.
put_nowait
(
root_node
)
while
not
queue
.
empty
():
node
=
queue
.
get_nowait
()
self
.
_update_child_node
(
node
,
op_id_info_cache
)
csv_writer
.
writerow
(
self
.
_get_op_info
(
node
,
sample_interval
))
op_id
=
node
.
get
(
'op_id'
)
children_ids
=
node
.
get
(
'children'
)
if
not
children_ids
:
continue
for
child_op_id
in
children_ids
:
sub_node
=
op_id_info_cache
.
get
(
child_op_id
)
sub_node
[
'parent_id'
]
=
op_id
queue
.
put_nowait
(
sub_node
)
def
_update_child_node
(
self
,
node
,
op_id_info_cache
):
"""
Updates the child node information of the operator.
Args:
node (dict): The node represents an operator.
op_id_info_cache (dict): The operator id and information cache.
"""
child_op_ids
=
node
.
get
(
'children'
)
if
not
child_op_ids
:
return
queue
=
Queue
()
self
.
_cp_list_item_to_queue
(
child_op_ids
,
queue
)
new_child_op_ids
=
[]
while
not
queue
.
empty
():
child_op_id
=
queue
.
get_nowait
()
child_node
=
op_id_info_cache
.
get
(
child_op_id
)
if
child_node
is
None
:
continue
metrics
=
child_node
.
get
(
'metrics'
)
if
not
metrics
or
not
metrics
.
get
(
'output_queue'
):
op_ids
=
child_node
.
get
(
'children'
)
if
op_ids
:
self
.
_cp_list_item_to_queue
(
op_ids
,
queue
)
else
:
new_child_op_ids
.
append
(
child_op_id
)
node
[
'children'
]
=
new_child_op_ids
def
_get_op_info
(
self
,
op_node
,
sample_interval
):
"""
Get the operator information.
Args:
op_node (dict): The node represents an operator.
sample_interval (int): The sample interval.
Returns:
list[str, int, float], the operator information.
"""
queue_size
=
None
queue_average_size
=
None
queue_length
=
None
queue_usage_rate
=
None
metrics
=
op_node
.
get
(
'metrics'
)
if
metrics
:
output_queue
=
metrics
.
get
(
'output_queue'
)
if
output_queue
:
queue_size
=
output_queue
.
get
(
'size'
)
queue_average_size
=
sum
(
queue_size
)
/
len
(
queue_size
)
queue_length
=
output_queue
.
get
(
'length'
)
queue_usage_rate
=
queue_average_size
/
queue_length
children_id
=
op_node
.
get
(
'children'
)
op_info
=
[
op_node
.
get
(
'op_id'
),
op_node
.
get
(
'op_type'
),
op_node
.
get
(
'num_workers'
),
queue_size
,
queue_average_size
,
queue_length
,
queue_usage_rate
,
sample_interval
,
op_node
.
get
(
'parent_id'
),
children_id
if
children_id
else
None
]
return
op_info
def
_cp_list_item_to_queue
(
self
,
inner_list
,
queue
):
"""
Copy the contents of a list to a queue.
Args:
inner_list (list): The list.
queue (Queue): The target queue.
"""
for
item
in
inner_list
:
queue
.
put_nowait
(
item
)
mindinsight/profiler/parser/optime_parser.py
已删除
100755 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Op compute time files parser."""
import
os
from
mindinsight.profiler.common._utils
import
fwrite_format
from
mindinsight.profiler.common.exceptions.exceptions
import
ProfilerFileNotFoundException
,
\
ProfilerIOException
from
mindinsight.profiler.common.log
import
logger
from
mindinsight.profiler.common.validator.validate_path
import
validate_and_normalize_path
from
mindinsight.profiler.parser.container
import
HWTSContainer
TIMELINE_FILE_COLUMN_TITLE
=
'op_name, stream_id, start_time(ms), duration(ms)'
class
OPComputeTimeParser
:
"""
Join hwts info and framework info, get op time info, and output to the result file.
Args:
hwts_output_file (str): The file path of hwts_output_file. Such as: './output_format_data_hwts_0.txt".
output_filename (str): The output data file path and name. Such as: './output_op_compute_time_0.txt'.
op_task_info (dict): The task and op relation info. The format: {task_id, [opname, stream_id, block dim]}.
"""
_dst_file_title
=
'title:op compute time'
_dst_file_column_title
=
'op_name compute_time(ms) stream_id'
_dst_file_column_title
+=
'
\n
------------ --------------- ---------'
def
__init__
(
self
,
hwts_output_file
,
output_filename
,
op_task_info
,
output_path
,
device_id
):
hwts_output_file
=
validate_and_normalize_path
(
hwts_output_file
,
raise_key
=
'Invalid hwts output file path.'
)
self
.
_hwts_output_file
=
hwts_output_file
self
.
_output_filename
=
output_filename
self
.
_op_task_info
=
op_task_info
self
.
_output_path
=
output_path
self
.
_device_id
=
device_id
self
.
_min_cycle_counter
=
float
(
"inf"
)
def
_get_op_task_id_map
(
self
):
"""
Read hwts data file, get the task time info.
Returns:
list: all hwts task time info.
"""
op_map_result
=
[]
hwts_list
=
[]
if
not
os
.
path
.
exists
(
self
.
_hwts_output_file
):
logger
.
error
(
'The hwts output file does not exist.'
)
raise
ProfilerFileNotFoundException
(
'hwts output file'
)
with
open
(
self
.
_hwts_output_file
,
'r'
)
as
data_file
:
lines
=
data_file
.
readlines
()
for
line
in
lines
:
if
line
.
startswith
(
"Start of task"
)
or
line
.
startswith
(
"End of task"
):
line_split
=
line
.
split
()
container
=
HWTSContainer
(
line_split
)
hwts_list
.
append
(
container
)
# hwts op map by taskId
for
hwts
in
hwts_list
:
if
hwts
.
task_id
in
self
.
_op_task_info
.
keys
():
hwts
.
op_name
=
self
.
_op_task_info
[
hwts
.
task_id
]
op_map_result
.
append
(
hwts
)
return
op_map_result
def
execute
(
self
):
"""Execute the parser, compute all op, get op time, and write it to the output file."""
# Calculate the execution time of operators,
# and update the minimum cycle counter.
tmp_result_data
=
self
.
_calculate_op_execution_time
()
# Convert time units from nanoseconds to milliseconds.
# The unit of the cycle counter is 10 nanoseconds.
op_name_time_dict
=
{}
op_name_stream_dict
=
{}
op_name_count_dict
=
{}
op_name_task_dict
=
{}
op_name_start_time
=
{}
self
.
_convert_op_time_unit
(
tmp_result_data
,
op_name_time_dict
,
op_name_stream_dict
,
op_name_count_dict
,
op_name_task_dict
,
op_name_start_time
)
result_data
=
""
total_time
=
0
for
op_name
,
time
in
op_name_time_dict
.
items
():
if
op_name
in
op_name_stream_dict
.
keys
():
stream_id
=
op_name_stream_dict
[
op_name
]
avg_time
=
time
/
op_name_count_dict
[
op_name
]
total_time
+=
avg_time
result_data
+=
(
"%s %s %s
\n
"
%
(
op_name
,
str
(
avg_time
),
stream_id
))
result_data
+=
(
"total op %s 0"
%
(
str
(
total_time
)))
timeline_data
=
[]
for
op_name
,
time
in
op_name_time_dict
.
items
():
if
op_name
in
op_name_stream_dict
.
keys
():
stream_id
=
op_name_stream_dict
[
op_name
]
start_time_list
=
op_name_start_time
.
get
(
op_name
)
for
(
start_time
,
duration
)
in
start_time_list
:
timeline_data
.
append
([
op_name
,
stream_id
,
start_time
,
duration
])
# Write the metadata of operators into the file,
# including operator name, average time, and stream id.
self
.
_write_op_time_into_file
(
result_data
)
# Write the timeline data into file,
# including operator name, stream id, start time, and duration.
self
.
_write_timeline_data_into_file
(
timeline_data
)
def
_write_op_time_into_file
(
self
,
result_data
):
"""
Write the metadata of operators into the file, including
op name, average time, and stream id.
Args:
result_data (str): The metadata to be written into the file.
'op_name_1', 'avg_time_1', 'stream_id_1',
'op_name_2', 'avg_time_2', 'stream_id_2',
...
"""
fwrite_format
(
self
.
_output_filename
,
data_source
=
self
.
_dst_file_title
,
is_start
=
True
)
fwrite_format
(
self
.
_output_filename
,
data_source
=
self
.
_dst_file_column_title
)
fwrite_format
(
self
.
_output_filename
,
data_source
=
result_data
)
def
_write_timeline_data_into_file
(
self
,
timeline_data
):
"""
Write the timeline information into the file, including
operator name, stream id, start time and duration.
Args:
timeline_data (list): The metadata to be written into the file.
[
['op_name_1', 'stream_id_1', 'start_time_1', 'durarion_1'],
['op_name_2', 'stream_id_2', 'start_time_2', 'durarion_2'],
[...]
]
"""
# sorted by start times
timeline_data
.
sort
(
key
=
lambda
x
:
float
(
x
[
2
]))
filename
=
'output_timeline_data_{}.txt'
.
format
(
self
.
_device_id
)
file_path
=
os
.
path
.
join
(
self
.
_output_path
,
filename
)
file_path
=
validate_and_normalize_path
(
file_path
,
raise_key
=
'Invalid file path of timeline data.'
)
# write to file
try
:
with
open
(
file_path
,
'w'
)
as
f_obj
:
f_obj
.
write
(
TIMELINE_FILE_COLUMN_TITLE
+
'
\n
'
)
for
timeline
in
timeline_data
:
timeline
=
[
str
(
item
)
for
item
in
timeline
]
f_obj
.
write
(
','
.
join
(
timeline
)
+
'
\n
'
)
except
(
IOError
,
OSError
)
as
err
:
logger
.
error
(
'Error occurred when writing intermediate timeline file: %s'
,
err
)
raise
ProfilerIOException
def
_calculate_op_execution_time
(
self
):
"""
Calculate the execution time of each operator.
Returns:
list, including the intermediate data of op execution time.
"""
tmp_result_data
=
[]
op_map_list
=
self
.
_get_op_task_id_map
()
cur_index
=
0
length
=
len
(
op_map_list
)
min_cycle_counter
=
float
(
"inf"
)
while
cur_index
<
length
:
if
cur_index
+
1
==
length
:
break
op_start
=
op_map_list
[
cur_index
]
op_end
=
op_map_list
[
cur_index
+
1
]
if
op_start
.
status
==
"Start"
and
op_end
.
status
==
"End"
\
and
op_start
.
op_name
==
op_end
.
op_name
:
op_start
.
duration
=
op_end
.
cycle_counter
-
op_start
.
cycle_counter
tmp_result_data
.
append
(
op_start
)
cur_index
+=
2
if
not
op_start
.
op_name
.
startswith
(
"assign"
):
min_cycle_counter
=
min
(
min_cycle_counter
,
op_start
.
cycle_counter
)
else
:
cur_index
+=
1
# Update the value of minimum cycle counter.
self
.
_min_cycle_counter
=
min_cycle_counter
/
1e5
# Convert the time unit from 10ns to 1ms
return
tmp_result_data
def
_convert_op_time_unit
(
self
,
op_data_list
,
op_name_time_dict
,
op_name_stream_dict
,
op_name_count_dict
,
op_name_task_dict
,
op_name_start_time
):
"""
Calculate the execution time of operator and convert it into millisecond.
Args:
op_data_list (list): The list of operator metadata.
op_name_time_dict (dict): The mapping relation of operator name and its execution time.
op_name_stream_dict (dict): The mapping relation of operator name and its stream id.
op_name_count_dict (dict): The mapping relation of operator name and its count.
op_name_task_dict (dict): The mapping relation of operator name and its task id.
op_name_start_time (dict): The mapping relation of operator name and its start time.
"""
factor
=
1e5
for
item
in
op_data_list
:
op_name
=
item
.
op_name
# Unit conversion: converting the cycle counter into ms.
op_start_time_str
=
str
(
item
.
cycle_counter
/
factor
)
op_duration
=
item
.
duration
/
factor
op_duration_str
=
str
(
item
.
duration
/
factor
)
if
op_name
in
op_name_time_dict
.
keys
():
op_name_time_dict
[
op_name
]
+=
op_duration
if
item
.
task_id
==
op_name_task_dict
[
op_name
]:
op_name_count_dict
[
op_name
]
+=
1
op_name_start_time
[
op_name
].
append
(
(
op_start_time_str
,
op_duration_str
)
)
else
:
op_name_time_dict
[
op_name
]
=
op_duration
op_name_stream_dict
[
op_name
]
=
item
.
stream_id
op_name_task_dict
[
op_name
]
=
item
.
task_id
op_name_count_dict
[
op_name
]
=
1
op_name_start_time
[
op_name
]
=
[]
op_name_start_time
[
op_name
].
append
(
(
op_start_time_str
,
op_duration_str
)
)
@
property
def
min_cycle_counter
(
self
):
"""Get minimum cycle counter."""
return
self
.
_min_cycle_counter
mindinsight/profiler/parser/step_trace_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The parser for step trace data."""
import
csv
import
json
import
os
import
stat
import
struct
from
collections
import
namedtuple
from
decimal
import
Decimal
from
mindinsight.profiler.common.exceptions.exceptions
import
ProfilerPathErrorException
,
\
JobIdMismatchException
,
ProfilerIOException
from
mindinsight.profiler.common.log
import
logger
as
log
from
mindinsight.profiler.common.util
import
get_summary_for_step_trace
StepTraceStruct
=
namedtuple
(
'TrainingTraceStruct'
,
[
'tag_id'
,
'task_id'
,
'stream_id'
,
'sys_count'
]
)
class
StepTraceParser
:
"""
The parser for step trace data.
Args:
input_dir (str): The directory that contains original step trace data.
output_file_path (str): The output file path.
job_id (int): The job id used to define the start of new step. Default: 0.
skip_first_step (bool): Whether skip the first step or not.
"""
_event_size
=
20
_fp_tag
=
1
_bp_tag
=
2
_end_tag
=
255
def
__init__
(
self
,
input_dir
,
output_file_path
,
job_id
=
0
,
skip_first_step
=
False
):
self
.
_input_dir
=
input_dir
self
.
_output_path
=
output_file_path
self
.
_job_id
=
job_id
self
.
_skip_first_step
=
skip_first_step
self
.
_result
=
[]
self
.
_header
=
[]
self
.
_step_num
=
0
self
.
_tag_map
=
{}
@
property
def
output_file
(
self
):
"""The property of step trace header."""
file_name
=
self
.
_output_path
.
rsplit
(
'/'
,
2
)
return
file_name
[
-
1
]
if
len
(
file_name
)
==
3
else
''
def
show
(
self
):
"""The property of step trace info."""
summary_info
=
{}
if
self
.
_result
:
summary_info
=
get_summary_for_step_trace
(
self
.
_result
[
-
1
],
self
.
_header
)
summary_info
[
'total_steps'
]
=
len
(
self
.
_result
)
-
1
print
(
'
\n
Step trace summary info (unit: syscnt):'
)
print
(
summary_info
)
print
(
'
\n
The step trace parse result saves under ${summary_dir}/profiler/%s'
%
self
.
output_file
)
def
parse_and_save
(
self
):
"""Parse step trace files and save the result."""
try
:
source_files
=
self
.
_get_step_trace_files
()
self
.
_parse
(
source_files
)
self
.
_save
()
except
IOError
as
err
:
log
.
exception
(
err
)
raise
ProfilerIOException
()
else
:
log
.
info
(
"Finish to save intermediate result for step trace file."
)
def
record_point_info
(
self
,
point_info
,
output_path
):
"""
Record point info into json.
Args:
point_info (dict): The point info about tag id and relative op name.
output_path (str): The output path for saving point info.
Returns:
dict, parsed point info.
"""
points
=
{
'fp_start'
:
point_info
.
get
(
self
.
_fp_tag
,
''
),
'bp_end'
:
point_info
.
get
(
self
.
_bp_tag
,
''
)
}
try
:
with
open
(
output_path
,
'w'
)
as
json_file
:
json
.
dump
(
points
,
json_file
)
os
.
chmod
(
output_path
,
stat
.
S_IREAD
)
except
(
IOError
,
OSError
)
as
err
:
log
.
warning
(
'Failed to save point info. %s'
,
err
)
raise
ProfilerIOException
return
points
def
update_tag_op_type_map
(
self
,
point_info
):
"""
update the map from tag id to op type.
Args:
point_info (dict): The point info about tag id and relative op name.
"""
tag_map
=
{}
for
tag
,
op_name
in
point_info
.
items
():
op_type
=
self
.
_get_op_type
(
tag
,
op_name
)
tag_map
[
tag
]
=
op_type
log
.
info
(
"Get tag types for step trace analysis: %s"
,
tag_map
)
self
.
_tag_map
=
tag_map
def
_get_op_type
(
self
,
tag
,
name
):
"""
Get op type from tag and name.
Args:
tag (int): The tag id.
name (str): The op name.
Returns:
str, the op type.
"""
tag_map
=
{
self
.
_fp_tag
:
'fp'
,
self
.
_bp_tag
:
'bp'
,
self
.
_end_tag
:
'end'
}
# get solid tag type
op_type
=
tag_map
.
get
(
tag
,
''
)
if
op_type
:
return
op_type
# check if the tag is step tag.
if
tag
>
self
.
_end_tag
or
tag
==
0
:
return
'start'
# analyze the reduce tag
op_type
=
name
.
rsplit
(
'/'
,
1
)[
-
1
].
split
(
'-'
)[
0
]
if
not
op_type
:
log
.
warning
(
"Unexpected op name:%s"
,
name
)
return
op_type
def
_get_step_trace_files
(
self
):
"""Get step trace files."""
# step trace files may under $profiler_dir or $profiler_dir/data
profiler_dir
=
self
.
_input_dir
step_trace_files
=
self
.
_search_file
(
profiler_dir
)
if
not
step_trace_files
:
# try to find step trace files under $profiler_dir/data
profiler_dir
=
os
.
path
.
join
(
profiler_dir
,
'data'
)
step_trace_files
=
self
.
_search_file
(
profiler_dir
)
if
not
step_trace_files
:
raise
ProfilerPathErrorException
(
'Training trace file does not exist.'
)
return
step_trace_files
@
staticmethod
def
_search_file
(
input_dir
):
"""Search step trace file under specific input directory."""
# validate input_dir
if
not
os
.
path
.
isdir
(
input_dir
):
raise
ProfilerPathErrorException
(
'{} does not exist or is not a dir'
.
format
(
input_dir
)
)
# get step trace files
files
=
os
.
listdir
(
input_dir
)
step_trace_files
=
list
(
filter
(
lambda
file
:
file
.
startswith
(
'training_trace'
)
and
not
file
.
endswith
(
'.done'
),
files
)
)
# validate result
if
len
(
step_trace_files
)
>
1
:
# the format of file name is like
# `training_trace.46.dev.profiler_default_tag.$id.slice_$number`
# use the $number as the sorted key
try
:
step_trace_files
.
sort
(
key
=
lambda
path
:
int
(
path
.
rsplit
(
'_'
,
1
)[
-
1
]))
except
ValueError
as
err
:
log
.
warning
(
"Unable to parse file names: %s. %s"
,
step_trace_files
,
err
)
step_trace_files
=
[]
file_paths
=
[
os
.
path
.
join
(
input_dir
,
file
)
for
file
in
step_trace_files
]
log
.
info
(
"Find %d step trace files."
,
len
(
file_paths
))
return
file_paths
def
_parse
(
self
,
source_files
):
"""Parse source step trace files."""
log
.
info
(
"Start to parse step trace file."
)
event_info
=
{}
for
source_file
in
source_files
:
with
open
(
source_file
,
'rb'
)
as
handler
:
content
=
handler
.
read
()
for
step_trace
in
self
.
_get_next_step_trace
(
content
,
event_info
):
if
self
.
_skip_first_step
:
self
.
_skip_first_step
=
False
continue
self
.
_record_trace_event
(
step_trace
)
self
.
_record_average_info
()
log
.
info
(
"Finish to parse step trace file."
)
def
_get_next_step_trace
(
self
,
content
,
event_info
):
"""
Get next step trace info.
Args:
content (bytes): The input step trace info.
event_info (dict): The event info.
Returns:
Generator, return the step trace one by one.
"""
for
pos
in
range
(
0
,
len
(
content
),
20
):
next_event
=
self
.
_get_trace_struct
(
content
[
pos
:
pos
+
self
.
_event_size
])
self
.
_construct_event_info
(
next_event
,
event_info
)
if
event_info
.
get
(
'end'
):
yield
event_info
def
_get_trace_struct
(
self
,
bin_info
):
"""Translate event info to StepTraceStruct."""
if
len
(
bin_info
)
==
self
.
_event_size
:
parsed_info
=
struct
.
unpack
(
'=QHHQ'
,
bin_info
)
return
StepTraceStruct
(
*
parsed_info
)
return
None
def
_construct_event_info
(
self
,
next_event
,
event_info
):
"""Construct event info according to next_event."""
min_job_id
=
255
step_flag
:
bool
=
lambda
tag
:
tag
>
min_job_id
or
tag
==
0
end_flag
:
bool
=
lambda
tag
:
tag
==
min_job_id
fp_flag
:
bool
=
lambda
tag
:
tag
==
self
.
_fp_tag
bp_flag
:
bool
=
lambda
tag
:
tag
==
self
.
_bp_tag
def
_on_step_event
():
"""Handle step event."""
self
.
_validate_tag_id
(
tag_id
)
start_time
=
event_info
.
get
(
'end'
,
'-'
)
event_info
.
clear
()
event_info
[
'start'
]
=
start_time
event_info
[
'reduce'
]
=
{}
def
_on_reduce_event
(
reduce_tag_id
):
"""Handle reduce event."""
stream_id
=
next_event
.
stream_id
if
event_info
[
'reduce'
].
get
(
stream_id
):
event_info
[
'reduce'
][
stream_id
].
append
((
reduce_tag_id
,
sys_count
))
else
:
event_info
[
'reduce'
][
stream_id
]
=
[(
reduce_tag_id
,
sys_count
)]
tag_id
=
next_event
.
tag_id
sys_count
=
next_event
.
sys_count
if
end_flag
(
tag_id
):
event_info
[
'end'
]
=
sys_count
elif
step_flag
(
tag_id
):
_on_step_event
()
elif
fp_flag
(
tag_id
):
event_info
[
'fp'
]
=
sys_count
elif
bp_flag
(
tag_id
):
event_info
[
'bp'
]
=
sys_count
else
:
_on_reduce_event
(
tag_id
)
def
_validate_tag_id
(
self
,
job_id
):
"""Check the job id in source step trace file is same as user set."""
if
not
self
.
_job_id
:
self
.
_job_id
=
job_id
elif
self
.
_job_id
!=
job_id
:
raise
JobIdMismatchException
()
def
_record_trace_event
(
self
,
step_trace
):
"""Record trace event."""
self
.
_step_num
+=
1
start_time
=
step_trace
.
get
(
'start'
)
end_time
=
step_trace
.
get
(
'end'
)
fp_time
=
step_trace
.
get
(
'fp'
)
bp_time
=
step_trace
.
get
(
'bp'
)
if
not
(
start_time
and
end_time
and
fp_time
and
bp_time
):
log
.
warning
(
"The step %d lacks basic time."
,
self
.
_step_num
)
return
if
start_time
==
'-'
:
start_time
=
fp_time
row_data
=
{
'step_num'
:
self
.
_step_num
,
'start_point'
:
start_time
,
'end_point'
:
end_time
,
'total'
:
end_time
-
start_time
,
'fp_point'
:
fp_time
,
'bp_point'
:
bp_time
,
'iteration_interval'
:
fp_time
-
start_time
,
'fp_and_bp'
:
bp_time
-
fp_time
,
'tail'
:
end_time
-
bp_time
}
# update reduce info
self
.
_update_reduce_info
(
step_trace
,
row_data
)
# save the row data
if
not
self
.
_header
:
self
.
_header
=
list
(
row_data
.
keys
())
row_data_list
=
[
row_data
.
get
(
header_name
,
0
)
for
header_name
in
self
.
_header
]
self
.
_result
.
append
(
row_data_list
)
def
_update_reduce_info
(
self
,
step_trace
,
row_data
):
"""Extract reduce info."""
reduce_time
=
step_trace
.
get
(
'reduce'
,
{})
for
stream_id
,
time_points
in
reduce_time
.
items
():
time_point_num
=
len
(
time_points
)
if
time_point_num
%
2
:
log
.
warning
(
"Stream %d has %d reduce time points."
,
stream_id
,
time_point_num
)
continue
for
index
,
point_id
in
enumerate
(
range
(
0
,
time_point_num
,
2
)):
field_name
=
f
'stream_
{
stream_id
}
_
{
index
}
'
reduce_info
=
self
.
_get_single_reduce_event_info
(
field_name
,
time_points
[
point_id
],
time_points
[
point_id
+
1
])
row_data
.
update
(
reduce_info
)
def
_get_single_reduce_event_info
(
self
,
field_name
,
start_point
,
end_point
):
"""
Get single reduce info.
Args:
field_name (str): The field name.
start_point (Tuple[int, int]): Start point time info, including (tag_id, sys_count).
end_point (Tuple[int, int]): End point time info, including (tag_id, sys_count).
Returns:
dict, reduce info.
"""
reduce_info
=
{}
if
end_point
[
0
]
-
start_point
[
0
]
!=
1
or
end_point
[
0
]
%
2
:
log
.
warning
(
"Unmatched reduce event <%s, %s>."
,
start_point
,
end_point
)
return
reduce_info
op_type
=
self
.
_tag_map
.
get
(
start_point
[
0
])
# append field name with op type.
if
not
op_type
:
log
.
warning
(
"Can't recognize the inner type for point tag: %d."
,
start_point
[
0
])
field_name
+=
'_parallel'
else
:
field_name
+=
'_'
+
op_type
reduce_info
[
field_name
]
=
end_point
[
1
]
-
start_point
[
1
]
reduce_info
[
field_name
+
'_start_point'
]
=
start_point
[
1
]
reduce_info
[
field_name
+
'_end_point'
]
=
end_point
[
1
]
return
reduce_info
def
_record_average_info
(
self
):
"""Calculate average info."""
result_size
=
len
(
self
.
_result
)
# calculate average data for each column in result data
average_data
=
[
0
]
*
len
(
self
.
_header
)
if
result_size
>=
2
:
for
row_info
in
self
.
_result
[
1
:]:
average_data
=
[
Decimal
(
i
)
+
Decimal
(
j
)
for
i
,
j
in
zip
(
row_info
,
average_data
)
]
average_data
=
[
round
((
item
/
(
result_size
-
1
)))
for
item
in
average_data
]
# change step num info in average_data to None
step_num_index
=
self
.
_header
.
index
(
'step_num'
)
average_data
[
step_num_index
]
=
'-'
self
.
_result
.
append
(
average_data
)
log
.
info
(
"Finish add average info for step trace."
)
def
_save
(
self
):
log
.
info
(
"Start to save step trace file."
)
if
not
self
.
_header
:
return
with
open
(
self
.
_output_path
,
'w'
)
as
file_handle
:
csv_writer
=
csv
.
writer
(
file_handle
)
csv_writer
.
writerow
(
self
.
_header
)
for
row_data
in
self
.
_result
:
csv_writer
.
writerow
(
row_data
)
os
.
chmod
(
self
.
_output_path
,
stat
.
S_IREAD
)
mindinsight/profiler/profiling.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Profiling api file."""
import
os
import
time
from
marshmallow
import
ValidationError
from
tabulate
import
tabulate
from
mindinsight.profiler.analyser.analyser_factory
import
AnalyserFactory
from
mindinsight.profiler.analyser.integrator
import
Integrator
from
mindinsight.profiler.common._utils
import
get_file_names
,
fwrite_format
from
mindinsight.profiler.common.exceptions.exceptions
import
ProfilerFileNotFoundException
,
\
ProfilerIOException
from
mindinsight.profiler.common.log
import
logger
from
mindinsight.profiler.common.validator.checkparam
import
\
check_bool
,
check_subgraph
from
mindinsight.profiler.common.validator.validate_path
import
\
validate_and_normalize_path
from
mindinsight.profiler.parser.aicpu_data_parser
import
DataPreProcessParser
from
mindinsight.profiler.parser.framework_parser
import
FrameworkParser
from
mindinsight.profiler.parser.hwts_log_parser
import
HWTSLogParser
from
mindinsight.profiler.parser.minddata_parser
import
MinddataParser
from
mindinsight.profiler.parser.minddata_pipeline_parser
import
\
MinddataPipelineParser
from
mindinsight.profiler.parser.optime_parser
import
OPComputeTimeParser
from
mindinsight.profiler.parser.step_trace_parser
import
StepTraceParser
from
mindinsight.utils.exceptions
import
MindInsightException
PROFILING_LOG_BASE_PATH
=
"/var/log/npu/profiling"
INIT_OP_NAME
=
'Default/InitDataSetQueue'
class
Profiler
:
"""
Performance profiling API.
Enable MindSpore users to profile the performance of neural network.
Args:
subgraph (str): Define which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'.
is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False.
is_show_op_path (bool): Whether to save the full path for each op instance.
output_path (str): Output data path.
optypes_to_deal (str): Op type names, the data of which optype should be collected and analysed,
will deal with all op if null; Different op types should be seperated by comma.
optypes_not_deal (str): Op type names, the data of which optype will not be collected and analysed;
Different op types should be seperated by comma.
Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
>>> model.train(2, dataset)
>>> profiler.analyse()
"""
_base_profiling_container_path
=
"/var/log/npu/profiling/container"
_hwts_output_filename_target
=
"output_format_data_hwts_"
_opcompute_output_filename_target
=
"output_op_compute_time_"
_aicpu_op_output_filename_target
=
"output_data_preprocess_aicpu_"
def
__init__
(
self
,
subgraph
=
'all'
,
is_detail
=
True
,
is_show_op_path
=
False
,
output_path
=
'./data'
,
optypes_to_deal
=
''
,
optypes_not_deal
=
'Variable'
,
job_id
=
""
):
# get device_id and device_target
self
.
_get_devid_and_devtarget
()
self
.
_container_path
=
os
.
path
.
join
(
self
.
_base_profiling_container_path
,
self
.
_dev_id
)
data_path
=
os
.
path
.
join
(
self
.
_container_path
,
"data"
)
if
not
os
.
path
.
exists
(
data_path
):
os
.
makedirs
(
data_path
,
exist_ok
=
True
)
self
.
_output_path
=
validate_and_normalize_path
(
output_path
,
'Profiler output path ('
+
output_path
+
')'
)
self
.
_output_path
=
os
.
path
.
join
(
self
.
_output_path
,
"profiler"
)
if
not
os
.
path
.
exists
(
self
.
_output_path
):
os
.
makedirs
(
self
.
_output_path
,
exist_ok
=
True
)
os
.
environ
[
'PROFILING_MODE'
]
=
'true'
os
.
environ
[
'PROFILING_OPTIONS'
]
=
'training_trace:task_trace'
os
.
environ
[
'MINDDATA_PROFILING_DIR'
]
=
self
.
_output_path
os
.
environ
[
'DEVICE_ID'
]
=
self
.
_dev_id
# use context interface to open profiling, for the new mindspore version(after 2020.5.21)
try
:
import
mindspore.context
as
context
context
.
set_context
(
enable_profiling
=
True
,
profiling_options
=
"training_trace:task_trace"
)
except
ImportError
:
logger
.
error
(
"Profiling: fail to import context from mindspore."
)
except
ValueError
:
logger
.
error
(
"Profiling: fail to set context enable_profiling"
)
os
.
environ
[
'AICPU_PROFILING_MODE'
]
=
'true'
os
.
environ
[
'PROFILING_DIR'
]
=
str
(
self
.
_container_path
)
self
.
_subgraph
=
check_subgraph
(
subgraph
)
self
.
_valid_optype_name
=
optypes_to_deal
.
split
(
","
)
if
optypes_to_deal
else
[]
self
.
_filt_optype_names
=
optypes_not_deal
.
split
(
","
)
if
optypes_not_deal
else
[]
self
.
_detail
=
check_bool
(
is_detail
,
'is_detail'
)
self
.
_withfullpath
=
check_bool
(
is_show_op_path
,
'is_show_op_path'
)
self
.
_profiling_job_id
=
job_id
# add job id env through user input later
self
.
_job_id_env
=
0
self
.
_start_time
=
int
(
time
.
time
()
*
10000000
)
logger
.
info
(
"Profiling: profiling start time: %d"
,
self
.
_start_time
)
def
analyse
(
self
):
"""
Collect and analyse performance data, called after training or during training.
Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
>>> model.train(2, dataset)
>>> profiler.analyse()
"""
try
:
from
mindspore.communication.management
import
release
release
()
except
ImportError
:
logger
.
error
(
"Profiling: fail to import release from mindspore."
)
job_id
=
self
.
_get_profiling_job_id
()
logger
.
info
(
"Profiling: job id is %s "
,
job_id
)
source_path
=
os
.
path
.
join
(
PROFILING_LOG_BASE_PATH
,
job_id
)
# parse hwts.log.data.45.dev file, and get task profiling data
hwts_output_filename
=
self
.
_hwts_output_filename_target
+
self
.
_dev_id
+
".txt"
hwts_output_filename
=
os
.
path
.
join
(
self
.
_output_path
,
hwts_output_filename
)
hwtslog_parser
=
HWTSLogParser
(
source_path
,
hwts_output_filename
)
result
=
hwtslog_parser
.
execute
()
if
not
result
:
logger
.
error
(
"Profiling: fail to parse hwts log file."
)
return
# parse Framework file, and get the relation of op and tasks
framework_parser
=
FrameworkParser
(
job_id
,
self
.
_dev_id
,
self
.
_output_path
)
framework_parser
.
parse
()
op_task_dict
=
framework_parser
.
to_task_id_full_op_name_dict
()
if
not
op_task_dict
:
logger
.
error
(
"Profiling: fail to parse framework files."
)
return
# get op compute time from hwts data and framework data, write output_op_compute_time.txt
opcompute_output_filename
=
self
.
_opcompute_output_filename_target
+
self
.
_dev_id
+
".txt"
opcompute_output_filename
=
os
.
path
.
join
(
self
.
_output_path
,
opcompute_output_filename
)
optime_parser
=
OPComputeTimeParser
(
hwts_output_filename
,
opcompute_output_filename
,
op_task_dict
,
self
.
_output_path
,
self
.
_dev_id
)
optime_parser
.
execute
()
# parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
output_data_preprocess_aicpu
=
self
.
_aicpu_op_output_filename_target
+
self
.
_dev_id
+
".txt"
output_data_preprocess_aicpu
=
os
.
path
.
join
(
self
.
_output_path
,
output_data_preprocess_aicpu
)
aicpu_data_parser
=
DataPreProcessParser
(
source_path
,
output_data_preprocess_aicpu
)
aicpu_data_parser
.
execute
()
# Parsing minddata AICPU profiling
MinddataParser
.
execute
(
source_path
,
self
.
_output_path
,
self
.
_dev_id
)
# parse minddata pipeline operator and queue
try
:
pipeline_parser
=
MinddataPipelineParser
(
self
.
_output_path
,
self
.
_dev_id
,
self
.
_output_path
)
pipeline_parser
.
parse
()
except
MindInsightException
as
err
:
logger
.
warning
(
err
.
message
)
# analyse op compute time info
try
:
self
.
_analyser_op_info
()
except
MindInsightException
as
err
:
logger
.
warning
(
err
.
message
)
# analyse step trace info
try
:
self
.
_analyse_step_trace
(
source_path
,
framework_parser
)
except
MindInsightException
as
err
:
logger
.
warning
(
err
.
message
)
# analyse timeline info
try
:
self
.
_analyse_timeline
(
aicpu_data_parser
,
optime_parser
)
except
(
ProfilerIOException
,
ProfilerFileNotFoundException
,
ValidationError
)
as
err
:
logger
.
warning
(
'Fail to write timeline data: %s'
,
err
)
def
_analyse_step_trace
(
self
,
source_path
,
framework_parser
):
"""
Analyse step trace data and save the result.
Args:
source_path (str): The directory that contains the step trace original data.
framework_parser (FrameworkParser): The framework parse instance.
"""
logger
.
info
(
"Begin to parse step trace."
)
# construct output path
step_trace_intermediate_file_path
=
os
.
path
.
join
(
self
.
_output_path
,
f
'step_trace_raw_
{
self
.
_dev_id
}
_detail_time.csv'
)
point_info_file_path
=
os
.
path
.
join
(
self
.
_output_path
,
'step_trace_point_info.json'
)
# whether keep the first step
skip_first_step_flag
=
framework_parser
.
check_op_name
(
INIT_OP_NAME
)
point_info
=
framework_parser
.
point_info
# parser the step trace files and save the result to disk
parser
=
StepTraceParser
(
input_dir
=
source_path
,
output_file_path
=
step_trace_intermediate_file_path
,
job_id
=
self
.
_job_id_env
,
skip_first_step
=
skip_first_step_flag
)
parser
.
update_tag_op_type_map
(
point_info
)
parser
.
parse_and_save
()
point_info
=
parser
.
record_point_info
(
point_info
,
point_info_file_path
)
# print parser result
parser
.
show
()
logger
.
info
(
"Finish saving the intermediate result: %s"
,
step_trace_intermediate_file_path
)
logger
.
info
(
"The point info is: %s"
,
point_info
)
def
_analyse_timeline
(
self
,
aicpu_parser
,
optime_parser
):
"""
Analyse and parse timeline info.
Args:
aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator
execution time calculation.
optime_parser (OPComputeTimeParserParser): The parser instance for AI Core
operator execution time calculation.
"""
timeline_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'timeline'
,
self
.
_output_path
,
self
.
_dev_id
)
# Get framework info
aicoredetail_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'aicore_detail'
,
self
.
_output_path
,
self
.
_dev_id
)
framework_info
=
aicoredetail_analyser
.
query
()
# Get all reduce info
step_trace_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'step_trace'
,
self
.
_output_path
,
self
.
_dev_id
)
all_reduce_info
=
step_trace_analyser
.
query_for_all_reduce
()
# Get timeline info
logger
.
info
(
'Start writing timeline info...'
)
logger
.
info
(
'Warm Prompt: It could take a few minutes if you are training '
'with a complex network or more than 10 steps.'
)
# Add info into timeline, such as AI CPU, AllReduce, framework info.
aicpu_info
=
aicpu_parser
.
query_aicpu_data
()
min_cycle_counter
=
min
(
aicpu_parser
.
min_cycle_counter
,
optime_parser
.
min_cycle_counter
)
timeline_analyser
.
init_timeline
(
all_reduce_info
,
framework_info
,
aicpu_info
,
min_cycle_counter
)
timeline_analyser
.
write_timeline
()
timeline_analyser
.
write_timeline_summary
()
def
__del__
(
self
):
"""Disable the profiling collection service, called after training."""
os
.
environ
[
'PROFILING_MODE'
]
=
str
(
"false"
)
try
:
import
mindspore.context
as
context
context
.
set_context
(
enable_profiling
=
False
)
except
ImportError
:
pass
def
_get_profiling_job_id
(
self
):
"""Get profiling job id, which was generated by ada service.
Returns:
str: profiling jon id.
"""
if
self
.
_profiling_job_id
:
return
self
.
_profiling_job_id
job_id
=
""
cmd
=
"ls -t "
+
PROFILING_LOG_BASE_PATH
+
"|grep JOB|awk '{print $1}'"
r
=
os
.
popen
(
cmd
)
profiling_job_dirs
=
r
.
readlines
()
r
.
close
()
for
item
in
profiling_job_dirs
:
path
=
os
.
path
.
join
(
PROFILING_LOG_BASE_PATH
,
item
.
strip
())
log_file
=
get_file_names
(
path
,
"host_start.log"
)
if
not
log_file
:
logger
.
error
(
"Profiling: job path %s, host_start.log not exist."
,
path
)
continue
log_file
=
os
.
path
.
join
(
path
,
log_file
[
0
])
item_dict
=
self
.
_parse_host_start_log
(
log_file
)
if
not
item_dict
:
logger
.
error
(
"Profiling: job path %s, fail to get job start info."
,
path
)
continue
if
self
.
_start_time
>
int
(
item_dict
[
"start_time"
]):
logger
.
info
(
"Profiling: job path %s, start_time %s, training start_time %d."
,
path
,
item_dict
[
"start_time"
],
self
.
_start_time
)
break
if
self
.
_dev_id
!=
item_dict
[
"device_id"
]:
logger
.
info
(
"Profiling: job path %s, dev id %s, training device id %s."
,
path
,
item_dict
[
"device_id"
],
self
.
_dev_id
)
continue
job_id
=
item
.
strip
()
break
if
not
job_id
:
msg
=
(
"Fail to get profiling job, please check whether job dir was generated"
)
raise
RuntimeError
(
msg
)
return
job_id
def
_parse_host_start_log
(
self
,
input_file
):
"""
Parse host start log file, get the device id and start time of the job.
Args:
input_file (str): The file path of the host start log file.
Returns:
dict, job start time and device id.
"""
item_dict
=
{}
for
line
in
open
(
input_file
):
if
"Device"
in
line
:
item_dict
[
"device_id"
]
=
line
[
7
:
len
(
line
)
-
2
]
elif
"clock_realtime"
in
line
:
item_dict
[
"start_time"
]
=
line
[
16
:
len
(
line
)
-
3
]
return
item_dict
def
_analyser_op_info
(
self
):
"""Analyse the operator information."""
integrator
=
Integrator
(
self
.
_output_path
,
self
.
_dev_id
)
integrator
.
integrate
()
aicore_type_result
=
self
.
_query_op_type_info
()
detail_file_path
=
os
.
path
.
join
(
self
.
_output_path
,
'output_op_compute_time_detail_{}.txt'
.
format
(
self
.
_dev_id
)
)
fwrite_format
(
detail_file_path
,
data_source
=
'title:op compute time'
)
display_names
=
[
'optype_name'
,
'compute_time(ms, per-step)'
,
'called_times(per-step)'
,
'percent'
]
data_source
=
tabulate
(
aicore_type_result
,
display_names
)
fwrite_format
(
detail_file_path
,
data_source
=
data_source
,
is_print
=
True
)
if
self
.
_detail
:
op_type_order
=
[
item
[
0
]
for
item
in
aicore_type_result
]
aicore_detail_result
=
self
.
_query_op_detail_info
(
op_type_order
)
fwrite_format
(
detail_file_path
,
data_source
=
''
,
is_print
=
True
)
fwrite_format
(
detail_file_path
,
data_source
=
'Detail:'
,
is_print
=
True
)
data_source
=
tabulate
(
aicore_detail_result
.
get
(
'object'
),
aicore_detail_result
.
get
(
'col_name'
)
)
fwrite_format
(
detail_file_path
,
data_source
=
data_source
,
is_print
=
True
)
def
_query_op_type_info
(
self
):
"""
Query AICORE operator type information.
Returns:
list[list], the AICORE operator type and execution time information.
"""
condition
=
{
'sort_condition'
:
{
'name'
:
'execution_time'
,
'type'
:
'descending'
}
}
analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'aicore_type'
,
self
.
_output_path
,
self
.
_dev_id
)
result
=
analyser
.
query
(
condition
)
return
result
.
get
(
'object'
)
def
_query_op_detail_info
(
self
,
op_type_order
):
"""
Query AICORE operator detail information.
Args:
op_type_order(list): The name of the op type in order.
Returns:
dict, the AICORE operator detail information.
"""
op_type_condition
=
{}
if
self
.
_valid_optype_name
:
op_type_condition
[
'in'
]
=
self
.
_valid_optype_name
if
self
.
_filt_optype_names
:
op_type_condition
[
'not_in'
]
=
self
.
_filt_optype_names
subgraph_condition
=
{}
if
self
.
_subgraph
!=
'all'
:
subgraph_condition
[
'in'
]
=
[
self
.
_subgraph
]
filter_condition
=
{
'op_type'
:
op_type_condition
,
'subgraph'
:
subgraph_condition
,
'is_display_detail'
:
False
,
'is_display_full_op_name'
:
self
.
_withfullpath
}
analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'aicore_detail'
,
self
.
_output_path
,
self
.
_dev_id
)
result
=
analyser
.
query_and_sort_by_op_type
(
filter_condition
,
op_type_order
)
return
result
def
_get_devid_and_devtarget
(
self
):
"""Get device id and target of this training."""
device_target
=
""
dev_id
=
""
try
:
import
mindspore.context
as
context
dev_id
=
str
(
context
.
get_context
(
"device_id"
))
device_target
=
context
.
get_context
(
"device_target"
)
except
ImportError
:
logger
.
error
(
"Profiling: fail to import context from mindspore."
)
except
ValueError
as
err
:
logger
.
error
(
"Profiling: fail to get context, %s"
,
err
)
if
not
dev_id
or
not
dev_id
.
isdigit
():
dev_id
=
os
.
getenv
(
'DEVICE_ID'
)
if
not
dev_id
or
not
dev_id
.
isdigit
():
dev_id
=
"0"
logger
.
error
(
"Fail to get DEVICE_ID, use 0 instead."
)
if
device_target
and
device_target
!=
"Davinci"
\
and
device_target
!=
"Ascend"
:
msg
=
(
"Profiling: unsupport backend: %s"
\
%
device_target
)
raise
RuntimeError
(
msg
)
self
.
_dev_id
=
dev_id
tests/st/func/profiler/conftest.py
浏览文件 @
d3cc7a89
...
...
@@ -15,31 +15,11 @@
"""The st config."""
import
os
import
shutil
import
sys
import
tempfile
import
pytest
from
tests.st.func.profiler
import
RAW_DATA_BASE
from
tests.utils
import
mindspore
sys
.
modules
[
'mindspore'
]
=
mindspore
BASE_SUMMARY_DIR
=
tempfile
.
mkdtemp
(
prefix
=
'test_profiler_summary_dir_base_'
)
@
pytest
.
fixture
(
scope
=
"session"
)
def
create_summary_dir
():
"""Create summary directory for profiler module."""
try
:
if
os
.
path
.
exists
(
BASE_SUMMARY_DIR
):
shutil
.
rmtree
(
BASE_SUMMARY_DIR
)
permissions
=
os
.
R_OK
|
os
.
W_OK
|
os
.
X_OK
mode
=
permissions
<<
6
if
not
os
.
path
.
exists
(
BASE_SUMMARY_DIR
):
os
.
mkdir
(
BASE_SUMMARY_DIR
,
mode
=
mode
)
yield
finally
:
if
os
.
path
.
exists
(
BASE_SUMMARY_DIR
):
shutil
.
rmtree
(
BASE_SUMMARY_DIR
)
BASE_SUMMARY_DIR
=
os
.
path
.
realpath
(
os
.
path
.
join
(
RAW_DATA_BASE
,
"run_1"
))
tests/st/func/profiler/test_analyse.py
浏览文件 @
d3cc7a89
...
...
@@ -21,19 +21,16 @@ Usage:
"""
import
os
from
unittest
import
mock
,
TestCase
from
unittest
import
TestCase
import
pytest
from
mindinsight.profiler.analyser.analyser_factory
import
AnalyserFactory
from
mindinsight.profiler.common.exceptions.exceptions
import
StepNumNotSupportedException
,
\
ProfilerParamValueErrorException
from
mindinsight.profiler.profiling
import
Profiler
,
FrameworkParser
from
tests.st.func.profiler
import
RAW_DATA_BASE
from
tests.st.func.profiler.conftest
import
BASE_SUMMARY_DIR
@
pytest
.
mark
.
usefixtures
(
'create_summary_dir'
)
class
TestProfilerAnalyse
(
TestCase
):
"""Test Converter module."""
JOB_ID
=
'JOB3'
...
...
@@ -42,26 +39,14 @@ class TestProfilerAnalyse(TestCase):
def
setup_class
(
cls
):
"""Generate parsed files."""
cls
.
step_trace_file
=
'step_trace_raw_1_detail_time.csv'
cls
.
generate_parsed_files
()
cls
.
summary_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'normal_run'
)
cls
.
profiler
=
os
.
path
.
join
(
cls
.
summary_dir
,
'profiler'
)
def
setUp
(
self
):
"""Setup before each test."""
self
.
step_trace_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'step_trace'
,
self
.
profiler
,
'1'
)
@
classmethod
def
generate_parsed_files
(
cls
):
"""Test parse raw info about profiler."""
cls
.
summary_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'normal_run'
)
cls
.
profiler
=
os
.
path
.
join
(
cls
.
summary_dir
,
'profiler'
)
FrameworkParser
.
_raw_data_dir
=
RAW_DATA_BASE
if
not
os
.
path
.
exists
(
cls
.
summary_dir
):
os
.
makedirs
(
cls
.
summary_dir
)
Profiler
.
_base_profiling_container_path
=
os
.
path
.
join
(
RAW_DATA_BASE
,
'container'
)
with
mock
.
patch
(
'mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH'
,
RAW_DATA_BASE
):
profiler
=
Profiler
(
subgraph
=
'all'
,
is_detail
=
True
,
is_show_op_path
=
False
,
output_path
=
cls
.
summary_dir
,
job_id
=
cls
.
JOB_ID
)
profiler
.
analyse
()
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
env_single
...
...
@@ -108,7 +93,7 @@ class TestProfilerAnalyse(TestCase):
assert
len
(
res
[
'training_trace_graph'
])
==
13
assert
res
[
'training_trace_graph'
][
-
1
]
==
[
{
'name'
:
''
,
'start'
:
0.2038
,
'duration'
:
118.1667
},
{
'name'
:
'stream_540_
0_parallel
'
,
'start'
:
118.3705
,
'duration'
:
49.281
},
{
'name'
:
'stream_540_
parallel_0
'
,
'start'
:
118.3705
,
'duration'
:
49.281
},
{
'name'
:
''
,
'start'
:
167.6515
,
'duration'
:
37.7294
}]
@
pytest
.
mark
.
level0
...
...
tests/st/func/profiler/test_minddata_pipeline_analyser.py
浏览文件 @
d3cc7a89
...
...
@@ -19,19 +19,13 @@ Usage:
pytest tests/st/func/profiler
"""
import
os
import
shutil
from
unittest
import
mock
import
pytest
from
mindinsight.profiler
import
Profiler
from
mindinsight.profiler.analyser.analyser_factory
import
AnalyserFactory
from
mindinsight.profiler.parser.framework_parser
import
FrameworkParser
from
tests.st.func.profiler.conftest
import
BASE_SUMMARY_DIR
from
tests.ut.profiler
import
RAW_DATA_BASE
@
pytest
.
mark
.
usefixtures
(
'create_summary_dir'
)
class
TestMinddataPipelineAnalyser
:
"""Test minddata pipeline analyser module."""
JOB_ID
=
'JOB3'
...
...
@@ -39,29 +33,14 @@ class TestMinddataPipelineAnalyser:
@
classmethod
def
setup_class
(
cls
):
"""Generate parsed files."""
cls
.
generate_parsed_files
()
cls
.
summary_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'normal_run'
)
cls
.
profiler
=
os
.
path
.
join
(
cls
.
summary_dir
,
'profiler'
)
def
setup_method
(
self
):
"""Create analyser."""
self
.
_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'minddata_pipeline'
,
self
.
profiler
,
'1'
)
@
classmethod
def
generate_parsed_files
(
cls
):
"""Test parse raw info about profiler."""
cls
.
summary_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'normal_run'
)
cls
.
profiler
=
os
.
path
.
join
(
cls
.
summary_dir
,
'profiler'
)
FrameworkParser
.
_raw_data_dir
=
RAW_DATA_BASE
if
not
os
.
path
.
exists
(
cls
.
summary_dir
):
os
.
makedirs
(
cls
.
summary_dir
)
os
.
makedirs
(
cls
.
profiler
,
exist_ok
=
True
)
pipeline_path
=
os
.
path
.
join
(
RAW_DATA_BASE
,
'profiler'
,
'pipeline_profiling_1.json'
)
shutil
.
copy
(
pipeline_path
,
cls
.
profiler
)
Profiler
.
_base_profiling_container_path
=
os
.
path
.
join
(
RAW_DATA_BASE
,
'container'
)
with
mock
.
patch
(
'mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH'
,
RAW_DATA_BASE
):
profiler
=
Profiler
(
subgraph
=
'all'
,
is_detail
=
True
,
is_show_op_path
=
False
,
output_path
=
cls
.
summary_dir
,
job_id
=
cls
.
JOB_ID
)
profiler
.
analyse
()
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
env_single
...
...
tests/st/func/profiler/test_op_analyser.py
浏览文件 @
d3cc7a89
...
...
@@ -19,16 +19,11 @@ Usage:
pytest tests/st/func/profiler
"""
import
os
from
unittest
import
mock
import
pytest
from
mindinsight.profiler
import
Profiler
from
mindinsight.profiler.analyser.analyser_factory
import
AnalyserFactory
from
mindinsight.profiler.parser.framework_parser
import
FrameworkParser
from
tests.st.func.profiler.conftest
import
BASE_SUMMARY_DIR
from
tests.ut.profiler
import
RAW_DATA_BASE
OP_GATHER_V2_INFO
=
{
'col_name'
:
[
...
...
@@ -84,7 +79,6 @@ OP_GATHER_V2_INFO = {
}
@
pytest
.
mark
.
usefixtures
(
'create_summary_dir'
)
class
TestOpAnalyser
:
"""Test AICORE and AICPU analyser module."""
JOB_ID
=
'JOB3'
...
...
@@ -92,7 +86,8 @@ class TestOpAnalyser:
@
classmethod
def
setup_class
(
cls
):
"""Generate parsed files."""
cls
.
generate_parsed_files
()
cls
.
summary_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'normal_run'
)
cls
.
profiler
=
os
.
path
.
join
(
cls
.
summary_dir
,
'profiler'
)
def
setup_method
(
self
):
"""Create analyser."""
...
...
@@ -101,20 +96,6 @@ class TestOpAnalyser:
self
.
_analyser_aicore_detail
=
AnalyserFactory
.
instance
().
get_analyser
(
'aicore_detail'
,
self
.
profiler
,
'1'
)
@
classmethod
def
generate_parsed_files
(
cls
):
"""Test parse raw info about profiler."""
cls
.
summary_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'normal_run'
)
cls
.
profiler
=
os
.
path
.
join
(
cls
.
summary_dir
,
'profiler'
)
FrameworkParser
.
_raw_data_dir
=
RAW_DATA_BASE
if
not
os
.
path
.
exists
(
cls
.
summary_dir
):
os
.
makedirs
(
cls
.
summary_dir
)
Profiler
.
_base_profiling_container_path
=
os
.
path
.
join
(
RAW_DATA_BASE
,
'container'
)
with
mock
.
patch
(
'mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH'
,
RAW_DATA_BASE
):
profiler
=
Profiler
(
subgraph
=
'all'
,
is_detail
=
True
,
is_show_op_path
=
False
,
output_path
=
cls
.
summary_dir
,
job_id
=
cls
.
JOB_ID
)
profiler
.
analyse
()
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
env_single
@
pytest
.
mark
.
platform_x86_cpu
...
...
tests/ut/profiler/parser/__init__.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
tests/ut/profiler/parser/test_aicpu_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the aicpu parser."""
import
os
import
tempfile
import
shutil
from
unittest
import
TestCase
from
mindinsight.profiler.parser.aicpu_data_parser
import
DataPreProcessParser
def
get_result
(
file_path
):
"""
Get result from the aicpu file.
Args:
file_path (str): The aicpu file path.
Returns:
list[list], the parsed aicpu information.
"""
result
=
[]
try
:
file
=
open
(
file_path
,
'r'
)
result
.
append
(
file
.
read
())
return
result
finally
:
if
file
:
file
.
close
()
class
TestAicpuParser
(
TestCase
):
"""Test the class of Aicpu Parser."""
def
setUp
(
self
)
->
None
:
"""Initialization before test case execution."""
self
.
profiling_dir
=
os
.
path
.
realpath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'../../../utils/resource/'
'JOB_AICPU/data'
))
self
.
expect_dir
=
os
.
path
.
realpath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'../../../utils/resource/'
'JOB_AICPU/expect'
))
self
.
output_path
=
tempfile
.
mkdtemp
(
prefix
=
'output_data_preprocess_aicpu_'
)
self
.
output_file
=
os
.
path
.
join
(
self
.
output_path
,
'output_data_preprocess_aicpu_0.txt'
)
self
.
expect_file
=
os
.
path
.
join
(
self
.
expect_dir
,
'output_data_preprocess_aicpu_0.txt'
)
def
test_aicpu_parser
(
self
):
"""Test the class of Aicpu Parser."""
data
=
DataPreProcessParser
(
self
.
profiling_dir
,
self
.
output_file
)
data
.
execute
()
expect_result
=
get_result
(
self
.
expect_file
)
result
=
get_result
(
self
.
output_file
)
shutil
.
rmtree
(
self
.
output_path
)
assert
expect_result
==
result
def
test_aicpu_parser_file_not_exist
(
self
):
"""Test the class of Aicpu Parser."""
profiling_dir
=
os
.
path
.
realpath
(
os
.
path
.
join
(
self
.
profiling_dir
,
'data'
))
data
=
DataPreProcessParser
(
profiling_dir
,
self
.
output_file
)
data
.
execute
()
shutil
.
rmtree
(
self
.
output_path
)
tests/ut/profiler/parser/test_framework_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the framework parser module."""
import
csv
import
os
import
shutil
import
tempfile
from
unittest
import
mock
import
pytest
from
marshmallow
import
ValidationError
from
mindinsight.profiler.common.exceptions.exceptions
import
\
ProfilerPathErrorException
,
ProfilerDirNotFoundException
,
\
ProfilerFileNotFoundException
from
mindinsight.profiler.parser.framework_parser
import
FrameworkParser
from
tests.ut.profiler
import
PROFILER_DIR
,
RAW_DATA_BASE
def
get_framework_result
(
file_path
):
"""
Get framework result from the framework file.
Args:
file_path (str): The framework file path.
Returns:
list[list], the parsed framework information.
"""
result
=
[]
with
open
(
file_path
,
'r'
)
as
file
:
csv_reader
=
csv
.
reader
(
file
)
for
row
in
csv_reader
:
result
.
append
(
row
)
return
result
class
TestFrameworkParser
:
"""Test the class of `FrameworkParser`."""
def
setup_method
(
self
):
"""Initialization before test case execution."""
FrameworkParser
.
_raw_data_dir
=
RAW_DATA_BASE
self
.
_output_path_1
=
tempfile
.
mkdtemp
(
prefix
=
'test_framework_parser_'
)
self
.
_parser_1
=
FrameworkParser
(
'JOB1'
,
'0'
,
self
.
_output_path_1
)
self
.
_output_path_2
=
tempfile
.
mkdtemp
(
prefix
=
'test_framework_parser_'
)
self
.
_parser_2
=
FrameworkParser
(
'JOB2'
,
'0'
,
self
.
_output_path_2
)
self
.
_output_path_4
=
tempfile
.
mkdtemp
(
prefix
=
'test_framework_parser_'
)
self
.
_parser_4
=
FrameworkParser
(
'JOB4'
,
'0'
,
self
.
_output_path_4
)
def
teardown_method
(
self
)
->
None
:
"""Clear up after test case execution."""
shutil
.
rmtree
(
self
.
_output_path_1
)
shutil
.
rmtree
(
self
.
_output_path_2
)
shutil
.
rmtree
(
self
.
_output_path_4
)
FrameworkParser
.
_raw_data_dir
=
'/var/log/npu/profiling'
def
test_save_path
(
self
):
"""Test the querying save path function."""
expect_result
=
os
.
path
.
join
(
self
.
_output_path_1
,
'framework_raw_0.csv'
)
assert
expect_result
==
self
.
_parser_1
.
save_path
expect_result
=
os
.
path
.
join
(
self
.
_output_path_2
,
'framework_raw_0.csv'
)
assert
expect_result
==
self
.
_parser_2
.
save_path
def
test_point_info
(
self
):
"""Test the querying point info function."""
expect_result
=
{
1
:
'Default/Cast-op6'
,
2
:
'Default/TransData-op7'
}
assert
expect_result
==
self
.
_parser_4
.
point_info
def
test_to_task_id_full_op_name_dict
(
self
):
"""Test the querying task id and full operator name dict function."""
expect_result
=
{
'51517'
:
'Default/Cast-op6'
,
'51518'
:
'Default/TransData-op7'
,
'51519'
:
'Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5'
,
'51522'
:
'Default/network-WithLossCell/_backbone-ResNet/'
'layer1-SequentialCell/0-ResidualBlock/conv1-Conv2d/Cast-op28'
}
assert
expect_result
==
self
.
_parser_1
.
to_task_id_full_op_name_dict
()
assert
expect_result
==
self
.
_parser_2
.
to_task_id_full_op_name_dict
()
expect_result
=
{
'0_1'
:
'Default/Cast-op6'
,
'0_2'
:
'Default/TransData-op7'
,
'0_3'
:
'Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5'
,
'0_4'
:
'Default/network-WithLossCell/_backbone-ResNet/layer1-SequentialCell/'
'0-ResidualBlock/conv1-Conv2d/Cast-op28'
}
assert
expect_result
==
self
.
_parser_4
.
to_task_id_full_op_name_dict
()
def
test_parse
(
self
):
"""Test the parse function."""
expect_framework_file
=
os
.
path
.
join
(
PROFILER_DIR
,
'framework_raw_0.csv'
)
expect_framework_file
=
os
.
path
.
realpath
(
expect_framework_file
)
expect_result
=
get_framework_result
(
expect_framework_file
)
self
.
_parser_1
.
parse
()
framework_file
=
os
.
path
.
join
(
self
.
_output_path_1
,
'framework_raw_0.csv'
)
result
=
get_framework_result
(
framework_file
)
assert
expect_result
==
result
self
.
_parser_2
.
parse
()
framework_file
=
os
.
path
.
join
(
self
.
_output_path_2
,
'framework_raw_0.csv'
)
result
=
get_framework_result
(
framework_file
)
assert
expect_result
==
result
@
mock
.
patch
(
'mindinsight.profiler.parser.framework_parser.validate_and_normalize_path'
)
def
test_create_framework_parser_fail_1
(
self
,
*
args
):
"""Test the function of fail to create framework parser."""
args
[
0
].
side_effect
=
ValidationError
({
'profiler'
:
{
"The path is invalid!"
}})
with
pytest
.
raises
(
ProfilerPathErrorException
)
as
exc_info
:
FrameworkParser
(
'JOB1'
,
'0'
)
assert
exc_info
.
value
.
error_code
==
'50546081'
assert
exc_info
.
value
.
message
==
'Path error. Profiling path is invalid.'
@
mock
.
patch
(
'os.path.isdir'
)
def
test_create_framework_parser_fail_2
(
self
,
*
args
):
"""Test the function of fail to create framework parser."""
args
[
0
].
return_value
=
False
FrameworkParser
.
_raw_data_dir
=
'/var/log/npu/profiling'
with
pytest
.
raises
(
ProfilerDirNotFoundException
)
as
exc_info
:
FrameworkParser
(
'JOB1'
,
'0'
)
assert
exc_info
.
value
.
error_code
==
'50546083'
assert
exc_info
.
value
.
message
==
\
'The dir </var/log/npu/profiling/JOB1> not found.'
@
mock
.
patch
(
'os.listdir'
)
@
mock
.
patch
(
'os.path.isdir'
)
def
test_create_framework_parser_fail_3
(
self
,
*
args
):
"""Test the function of fail to create framework parser."""
args
[
0
].
return_value
=
True
args
[
1
].
return_value
=
[]
FrameworkParser
.
_raw_data_dir
=
'/var/log/npu/profiling'
with
pytest
.
raises
(
ProfilerFileNotFoundException
)
as
exc_info
:
FrameworkParser
(
'JOB1'
,
'0'
)
assert
exc_info
.
value
.
error_code
==
'50546084'
assert
exc_info
.
value
.
message
==
'The file <Framework> not found.'
tests/ut/profiler/parser/test_minddata_pipeline_parser.py
已删除
100644 → 0
浏览文件 @
f674ae3e
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the minddata pipeline parser module."""
import
csv
import
os
import
shutil
import
tempfile
from
mindinsight.profiler.parser.minddata_pipeline_parser
import
\
MinddataPipelineParser
from
tests.ut.profiler
import
PROFILER_DIR
,
RAW_DATA
,
RAW_DATA_JOB2
def
get_minddata_pipeline_result
(
file_path
):
"""
Get minddata pipeline result from the minddata pipeline file.
Args:
file_path (str): The minddata pipeline file path.
Returns:
list[list], the parsed minddata pipeline information.
"""
result
=
[]
with
open
(
file_path
,
'r'
)
as
file
:
csv_reader
=
csv
.
reader
(
file
)
for
row
in
csv_reader
:
result
.
append
(
row
)
return
result
class
TestMinddataPipelineParser
:
"""Test the class of `MinddataPipelineParser`."""
def
setup_method
(
self
):
"""Initialization before test case execution."""
self
.
_output_path_1
=
tempfile
.
mkdtemp
(
prefix
=
'test_minddata_pipeline_parser_'
)
self
.
_parser_1
=
MinddataPipelineParser
(
RAW_DATA
,
'0'
,
self
.
_output_path_1
)
self
.
_output_path_2
=
tempfile
.
mkdtemp
(
prefix
=
'test_minddata_pipeline_parser_'
)
self
.
_parser_2
=
MinddataPipelineParser
(
RAW_DATA_JOB2
,
'0'
,
self
.
_output_path_2
)
def
teardown_method
(
self
)
->
None
:
"""Clear up after test case execution."""
shutil
.
rmtree
(
self
.
_output_path_1
)
shutil
.
rmtree
(
self
.
_output_path_2
)
def
test_save_path
(
self
):
"""Test the querying save path function."""
expect_result
=
os
.
path
.
join
(
self
.
_output_path_1
,
'minddata_pipeline_raw_0.csv'
)
assert
expect_result
==
self
.
_parser_1
.
save_path
def
test_parse
(
self
):
"""Test the parse function."""
expect_pipeline_file
=
os
.
path
.
join
(
PROFILER_DIR
,
'minddata_pipeline_raw_0.csv'
)
expect_result
=
get_minddata_pipeline_result
(
expect_pipeline_file
)
self
.
_parser_1
.
parse
()
pipeline_file
=
os
.
path
.
join
(
self
.
_output_path_1
,
'minddata_pipeline_raw_0.csv'
)
result
=
get_minddata_pipeline_result
(
pipeline_file
)
assert
expect_result
==
result
self
.
_parser_2
.
parse
()
pipeline_file
=
os
.
path
.
join
(
self
.
_output_path_2
,
'minddata_pipeline_raw_0.csv'
)
result
=
get_minddata_pipeline_result
(
pipeline_file
)
assert
expect_result
==
result
tests/utils/resource/run_1/normal_run/profiler/aicore_intermediate_1_detail.csv
0 → 100644
浏览文件 @
d3cc7a89
full_op_name,execution_time
Default/AssignAdd-op414,0.001688
Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29,0.0012020000000000002
Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30,0.0013606666666666667
Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31,0.0011659999999999997
Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32,0.001116
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33,0.9352293333333332
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35,0.010222666666666666
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36,0.015073333333333333
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37,0.003832666666666666
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34,0.001396666666666667
Default/TransData-op216,0.006697333333333332
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38,0.009799333333333334
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39,0.09720533333333335
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40,0.08841666666666667
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41,0.012427333333333335
Default/AtomicAddrClean-op418,0.001378666666666667
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42,0.009832666666666665
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48,0.001400666666666667
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44,0.0014346666666666666
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28,0.001468
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47,0.004459333333333333
Default/TransData-op281,0.0027733333333333334
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46,0.004600000000000001
Default/TransData-op278,0.004403333333333333
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45,0.00711
Default/TransData-op275,0.005461333333333334
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52,0.023115999999999994
Default/TransData-op272,0.009749333333333332
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43,0.0013153333333333335
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53,0.004243333333333333
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54,0.004824666666666667
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49,0.003735
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50,0.0045564285714285715
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51,0.004516428571428571
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55,42.220212142857136
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56,0.00871357142857143
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57,0.15243714285714288
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58,0.9626657142857143
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59,1.0643285714285715
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60,0.9675764285714286
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61,0.9675435714285714
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62,1.0075085714285714
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63,0.9250400000000002
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64,1.1294107142857144
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65,1.0091157142857143
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66,0.051030714285714276
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67,2.617072142857143
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68,3.084827142857143
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69,0.3331414285714285
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70,0.37437785714285715
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71,0.32776857142857135
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72,0.33151499999999995
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73,0.2518214285714286
Default/TransData-op271,0.14980214285714283
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74,0.45218500000000006
Default/TransData-op240,0.09184714285714284
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76,0.10391071428571431
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77,0.11015571428571427
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78,0.10085142857142855
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79,0.10943071428571426
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80,0.04727285714285715
Default/TransData-op274,0.03735642857142857
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81,0.09832214285714284
Default/TransData-op245,0.037176428571428576
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83,0.036798571428571424
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84,0.04016857142857143
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85,0.027936428571428574
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86,0.039065
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87,0.02587642857142857
Default/TransData-op277,0.01939
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88,0.03152
Default/TransData-op250,0.020935000000000002
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90,0.025487142857142854
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91,0.021720714285714288
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92,0.016717857142857142
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93,0.021017857142857147
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94,0.014929999999999999
Default/TransData-op280,0.012425714285714285
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95,0.013189999999999997
Default/TransData-op255,0.014586428571428571
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97,0.015751428571428572
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98,0.013145
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99,0.010007857142857143
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100,0.01205
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101,0.009261428571428571
Default/TransData-op215,0.009404285714285714
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102,0.007625
Default/TransData-op204,0.016274285714285713
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104,0.004828571428571428
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105,0.004472857142857142
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106,0.003925714285714286
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107,0.004808571428571428
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109,0.004950714285714286
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108,0.004631428571428572
Default/AtomicAddrClean-op425,0.0015150000000000003
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110,0.004534999999999999
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112,0.0030614285714285717
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113,0.004547142857142856
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111,0.0031428571428571426
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115,0.0026614285714285715
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114,0.027466428571428576
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116,0.03313571428571428
Default/TransData-op257,0.06620642857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117,0.010132142857142855
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121,0.020947142857142855
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119,0.009299285714285715
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120,0.009546428571428572
Default/AtomicAddrClean-op427,0.002937142857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123,7.355592142857143
Default/TransData-op235,0.014415714285714283
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128,0.012212857142857145
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131,0.02228428571428571
Default/AtomicAddrClean-op428,0.001404285714285714
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134,0.008783571428571429
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135,0.013412857142857143
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136,0.008197142857142856
Default/TransData-op252,0.008572857142857142
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138,0.029589285714285724
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139,0.016685
Default/TransData-op233,0.020412142857142858
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143,0.020592142857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145,0.03936785714285714
Default/AtomicAddrClean-op429,0.0014571428571428572
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147,0.012325714285714285
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148,0.021508571428571432
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149,0.012591428571428571
Default/TransData-op247,0.012454999999999997
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151,0.053485000000000005
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152,0.03651357142857143
Default/TransData-op231,0.03276571428571429
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156,0.037129999999999996
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158,0.09050499999999999
Default/AtomicAddrClean-op430,0.001497142857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160,0.017480714285714283
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161,0.042566428571428575
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162,0.02489785714285714
Default/TransData-op242,0.019189285714285714
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164,0.10608857142857142
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165,0.1160064285714286
Default/TransData-op229,0.09212928571428572
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169,0.10092642857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171,0.18744071428571424
Default/AtomicAddrClean-op431,0.0014599999999999997
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173,0.030029999999999998
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174,0.13704571428571427
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175,0.04649285714285715
Default/TransData-op237,0.03681785714285714
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177,0.42144428571428577
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118,0.001617857142857143
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124,0.0014600000000000001
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178,0.5351814285714286
Default/TransData-op284,0.32571142857142854
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182,0.3179142857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184,0.5144707142857143
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186,0.3859778571428571
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187,1.3543971428571429
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188,1.5460985714285713
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189,1.5340514285714286
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190,1.540242857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191,1.5514735714285715
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192,1.5607435714285713
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193,1.5385385714285713
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194,1.537682857142857
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195,1.5342942857142856
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196,2.584179285714286
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130,0.005715714285714287
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129,0.0015964285714285716
Default/Mul-op183,0.0016557142857142858
Default/Mul-op170,0.0015957142857142856
Default/Mul-op157,0.0015314285714285714
Default/Mul-op144,0.0014735714285714285
Default/Mul-op122,0.0012207142857142855
Default/TransData-op206,0.02777642857142857
Default/TransData-op208,0.008395714285714286
Default/TransData-op210,0.006270714285714287
Default/TransData-op212,0.003332857142857143
Default/TransData-op214,0.0024235714285714286
Default/Mul-op197,0.016677857142857147
Default/Mul-op176,0.007605000000000001
Default/Mul-op163,0.0062528571428571425
Default/Mul-op150,0.004635
Default/Mul-op137,0.0016078571428571429
Default/AtomicAddrClean-op434,0.007719285714285714
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199,37.25223428571428
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200,0.012836428571428572
Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201,0.010897142857142855
Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133,0.02319642857142857
Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132,0.0022571428571428573
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185,0.003688571428571429
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172,0.003175714285714285
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159,0.0029478571428571436
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146,0.0028899999999999998
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127,0.0022257142857142853
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198,0.133745
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179,0.03321571428571428
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166,0.010665
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153,0.006292857142857143
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140,0.002818571428571428
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202,0.08427071428571428
tests/utils/resource/run_1/normal_run/profiler/aicore_intermediate_1_type.csv
0 → 100644
浏览文件 @
d3cc7a89
op_type,execution_time,execution_frequency,percent
AssignAdd,0.001688,1,0.00
Mul,1.9029486666666665347,32,1.51
Assign,0.0024766666666666667,2,0.00
GatherV2,43.1554414761904692,2,34.13
ReduceSum,0.0307648571428571411,5,0.02
TensorAdd,0.0092183809523809521,3,0.01
Cast,0.4846848571428571735,15,0.38
TransData,1.1151575238095237340,30,0.88
Square,0.009799333333333334,1,0.01
Split,2.71427747619047635,2,2.15
Concat,5.808453809523809946,4,4.59
StridedSlice,0.345568761904761835,2,0.27
AtomicAddrClean,0.0193686666666666662,8,0.02
RealDiv,0.4228071904761904831,15,0.33
Tile,0.044158333333333339,4,0.03
StridedSliceGrad,1.50683428571428578,2,1.19
Slice,20.3763149999999997,16,16.12
ReLU,0.483282142857142759,5,0.38
MatMul,1.936681428571428733,15,1.53
BiasAdd,0.189662857142857130,5,0.15
SigmoidCrossEntropyWithLogits,0.004808571428571428,1,0.00
SigmoidCrossEntropyWithLogitsGrad,0.009582142857142858,2,0.01
ReduceMean,0.004534999999999999,1,0.00
BiasAddGrad,0.0716814285714285667,5,0.06
UnsortedSegmentSum,44.607826428571423,2,35.28
ReluGrad,0.85406857142857138,5,0.68
AddN,0.012836428571428572,1,0.01
ApplyFtrl,0.0254535714285714273,2,0.02
Adam,0.2859357142857142737,11,0.23
tests/utils/resource/run_1/normal_run/profiler/framework_raw_1.csv
0 → 100644
浏览文件 @
d3cc7a89
task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info
30092,3,1,Default/AssignAdd-op414,AssignAdd-op414,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}}"
30093,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29,Mul-op29,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
30094,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30,Assign-op30,Assign,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
30095,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31,Mul-op31,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
30096,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32,Assign-op32,Assign,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
30103,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33,GatherV2-op33,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}"
30104,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35,Mul-op35,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}"
30105,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36,ReduceSum-op36,ReduceSum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
30106,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37,TensorAdd-op37,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
30107,3,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34,Cast-op34,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""128,1""}}"
30108,3,8,Default/TransData-op216,TransData-op216,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}}"
30109,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38,Square-op38,Square,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
30453,7,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39,Split-op39,Split,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1477568,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
30454,7,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40,Concat-op40,Concat,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}}"
30455,7,22,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41,StridedSlice-op41,StridedSlice,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}}"
30456,7,1,Default/AtomicAddrClean-op418,AtomicAddrClean-op418,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
30457,7,33,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42,ReduceSum-op42,ReduceSum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
30646,9,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48,ReduceSum-op48,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
30837,11,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44,RealDiv-op44,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
30838,11,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28,Mul-op28,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
30839,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47,Cast-op47,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""256,128""}}"
30840,11,16,Default/TransData-op281,TransData-op281,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}}"
30841,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46,Cast-op46,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""512,256""}}"
30842,11,32,Default/TransData-op278,TransData-op278,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}}"
30843,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45,Cast-op45,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1024,512""}}"
30844,11,32,Default/TransData-op275,TransData-op275,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}}"
30845,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52,Cast-op52,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""2496,1024""}}"
30846,11,32,Default/TransData-op272,TransData-op272,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}}"
30847,11,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43,ReduceSum-op43,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
31038,13,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53,Tile-op53,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31039,13,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54,RealDiv-op54,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31231,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49,Tile-op49,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31232,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50,RealDiv-op50,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31233,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51,RealDiv-op51,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31236,15,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55,GatherV2-op55,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""128000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
31409,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56,Tile-op56,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}}"
31410,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57,StridedSliceGrad-op57,StridedSliceGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}}"
31411,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58,Slice-op58,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31412,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59,Slice-op59,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31413,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60,Slice-op60,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31414,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61,Slice-op61,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31415,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62,Slice-op62,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31416,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63,Slice-op63,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31417,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64,Slice-op64,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31418,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65,Slice-op65,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31419,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66,Concat-op66,Concat,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1477568,8""}}"
31598,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67,Split-op67,Split,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
31599,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68,Concat-op68,Concat,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}}"
31600,19,15,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69,StridedSlice-op69,StridedSlice,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}"
31601,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70,Mul-op70,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}"
31602,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71,ReLU-op71,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}"
31603,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72,Mul-op72,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}"
31604,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73,Cast-op73,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,2496""}}"
31605,19,32,Default/TransData-op271,TransData-op271,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}}"
31606,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74,MatMul-op74,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}}"
31607,19,32,Default/TransData-op240,TransData-op240,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31608,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76,RealDiv-op76,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31609,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77,BiasAdd-op77,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31610,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78,ReLU-op78,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31611,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79,Mul-op79,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31612,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80,Cast-op80,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}}"
31613,19,32,Default/TransData-op274,TransData-op274,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}}"
31614,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81,MatMul-op81,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}}"
31615,19,32,Default/TransData-op245,TransData-op245,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31616,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83,RealDiv-op83,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31617,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84,BiasAdd-op84,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31618,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85,ReLU-op85,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31619,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86,Mul-op86,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31620,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87,Cast-op87,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}}"
31621,19,32,Default/TransData-op277,TransData-op277,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}}"
31622,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88,MatMul-op88,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}}"
31623,19,32,Default/TransData-op250,TransData-op250,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31624,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90,RealDiv-op90,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31625,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91,BiasAdd-op91,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31626,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92,ReLU-op92,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31627,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93,Mul-op93,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31628,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94,Cast-op94,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}}"
31629,19,32,Default/TransData-op280,TransData-op280,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}}"
31630,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95,MatMul-op95,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}}"
31631,19,32,Default/TransData-op255,TransData-op255,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31632,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97,RealDiv-op97,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31633,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98,BiasAdd-op98,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31634,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99,ReLU-op99,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31635,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100,Mul-op100,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31636,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101,Cast-op101,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}}"
31637,19,32,Default/TransData-op215,TransData-op215,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}}"
31638,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102,MatMul-op102,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,1000,16,16""}}"
31639,19,32,Default/TransData-op204,TransData-op204,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31640,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104,RealDiv-op104,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31641,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105,BiasAdd-op105,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31642,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106,TensorAdd-op106,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31643,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107,SigmoidCrossEntropyWithLogits-op107,SigmoidCrossEntropyWithLogits,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31644,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109,SigmoidCrossEntropyWithLogitsGrad-op109,SigmoidCrossEntropyWithLogitsGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31645,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108,SigmoidCrossEntropyWithLogitsGrad-op108,SigmoidCrossEntropyWithLogitsGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31646,19,1,Default/AtomicAddrClean-op425,AtomicAddrClean-op425,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
31647,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110,ReduceMean-op110,ReduceMean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
31648,19,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112,BiasAddGrad-op112,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
31649,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113,RealDiv-op113,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}"
31650,19,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111,ReduceSum-op111,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
31839,21,16,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115,Cast-op115,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1""}}"
31840,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114,Tile-op114,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}"
31843,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116,Mul-op116,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31844,21,32,Default/TransData-op257,TransData-op257,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}}"
31845,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117,Mul-op117,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}"
31846,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121,Mul-op121,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
31847,21,8,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119,MatMul-op119,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,8,16,16""}}"
31848,21,63,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120,MatMul-op120,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}}"
31849,21,16,Default/AtomicAddrClean-op427,AtomicAddrClean-op427,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}"
31850,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123,UnsortedSegmentSum-op123,UnsortedSegmentSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}"
31851,21,32,Default/TransData-op235,TransData-op235,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31852,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128,Mul-op128,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31853,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131,ReluGrad-op131,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31854,21,1,Default/AtomicAddrClean-op428,AtomicAddrClean-op428,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}"
31855,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134,BiasAddGrad-op134,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}"
31856,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135,RealDiv-op135,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}"
31857,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136,Cast-op136,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}}"
31858,21,32,Default/TransData-op252,TransData-op252,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}}"
31859,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138,MatMul-op138,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,16,16,16""}}"
31860,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139,MatMul-op139,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}}"
31861,21,32,Default/TransData-op233,TransData-op233,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31862,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143,Mul-op143,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31863,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145,ReluGrad-op145,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31864,21,1,Default/AtomicAddrClean-op429,AtomicAddrClean-op429,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}"
31865,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147,BiasAddGrad-op147,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}"
31866,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148,RealDiv-op148,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}"
31867,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149,Cast-op149,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}}"
31868,21,32,Default/TransData-op247,TransData-op247,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}}"
31869,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151,MatMul-op151,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,32,16,16""}}"
31870,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152,MatMul-op152,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}}"
31871,21,32,Default/TransData-op231,TransData-op231,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31872,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156,Mul-op156,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31873,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158,ReluGrad-op158,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31874,21,1,Default/AtomicAddrClean-op430,AtomicAddrClean-op430,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}"
31875,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160,BiasAddGrad-op160,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}"
31876,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161,RealDiv-op161,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}"
31877,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162,Cast-op162,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}}"
31878,21,32,Default/TransData-op242,TransData-op242,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}}"
31879,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164,MatMul-op164,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,64,16,16""}}"
31880,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165,MatMul-op165,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}}"
31881,21,32,Default/TransData-op229,TransData-op229,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31882,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169,Mul-op169,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31883,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171,ReluGrad-op171,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31884,21,1,Default/AtomicAddrClean-op431,AtomicAddrClean-op431,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}"
31885,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173,BiasAddGrad-op173,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}"
31886,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174,RealDiv-op174,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}"
31887,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175,Cast-op175,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}}"
31888,21,32,Default/TransData-op237,TransData-op237,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}}"
31889,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177,MatMul-op177,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,156,16,16""}}"
32218,23,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118,RealDiv-op118,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
32219,23,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124,TensorAdd-op124,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
32220,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178,MatMul-op178,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""156,1000,16,16""}}"
32221,23,32,Default/TransData-op284,TransData-op284,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""156,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}"
32222,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182,Mul-op182,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}"
32223,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184,ReluGrad-op184,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}"
32224,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186,Mul-op186,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}"
32225,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187,StridedSliceGrad-op187,StridedSliceGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}}"
32226,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188,Slice-op188,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32227,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189,Slice-op189,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32228,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190,Slice-op190,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32229,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191,Slice-op191,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32230,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192,Slice-op192,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32231,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193,Slice-op193,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32232,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194,Slice-op194,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32233,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195,Slice-op195,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}"
32234,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196,Concat-op196,Concat,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024000,39,8""}}"
32414,25,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130,Mul-op130,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}"
32415,25,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129,Mul-op129,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
32416,25,2,Default/Mul-op183,Mul-op183,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}"
32417,25,1,Default/Mul-op170,Mul-op170,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}"
32418,25,1,Default/Mul-op157,Mul-op157,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}"
32419,25,1,Default/Mul-op144,Mul-op144,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}"
32420,25,1,Default/Mul-op122,Mul-op122,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
32421,25,32,Default/TransData-op206,TransData-op206,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}"
32422,25,32,Default/TransData-op208,TransData-op208,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}"
32423,25,32,Default/TransData-op210,TransData-op210,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}"
32424,25,16,Default/TransData-op212,TransData-op212,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}"
32425,25,8,Default/TransData-op214,TransData-op214,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}"
32426,25,32,Default/Mul-op197,Mul-op197,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}"
32427,25,32,Default/Mul-op176,Mul-op176,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}"
32428,25,32,Default/Mul-op163,Mul-op163,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}"
32429,25,32,Default/Mul-op150,Mul-op150,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}"
32430,25,1,Default/Mul-op137,Mul-op137,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}"
32431,25,31,Default/AtomicAddrClean-op434,AtomicAddrClean-op434,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
32434,25,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199,UnsortedSegmentSum-op199,UnsortedSegmentSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""128000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
32435,25,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200,AddN-op200,AddN,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
32436,25,32,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201,Mul-op201,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
32437,25,29,Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133,ApplyFtrl-op133,ApplyFtrl,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}"
32438,25,1,Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132,ApplyFtrl-op132,ApplyFtrl,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
32439,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185,Adam-op185,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}"
32440,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172,Adam-op172,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}"
32441,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159,Adam-op159,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}"
32442,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146,Adam-op146,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}"
32443,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127,Adam-op127,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}"
32444,25,32,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198,Adam-op198,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}"
32445,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179,Adam-op179,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}"
32446,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166,Adam-op166,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}"
32447,25,16,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153,Adam-op153,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}"
32448,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140,Adam-op140,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}"
32449,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202,Adam-op202,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}"
tests/utils/resource/run_1/normal_run/profiler/min_cycle_counter_1.txt
0 → 100644
浏览文件 @
d3cc7a89
43806841592.0
\ No newline at end of file
tests/utils/resource/run_1/normal_run/profiler/minddata_pipeline_raw_1.csv
0 → 100644
浏览文件 @
d3cc7a89
op_id,op_type,num_workers,output_queue_size,output_queue_average_size,output_queue_length,output_queue_usage_rate,sample_interval,parent_id,children_id
0,Batch,4,,,,,10,,[1]
1,Shuffle,1,"[10, 20, 30]",20.0,64,0.3125,10,0,"[2, 3]"
2,TFReader,4,"[10, 20, 30]",20.0,64,0.3125,10,1,
3,TFReader,4,"[10, 20, 30]",20.0,64,0.3125,10,1,
tests/utils/resource/run_1/normal_run/profiler/output_format_data_hwts_1.txt
0 → 100644
浏览文件 @
d3cc7a89
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
tests/utils/resource/run_1/normal_run/profiler/output_op_compute_time_1.txt
0 → 100644
浏览文件 @
d3cc7a89
====================op compute time====================
op_name compute_time(ms) stream_id
------------ --------------- ---------
Default/AssignAdd-op414 0.001688 519
Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29 0.0012020000000000002 519
Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30 0.0013606666666666667 519
Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31 0.0011659999999999997 519
Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32 0.001116 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33 0.9352293333333332 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35 0.010222666666666666 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36 0.015073333333333333 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37 0.003832666666666666 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34 0.001396666666666667 519
Default/TransData-op216 0.006697333333333332 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38 0.009799333333333334 519
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39 0.09720533333333335 523
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40 0.08841666666666667 523
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41 0.012427333333333335 523
Default/AtomicAddrClean-op418 0.001378666666666667 523
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42 0.009832666666666665 523
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48 0.001400666666666667 525
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44 0.0014346666666666666 527
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28 0.001468 527
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47 0.004459333333333333 527
Default/TransData-op281 0.0027733333333333334 527
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46 0.004600000000000001 527
Default/TransData-op278 0.004403333333333333 527
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45 0.00711 527
Default/TransData-op275 0.005461333333333334 527
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52 0.023115999999999994 527
Default/TransData-op272 0.009749333333333332 527
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43 0.0013153333333333335 527
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53 0.004243333333333333 529
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54 0.004824666666666667 529
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49 0.003735 531
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50 0.0045564285714285715 531
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51 0.004516428571428571 531
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55 42.220212142857136 531
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56 0.00871357142857143 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57 0.15243714285714288 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58 0.9626657142857143 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59 1.0643285714285715 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60 0.9675764285714286 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61 0.9675435714285714 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62 1.0075085714285714 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63 0.9250400000000002 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64 1.1294107142857144 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65 1.0091157142857143 533
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66 0.051030714285714276 533
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67 2.617072142857143 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68 3.084827142857143 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69 0.3331414285714285 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70 0.37437785714285715 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71 0.32776857142857135 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72 0.33151499999999995 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73 0.2518214285714286 535
Default/TransData-op271 0.14980214285714283 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74 0.45218500000000006 535
Default/TransData-op240 0.09184714285714284 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76 0.10391071428571431 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77 0.11015571428571427 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78 0.10085142857142855 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79 0.10943071428571426 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80 0.04727285714285715 535
Default/TransData-op274 0.03735642857142857 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81 0.09832214285714284 535
Default/TransData-op245 0.037176428571428576 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83 0.036798571428571424 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84 0.04016857142857143 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85 0.027936428571428574 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86 0.039065 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87 0.02587642857142857 535
Default/TransData-op277 0.01939 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88 0.03152 535
Default/TransData-op250 0.020935000000000002 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90 0.025487142857142854 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91 0.021720714285714288 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92 0.016717857142857142 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93 0.021017857142857147 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94 0.014929999999999999 535
Default/TransData-op280 0.012425714285714285 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95 0.013189999999999997 535
Default/TransData-op255 0.014586428571428571 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97 0.015751428571428572 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98 0.013145 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99 0.010007857142857143 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100 0.01205 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101 0.009261428571428571 535
Default/TransData-op215 0.009404285714285714 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102 0.007625 535
Default/TransData-op204 0.016274285714285713 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104 0.004828571428571428 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105 0.004472857142857142 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106 0.003925714285714286 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107 0.004808571428571428 535
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109 0.004950714285714286 535
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108 0.004631428571428572 535
Default/AtomicAddrClean-op425 0.0015150000000000003 535
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110 0.004534999999999999 535
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112 0.0030614285714285717 535
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113 0.004547142857142856 535
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111 0.0031428571428571426 535
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115 0.0026614285714285715 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114 0.027466428571428576 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116 0.03313571428571428 537
Default/TransData-op257 0.06620642857142857 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117 0.010132142857142855 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121 0.020947142857142855 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119 0.009299285714285715 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120 0.009546428571428572 537
Default/AtomicAddrClean-op427 0.002937142857142857 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123 7.355592142857143 537
Default/TransData-op235 0.014415714285714283 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128 0.012212857142857145 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131 0.02228428571428571 537
Default/AtomicAddrClean-op428 0.001404285714285714 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134 0.008783571428571429 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135 0.013412857142857143 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136 0.008197142857142856 537
Default/TransData-op252 0.008572857142857142 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138 0.029589285714285724 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139 0.016685 537
Default/TransData-op233 0.020412142857142858 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143 0.020592142857142857 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145 0.03936785714285714 537
Default/AtomicAddrClean-op429 0.0014571428571428572 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147 0.012325714285714285 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148 0.021508571428571432 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149 0.012591428571428571 537
Default/TransData-op247 0.012454999999999997 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151 0.053485000000000005 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152 0.03651357142857143 537
Default/TransData-op231 0.03276571428571429 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156 0.037129999999999996 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158 0.09050499999999999 537
Default/AtomicAddrClean-op430 0.001497142857142857 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160 0.017480714285714283 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161 0.042566428571428575 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162 0.02489785714285714 537
Default/TransData-op242 0.019189285714285714 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164 0.10608857142857142 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165 0.1160064285714286 537
Default/TransData-op229 0.09212928571428572 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169 0.10092642857142857 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171 0.18744071428571424 537
Default/AtomicAddrClean-op431 0.0014599999999999997 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173 0.030029999999999998 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174 0.13704571428571427 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175 0.04649285714285715 537
Default/TransData-op237 0.03681785714285714 537
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177 0.42144428571428577 537
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118 0.001617857142857143 539
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124 0.0014600000000000001 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178 0.5351814285714286 539
Default/TransData-op284 0.32571142857142854 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182 0.3179142857142857 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184 0.5144707142857143 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186 0.3859778571428571 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187 1.3543971428571429 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188 1.5460985714285713 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189 1.5340514285714286 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190 1.540242857142857 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191 1.5514735714285715 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192 1.5607435714285713 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193 1.5385385714285713 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194 1.537682857142857 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195 1.5342942857142856 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196 2.584179285714286 539
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130 0.005715714285714287 541
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129 0.0015964285714285716 541
Default/Mul-op183 0.0016557142857142858 541
Default/Mul-op170 0.0015957142857142856 541
Default/Mul-op157 0.0015314285714285714 541
Default/Mul-op144 0.0014735714285714285 541
Default/Mul-op122 0.0012207142857142855 541
Default/TransData-op206 0.02777642857142857 541
Default/TransData-op208 0.008395714285714286 541
Default/TransData-op210 0.006270714285714287 541
Default/TransData-op212 0.003332857142857143 541
Default/TransData-op214 0.0024235714285714286 541
Default/Mul-op197 0.016677857142857147 541
Default/Mul-op176 0.007605000000000001 541
Default/Mul-op163 0.0062528571428571425 541
Default/Mul-op150 0.004635 541
Default/Mul-op137 0.0016078571428571429 541
Default/AtomicAddrClean-op434 0.007719285714285714 541
Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199 37.25223428571428 541
Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200 0.012836428571428572 541
Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201 0.010897142857142855 541
Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133 0.02319642857142857 541
Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132 0.0022571428571428573 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185 0.003688571428571429 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172 0.003175714285714285 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159 0.0029478571428571436 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146 0.0028899999999999998 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127 0.0022257142857142853 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198 0.133745 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179 0.03321571428571428 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166 0.010665 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153 0.006292857142857143 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140 0.002818571428571428 541
Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202 0.08427071428571428 541
total op 126.43631757142849 0
tests/utils/resource/run_1/normal_run/profiler/output_op_compute_time_detail_1.txt
0 → 100644
浏览文件 @
d3cc7a89
====================op compute time====================
optype_name compute_time(ms, per-step) called_times(per-step) percent
--------------------------------- ---------------------------- ------------------------ ---------
UnsortedSegmentSum 44.6078 2 35.28
GatherV2 43.1554 2 34.13
Slice 20.3763 16 16.12
Concat 5.80845 4 4.59
Split 2.71428 2 2.15
MatMul 1.93668 15 1.53
Mul 1.90295 32 1.51
StridedSliceGrad 1.50683 2 1.19
TransData 1.11516 30 0.88
ReluGrad 0.854069 5 0.68
Cast 0.484685 15 0.38
ReLU 0.483282 5 0.38
RealDiv 0.422807 15 0.33
StridedSlice 0.345569 2 0.27
Adam 0.285936 11 0.23
BiasAdd 0.189663 5 0.15
BiasAddGrad 0.071681 5 0.06
Tile 0.044158 4 0.03
ReduceSum 0.030765 5 0.02
ApplyFtrl 0.025454 2 0.02
AtomicAddrClean 0.019369 8 0.02
AddN 0.012836 1 0.01
Square 0.009799 1 0.01
SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01
TensorAdd 0.009218 3 0.01
SigmoidCrossEntropyWithLogits 0.004809 1 0
ReduceMean 0.004535 1 0
Assign 0.002477 2 0
AssignAdd 0.001688 1 0
Detail:
op_name op_type avg_execution_time subgraph
--------------------------------------- --------------------------------- -------------------- ----------
UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients
UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients
GatherV2-op55 GatherV2 42.2202 Default
GatherV2-op33 GatherV2 0.935229 Default
Slice-op192 Slice 1.56074 Gradients
Slice-op191 Slice 1.55147 Gradients
Slice-op188 Slice 1.5461 Gradients
Slice-op190 Slice 1.54024 Gradients
Slice-op193 Slice 1.53854 Gradients
Slice-op194 Slice 1.53768 Gradients
Slice-op195 Slice 1.53429 Gradients
Slice-op189 Slice 1.53405 Gradients
Slice-op64 Slice 1.12941 Gradients
Slice-op59 Slice 1.06433 Gradients
Slice-op65 Slice 1.00912 Gradients
Slice-op62 Slice 1.00751 Gradients
Slice-op60 Slice 0.967576 Gradients
Slice-op61 Slice 0.967544 Gradients
Slice-op58 Slice 0.962666 Gradients
Slice-op63 Slice 0.92504 Gradients
Concat-op68 Concat 3.08483 Default
Concat-op196 Concat 2.58418 Gradients
Concat-op40 Concat 0.0884167 Default
Concat-op66 Concat 0.0510307 Gradients
Split-op67 Split 2.61707 Default
Split-op39 Split 0.0972053 Default
MatMul-op178 MatMul 0.535181 Gradients
MatMul-op74 MatMul 0.452185 Default
MatMul-op177 MatMul 0.421444 Gradients
MatMul-op165 MatMul 0.116006 Gradients
MatMul-op164 MatMul 0.106089 Gradients
MatMul-op81 MatMul 0.0983221 Default
MatMul-op151 MatMul 0.053485 Gradients
MatMul-op152 MatMul 0.0365136 Gradients
MatMul-op88 MatMul 0.03152 Default
MatMul-op138 MatMul 0.0295893 Gradients
MatMul-op139 MatMul 0.016685 Gradients
MatMul-op95 MatMul 0.01319 Default
MatMul-op120 MatMul 0.00954643 Gradients
MatMul-op119 MatMul 0.00929929 Gradients
MatMul-op102 MatMul 0.007625 Default
Mul-op186 Mul 0.385978 Gradients
Mul-op70 Mul 0.374378 Default
Mul-op72 Mul 0.331515 Default
Mul-op182 Mul 0.317914 Gradients
Mul-op79 Mul 0.109431 Default
Mul-op169 Mul 0.100926 Gradients
Mul-op86 Mul 0.039065 Default
Mul-op156 Mul 0.03713 Gradients
Mul-op116 Mul 0.0331357 Gradients
Mul-op93 Mul 0.0210179 Default
Mul-op121 Mul 0.0209471 Gradients
Mul-op143 Mul 0.0205921 Gradients
Mul-op197 Mul 0.0166779 Default
Mul-op128 Mul 0.0122129 Gradients
Mul-op100 Mul 0.01205 Default
Mul-op201 Mul 0.0108971 Default
Mul-op35 Mul 0.0102227 Default
Mul-op117 Mul 0.0101321 Gradients
Mul-op176 Mul 0.007605 Default
Mul-op163 Mul 0.00625286 Default
Mul-op130 Mul 0.00571571 Gradients
Mul-op150 Mul 0.004635 Default
Mul-op183 Mul 0.00165571 Default
Mul-op137 Mul 0.00160786 Default
Mul-op129 Mul 0.00159643 Gradients
Mul-op170 Mul 0.00159571 Default
Mul-op157 Mul 0.00153143 Default
Mul-op144 Mul 0.00147357 Default
Mul-op28 Mul 0.001468 Default
Mul-op122 Mul 0.00122071 Default
Mul-op29 Mul 0.001202 Default
Mul-op31 Mul 0.001166 Default
StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients
StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients
TransData-op284 TransData 0.325711 Default
TransData-op271 TransData 0.149802 Default
TransData-op229 TransData 0.0921293 Default
TransData-op240 TransData 0.0918471 Default
TransData-op257 TransData 0.0662064 Default
TransData-op274 TransData 0.0373564 Default
TransData-op245 TransData 0.0371764 Default
TransData-op237 TransData 0.0368179 Default
TransData-op231 TransData 0.0327657 Default
TransData-op206 TransData 0.0277764 Default
TransData-op250 TransData 0.020935 Default
TransData-op233 TransData 0.0204121 Default
TransData-op277 TransData 0.01939 Default
TransData-op242 TransData 0.0191893 Default
TransData-op204 TransData 0.0162743 Default
TransData-op255 TransData 0.0145864 Default
TransData-op235 TransData 0.0144157 Default
TransData-op247 TransData 0.012455 Default
TransData-op280 TransData 0.0124257 Default
TransData-op272 TransData 0.00974933 Default
TransData-op215 TransData 0.00940429 Default
TransData-op252 TransData 0.00857286 Default
TransData-op208 TransData 0.00839571 Default
TransData-op216 TransData 0.00669733 Default
TransData-op210 TransData 0.00627071 Default
TransData-op275 TransData 0.00546133 Default
TransData-op278 TransData 0.00440333 Default
TransData-op212 TransData 0.00333286 Default
TransData-op281 TransData 0.00277333 Default
TransData-op214 TransData 0.00242357 Default
ReluGrad-op184 ReluGrad 0.514471 Gradients
ReluGrad-op171 ReluGrad 0.187441 Gradients
ReluGrad-op158 ReluGrad 0.090505 Gradients
ReluGrad-op145 ReluGrad 0.0393679 Gradients
ReluGrad-op131 ReluGrad 0.0222843 Gradients
Cast-op73 Cast 0.251821 Default
Cast-op80 Cast 0.0472729 Default
Cast-op175 Cast 0.0464929 Gradients
Cast-op87 Cast 0.0258764 Default
Cast-op162 Cast 0.0248979 Gradients
Cast-op52 Cast 0.023116 Default
Cast-op94 Cast 0.01493 Default
Cast-op149 Cast 0.0125914 Gradients
Cast-op101 Cast 0.00926143 Default
Cast-op136 Cast 0.00819714 Gradients
Cast-op45 Cast 0.00711 Default
Cast-op46 Cast 0.0046 Default
Cast-op47 Cast 0.00445933 Default
Cast-op115 Cast 0.00266143 Gradients
Cast-op34 Cast 0.00139667 Default
ReLU-op71 ReLU 0.327769 Default
ReLU-op78 ReLU 0.100851 Default
ReLU-op85 ReLU 0.0279364 Default
ReLU-op92 ReLU 0.0167179 Default
ReLU-op99 ReLU 0.0100079 Default
RealDiv-op174 RealDiv 0.137046 Gradients
RealDiv-op76 RealDiv 0.103911 Default
RealDiv-op161 RealDiv 0.0425664 Gradients
RealDiv-op83 RealDiv 0.0367986 Default
RealDiv-op90 RealDiv 0.0254871 Default
RealDiv-op148 RealDiv 0.0215086 Gradients
RealDiv-op97 RealDiv 0.0157514 Default
RealDiv-op135 RealDiv 0.0134129 Gradients
RealDiv-op104 RealDiv 0.00482857 Default
RealDiv-op54 RealDiv 0.00482467 Gradients
RealDiv-op50 RealDiv 0.00455643 Gradients
RealDiv-op113 RealDiv 0.00454714 Gradients
RealDiv-op51 RealDiv 0.00451643 Gradients
RealDiv-op118 RealDiv 0.00161786 Default
RealDiv-op44 RealDiv 0.00143467 Default
StridedSlice-op69 StridedSlice 0.333141 Default
StridedSlice-op41 StridedSlice 0.0124273 Default
Adam-op198 Adam 0.133745 Default
Adam-op202 Adam 0.0842707 Default
Adam-op179 Adam 0.0332157 Default
Adam-op166 Adam 0.010665 Default
Adam-op153 Adam 0.00629286 Default
Adam-op185 Adam 0.00368857 Default
Adam-op172 Adam 0.00317571 Default
Adam-op159 Adam 0.00294786 Default
Adam-op146 Adam 0.00289 Default
Adam-op140 Adam 0.00281857 Default
Adam-op127 Adam 0.00222571 Default
BiasAdd-op77 BiasAdd 0.110156 Default
BiasAdd-op84 BiasAdd 0.0401686 Default
BiasAdd-op91 BiasAdd 0.0217207 Default
BiasAdd-op98 BiasAdd 0.013145 Default
BiasAdd-op105 BiasAdd 0.00447286 Default
BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients
BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients
BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients
BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients
BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients
Tile-op114 Tile 0.0274664 Gradients
Tile-op56 Tile 0.00871357 Gradients
Tile-op53 Tile 0.00424333 Gradients
Tile-op49 Tile 0.003735 Gradients
ReduceSum-op36 ReduceSum 0.0150733 Default
ReduceSum-op42 ReduceSum 0.00983267 Default
ReduceSum-op111 ReduceSum 0.00314286 Gradients
ReduceSum-op48 ReduceSum 0.00140067 Gradients
ReduceSum-op43 ReduceSum 0.00131533 Gradients
ApplyFtrl-op133 ApplyFtrl 0.0231964 Default
ApplyFtrl-op132 ApplyFtrl 0.00225714 Default
AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default
AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default
AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default
AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default
AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default
AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default
AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default
AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default
AddN-op200 AddN 0.0128364 Default
Square-op38 Square 0.00979933 Default
SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients
SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients
TensorAdd-op106 TensorAdd 0.00392571 Default
TensorAdd-op37 TensorAdd 0.00383267 Default
TensorAdd-op124 TensorAdd 0.00146 Default
SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default
ReduceMean-op110 ReduceMean 0.004535 Default
Assign-op30 Assign 0.00136067 Default
Assign-op32 Assign 0.001116 Default
AssignAdd-op414 AssignAdd 0.001688 Default
====================op compute time====================
optype_name compute_time(ms, per-step) called_times(per-step) percent
--------------------------------- ---------------------------- ------------------------ ---------
UnsortedSegmentSum 44.6078 2 35.28
GatherV2 43.1554 2 34.13
Slice 20.3763 16 16.12
Concat 5.80845 4 4.59
Split 2.71428 2 2.15
MatMul 1.93668 15 1.53
Mul 1.90295 32 1.51
StridedSliceGrad 1.50683 2 1.19
TransData 1.11516 30 0.88
ReluGrad 0.854069 5 0.68
Cast 0.484685 15 0.38
ReLU 0.483282 5 0.38
RealDiv 0.422807 15 0.33
StridedSlice 0.345569 2 0.27
Adam 0.285936 11 0.23
BiasAdd 0.189663 5 0.15
BiasAddGrad 0.071681 5 0.06
Tile 0.044158 4 0.03
ReduceSum 0.030765 5 0.02
ApplyFtrl 0.025454 2 0.02
AtomicAddrClean 0.019369 8 0.02
AddN 0.012836 1 0.01
Square 0.009799 1 0.01
SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01
TensorAdd 0.009218 3 0.01
SigmoidCrossEntropyWithLogits 0.004809 1 0
ReduceMean 0.004535 1 0
Assign 0.002477 2 0
AssignAdd 0.001688 1 0
Detail:
op_name op_type avg_execution_time subgraph
--------------------------------------- --------------------------------- -------------------- ----------
UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients
UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients
GatherV2-op55 GatherV2 42.2202 Default
GatherV2-op33 GatherV2 0.935229 Default
Slice-op192 Slice 1.56074 Gradients
Slice-op191 Slice 1.55147 Gradients
Slice-op188 Slice 1.5461 Gradients
Slice-op190 Slice 1.54024 Gradients
Slice-op193 Slice 1.53854 Gradients
Slice-op194 Slice 1.53768 Gradients
Slice-op195 Slice 1.53429 Gradients
Slice-op189 Slice 1.53405 Gradients
Slice-op64 Slice 1.12941 Gradients
Slice-op59 Slice 1.06433 Gradients
Slice-op65 Slice 1.00912 Gradients
Slice-op62 Slice 1.00751 Gradients
Slice-op60 Slice 0.967576 Gradients
Slice-op61 Slice 0.967544 Gradients
Slice-op58 Slice 0.962666 Gradients
Slice-op63 Slice 0.92504 Gradients
Concat-op68 Concat 3.08483 Default
Concat-op196 Concat 2.58418 Gradients
Concat-op40 Concat 0.0884167 Default
Concat-op66 Concat 0.0510307 Gradients
Split-op67 Split 2.61707 Default
Split-op39 Split 0.0972053 Default
MatMul-op178 MatMul 0.535181 Gradients
MatMul-op74 MatMul 0.452185 Default
MatMul-op177 MatMul 0.421444 Gradients
MatMul-op165 MatMul 0.116006 Gradients
MatMul-op164 MatMul 0.106089 Gradients
MatMul-op81 MatMul 0.0983221 Default
MatMul-op151 MatMul 0.053485 Gradients
MatMul-op152 MatMul 0.0365136 Gradients
MatMul-op88 MatMul 0.03152 Default
MatMul-op138 MatMul 0.0295893 Gradients
MatMul-op139 MatMul 0.016685 Gradients
MatMul-op95 MatMul 0.01319 Default
MatMul-op120 MatMul 0.00954643 Gradients
MatMul-op119 MatMul 0.00929929 Gradients
MatMul-op102 MatMul 0.007625 Default
Mul-op186 Mul 0.385978 Gradients
Mul-op70 Mul 0.374378 Default
Mul-op72 Mul 0.331515 Default
Mul-op182 Mul 0.317914 Gradients
Mul-op79 Mul 0.109431 Default
Mul-op169 Mul 0.100926 Gradients
Mul-op86 Mul 0.039065 Default
Mul-op156 Mul 0.03713 Gradients
Mul-op116 Mul 0.0331357 Gradients
Mul-op93 Mul 0.0210179 Default
Mul-op121 Mul 0.0209471 Gradients
Mul-op143 Mul 0.0205921 Gradients
Mul-op197 Mul 0.0166779 Default
Mul-op128 Mul 0.0122129 Gradients
Mul-op100 Mul 0.01205 Default
Mul-op201 Mul 0.0108971 Default
Mul-op35 Mul 0.0102227 Default
Mul-op117 Mul 0.0101321 Gradients
Mul-op176 Mul 0.007605 Default
Mul-op163 Mul 0.00625286 Default
Mul-op130 Mul 0.00571571 Gradients
Mul-op150 Mul 0.004635 Default
Mul-op183 Mul 0.00165571 Default
Mul-op137 Mul 0.00160786 Default
Mul-op129 Mul 0.00159643 Gradients
Mul-op170 Mul 0.00159571 Default
Mul-op157 Mul 0.00153143 Default
Mul-op144 Mul 0.00147357 Default
Mul-op28 Mul 0.001468 Default
Mul-op122 Mul 0.00122071 Default
Mul-op29 Mul 0.001202 Default
Mul-op31 Mul 0.001166 Default
StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients
StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients
TransData-op284 TransData 0.325711 Default
TransData-op271 TransData 0.149802 Default
TransData-op229 TransData 0.0921293 Default
TransData-op240 TransData 0.0918471 Default
TransData-op257 TransData 0.0662064 Default
TransData-op274 TransData 0.0373564 Default
TransData-op245 TransData 0.0371764 Default
TransData-op237 TransData 0.0368179 Default
TransData-op231 TransData 0.0327657 Default
TransData-op206 TransData 0.0277764 Default
TransData-op250 TransData 0.020935 Default
TransData-op233 TransData 0.0204121 Default
TransData-op277 TransData 0.01939 Default
TransData-op242 TransData 0.0191893 Default
TransData-op204 TransData 0.0162743 Default
TransData-op255 TransData 0.0145864 Default
TransData-op235 TransData 0.0144157 Default
TransData-op247 TransData 0.012455 Default
TransData-op280 TransData 0.0124257 Default
TransData-op272 TransData 0.00974933 Default
TransData-op215 TransData 0.00940429 Default
TransData-op252 TransData 0.00857286 Default
TransData-op208 TransData 0.00839571 Default
TransData-op216 TransData 0.00669733 Default
TransData-op210 TransData 0.00627071 Default
TransData-op275 TransData 0.00546133 Default
TransData-op278 TransData 0.00440333 Default
TransData-op212 TransData 0.00333286 Default
TransData-op281 TransData 0.00277333 Default
TransData-op214 TransData 0.00242357 Default
ReluGrad-op184 ReluGrad 0.514471 Gradients
ReluGrad-op171 ReluGrad 0.187441 Gradients
ReluGrad-op158 ReluGrad 0.090505 Gradients
ReluGrad-op145 ReluGrad 0.0393679 Gradients
ReluGrad-op131 ReluGrad 0.0222843 Gradients
Cast-op73 Cast 0.251821 Default
Cast-op80 Cast 0.0472729 Default
Cast-op175 Cast 0.0464929 Gradients
Cast-op87 Cast 0.0258764 Default
Cast-op162 Cast 0.0248979 Gradients
Cast-op52 Cast 0.023116 Default
Cast-op94 Cast 0.01493 Default
Cast-op149 Cast 0.0125914 Gradients
Cast-op101 Cast 0.00926143 Default
Cast-op136 Cast 0.00819714 Gradients
Cast-op45 Cast 0.00711 Default
Cast-op46 Cast 0.0046 Default
Cast-op47 Cast 0.00445933 Default
Cast-op115 Cast 0.00266143 Gradients
Cast-op34 Cast 0.00139667 Default
ReLU-op71 ReLU 0.327769 Default
ReLU-op78 ReLU 0.100851 Default
ReLU-op85 ReLU 0.0279364 Default
ReLU-op92 ReLU 0.0167179 Default
ReLU-op99 ReLU 0.0100079 Default
RealDiv-op174 RealDiv 0.137046 Gradients
RealDiv-op76 RealDiv 0.103911 Default
RealDiv-op161 RealDiv 0.0425664 Gradients
RealDiv-op83 RealDiv 0.0367986 Default
RealDiv-op90 RealDiv 0.0254871 Default
RealDiv-op148 RealDiv 0.0215086 Gradients
RealDiv-op97 RealDiv 0.0157514 Default
RealDiv-op135 RealDiv 0.0134129 Gradients
RealDiv-op104 RealDiv 0.00482857 Default
RealDiv-op54 RealDiv 0.00482467 Gradients
RealDiv-op50 RealDiv 0.00455643 Gradients
RealDiv-op113 RealDiv 0.00454714 Gradients
RealDiv-op51 RealDiv 0.00451643 Gradients
RealDiv-op118 RealDiv 0.00161786 Default
RealDiv-op44 RealDiv 0.00143467 Default
StridedSlice-op69 StridedSlice 0.333141 Default
StridedSlice-op41 StridedSlice 0.0124273 Default
Adam-op198 Adam 0.133745 Default
Adam-op202 Adam 0.0842707 Default
Adam-op179 Adam 0.0332157 Default
Adam-op166 Adam 0.010665 Default
Adam-op153 Adam 0.00629286 Default
Adam-op185 Adam 0.00368857 Default
Adam-op172 Adam 0.00317571 Default
Adam-op159 Adam 0.00294786 Default
Adam-op146 Adam 0.00289 Default
Adam-op140 Adam 0.00281857 Default
Adam-op127 Adam 0.00222571 Default
BiasAdd-op77 BiasAdd 0.110156 Default
BiasAdd-op84 BiasAdd 0.0401686 Default
BiasAdd-op91 BiasAdd 0.0217207 Default
BiasAdd-op98 BiasAdd 0.013145 Default
BiasAdd-op105 BiasAdd 0.00447286 Default
BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients
BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients
BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients
BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients
BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients
Tile-op114 Tile 0.0274664 Gradients
Tile-op56 Tile 0.00871357 Gradients
Tile-op53 Tile 0.00424333 Gradients
Tile-op49 Tile 0.003735 Gradients
ReduceSum-op36 ReduceSum 0.0150733 Default
ReduceSum-op42 ReduceSum 0.00983267 Default
ReduceSum-op111 ReduceSum 0.00314286 Gradients
ReduceSum-op48 ReduceSum 0.00140067 Gradients
ReduceSum-op43 ReduceSum 0.00131533 Gradients
ApplyFtrl-op133 ApplyFtrl 0.0231964 Default
ApplyFtrl-op132 ApplyFtrl 0.00225714 Default
AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default
AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default
AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default
AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default
AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default
AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default
AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default
AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default
AddN-op200 AddN 0.0128364 Default
Square-op38 Square 0.00979933 Default
SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients
SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients
TensorAdd-op106 TensorAdd 0.00392571 Default
TensorAdd-op37 TensorAdd 0.00383267 Default
TensorAdd-op124 TensorAdd 0.00146 Default
SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default
ReduceMean-op110 ReduceMean 0.004535 Default
Assign-op30 Assign 0.00136067 Default
Assign-op32 Assign 0.001116 Default
AssignAdd-op414 AssignAdd 0.001688 Default
====================op compute time====================
optype_name compute_time(ms, per-step) called_times(per-step) percent
--------------------------------- ---------------------------- ------------------------ ---------
UnsortedSegmentSum 44.6078 2 35.28
GatherV2 43.1554 2 34.13
Slice 20.3763 16 16.12
Concat 5.80845 4 4.59
Split 2.71428 2 2.15
MatMul 1.93668 15 1.53
Mul 1.90295 32 1.51
StridedSliceGrad 1.50683 2 1.19
TransData 1.11516 30 0.88
ReluGrad 0.854069 5 0.68
Cast 0.484685 15 0.38
ReLU 0.483282 5 0.38
RealDiv 0.422807 15 0.33
StridedSlice 0.345569 2 0.27
Adam 0.285936 11 0.23
BiasAdd 0.189663 5 0.15
BiasAddGrad 0.071681 5 0.06
Tile 0.044158 4 0.03
ReduceSum 0.030765 5 0.02
ApplyFtrl 0.025454 2 0.02
AtomicAddrClean 0.019369 8 0.02
AddN 0.012836 1 0.01
Square 0.009799 1 0.01
SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01
TensorAdd 0.009218 3 0.01
SigmoidCrossEntropyWithLogits 0.004809 1 0
ReduceMean 0.004535 1 0
Assign 0.002477 2 0
AssignAdd 0.001688 1 0
Detail:
op_name op_type avg_execution_time subgraph
--------------------------------------- --------------------------------- -------------------- ----------
UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients
UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients
GatherV2-op55 GatherV2 42.2202 Default
GatherV2-op33 GatherV2 0.935229 Default
Slice-op192 Slice 1.56074 Gradients
Slice-op191 Slice 1.55147 Gradients
Slice-op188 Slice 1.5461 Gradients
Slice-op190 Slice 1.54024 Gradients
Slice-op193 Slice 1.53854 Gradients
Slice-op194 Slice 1.53768 Gradients
Slice-op195 Slice 1.53429 Gradients
Slice-op189 Slice 1.53405 Gradients
Slice-op64 Slice 1.12941 Gradients
Slice-op59 Slice 1.06433 Gradients
Slice-op65 Slice 1.00912 Gradients
Slice-op62 Slice 1.00751 Gradients
Slice-op60 Slice 0.967576 Gradients
Slice-op61 Slice 0.967544 Gradients
Slice-op58 Slice 0.962666 Gradients
Slice-op63 Slice 0.92504 Gradients
Concat-op68 Concat 3.08483 Default
Concat-op196 Concat 2.58418 Gradients
Concat-op40 Concat 0.0884167 Default
Concat-op66 Concat 0.0510307 Gradients
Split-op67 Split 2.61707 Default
Split-op39 Split 0.0972053 Default
MatMul-op178 MatMul 0.535181 Gradients
MatMul-op74 MatMul 0.452185 Default
MatMul-op177 MatMul 0.421444 Gradients
MatMul-op165 MatMul 0.116006 Gradients
MatMul-op164 MatMul 0.106089 Gradients
MatMul-op81 MatMul 0.0983221 Default
MatMul-op151 MatMul 0.053485 Gradients
MatMul-op152 MatMul 0.0365136 Gradients
MatMul-op88 MatMul 0.03152 Default
MatMul-op138 MatMul 0.0295893 Gradients
MatMul-op139 MatMul 0.016685 Gradients
MatMul-op95 MatMul 0.01319 Default
MatMul-op120 MatMul 0.00954643 Gradients
MatMul-op119 MatMul 0.00929929 Gradients
MatMul-op102 MatMul 0.007625 Default
Mul-op186 Mul 0.385978 Gradients
Mul-op70 Mul 0.374378 Default
Mul-op72 Mul 0.331515 Default
Mul-op182 Mul 0.317914 Gradients
Mul-op79 Mul 0.109431 Default
Mul-op169 Mul 0.100926 Gradients
Mul-op86 Mul 0.039065 Default
Mul-op156 Mul 0.03713 Gradients
Mul-op116 Mul 0.0331357 Gradients
Mul-op93 Mul 0.0210179 Default
Mul-op121 Mul 0.0209471 Gradients
Mul-op143 Mul 0.0205921 Gradients
Mul-op197 Mul 0.0166779 Default
Mul-op128 Mul 0.0122129 Gradients
Mul-op100 Mul 0.01205 Default
Mul-op201 Mul 0.0108971 Default
Mul-op35 Mul 0.0102227 Default
Mul-op117 Mul 0.0101321 Gradients
Mul-op176 Mul 0.007605 Default
Mul-op163 Mul 0.00625286 Default
Mul-op130 Mul 0.00571571 Gradients
Mul-op150 Mul 0.004635 Default
Mul-op183 Mul 0.00165571 Default
Mul-op137 Mul 0.00160786 Default
Mul-op129 Mul 0.00159643 Gradients
Mul-op170 Mul 0.00159571 Default
Mul-op157 Mul 0.00153143 Default
Mul-op144 Mul 0.00147357 Default
Mul-op28 Mul 0.001468 Default
Mul-op122 Mul 0.00122071 Default
Mul-op29 Mul 0.001202 Default
Mul-op31 Mul 0.001166 Default
StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients
StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients
TransData-op284 TransData 0.325711 Default
TransData-op271 TransData 0.149802 Default
TransData-op229 TransData 0.0921293 Default
TransData-op240 TransData 0.0918471 Default
TransData-op257 TransData 0.0662064 Default
TransData-op274 TransData 0.0373564 Default
TransData-op245 TransData 0.0371764 Default
TransData-op237 TransData 0.0368179 Default
TransData-op231 TransData 0.0327657 Default
TransData-op206 TransData 0.0277764 Default
TransData-op250 TransData 0.020935 Default
TransData-op233 TransData 0.0204121 Default
TransData-op277 TransData 0.01939 Default
TransData-op242 TransData 0.0191893 Default
TransData-op204 TransData 0.0162743 Default
TransData-op255 TransData 0.0145864 Default
TransData-op235 TransData 0.0144157 Default
TransData-op247 TransData 0.012455 Default
TransData-op280 TransData 0.0124257 Default
TransData-op272 TransData 0.00974933 Default
TransData-op215 TransData 0.00940429 Default
TransData-op252 TransData 0.00857286 Default
TransData-op208 TransData 0.00839571 Default
TransData-op216 TransData 0.00669733 Default
TransData-op210 TransData 0.00627071 Default
TransData-op275 TransData 0.00546133 Default
TransData-op278 TransData 0.00440333 Default
TransData-op212 TransData 0.00333286 Default
TransData-op281 TransData 0.00277333 Default
TransData-op214 TransData 0.00242357 Default
ReluGrad-op184 ReluGrad 0.514471 Gradients
ReluGrad-op171 ReluGrad 0.187441 Gradients
ReluGrad-op158 ReluGrad 0.090505 Gradients
ReluGrad-op145 ReluGrad 0.0393679 Gradients
ReluGrad-op131 ReluGrad 0.0222843 Gradients
Cast-op73 Cast 0.251821 Default
Cast-op80 Cast 0.0472729 Default
Cast-op175 Cast 0.0464929 Gradients
Cast-op87 Cast 0.0258764 Default
Cast-op162 Cast 0.0248979 Gradients
Cast-op52 Cast 0.023116 Default
Cast-op94 Cast 0.01493 Default
Cast-op149 Cast 0.0125914 Gradients
Cast-op101 Cast 0.00926143 Default
Cast-op136 Cast 0.00819714 Gradients
Cast-op45 Cast 0.00711 Default
Cast-op46 Cast 0.0046 Default
Cast-op47 Cast 0.00445933 Default
Cast-op115 Cast 0.00266143 Gradients
Cast-op34 Cast 0.00139667 Default
ReLU-op71 ReLU 0.327769 Default
ReLU-op78 ReLU 0.100851 Default
ReLU-op85 ReLU 0.0279364 Default
ReLU-op92 ReLU 0.0167179 Default
ReLU-op99 ReLU 0.0100079 Default
RealDiv-op174 RealDiv 0.137046 Gradients
RealDiv-op76 RealDiv 0.103911 Default
RealDiv-op161 RealDiv 0.0425664 Gradients
RealDiv-op83 RealDiv 0.0367986 Default
RealDiv-op90 RealDiv 0.0254871 Default
RealDiv-op148 RealDiv 0.0215086 Gradients
RealDiv-op97 RealDiv 0.0157514 Default
RealDiv-op135 RealDiv 0.0134129 Gradients
RealDiv-op104 RealDiv 0.00482857 Default
RealDiv-op54 RealDiv 0.00482467 Gradients
RealDiv-op50 RealDiv 0.00455643 Gradients
RealDiv-op113 RealDiv 0.00454714 Gradients
RealDiv-op51 RealDiv 0.00451643 Gradients
RealDiv-op118 RealDiv 0.00161786 Default
RealDiv-op44 RealDiv 0.00143467 Default
StridedSlice-op69 StridedSlice 0.333141 Default
StridedSlice-op41 StridedSlice 0.0124273 Default
Adam-op198 Adam 0.133745 Default
Adam-op202 Adam 0.0842707 Default
Adam-op179 Adam 0.0332157 Default
Adam-op166 Adam 0.010665 Default
Adam-op153 Adam 0.00629286 Default
Adam-op185 Adam 0.00368857 Default
Adam-op172 Adam 0.00317571 Default
Adam-op159 Adam 0.00294786 Default
Adam-op146 Adam 0.00289 Default
Adam-op140 Adam 0.00281857 Default
Adam-op127 Adam 0.00222571 Default
BiasAdd-op77 BiasAdd 0.110156 Default
BiasAdd-op84 BiasAdd 0.0401686 Default
BiasAdd-op91 BiasAdd 0.0217207 Default
BiasAdd-op98 BiasAdd 0.013145 Default
BiasAdd-op105 BiasAdd 0.00447286 Default
BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients
BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients
BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients
BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients
BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients
Tile-op114 Tile 0.0274664 Gradients
Tile-op56 Tile 0.00871357 Gradients
Tile-op53 Tile 0.00424333 Gradients
Tile-op49 Tile 0.003735 Gradients
ReduceSum-op36 ReduceSum 0.0150733 Default
ReduceSum-op42 ReduceSum 0.00983267 Default
ReduceSum-op111 ReduceSum 0.00314286 Gradients
ReduceSum-op48 ReduceSum 0.00140067 Gradients
ReduceSum-op43 ReduceSum 0.00131533 Gradients
ApplyFtrl-op133 ApplyFtrl 0.0231964 Default
ApplyFtrl-op132 ApplyFtrl 0.00225714 Default
AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default
AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default
AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default
AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default
AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default
AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default
AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default
AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default
AddN-op200 AddN 0.0128364 Default
Square-op38 Square 0.00979933 Default
SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients
SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients
TensorAdd-op106 TensorAdd 0.00392571 Default
TensorAdd-op37 TensorAdd 0.00383267 Default
TensorAdd-op124 TensorAdd 0.00146 Default
SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default
ReduceMean-op110 ReduceMean 0.004535 Default
Assign-op30 Assign 0.00136067 Default
Assign-op32 Assign 0.001116 Default
AssignAdd-op414 AssignAdd 0.001688 Default
tests/utils/resource/run_1/normal_run/profiler/output_timeline_data_1.txt
0 → 100644
浏览文件 @
d3cc7a89
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
tests/utils/resource/run_1/normal_run/profiler/pipeline_profiling_1.json
0 → 100644
浏览文件 @
d3cc7a89
{
"sampling_interval"
:
10
,
"op_info"
:
[
{
"op_id"
:
4
,
"op_type"
:
"TFReader"
,
"num_workers"
:
4
,
"metrics"
:
null
,
"children"
:
[
3
]
},
{
"op_id"
:
3
,
"op_type"
:
"TFReader"
,
"num_workers"
:
4
,
"metrics"
:
{
"output_queue"
:
{
"size"
:
[
10
,
20
,
30
],
"length"
:
64
}
},
"children"
:
null
},
{
"op_id"
:
2
,
"op_type"
:
"TFReader"
,
"num_workers"
:
4
,
"metrics"
:
{
"output_queue"
:
{
"size"
:
[
10
,
20
,
30
],
"length"
:
64
}
},
"children"
:
null
},
{
"op_id"
:
1
,
"op_type"
:
"Shuffle"
,
"num_workers"
:
1
,
"metrics"
:
{
"output_queue"
:
{
"size"
:
[
10
,
20
,
30
],
"length"
:
64
}
},
"children"
:
[
2
,
4
]
},
{
"op_id"
:
0
,
"op_type"
:
"Batch"
,
"num_workers"
:
4
,
"metrics"
:
null
,
"children"
:
[
1
]
}
]
}
\ No newline at end of file
tests/utils/resource/run_1/normal_run/profiler/step_trace_point_info.json
0 → 100644
浏览文件 @
d3cc7a89
{
"fp_start"
:
"Default/Cast-op6"
,
"bp_end"
:
"Default/TransData-op7"
}
\ No newline at end of file
tests/utils/resource/run_1/normal_run/profiler/step_trace_raw_1_detail_time.csv
0 → 100644
浏览文件 @
d3cc7a89
step_num,start_point,end_point,total,fp_point,bp_point,iteration_interval,fp_and_bp,tail,stream_520_parallel_0_start_point,stream_520_parallel_0_end_point,stream_520_parallel_0,stream_522_parallel_0_start_point,stream_522_parallel_0_end_point,stream_522_parallel_0,stream_524_parallel_0_start_point,stream_524_parallel_0_end_point,stream_524_parallel_0,stream_526_parallel_0_start_point,stream_526_parallel_0_end_point,stream_526_parallel_0,stream_528_parallel_0_start_point,stream_528_parallel_0_end_point,stream_528_parallel_0,stream_530_parallel_0_start_point,stream_530_parallel_0_end_point,stream_530_parallel_0,stream_532_parallel_0_start_point,stream_532_parallel_0_end_point,stream_532_parallel_0,stream_534_parallel_0_start_point,stream_534_parallel_0_end_point,stream_534_parallel_0,stream_536_parallel_0_start_point,stream_536_parallel_0_end_point,stream_536_parallel_0,stream_538_parallel_0_start_point,stream_538_parallel_0_end_point,stream_538_parallel_0,stream_540_parallel_0_start_point,stream_540_parallel_0_end_point,stream_540_parallel_0
1,43806850547,43835277665,28427118,43806850547,43826228662,0,19378115,9049003,43806979896,43814842766,7862870,43806997260,43814823508,7826248,43814882574,43814951269,68695,43814897323,43814966482,69159,43814991920,43815057378,65458,43815007147,43815080232,73085,43819302977,43822500665,3197688,43820137280,43822971125,2833845,43823438328,43823872228,433900,43824391883,43824924486,532603,43826239844,43831503539,5263695
2,43835277665,43855846023,20568358,43835298746,43847098504,21081,11799758,8747519,43835428735,43835587759,159024,43835446892,43835568336,121444,43835632036,43835698380,66344,43835647043,43835704260,57217,43835739468,43835804439,64971,43835755107,43835821006,65899,43840063039,43843367407,3304368,43840897501,43843617882,2720381,43844308717,43844483817,175100,43845261812,43845551222,289410,43847109710,43852068173,4958463
3,43855846023,43876218381,20372358,43855867006,43867655651,20983,11788645,8562730,43855991963,43856247793,255830,43856012795,43856229529,216734,43856291502,43856359411,67909,43856306186,43856365396,59210,43856398907,43856465191,66284,43856413995,43856484203,70208,43860715348,43863925058,3209710,43861549249,43864142055,2592806,43864864400,43865008182,143782,43865816432,43866069437,253005,43867666988,43872445556,4778568
4,43876218381,43897172276,20953895,43876239059,43888460022,20678,12220963,8712254,43876369610,43876746322,376712,43876385030,43876725158,340128,43876790071,43876860921,70850,43876804890,43876877372,72482,43876902198,43876971196,68998,43876917454,43876985846,68392,43881226133,43884733998,3507865,43882060892,43885045635,2984743,43885670218,43885948862,278644,43886622918,43887012071,389153,43888471284,43893401563,4930279
5,43897172276,43917707811,20535535,43897191998,43908941162,19722,11749164,8766649,43897321990,43897699897,377907,43897339693,43897680160,340467,43897743226,43897808808,65582,43897758593,43897814916,56323,43897851731,43897916500,64769,43897867291,43897937027,69736,43902163059,43905207327,3044268,43902997385,43905512623,2515238,43906149013,43906381080,232067,43907100473,43907448679,348206,43908952497,43913935443,4982946
6,43917707811,43938161846,20454035,43917728809,43929327116,20998,11598307,8834730,43917860261,43917993893,133632,43917876162,43917974858,98696,43918038157,43918110816,72659,43918053012,43918116712,63700,43918145652,43918212335,66683,43918160497,43918232430,71933,43922458494,43925595193,3136699,43923292954,43925907495,2614541,43926538047,43926749154,211107,43927491223,43927838477,347254,43929338506,43934392334,5053828
7,43938161846,43958535430,20373584,43938182876,43949894421,21030,11711545,8641009,43938307880,43938446657,138777,43938328316,43938428000,99684,43938491158,43938557464,66306,43938506079,43938563337,57258,43938598021,43938664019,65998,43938612975,43938684109,71134,43942909878,43946164608,3254730,43943742728,43946406003,2663275,43947105292,43947287615,182323,43948059338,43948325564,266226,43949905802,43954760434,4854632
8,43958535430,43979232092,20696662,43958555666,43970434656,20236,11878990,8797436,43958680407,43958897054,216647,43958700864,43958881663,180799,43958940269,43959004707,64438,43958955366,43959021160,65794,43959045582,43959115504,69922,43959060531,43959131768,71237,43963372975,43966711479,3338504,43964207329,43967134018,2926689,43967648960,43968037525,388565,43968600109,43969094684,494575,43970445776,43975458456,5012680
9,43979232092,43999782337,20550245,43979251995,43991063130,19903,11811135,8719207,43979376376,43979706536,330160,43979396713,43979690712,293999,43979750477,43979815531,65054,43979765411,43979821365,55954,43979858807,43979923746,64939,43979874150,43979943872,69722,43984171782,43987335571,3163789,43985006524,43987650562,2644038,43988274564,43988544965,270401,43989230199,43989615413,385214,43991074319,43996010406,4936087
10,43999782337,44020359512,20577175,43999802475,44011672067,20138,11869592,8687445,43999933281,44000280477,347196,43999950992,44000263921,312929,44000324676,44000391615,66939,44000340183,44000397671,57488,44000433008,44000492199,59191,44000448206,44000517652,69446,44004744078,44007943564,3199486,44005578563,44008263274,2684711,44008881520,44009156021,274501,44009835235,44010212205,376970,44011683328,44016584555,4901227
11,44020359512,44040830470,20470958,44020380513,44032160326,21001,11779813,8670144,44020506069,44020828900,322831,44020526088,44020810600,284512,44020874774,44020942302,67528,44020889732,44020948448,58716,44020982718,44021055809,73091,44020997980,44021050334,52354,44025306347,44028435807,3129460,44026140576,44028683277,2542701,44029376823,44029507036,130213,44030331082,44030568009,236927,44032171437,44037054963,4883526
12,44040830470,44061233790,20403320,44040850650,44052562196,20180,11711546,8671594,44040974833,44041254568,279735,44040996133,44041235788,239655,44041297900,44041371854,73954,44041313296,44041366070,52774,44041407112,44041479679,72567,44041422437,44041474339,51902,44045730630,44048831898,3101268,44046564329,44049067588,2503259,44049770219,44049909494,139275,44050724408,44050948028,223620,44052573727,44057461611,4887884
13,44061233790,44081950527,20716737,44061255244,44073216905,21454,11961661,8733622,44061379908,44061893089,513181,44061401219,44061876080,474861,44061936864,44062001710,64846,44061951642,44062022167,70525,44062038754,44062104281,65527,44062053666,44062137472,83806,44066351492,44069474485,3122993,44067186144,44069765772,2579628,44070416505,44070632298,215793,44071370376,44071716663,346287,44073228041,44078180756,4952715
14,44081950527,44102275100,20324573,44081971039,44093572595,20512,11601556,8702505,44082095740,44082254342,158602,44082117532,44082235828,118296,44082297218,44082371430,74212,44082312372,44082365749,53377,44082405668,44082471976,66308,44082420571,44082491933,71362,44086716911,44089834738,3117827,44087550457,44090198905,2648448,44090777077,44091076759,299682,44091731156,44092142213,411057,44093583473,44098500996,4917523
15,44102275100,44122744042,20468942,44102296037,44114089124,20937,11793087,8654918,44102420935,44102756031,335096,44102442610,44102735251,292641,44102799286,44102872347,73061,44102814240,44102878935,64695,44102912472,44102977329,64857,44102927580,44102993993,66413,44107234464,44110359484,3125020,44108068982,44110617441,2548459,44111300290,44111462959,162669,44112253299,44112504828,251529,44114100468,44118970414,4869946
16,44122744042,44143315003,20570961,44122764305,44134692985,20263,11928680,8622018,44122890022,44123220007,329985,44122911498,44123200422,288924,44123264580,44123336418,71838,44123280022,44123330728,50706,44123371411,44123444431,73020,44123386800,44123450607,63807,44127695887,44130962833,3266946,44128530435,44131075158,2544723,44131899651,44131934803,35152,44132855346,44132998290,142944,44134704170,44139539120,4834950
17,44143315003,44163811607,20496604,44143335731,44154940676,20728,11604945,8870931,44143465932,44143639577,173645,44143483061,44143620861,137800,44143684261,44143755366,71105,44143699486,44143749910,50424,44143790901,44143860757,69856,44143805691,44143866565,60874,44148117390,44151215001,3097611,44148951672,44151617256,2665584,44152155635,44152508152,352517,44153109865,44153576019,466154,44154951688,44160038877,5087189
18,44163811607,44184532237,20720630,44163834416,44175685871,22809,11851455,8846366,44163964743,44164288611,323868,44163982124,44164271306,289182,44164333259,44164403911,70652,44164348231,44164398457,50226,44164439547,44164505525,65978,44164454802,44164522197,67395,44168763295,44171953638,3190343,44169597212,44172535265,2938053,44172892958,44173447551,554593,44173846575,44174479801,633226,44175697196,44180757817,5060621
19,44184532237,44205247211,20714974,44184552395,44196593427,20158,12041032,8653784,44184683087,44185191372,508285,44184698849,44185169555,470706,44185234793,44185300719,65926,44185250310,44185306494,56184,44185341254,44185410828,69574,44185356360,44185416704,60344,44189668776,44192858543,3189767,44190502809,44193129716,2626907,44193798521,44193991414,192893,44194751763,44195078040,326277,44196604576,44201470956,4866380
20,44205247211,44226075868,20828657,44205267835,44217063903,20624,11796068,9011965,44205393267,44205594023,200756,44205415066,44205576020,160954,44205638750,44205708958,70208,44205653578,44205703487,49909,44205743734,44205810062,66328,44205758532,44205825868,67336,44210069241,44213331232,3261991,44210903344,44213671693,2768349,44214271387,44214580674,309287,44215223881,44215625434,401553,44217074939,44222303626,5228687
21,44226075868,44246732558,20656690,44226096489,44238055680,20621,11959191,8676878,44226222783,44226706275,483492,44226240074,44226567217,327143,44226752995,44226844414,91419,44226770382,44226837942,67560,44226884146,44226955988,71842,44226901191,44226983628,82437,44231202468,44234327937,3125469,44232036890,44234605189,2568299,44235266830,44235453461,186631,44236220003,44236496196,276193,44238066815,44242960452,4893637
22,44246732558,44267092056,20359498,44246752565,44258416435,20007,11663870,8675621,44246879243,44247093290,214047,44246900033,44247077208,177175,44247136767,44247210762,73995,44247152458,44247205323,52865,44247245857,44247311587,65730,44247261292,44247317428,56136,44251568669,44254691670,3123001,44252403022,44254988667,2585645,44255630655,44255852325,221670,44256584287,44256932144,347857,44258427482,44263317869,4890387
23,44267092056,44287698474,20606418,44267112083,44278745384,20027,11633301,8953090,44267237301,44267472653,235352,44267258376,44267449193,190817,44267516762,44267586073,69311,44267532297,44267592178,59881,44267626729,44267693252,66523,44267642154,44267719271,77117,44271938966,44275021062,3082096,44272773006,44275375073,2602067,44275961109,44276248132,287023,44276913233,44277324449,411216,44278756444,44283923934,5167490
24,44287698474,44308003844,20305370,44287718195,44299399792,19721,11681597,8604052,44287850598,44287991369,140771,44287868459,44287967179,98720,44288036485,44288107603,71118,44288051898,44288101979,50081,44288142961,44288214952,71991,44288158497,44288209380,50883,44292465688,44295659694,3194006,44293299781,44295789139,2489358,44296599423,44296633501,34078,44297554668,44297659629,104961,44299411080,44304230130,4819050
25,44308003844,44328174524,20170680,44308023634,44319643109,19790,11619475,8531415,44308149120,44308292267,143147,44308169291,44308271101,101810,44308337014,44308405078,68064,44308352956,44308421266,68310,44308446074,44308517238,71164,44308460770,44308539711,78941,44312762533,44315914249,3151716,44313596658,44316061970,2465312,44316855197,44316911814,56617,44317807713,44317961066,153353,44319654245,44324403480,4749235
26,44328174524,44349218767,21044243,44328194895,44340530725,20371,12335830,8688042,44328324877,44328756715,431838,44328343117,44328736625,393508,44328799962,44328869563,69601,44328815207,44328875546,60339,44328910573,44328977676,67103,44328925620,44328983526,57906,44333234873,44336801006,3566133,44334068955,44336877628,2808673,44337737798,44337778270,40472,44338693697,44338808234,114537,44340542133,44345441908,4899775
27,44349218767,44369954247,20735480,44349239349,44361048685,20582,11809336,8905562,44349369187,44349624583,255396,44349387477,44349609405,221928,44349668836,44349733323,64487,44349683598,44349753414,69816,44349770250,44349836461,66211,44349785048,44349856711,71663,44354085497,44357320940,3235443,44354920002,44357720199,2800197,44358260541,44358627401,366860,44359215178,44359664034,448856,44361059775,44366181481,5121706
28,44369954247,44390402255,20448008,44369974952,44381636133,20705,11661181,8766122,44370104802,44370256353,151551,44370122718,44370237848,115130,44370299893,44370364562,64669,44370314756,44370381753,66997,44370406511,44370472913,66402,44370421381,44370489271,67890,44374730824,44377900392,3169568,44375564525,44378407269,2842744,44378840692,44379322703,482011,44379794108,44380370321,576213,44381647256,44386627300,4980044
29,44390402255,44410750143,20347888,44390422567,44402189967,20312,11767400,8560176,44390546834,44390897715,350881,44390568351,44390876882,308531,44390941423,44391007190,65767,44390956597,44391012937,56340,44391047535,44391114020,66485,44391062668,44391130460,67792,44395371077,44398450594,3079517,44396205220,44398650380,2445160,44399388935,44399479235,90300,44400346281,44400512571,166290,44402201237,44406978159,4776922
30,44410750143,44431176759,20426616,44410770333,44422533396,20190,11763063,8643363,44410900536,44411188299,287763,44410918054,44411169659,251605,44411232720,44411303537,70817,44411247878,44411297989,50111,44411338952,44411404707,65755,44411354023,44411421120,67097,44415661742,44418800039,3138297,44416496416,44419061181,2564765,44419736702,44419898739,162037,44420691235,44420959444,268209,44422544465,44427404747,4860282
31,44431176759,44451449009,20272250,44431197646,44442826372,20887,11628726,8622637,44431322635,44431557540,234905,44431344114,44431539249,195135,44431601564,44431676304,74740,44431616664,44431670689,54025,44431711243,44431778042,66799,44431725975,44431794292,68317,44436035020,44439090705,3055685,44436869437,44439294665,2425228,44440029085,44440161633,132548,44440981622,44441202116,220494,44442838668,44447674211,4835543
32,44451449009,44471700374,20251365,44451470446,44463058183,21437,11587737,8642191,44451595167,44451794540,199373,44451616306,44451781155,164849,44451841721,44451910357,68636,44451858109,44451928315,70206,44451955717,44452024781,69064,44451972222,44452031814,59592,44456283303,44459330164,3046861,44457117418,44459670488,2553070,44460268774,44460566352,297578,44461220580,44461636596,416016,44463069303,44467926267,4856964
33,44471700374,44492104077,20403703,44471721264,44483362543,20890,11641279,8741534,44471847485,44472103367,255882,44471868669,44472082240,213571,44472146845,44472214301,67456,44472161746,44472220052,58306,44472255485,44472319968,64483,44472270172,44472336529,66357,44476578837,44479632447,3053610,44477412818,44480003904,2591086,44480574431,44480893122,318691,44481528168,44481965151,436983,44483373758,44488332031,4958273
34,44492104077,44512405791,20301714,44492124623,44503815754,20546,11691131,8590037,44492249300,44492556437,307137,44492269463,44492535870,266407,44492599587,44492667927,68340,44492614354,44492683993,69639,44492708859,44492776225,67366,44492723987,44492803704,79717,44497020499,44500092590,3072091,44497855055,44500451777,2596722,44501030806,44501361798,330992,44501984567,44502410372,425805,44503826742,44508635470,4808728
35,44512405791,44533110373,20704582,44512425077,44524520826,19286,12095749,8589547,44512550220,44513066413,516193,44512570919,44513048122,477203,44513109453,44513183725,74272,44513124186,44513178048,53862,44513218326,44513283749,65423,44513233451,44513303643,70192,44517530416,44520796389,3265973,44518364463,44520927189,2562726,44521731705,44521766390,34685,44522684196,44522802383,118187,44524532673,44529340236,4807563
36,44533110373,44553740439,20630066,44533130591,44544852781,20218,11722190,8887658,44533260037,44533421556,161519,44533277391,44533405356,127965,44533466460,44533544247,77787,44533482223,44533538613,56390,44533578408,44533636711,58303,44533593376,44533663038,69662,44537889908,44541128315,3238407,44538724144,44541532641,2808497,44542071591,44542449191,377600,44543022019,44543482811,460792,44544863816,44549966882,5103066
37,44553740439,44574302959,20562520,44553761786,44565509826,21347,11748040,8793133,44553886934,44554162975,276041,44553907934,44554144984,237050,44554206220,44554278788,72568,44554221554,44554273196,51642,44554313802,44554372983,59181,44554328823,44554399155,70332,44558624935,44561785580,3160645,44559458808,44562017271,2558463,44562724376,44562874113,149737,44563677712,44563940976,263264,44565520608,44570525174,5004566
38,44574302959,44594604155,20301196,44574323295,44585986001,20336,11662706,8618154,44574448836,44574588860,140024,44574470256,44574571502,101246,44574633074,44574703925,70851,44574647998,44574698319,50321,44574739655,44574812213,72558,44574754577,44574806730,52153,44579063189,44582257230,3194041,44579897497,44582426359,2528862,44583195690,44583294085,98395,44584148501,44584361271,212770,44585996762,44590833492,4836730
39,44594604155,44615049308,20445153,44594624707,44606298520,20552,11673813,8750788,44594749809,44594917111,167302,44594769799,44594903186,133387,44594960361,44595028360,67999,44594975963,44595034887,58924,44595068900,44595135118,66218,44595083676,44595153924,70248,44599380444,44602572172,3191728,44600214467,44602778707,2564240,44603511099,44603634130,123031,44604464603,44604661983,197380,44606310088,44611274316,4964228
40,44615049308,44635354303,20304995,44615070682,44626679418,21374,11608736,8674885,44615196845,44615335405,138560,44615213494,44615316140,102646,44615380223,44615446678,66455,44615395217,44615452717,57500,44615487101,44615551774,64673,44615501932,44615568494,66562,44619809881,44622949181,3139300,44620643742,44623200596,2556854,44623891046,44624020958,129912,44624844423,44625071374,226951,44626690453,44631582228,4891775
41,44635354303,44655612335,20258032,44635374539,44647033301,20236,11658762,8579034,44635503732,44635744801,241069,44635521586,44635725238,203652,44635788469,44635866333,77864,44635803335,44635860499,57164,44635900227,44635972514,72287,44635915142,44635966977,51835,44640223225,44643309053,3085828,44641057583,44643552762,2495179,44644249082,44644390324,141242,44645201958,44645418205,216247,44647044559,44651839709,4795150
42,44655612335,44676048392,20436057,44655634905,44667367927,22570,11733022,8680465,44655765450,44656010910,245460,44655783912,44655994984,211072,44656056057,44656127364,71307,44656071616,44656133952,62336,44656170224,44656236211,65987,44656185437,44656253376,67939,44660493864,44663630908,3137044,44661328277,44663905426,2577149,44664570059,44664765516,195457,44665525623,44665847476,321853,44667379192,44672274676,4895484
43,44676048392,44696806203,20757811,44676069249,44688205458,20857,12136209,8600745,44676195168,44676816387,621219,44676212116,44676712404,500288,44676863674,44676961117,97443,44676880791,44676979162,98371,44677006913,44677082354,75441,44677024494,44677100315,75821,44681342462,44684474690,3132228,44682176610,44684753535,2576925,44685416367,44685593702,177335,44686370322,44686648451,278129,44688216869,44693030237,4813368
44,44696806203,44717411825,20605622,44696826194,44708707638,19991,11881444,8704187,44696953320,44697286302,332982,44696974393,44697269420,295027,44697329926,44697394272,64346,44697345046,44697414455,69409,44697431683,44697487333,55650,44697446585,44697515866,69281,44701742664,44704979643,3236979,44702576613,44705194631,2618018,44705921343,44706031518,110175,44706875875,44707110244,234369,44708718782,44713639286,4920504
45,44717411825,44738091890,20680065,44717432066,44729482066,20241,12050000,8609824,44717561566,44717768410,206844,44717578562,44717752023,173461,44717812043,44717881382,69339,44717827079,44717909864,82785,44717915781,44717983474,67693,44717958068,44718009597,51529,44722236198,44725745576,3509378,44723069782,44725807480,2737698,44726680693,44726715801,35108,44727636869,44727752058,115189,44729493189,44734316446,4823257
46,44738091890,44758577345,20485455,44738112200,44749783859,20310,11671659,8793486,44738238466,44738397277,158811,44738259334,44738381179,121845,44738442571,44738508637,66066,44738458011,44738529263,71252,44738546382,44738611120,64738,44738560955,44738616778,55823,44742868084,44746055043,3186959,44743702103,44746324424,2622321,44746999413,44747164568,165155,44747954715,44748209532,254817,44749795450,44754802187,5006737
47,44758577345,44779070917,20493572,44758597452,44770240550,20107,11643098,8830367,44758722948,44758868280,145332,44758744585,44758848887,104302,44758912235,44758987178,74943,44758928183,44758981654,53471,44759021924,44759087325,65401,44759037276,44759106626,69350,44763333629,44766514402,3180773,44764168174,44766758705,2590531,44767453868,44767598674,144806,44768407493,44768674768,267275,44770252124,44775300885,5048761
48,44779070917,44799856051,20785134,44779090764,44791177493,19847,12086729,8678558,44779220747,44779361021,140274,44779238669,44779342361,103692,44779404743,44779471122,66379,44779419902,44779476899,56997,44779511190,44779579337,68147,44779526016,44779585216,59200,44783837602,44787447102,3609500,44784671161,44787523773,2852612,44788381886,44788417872,35986,44789335464,44789457946,122482,44791188759,44796080225,4891466
49,44799856051,44820221054,20365003,44799876304,44811569002,20253,11692698,8652052,44800001089,44800144726,143637,44800021719,44800127404,105685,44800189058,44800254876,65818,44800204082,44800260967,56885,44800295661,44800363090,67429,44800310551,44800379674,69123,44804620471,44807832244,3211773,44805454241,44808139831,2685590,44808774637,44809040930,266293,44809725887,44810112500,386613,44811580089,44816446341,4866252
50,44820221054,44840791793,20570739,44820242387,44832208137,21333,11965750,8583656,44820366892,44820744517,377625,44820382939,44820727180,344241,44820788150,44820864532,76382,44820803118,44820858726,55608,44820900043,44820972773,72730,44820915347,44820967190,51843,44825224042,44828482001,3257959,44826058436,44828656652,2598216,44829419252,44829534104,114852,44830373172,44830600585,227413,44832219150,44837018994,4799844
51,44840791793,44861151364,20359571,44840812650,44852468928,20857,11656278,8682436,44840943390,44841229008,285618,44840960994,44841209251,248257,44841272729,44841339645,66916,44841287808,44841356649,68841,44841381342,44841448373,67031,44841396148,44841454225,58077,44845704023,44848734196,3030173,44846538373,44849135368,2596995,44849674431,44850021232,346801,44850627454,44851086290,458836,44852480358,44857377373,4897015
52,44861151364,44882179817,21028453,44861170798,44873136615,19434,11965817,9043202,44861299774,44861612818,313044,44861317380,44861592652,275272,44861656073,44861721824,65751,44861670837,44861727637,56800,44861762784,44861831853,69069,44861778114,44861849296,71182,44866089746,44869414292,3324546,44866923561,44869928598,3005037,44870350748,44870853115,502367,44871303379,44871892120,588741,44873147862,44878407097,5259235
53,44882179817,44902538088,20358271,44882199634,44893860666,19817,11661032,8677422,44882323958,44882514760,190802,44882345160,44882492425,147265,44882558458,44882623498,65040,44882573390,44882639818,66428,44882664713,44882731386,66673,44882679605,44882747865,68260,44886987817,44890130024,3142207,44887821163,44890487110,2665947,44891069757,44891370431,300674,44892022557,44892446077,423520,44893871698,44898770632,4898934
54,44902538088,44923227550,20689462,44902558199,44914195451,20111,11637252,9032099,44902682369,44902972683,290314,44902702861,44902954454,251593,44903015578,44903084896,69318,44903030807,44903100635,69828,44903125058,44903189528,64470,44903140486,44903209572,69086,44907435631,44910457363,3021732,44908269987,44910875918,2605931,44911402907,44911738797,335890,44912354906,44912799854,444948,44914206696,44919454907,5248211
55,44923227550,44943547928,20320378,44923248032,44934819664,20482,11571632,8728264,44923377543,44923559432,181889,44923394792,44923543225,148433,44923602764,44923675628,72864,44923617792,44923670092,52300,44923710373,44923774009,63636,44923725091,44923793839,68748,44928021597,44931078067,3056470,44928856074,44931405513,2549439,44932019688,44932269858,250170,44932971532,44933357053,385521,44934832047,44939773549,4941502
56,44943547928,44964125283,20577355,44943567519,44955484083,19591,11916564,8641200,44943691979,44943910355,218376,44943712855,44943885850,172995,44943954443,44944024542,70099,44943969179,44944019086,49907,44944059582,44944124258,64676,44944074673,44944144946,70273,44948369018,44951748302,3379284,44949202782,44951871355,2668573,44952689347,44952757441,68094,44953642384,44953792837,150453,44955495682,44960354249,4858567
57,44964125283,44984724570,20599287,44964145589,44976013814,20306,11868225,8710756,44964276034,44964665943,389909,44964294036,44964645208,351172,44964709773,44964775501,65728,44964724565,44964781354,56789,44964815872,44964891025,75153,44964832684,44964885405,52721,44969143397,44972279794,3136397,44969977428,44972508118,2530690,44973220542,44973364756,144214,44974173585,44974393980,220395,44976025005,44980952893,4927888
58,44984724570,45005041220,20316650,44984745371,44996532292,20801,11786921,8508928,44984875625,44985132132,256507,44984893647,44985114453,220806,44985174993,44985242622,67629,44985190216,44985248564,58348,44985282081,44985347177,65096,44985296786,44985367031,70245,44989594310,44992797454,3203144,44990428499,44992955065,2526566,44993739369,44993774757,35388,44994695847,44994822764,126917,44996543451,45001270389,4726938
59,45005041220,45025766783,20725563,45005061163,45017300803,19943,12239640,8465980,45005190753,45005392904,202151,45005208934,45005379305,170371,45005436780,45005502642,65862,45005451595,45005508574,56979,45005542883,45005608489,65606,45005557661,45005624024,66363,45009865198,45013575691,3710493,45010698748,45013630882,2932134,45014509775,45014544774,34999,45015462233,45015589100,126867,45017311827,45021996300,4684473
60,45025766783,45046023678,20256895,45025787292,45037437461,20509,11650169,8586217,45025919082,45026074133,155051,45025936551,45026051990,115439,45026118744,45026190775,72031,45026134376,45026185476,51100,45026224911,45026283370,58459,45026240133,45026308802,68669,45030536243,45033699663,3163420,45031369821,45034024150,2654329,45034639148,45034884325,245177,45035595027,45035963146,368119,45037448678,45042250926,4802248
61,45046023678,45066597032,20573354,45046044954,45057851150,21276,11806196,8745882,45046174824,45046636603,461779,45046192061,45046616072,424011,45046679786,45046756561,76775,45046694388,45046751104,56716,45046786964,45046849889,62925,45046801661,45046867716,66055,45051109115,45054113437,3004322,45051945246,45054412640,2467394,45055053529,45055282128,228599,45056007498,45056342604,335106,45057862142,45062825494,4963352
62,45066597032,45086816467,20219435,45066617431,45078396412,20399,11778981,8420055,45066747799,45066998584,250785,45066765260,45066979077,213817,45067042289,45067110052,67763,45067057696,45067125969,68273,45067151032,45067214670,63638,45067166085,45067235238,69153,45071461888,45074660695,3198807,45072295975,45074794609,2498634,45075599641,45075635618,35977,45076553745,45076708829,155084,45078407807,45083045697,4637890
63,45086816467,45107476568,20660101,45086838485,45098605280,22018,11766795,8871288,45086968662,45087176390,207728,45086983912,45087159282,175370,45087221033,45087288383,67350,45087237016,45087294299,57283,45087329066,45087392981,63915,45087344287,45087409870,65583,45091653429,45094884625,3231196,45092488118,45095263977,2775859,45095820751,45096157003,336252,45096772853,45097213123,440270,45098616417,45103700942,5084525
64,45107476568,45127934462,20457894,45107496481,45119123360,19913,11626879,8811102,45107626056,45107865190,239134,45107644194,45107845968,201774,45107908882,45107974670,65788,45107924161,45107994837,70676,45108011235,45108081054,69819,45108026060,45108103494,77434,45112326584,45115381693,3055109,45113160610,45115710742,2550132,45116320677,45116582757,262080,45117272783,45117664190,391407,45119134392,45124160609,5026217
65,45127934462,45148627916,20693454,45127955657,45139964131,21195,12008474,8663785,45128081970,45128585829,503859,45128099308,45128502978,403670,45128631733,45128727358,95625,45128648628,45128764839,116211,45128771118,45128841029,69911,45128814427,45128884611,70184,45133102762,45136235993,3133231,45133937524,45136398442,2460918,45137174909,45137232243,57334,45138128477,45138261124,132647,45139975704,45144854232,4878528
66,45148627916,45169072950,20445034,45148648841,45160353655,20925,11704814,8719295,45148774446,45149048285,273839,45148795424,45149030470,235046,45149091805,45149164559,72754,45149107298,45149159184,51886,45149200149,45149270550,70401,45149215181,45149265024,49843,45153521315,45156625747,3104432,45154355967,45156847299,2491332,45157566019,45157696053,130034,45158519633,45158736196,216563,45160365051,45165297234,4932183
67,45169072950,45189702264,20629314,45169093532,45180912171,20582,11818639,8790093,45169220544,45169417319,196775,45169242338,45169396395,154057,45169461458,45169527317,65859,45169476222,45169534340,58118,45169569273,45169642935,73662,45169584663,45169637291,52628,45173893384,45177184267,3290883,45174727569,45177462823,2735254,45178122809,45178363119,240310,45179075513,45179436008,360495,45180923191,45185930230,5007039
68,45189702264,45210141553,20439289,45189723773,45201394522,21509,11670749,8747031,45189849457,45190063027,213570,45189869739,45190045471,175732,45190106370,45190171235,64865,45190121433,45190187561,66128,45190212095,45190278347,66252,45190226946,45190294669,67723,45194534928,45197666224,3131296,45195369167,45198047972,2678805,45198604945,45198943284,338339,45199558854,45199999233,440379,45201405771,45206373056,4967285
69,45210141553,45230768616,20627063,45210161182,45222062955,19629,11901773,8705661,45210285650,45210788527,502877,45210305624,45210769429,463805,45210836451,45210900971,64520,45210851633,45210918077,66444,45210942579,45211009103,66524,45210957536,45211015198,57662,45215266209,45218317408,3051199,45216100026,45218621504,2521478,45219261182,45219482720,221538,45220215992,45220556747,340755,45222074163,45226994518,4920355
70,45230768616,45251266566,20497950,45230789254,45242548294,20638,11759040,8718272,45230919816,45231234404,314588,45230937953,45231216371,278418,45231278092,45231345013,66921,45231293109,45231350917,57808,45231385961,45231454112,68151,45231401220,45231459999,58779,45235710291,45238819995,3109704,45236544334,45239100730,2556396,45239762296,45239940079,177783,45240714824,45240981848,267024,45242559286,45247491710,4932424
71,45251266566,45271659038,20392472,45251287555,45263164796,20989,11877241,8494242,45251417849,45251556002,138153,45251436067,45251537020,100953,45251600717,45251670890,70173,45251617111,45251677323,60212,45251714425,45251783575,69150,45251730536,45251789618,59082,45256041305,45259426902,3385597,45256875333,45259536305,2660972,45260365236,45260400732,35496,45261319741,45261458368,138627,45263175845,45267889679,4713834
72,45271659038,45291986946,20327908,45271679763,45283347633,20725,11667870,8639313,45271809709,45272048671,238962,45271827638,45272029696,202058,45272092638,45272167150,74512,45272110357,45272173385,63028,45272209506,45272277329,67823,45272225135,45272298130,72995,45276524214,45279611919,3087705,45277357982,45279772363,2414381,45280553307,45280613417,60110,45281510941,45281645306,134365,45283359087,45288214763,4855676
73,45291986946,45312473301,20486355,45292007737,45303574261,20791,11566524,8899040,45292138009,45292276105,138096,45292155638,45292258120,102482,45292319670,45292386433,66763,45292335399,45292392239,56840,45292426848,45292493970,67122,45292441968,45292509974,68006,45296749737,45299843306,3093569,45297583500,45300196504,2613004,45300781824,45301064252,282428,45301734832,45302146815,411983,45303585142,45308700412,5115270
74,45312473301,45333034562,20561261,45312492712,45324250442,19411,11757730,8784120,45312623362,45312761899,138537,45312643024,45312743905,100881,45312805188,45312881528,76340,45312820144,45312897996,77852,45312922382,45312999241,76859,45312937861,45313015792,77931,45317256281,45320523779,3267498,45318090794,45320735823,2645029,45321460685,45321621061,160376,45322414804,45322672755,257951,45324261640,45329262876,5001236
75,45333034562,45353577168,20542606,45333055278,45344619564,20716,11564286,8957604,45333185783,45333395556,209773,45333201306,45333378220,176914,45333439301,45333505060,65759,45333454414,45333510923,56509,45333545544,45333612518,66974,45333560642,45333628416,67774,45337869017,45340879533,3010516,45338702941,45341308925,2605984,45341824703,45342176923,352220,45342777345,45343234567,457222,45344631091,45349803605,5172514
76,45353577168,45374038242,20461074,45353599053,45365419184,21885,11820131,8619058,45353729970,45353919737,189767,45353748122,45353904455,156333,45353963564,45354030237,66673,45353978650,45354046527,67877,45354070870,45354138223,67353,45354086050,45354158504,72454,45358383218,45361679640,3296422,45359217394,45361994735,2777341,45362619443,45362881123,261680,45363572713,45363947421,374708,45365430824,45370266520,4835696
77,45374038242,45394750668,20712426,45374058559,45386006173,20317,11947614,8744495,45374187974,45374518585,330611,45374205688,45374500110,294422,45374562028,45374625947,63919,45374577110,45374646809,69699,45374663380,45374728323,64943,45374678055,45374748206,70151,45378975203,45382273987,3298784,45379809153,45382547287,2738134,45383210680,45383448778,238098,45384162084,45384512801,350717,45386017520,45390979709,4962189
78,45394750668,45415231006,20480338,45394770783,45406531067,20115,11760284,8699939,45394901078,45395086745,185667,45394918616,45395065891,147275,45395130975,45395201017,70042,45395146957,45395207060,60103,45395242085,45395309592,67507,45395257129,45395329172,72043,45399555531,45402797255,3241724,45400390392,45403340774,2950382,45403736022,45404260840,524818,45404691668,45405298924,607256,45406541950,45411457600,4915650
79,45415231006,45435682452,20451446,45415251079,45427130837,20073,11879758,8551615,45415379772,45415843278,463506,45415396904,45415821776,424872,45415886632,45415961691,75059,45415901719,45415956130,54411,45415996424,45416055689,59265,45416011542,45416081216,69674,45420307829,45423394945,3087116,45421142650,45423688498,2545848,45424337890,45424570393,232503,45425290203,45425646718,356515,45427142240,45431908536,4766296
80,45435682452,45456443309,20760857,45435701969,45447594639,19517,11892670,8848670,45435833743,45436213357,379614,45435851983,45436195247,343264,45436256782,45436322537,65755,45436271588,45436339065,67477,45436363849,45436433104,69255,45436379133,45436448999,69866,45440689707,45443862065,3172358,45441523851,45444219803,2695952,45444803819,45445120385,316566,45445758301,45446173004,414703,45447605610,45452673217,5067607
81,45456443309,45476658061,20214752,45456464050,45468068628,20741,11604578,8589433,45456588937,45456728962,140025,45456610384,45456711359,100975,45456773339,45456844759,71420,45456788916,45456850813,61897,45456884911,45456945985,61074,45456900323,45456971478,71155,45461198942,45464339732,3140790,45462034043,45464596175,2562132,45465280835,45465442509,161674,45466234692,45466488992,254300,45468079740,45472887769,4808029
82,45476658061,45497554028,20895967,45476677850,45488523394,19789,11845544,9030634,45476807499,45477055402,247903,45476825374,45477038248,212874,45477099386,45477168982,69596,45477114499,45477174825,60326,45477208409,45477274817,66408,45477223621,45477293515,69894,45481519924,45484797200,3277276,45482354190,45485275018,2920828,45485736714,45486187633,450919,45486689893,45487221561,531668,45488534749,45493779491,5244742
83,45497554028,45517902092,20348064,45497574796,45509368741,20768,11793945,8533351,45497699980,45497934453,234473,45497720349,45497914569,194220,45497978832,45498043025,64193,45497993823,45498063556,69733,45498080320,45498144011,63691,45498094851,45498166250,71399,45502390399,45505641114,3250715,45503224324,45505778888,2554564,45506580814,45506615903,35089,45507533566,45507650352,116786,45509379740,45514130317,4750577
84,45517902092,45538044642,20142550,45517922444,45529578467,20352,11656023,8466175,45518053159,45518244926,191767,45518070415,45518227788,157373,45518288244,45518355449,67205,45518303340,45518361437,58097,45518396410,45518467173,70763,45518411170,45518461694,50524,45522719436,45525842676,3123240,45523553654,45526109883,2556229,45526783592,45526943357,159765,45527738164,45527980199,242035,45529590137,45534275353,4685216
85,45538044642,45558701218,20656576,45538064284,45549931575,19642,11867291,8769643,45538194402,45538547396,352994,45538211767,45538530617,318850,45538591042,45538655982,64940,45538606179,45538676271,70092,45538692741,45538763564,70823,45538707368,45538782956,75588,45543010479,45546207232,3196753,45543844771,45546720562,2875791,45547148722,45547636657,487935,45548101319,45548667203,565884,45549942726,45554926322,4983596
86,45558701218,45579512821,20811603,45558721936,45570689487,20718,11967551,8823334,45558847517,45559288498,440981,45558869130,45559271512,402382,45559331666,45559396986,65320,45559347185,45559413825,66640,45559438818,45559504125,65307,45559453995,45559520906,66911,45563762610,45566959971,3197361,45564596793,45567475009,2878216,45567900119,45568385403,485284,45568854141,45569433111,578970,45570700823,45575735680,5034857
87,45579512821,45600519658,21006837,45579532916,45591723931,20095,12191015,8795727,45579658178,45580398490,740312,45579679357,45580261788,582431,45580445925,45580529997,84072,45580462258,45580548193,85935,45580577072,45580650993,73921,45580593583,45580673450,79867,45584898695,45587988232,3089537,45585732754,45588341530,2608776,45588928852,45589205017,276165,45589883382,45590289015,405633,45591735838,45596746399,5010561
88,45600519658,45621533425,21013767,45600540141,45612426020,20483,11885879,9107405,45600665107,45600907624,242517,45600686963,45600892496,205533,45600951005,45601026022,75017,45600966189,45601020393,54204,45601060533,45601125886,65353,45601075616,45601146713,71097,45605371685,45608700599,3328914,45606206303,45609267900,3061597,45609637981,45610210318,572337,45610591163,45611258225,667062,45612437360,45617760270,5322910
89,45621533425,45642028518,20495093,45621553344,45633183620,19919,11630276,8844898,45621678183,45621879704,201521,45621699425,45621859319,159894,45621922885,45621990357,67472,45621938079,45621996229,58150,45622031985,45622098217,66232,45622047499,45622114393,66894,45626355641,45629443611,3087970,45627189819,45629826203,2636384,45630386662,45630686981,300319,45631340615,45631750148,409533,45633195163,45638254250,5059087
90,45642028518,45662483187,20454669,45642048849,45653649302,20331,11600453,8833885,45642178669,45642413911,235242,45642196583,45642398321,201738,45642457148,45642521709,64561,45642472444,45642538201,65757,45642562822,45642626422,63600,45642577767,45642650281,72514,45646872496,45649922705,3050209,45647706215,45650355474,2649259,45650862796,45651266453,403657,45651817874,45652306594,488720,45653660719,45658707999,5047280
91,45662483187,45682711021,20227834,45662503499,45674161942,20312,11658443,8549079,45662628372,45662877446,249074,45662650340,45662862446,212106,45662921311,45662995543,74232,45662937473,45662989769,52296,45663030787,45663096752,65965,45663045499,45663112849,67350,45667352920,45670427988,3075068,45668186898,45670708602,2521704,45671368529,45671569629,201100,45672324034,45672631378,307344,45674173098,45678936061,4762963
92,45682711021,45703507591,20796570,45682730945,45695066306,19924,12335361,8441285,45682856932,45683410583,553651,45682873285,45683390897,517612,45683454274,45683527958,73684,45683469474,45683522572,53098,45683562871,45683628751,65880,45683578083,45683644980,66897,45687886139,45691327728,3441589,45688720149,45691478004,2757855,45692268567,45692342287,73720,45693220736,45693392597,171861,45695077543,45699736677,4659134
93,45703507591,45724101294,20593703,45703526975,45715374151,19384,11847176,8727143,45703656931,45704031278,374347,45703674518,45704011400,336882,45704074608,45704153136,78528,45704089714,45704147618,57904,45704183327,45704250781,67454,45704198314,45704267010,68696,45708508329,45711635435,3127106,45709342763,45711975127,2632364,45712574886,45712870992,296106,45713530620,45713923655,393035,45715385475,45720329518,4944043
94,45724101294,45744521815,20420521,45724121122,45735870198,19828,11749076,8651617,45724250315,45724494587,244272,45724266352,45724476441,210089,45724538837,45724604092,65255,45724553532,45724610159,56627,45724645023,45724719997,74974,45724660196,45724714100,53904,45728969355,45732142024,3172669,45729803765,45732382443,2578678,45733081479,45733241417,159938,45734034896,45734287808,252912,45735881357,45740750850,4869493
95,45744521815,45765030516,20508701,45744542452,45756400133,20637,11857681,8630383,45744671724,45745030502,358778,45744688843,45745012337,323494,45745073808,45745151458,77650,45745088419,45745145639,57220,45745181095,45745246623,65528,45745196387,45745262831,66444,45749506422,45752665312,3158890,45750340446,45752898036,2557590,45753605038,45753748714,143676,45754559694,45754819130,259436,45756411668,45761255964,4844296
96,45765030516,45785577749,20547233,45765050712,45777091566,20196,12040854,8486183,45765174867,45765449397,274530,45765196305,45765432601,236296,45765494223,45765561721,67498,45765509312,45765567617,58305,45765602513,45765676194,73681,45765617838,45765670870,53032,45769927700,45773354503,3426803,45770761441,45773465727,2704286,45774291978,45774326196,34218,45775245996,45775404707,158711,45777102446,45781804595,4702149
97,45785577749,45806090141,20512392,45785597913,45797311670,20164,11713757,8778471,45785727578,45786076009,348431,45785745824,45786059547,313723,45786118890,45786187052,68162,45786134326,45786193010,58684,45786227297,45786295286,67989,45786242882,45786314596,71714,45790541346,45793580317,3038971,45791376181,45794028583,2652402,45794527441,45794899042,371601,45795480402,45795957391,476989,45797322871,45802316887,4994016
98,45806090141,45826478105,20387964,45806110135,45817795691,19994,11685556,8682414,45806241273,45806501436,260163,45806257175,45806486709,229534,45806546076,45806613869,67793,45806561795,45806619798,58003,45806655050,45806726651,71601,45806669944,45806721029,51085,45810980080,45814062560,3082480,45811813725,45814414367,2600642,45815001915,45815299187,297272,45815952252,45816368653,416401,45817806740,45822706778,4900038
99,45826478105,45846839534,20361429,45826498344,45838325097,20239,11826753,8514437,45826628761,45826964178,335417,45826646935,45826942698,295763,45827007549,45827080870,73321,45827022468,45827075103,52635,45827116123,45827183470,67347,45827131766,45827199783,68017,45831440823,45834594262,3153439,45832275050,45834743374,2468324,45835532774,45835615366,82592,45836485156,45836651146,165990,45838336359,45843067264,4730905
100,45846839534,45867593001,20753467,45846859859,45858818962,20325,11959103,8774039,45846989480,45847519585,530105,45847006657,45847502940,496283,45847562467,45847637657,75190,45847577953,45847631897,53944,45847672360,45847740351,67991,45847687472,45847746435,58963,45851998213,45855085170,3086957,45852833629,45855448869,2615240,45856026862,45856322951,296089,45856980897,45857399155,418258,45858832014,45863820150,4988136
101,45867593001,45888095056,20502055,45867613618,45879333865,20617,11720247,8761191,45867743957,45868075717,331760,45867761265,45868055398,294133,45868119122,45868197049,77927,45868134583,45868191392,56809,45868227647,45868287610,59963,45868243527,45868313573,70046,45872541266,45875592259,3050993,45873375371,45875929649,2554278,45876537938,45876793374,255436,45877491289,45877862858,371569,45879345173,45884326191,4981018
102,45888095056,45908634987,20539931,45888115196,45900061291,20140,11946095,8573696,45888240018,45888454059,214041,45888261215,45888436610,175395,45888498074,45888563540,65466,45888513104,45888579542,66438,45888603993,45888668204,64211,45888619274,45888689535,70261,45892913875,45896337562,3423687,45893748309,45896582985,2834676,45897277442,45897481481,204039,45898229111,45898513962,284851,45900072601,45904858346,4785745
103,45908634987,45928919220,20284233,45908654992,45920436567,20005,11781575,8482653,45908780002,45909042147,262145,45908796092,45909023948,227856,45909085770,45909158347,72577,45909100955,45909164432,63477,45909195328,45909261122,65794,45909210288,45909280630,70342,45913508474,45916706417,3197943,45914342576,45916910106,2567530,45917646590,45917777411,130821,45918599569,45918820270,220701,45920447905,45925148117,4700212
104,45928919220,45949773536,20854316,45928939515,45941003799,20295,12064284,8769737,45929064772,45929547929,483157,45929086576,45929528359,441783,45929592370,45929670762,78392,45929607757,45929664934,57177,45929700804,45929774252,73448,45929715531,45929768771,53240,45934024998,45937273415,3248417,45934859195,45937594185,2734990,45938211389,45938494041,282652,45939165935,45939549779,383844,45941015540,45946000469,4984929
105,45949773536,45970247418,20473882,45949794034,45961611426,20498,11817392,8635992,45949924374,45950271850,347476,45949943083,45950254826,311743,45950315438,45950382537,67099,45950331030,45950388425,57395,45950422559,45950487551,64992,45950438545,45950507371,68826,45954735931,45957879549,3143618,45955570182,45958140827,2570645,45958819554,45958975096,155542,45959773770,45960046176,272406,45961622716,45966476381,4853665
106,45970247418,45991246813,20999395,45970267159,45982768573,19741,12501414,8478240,45970392087,45970865744,473657,45970413361,45970845345,431984,45970908772,45970977480,68708,45970924156,45970993426,69270,45971018687,45971086355,67668,45971033941,45971102861,68920,45975343853,45979038946,3695093,45976178441,45979118264,2939823,45979975509,45980010601,35092,45980927989,45981040426,112437,45982779803,45987475766,4695963
107,45991246813,46011422985,20176172,45991266499,46002863937,19686,11597438,8559048,45991396306,45991576173,179867,45991414170,45991555293,141123,45991619353,45991688760,69407,45991634806,45991695314,60508,45991731174,45991790094,58920,45991746576,45991808851,62275,45996048826,45999126805,3077979,45996883457,45999407208,2523751,46000068219,46000301854,233635,46001021654,46001383294,361640,46002875644,46007649084,4773440
108,46011422985,46031854429,20431444,46011442672,46023241670,19687,11798998,8612759,46011572830,46011888020,315190,46011590586,46011868926,278340,46011931925,46012003484,71559,46011947122,46011998113,50991,46012038973,46012105090,66117,46012053915,46012121286,67371,46016361398,46019504569,3143171,46017195476,46019688570,2493094,46020444451,46020526802,82351,46021399755,46021568239,168484,46023252998,46028082547,4829549
109,46031854429,46052732633,20878204,46031874324,46044109346,19895,12235022,8623287,46032000783,46032727420,726637,46032017606,46032601387,583781,46032775150,46032857271,82121,46032792408,46032875802,83394,46032903116,46032977685,74569,46032919794,46033004603,84809,46037225010,46040374631,3149621,46038059667,46040600604,2540937,46041315618,46041416601,100983,46042268392,46042437431,169039,46044120798,46048962507,4841709
110,46052732633,46073860354,21127721,46052753848,46064569263,21215,11815415,9291091,46052879694,46053308936,429242,46052900985,46053286317,385332,46053352252,46053422021,69769,46053367366,46053427909,60543,46053464349,46053539163,74814,46053480349,46053533280,52931,46057791789,46060844582,3052793,46058625893,46061514527,2888634,46061781765,46062430430,648665,46062737204,46063468476,731272,46064580090,46070085009,5504919
111,46073860354,46094396910,20536556,46073880900,46085478054,20546,11597154,8918856,46074006555,46074143998,137443,46074022443,46074130259,107816,46074187234,46074258488,71254,46074202532,46074253077,50545,46074293622,46074358838,65216,46074308655,46074378764,70109,46078609446,46081750885,3141439,46079443719,46082149284,2705565,46082689309,46083022056,332747,46083643825,46084082155,438330,46085489016,46090622500,5133484
112,46094396910,46114670537,20273627,46094417533,46106048838,20623,11631305,8621699,46094543078,46094693853,150775,46094563610,46094674941,111331,46094737615,46094804186,66571,46094753052,46094810412,57360,46094846242,46094912408,66166,46094861643,46094932652,71009,46099161141,46102321515,3160374,46099995470,46102550597,2555127,46103262509,46103418052,155543,46104218127,46104506088,287961,46106060034,46110894964,4834930
113,46114670537,46135341936,20671399,46114690409,46126438190,19872,11747781,8903746,46114816016,46115206721,390705,46114839254,46115186041,346787,46115250567,46115314092,63525,46115265399,46115330516,65117,46115355299,46115420956,65657,46115370296,46115441571,71275,46119666876,46122721081,3054205,46120501243,46123135129,2633886,46123660832,46124067540,406708,46124613349,46125121173,507824,46126449718,46131568733,5119015
114,46135341936,46155601774,20259838,46135362493,46147000826,20557,11638333,8600948,46135491862,46135631623,139761,46135510028,46135614275,104247,46135675599,46135741957,66358,46135691260,46135747820,56560,46135781926,46135842251,60325,46135796983,46135867999,71016,46140095222,46143271046,3175824,46140929922,46143464200,2534278,46144211872,46144297171,85299,46145165530,46145356274,190744,46147011778,46151832282,4820504
115,46155601774,46176072948,20471174,46155622209,46167328804,20435,11706595,8744144,46155751837,46156071804,319967,46155769756,46156053192,283436,46156115786,46156187218,71432,46156130863,46156181575,50712,46156221788,46156286667,64879,46156237371,46156307194,69823,46160533369,46163595595,3062226,46161367327,46163848592,2481265,46164536427,46164718703,182276,46165491910,46165778760,286850,46167340468,46172301906,4961438
116,46176072948,46196319896,20246948,46176093754,46187833491,20806,11739737,8486405,46176223900,46176423304,199404,46176241726,46176406182,164456,46176467386,46176533115,65729,46176482396,46176538929,56533,46176573539,46176639507,65968,46176588687,46176660019,71332,46180886322,46184101010,3214688,46181720188,46184341954,2621766,46185042373,46185178974,136601,46185996937,46186248890,251953,46187844706,46192549400,4704694
117,46196319896,46217323109,21003213,46196340134,46208519552,20238,12179418,8803557,46196465134,46196893262,428128,46196485061,46196875887,390826,46196937045,46197003544,66499,46196951892,46197019462,67570,46197044039,46197111462,67423,46197059139,46197127840,68701,46201369209,46204787953,3418744,46202203331,46205040402,2837071,46205722380,46205942721,220341,46206676099,46207001093,324994,46208531347,46213549784,5018437
118,46217323109,46237638584,20315475,46217343137,46228890092,20028,11546955,8748492,46217472725,46217619919,147194,46217489819,46217601194,111375,46217663241,46217731490,68249,46217678737,46217737575,58838,46217772101,46217832251,60150,46217787269,46217859325,72056,46222085992,46225153590,3067598,46222919945,46225394932,2474987,46226096556,46226251333,154777,46227047936,46227276490,228554,46228901174,46233866522,4965348
119,46237638584,46258025060,20386476,46237658776,46249405799,20192,11747023,8619261,46237783911,46238038724,254813,46237804301,46238022434,218133,46238082329,46238150412,68083,46238097360,46238166353,68993,46238190606,46238258348,67742,46238205965,46238274669,68704,46242515690,46245673069,3157379,46243350138,46245822910,2472772,46246611927,46246666474,54547,46247563599,46247698138,134539,46249416678,46254252890,4836212
120,46258025060,46278369124,20344064,46258045909,46269656639,20849,11610730,8712485,46258170900,46258311721,140821,46258191779,46258293631,101852,46258356156,46258423911,67755,46258372052,46258430033,57981,46258465207,46258524057,58850,46258480396,46258549791,69395,46262776182,46265929880,3153698,46263610819,46266343337,2732518,46266868215,46267240070,371855,46267819356,46268308683,489327,46269667555,46274593264,4925709
121,46278369124,46299019107,20649983,46278389184,46290300689,20060,11911505,8718418,46278518801,46278986721,467920,46278536178,46278968058,431880,46279031425,46279100954,69529,46279047237,46279106933,59696,46279142238,46279210938,68700,46279157573,46279226747,69174,46283467969,46286567720,3099751,46284302814,46286890279,2587465,46287505056,46287770438,265382,46288457971,46288839898,381927,46290311900,46295246356,4934456
122,46299019107,46319769707,20750600,46299040087,46310863127,20980,11823040,8906580,46299165434,46299571521,406087,46299186586,46299550687,364101,46299615631,46299680896,65265,46299631317,46299696942,65625,46299721081,46299787173,66092,46299737149,46299807449,70300,46304033174,46307134181,3101007,46304867165,46307593315,2726150,46308077476,46308492434,414958,46309031900,46309520840,488940,46310874428,46316000002,5125574
123,46319769707,46340090388,20320681,46319789932,46331470550,20225,11680618,8619838,46319921458,46320136059,214601,46319937799,46320119548,181749,46320179773,46320249203,69430,46320194769,46320265144,70375,46320289974,46320362219,72245,46320304801,46320381301,76500,46324606913,46327738884,3131971,46325440958,46327911998,2471040,46328676705,46328760057,83352,46329632150,46329789558,157408,46331481693,46336316047,4834354
124,46340090388,46360650693,20560305,46340111133,46351986476,20745,11875343,8664217,46340237189,46340582854,345665,46340257632,46340562162,304530,46340626787,46340695874,69087,46340642410,46340701901,59491,46340735980,46340799867,63887,46340750583,46340820680,70097,46345045060,46348248707,3203647,46345879968,46348532768,2652800,46349187000,46349414560,227560,46350137922,46350483156,345234,46351997990,46356875067,4877077
125,46360650693,46380915340,20264647,46360671164,46372418457,20471,11747293,8496883,46360795852,46361069934,274082,46360816985,46361048621,231636,46361113479,46361180196,66717,46361128313,46361186165,57852,46361221392,46361287564,66172,46361236763,46361303392,66629,46365543503,46368691356,3147853,46366378116,46368898105,2519989,46369630521,46369754114,123593,46370583213,46370804402,221189,46372429827,46377145129,4715302
126,46380915340,46401485139,20569799,46380935862,46392774384,20522,11838522,8710755,46381060072,46381425672,365600,46381080305,46381409194,328889,46381468894,46381536259,67365,46381483766,46381552133,68367,46381576684,46381645649,68965,46381591631,46381660690,69059,46385901369,46389037701,3136332,46386736572,46389310167,2573595,46389976718,46390174173,197455,46390927634,46391258011,330377,46392785660,46397715823,4930163
127,46401485139,46421817993,20332854,46401505935,46413145691,20796,11639756,8672302,46401630702,46401811618,180916,46401652441,46401792320,139879,46401855205,46401934486,79281,46401870881,46401928398,57517,46401964858,46402030060,65202,46401980207,46402046602,66395,46406286906,46409414798,3127892,46407121512,46409689198,2567686,46410353523,46410548305,194782,46411308968,46411635853,326885,46413156912,46418044218,4887306
128,46421817993,46442345075,20527082,46421840313,46433758893,22320,11918580,8586182,46421970846,46422253341,282495,46421986937,46422233422,246485,46422296651,46422362356,65705,46422311488,46422368241,56753,46422402857,46422468199,65342,46422418001,46422486960,68959,46426714037,46430028210,3314173,46427548066,46430174968,2626902,46430966639,46431027176,60537,46431921424,46432095960,174536,46433770211,46438569588,4799377
129,46442345075,46463366827,21021752,46442365065,46454294479,19990,11929414,9072348,46442495111,46442892938,397827,46442512706,46442874772,362066,46442937194,46443001922,64728,46442951937,46443018063,66126,46443043156,46443108847,65691,46443058704,46443129686,70982,46447356237,46450558061,3201824,46448190742,46451120909,2930167,46451498933,46452047935,549002,46452453838,46453089184,635346,46454305677,46459595700,5290023
130,46463366827,46483789631,20422804,46463386921,46475086900,20094,11699979,8702731,46463512553,46463653371,140818,46463533965,46463637773,103808,46463697994,46463764453,66459,46463713314,46463770294,56980,46463804627,46463881240,76613,46463819815,46463875675,55860,46468132225,46471358604,3226379,46468966662,46471576927,2610265,46472298556,46472441801,143245,46473253581,46473526090,272509,46475097944,46480016781,4918837
131,46483789631,46504734961,20945330,46483809568,46496057397,19937,12247829,8677564,46483935033,46484727176,792143,46483958131,46484570324,612193,46484774479,46484854025,79546,46484790944,46484871980,81036,46484898542,46484980048,81506,46484915143,46484997694,82551,46489239818,46492328916,3089098,46490074357,46492771656,2697299,46493264872,46493698427,433555,46494219740,46494729737,509997,46496068953,46500966379,4897426
132,46504734961,46525478918,20743957,46504755465,46516494246,20504,11738781,8984672,46504879968,46505195243,315275,46504900398,46505178282,277884,46505239177,46505303697,64520,46505254350,46505319491,65141,46505344359,46505412236,67877,46505359497,46505428414,68917,46509670990,46512759532,3088542,46510505427,46513327832,2822405,46513699592,46514237070,537478,46514654087,46515276182,622095,46516505739,46521709870,5204131
133,46525478918,46546175234,20696316,46525498810,46537068777,19892,11569967,9106457,46525624265,46525780333,156068,46525645667,46525761445,115778,46525823874,46525891875,68001,46525841785,46525908866,67081,46525933647,46525998713,65066,46525948474,46526014969,66495,46530255103,46533335717,3080614,46531088968,46533719391,2630423,46534273728,46534580308,306580,46535228541,46535647353,418812,46537079982,46542396473,5316491
134,46546175234,46566376553,20201319,46546195376,46557765719,20142,11570343,8610834,46546325756,46546463611,137855,46546343127,46546449958,106831,46546507232,46546571774,64542,46546522482,46546592142,69660,46546609237,46546674460,65223,46546623865,46546691074,67209,46550935659,46554024795,3089136,46551769845,46554277478,2507633,46554964867,46555122981,158114,46555919282,46556186370,267088,46557776965,46562604901,4827936
135,46566376553,46587118352,20741799,46566396751,46578481647,20198,12084896,8636705,46566525977,46566817995,292018,46566541832,46566800433,258601,46566861474,46566928393,66919,46566876557,46566945140,68583,46566969557,46567035592,66035,46566984382,46567051993,67611,46571293494,46574749988,3456494,46572127700,46574963316,2835616,46575687536,46575838640,151104,46576642306,46576877285,234979,46578492532,46583340586,4848054
136,46587118352,46607779555,20661203,46587139385,46599289785,21033,12150400,8489770,46587270540,46587656286,385746,46587286428,46587642589,356161,46587700174,46587765908,65734,46587714976,46587771821,56845,46587806068,46587874299,68231,46587820961,46587890636,69675,46592131423,46595553240,3421817,46592965113,46595671291,2706178,46596490976,46596526939,35963,46597446297,46597603644,157347,46599301153,46604003405,4702252
137,46607779555,46628056528,20276973,46607799335,46619477596,19780,11678261,8578932,46607929824,46608127972,198148,46607947243,46608110522,163279,46608172697,46608250046,77349,46608187520,46608244385,56865,46608280409,46608346296,65887,46608295063,46608361998,66935,46612602618,46615739329,3136711,46613436910,46615886554,2449644,46616678871,46616716897,38026,46617633150,46617747206,114056,46619488462,46624283832,4795370
138,46628056528,46648681169,20624641,46628076483,46640103676,19955,12027193,8577493,46628205236,46628439664,234428,46628223133,46628419174,196041,46628483830,46628555457,71627,46628498527,46628561502,62975,46628590912,46628658802,67890,46628605580,46628664872,59292,46632914464,46636374728,3460264,46633748553,46636468701,2720148,46637312432,46637347429,34997,46638264911,46638411374,146463,46640114984,46644909205,4794221
139,46648681169,46669260625,20579456,46648701353,46660656246,20184,11954893,8604379,46648833910,46649119376,285466,46648852073,46649101304,249231,46649162713,46649228010,65297,46649177036,46649234282,57246,46649268007,46649334540,66533,46649283127,46649350218,67091,46653591816,46656930187,3338371,46654425497,46657205723,2780226,46657868795,46658099650,230855,46658819470,46659165200,345730,46660667037,46665489769,4822732
140,46669260625,46689757372,20496747,46669280390,46680961727,19765,11681337,8795645,46669405557,46669623316,217759,46669426481,46669603772,177291,46669667579,46669732940,65361,46669682491,46669738876,56385,46669773629,46669842883,69254,46669788481,46669849191,60710,46674100840,46677222802,3121962,46674936133,46677586026,2649893,46678164340,46678469557,305217,46679115878,46679542240,426362,46680972838,46685986391,5013553
141,46689757372,46710088742,20331370,46689777006,46701397175,19634,11620169,8691567,46689907141,46690125622,218481,46689924746,46690109623,184877,46690171225,46690243680,72455,46690187187,46690238094,50907,46690278377,46690343481,65104,46690293374,46690362851,69477,46694590479,46697660222,3069743,46695425041,46698071002,2645961,46698606657,46698947591,340934,46699558638,46700016808,458170,46701408237,46706314376,4906139
142,46710088742,46730866841,20778099,46710109740,46721947670,20998,11837930,8919171,46710239259,46710531145,291886,46710256713,46710511531,254818,46710574547,46710647398,72851,46710589162,46710641754,52592,46710680992,46710746667,65675,46710695951,46710765891,69940,46714992301,46718213933,3221632,46715826390,46718788468,2962078,46719158631,46719713465,554834,46720110334,46720770363,660029,46721959132,46727089966,5130834
143,46730866841,46751316623,20449782,46730886747,46742626940,19906,11740193,8689683,46731015322,46731346786,331464,46731031281,46731327847,296566,46731390468,46731469512,79044,46731405638,46731463956,58318,46731498967,46731564785,65818,46731514029,46731580871,66842,46735822481,46738897695,3075214,46736656692,46739169271,2512579,46739836996,46740035714,198718,46740789605,46741109046,319441,46742638474,46747543939,4905465
144,46751316623,46772168057,20851434,46751337184,46763428106,20561,12090922,8739951,46751461471,46751880879,419408,46751482284,46751862901,380617,46751925869,46751995944,70075,46751943356,46752013783,70427,46752040241,46752098781,58540,46752055594,46752124172,68578,46756350493,46759696383,3345890,46757184487,46759815416,2630929,46760633860,46760669338,35478,46761588996,46761739830,150834,46763439558,46768390778,4951220
145,46772168057,46792380861,20212804,46772188068,46783729783,20011,11541715,8651078,46772317216,46772455413,138197,46772337048,46772438695,101647,46772498912,46772564663,65751,46772513745,46772570591,56846,46772605458,46772677929,72471,46772620550,46772672462,51912,46776928491,46780005228,3076737,46777761930,46780201926,2439996,46780943395,46781070014,126619,46781896438,46782099774,203336,46783741069,46788608440,4867371
146,46792380861,46812824032,20443171,46792400470,46804095858,19609,11695388,8728174,46792531168,46792790292,259124,46792548521,46792774570,226049,46792835863,46792907574,71711,46792851547,46792902116,50569,46792942462,46793009322,66860,46792957499,46793025889,68390,46797266167,46800364350,3098183,46798099857,46800785514,2685657,46801305334,46801682659,377325,46802260496,46802751456,490960,46804106959,46809052328,4945369
147,46812824032,46833306258,20482226,46812845912,46824702557,21880,11856645,8603701,46812974115,46813323815,349700,46812989986,46813305038,315052,46813367595,46813439384,71789,46813382515,46813445584,63069,46813475209,46813541240,66031,46813490077,46813557265,67188,46817797743,46820972985,3175242,46818632278,46821207963,2575685,46821912162,46822052353,140191,46822865683,46823114308,248625,46824713844,46829531288,4817444
148,46833306258,46853875337,20569079,46833326697,46845144882,20439,11818185,8730455,46833457773,46833783648,325875,46833473764,46833764950,291186,46833826773,46833896588,69815,46833844978,46833913276,68298,46833938328,46834003979,65651,46833953121,46834019601,66480,46838261189,46841408722,3147533,46839095537,46841775010,2679473,46842349168,46842665621,316453,46843304118,46843715774,411656,46845156230,46850101688,4945458
149,46853875337,46874126127,20250790,46853895627,46865534453,20290,11638826,8591674,46854025800,46854302977,277177,46854044111,46854283901,239790,46854346864,46854413497,66633,46854361903,46854419365,57462,46854454322,46854518744,64422,46854469232,46854535308,66076,46858775882,46861794563,3018681,46859609873,46862063701,2453828,46862738052,46862887586,149534,46863692864,46863926500,233636,46865545525,46870353324,4807799
150,46874126127,46894683602,20557475,46874146155,46885983841,20028,11837686,8699761,46874272397,46874570108,297711,46874287969,46874547282,259313,46874613909,46874678182,64273,46874628478,46874695197,66719,46874719628,46874785667,66039,46874734832,46874801933,67101,46879043808,46882258742,3214934,46879877614,46882473884,2596270,46883198269,46883336729,138460,46884150479,46884401973,251494,46885995016,46890913966,4918950
151,46894683602,46915300765,20617163,46894704363,46906651488,20761,11947125,8649277,46894836716,46895140133,303417,46894854580,46895120197,265617,46895183256,46895249580,66324,46895198271,46895255510,57239,46895290642,46895357440,66798,46895305653,46895373544,67891,46899614831,46902919819,3304988,46900449460,46903108212,2658752,46903859126,46903969214,110088,46904811769,46905038974,227205,46906662403,46911530356,4867953
152,46915300765,46936128649,20827884,46915321681,46927362480,20916,12040799,8766169,46915453364,46915897761,444397,46915469806,46915879038,409232,46915940711,46916012881,72170,46915956127,46916007213,51086,46916047566,46916113117,65551,46916062587,46916133211,70624,46920359793,46923636428,3276635,46921194076,46924128782,2934706,46924574851,46925072768,497917,46925528994,46926101902,572908,46927373479,46932357874,4984395
153,46936128649,46957219927,21091278,46936148648,46948504912,19999,12356264,8715015,46936274128,46937191693,917565,46936297833,46937050992,753159,46937238408,46937343577,105169,46937255934,46937361800,105866,46937389842,46937467313,77471,46937407421,46937485288,77867,46941727058,46944772106,3045048,46942561038,46945136560,2575522,46945713387,46946000754,287367,46946668143,46947081427,413284,46948516020,46953441648,4925628
154,46957219927,46977586767,20366840,46957241190,46968862579,21263,11621389,8724188,46957366720,46957579704,212984,46957387883,46957560681,172798,46957623442,46957695606,72164,46957638761,46957701654,62893,46957732051,46957797478,65427,46957747199,46957813861,66662,46962054014,46965123173,3069159,46962887948,46965405677,2517729,46966065423,46966246052,180629,46967019174,46967293485,274311,46968873954,46973814303,4940349
155,46977586767,46997872392,20285625,46977607066,46989344531,20299,11737465,8527861,46977732056,46978043252,311196,46977752459,46978027091,274632,46978086760,46978160821,74061,46978102143,46978155229,53086,46978195356,46978260687,65331,46978210202,46978279857,69655,46982506763,46985614097,3107334,46983341883,46985758463,2416580,46986552228,46986601675,49447,46987504391,46987630588,126197,46989355517,46994099674,4744157
156,46997872392,47018323454,20451062,46997891935,47009708942,19543,11817007,8614512,46998020914,46998267412,246498,46998038723,46998245094,206371,46998311386,46998377846,66460,46998326073,46998393832,67759,46998418981,46998483365,64384,46998434284,46998503355,69071,47002730625,47005971031,3240406,47003564702,47006179298,2614596,47006911487,47007028070,116583,47007864805,47008092461,227656,47009719974,47014549365,4829391
157,47018323454,47038875504,20552050,47018343748,47030090354,20294,11746606,8785150,47018468296,47018778195,309899,47018488942,47018759191,270249,47018821410,47018890844,69434,47018839460,47018896870,57410,47018931592,47018997512,65920,47018946767,47019013393,66626,47023253611,47026355970,3102359,47024087652,47026659476,2571824,47027295786,47027535386,239600,47028249472,47028607492,358020,47030101636,47035104115,5002479
158,47038875504,47059242882,20367378,47038896114,47050585447,20610,11689333,8657435,47039025789,47039315636,289847,47039042121,47039296961,254840,47039359224,47039424690,65466,47039374482,47039430653,56171,47039465074,47039529136,64062,47039480108,47039550329,70221,47043777073,47046855184,3078111,47044611882,47047210693,2598811,47047793544,47048168707,375163,47048744246,47049202169,457923,47050596777,47055468987,4872210
159,47059242882,47079764065,20521183,47059262921,47071178451,20039,11915530,8585614,47059387283,47059840250,452967,47059408253,47059819808,411555,47059884732,47059956918,72186,47059899827,47059951551,51724,47059991805,47060059614,67809,47060007139,47060075189,68050,47064315473,47067448667,3133194,47065149543,47067719021,2569478,47068388113,47068562570,174457,47069340935,47069634488,293553,47071189302,47075993075,4803773
160,47079764065,47100613340,20849275,47079784681,47091593083,20616,11808402,9020257,47079914951,47080268686,353735,47079933229,47080253059,319830,47080311670,47080391434,79764,47080326760,47080385720,58960,47080421064,47080486293,65229,47080436175,47080506362,70187,47084733323,47087869810,3136487,47085567366,47088307809,2740443,47088806426,47089210762,404336,47089758742,47090252348,493606,47091604306,47096840507,5236201
161,47100613340,47120865523,20252183,47100633904,47112232408,20564,11598504,8633115,47100764334,47100911829,147495,47100782310,47100892160,109850,47100955012,47101023257,68245,47100969853,47101029513,59660,47101062895,47101128199,65304,47101077666,47101149230,71564,47105375031,47108500715,3125684,47106209035,47108762699,2553664,47109441272,47109621500,180228,47110395287,47110703126,307839,47112243512,47117095225,4851713
162,47120865523,47141540179,20674656,47120885520,47133089454,19997,12203934,8450725,47121015874,47121270341,254467,47121032396,47121251447,219051,47121313830,47121379893,66063,47121328883,47121386022,57139,47121420677,47121487150,66473,47121436286,47121502975,66689,47125743329,47129362439,3619110,47126577429,47129444511,2867082,47130299304,47130334288,34984,47131252575,47131365412,112837,47133100556,47137768329,4667773
163,47141540179,47162374776,20834597,47141560547,47153529109,20368,11968562,8845667,47141689854,47141855416,165562,47141707535,47141834992,127457,47141900458,47141971151,70693,47141914934,47141965604,50670,47142006611,47142073364,66753,47142021515,47142093582,72067,47146320006,47149789811,3469805,47147154049,47150068486,2914437,47150732631,47150971285,238654,47151684343,47152036136,351793,47153540515,47158603795,5063280
164,47162374776,47182733996,20359220,47162394713,47174054079,19937,11659366,8679917,47162519009,47162752401,233392,47162540325,47162734111,193786,47162796660,47162865630,68970,47162811810,47162871742,59932,47162906070,47162978147,72077,47162921499,47162972497,50998,47167228352,47170324426,3096074,47168062617,47170569346,2506729,47171266676,47171402906,136230,47172221314,47172464214,242900,47174065452,47178961081,4895629
165,47182733996,47203221135,20487139,47182753991,47194435546,19995,11681555,8785589,47182883297,47183113255,229958,47182900588,47183097116,196528,47183156412,47183228543,72131,47183171583,47183223103,51520,47183264038,47183329155,65117,47183278665,47183348964,70299,47187575170,47190706992,3131822,47188409481,47191024255,2614774,47191647291,47191877794,230503,47192598965,47192950544,351579,47194446671,47199448727,5002056
166,47203221135,47223695774,20474639,47203242172,47214949823,21037,11707651,8745951,47203372247,47203553792,181545,47203389139,47203535644,146505,47203597147,47203664667,67520,47203612183,47203670632,58449,47203705140,47203771784,66644,47203719617,47203788176,68559,47208029261,47211218761,3189500,47208862933,47211373381,2510448,47212159127,47212228420,69293,47213114103,47213263849,149746,47214960984,47219920018,4959034
167,47223695774,47243976724,20280950,47223715928,47235260429,20154,11544501,8716295,47223847834,47223985136,137302,47223865827,47223965449,99622,47224029227,47224097240,68013,47224045666,47224103080,57414,47224138025,47224204577,66552,47224152839,47224220636,67797,47228460561,47231522080,3061519,47229295187,47231804385,2509198,47232464180,47232663641,199461,47233419785,47233697432,277647,47235271575,47240206825,4935250
168,47243976724,47264518419,20541695,47243997147,47255911613,20423,11914466,8606806,47244126850,47244337655,210805,47244144509,47244319639,175130,47244380673,47244453177,72504,47244395710,47244447550,51840,47244487261,47244553683,66422,47244502284,47244569563,67279,47248810214,47252170137,3359923,47249644322,47252276113,2631791,47253111538,47253150054,38516,47254065755,47254219013,153258,47255923682,47260744024,4820342
169,47264518419,47284935311,20416892,47264539965,47276381089,21546,11841124,8554222,47264670507,47264924329,253822,47264688083,47264904841,216758,47264967982,47265034424,66442,47264982828,47265050683,67855,47265075730,47265141803,66073,47265090485,47265162316,71831,47269388338,47272653314,3264976,47270223075,47272847750,2624675,47273591817,47273678089,86272,47274544987,47274734432,189445,47276392472,47281164556,4772084
170,47284935311,47305417326,20482015,47284955405,47296546515,20094,11591110,8870811,47285080056,47285293578,213522,47285101809,47285273940,172131,47285338998,47285414579,75581,47285354268,47285408644,54376,47285451251,47285518934,67683,47285467738,47285536786,69048,47289778805,47292833023,3054218,47290612729,47293222980,2610251,47293772168,47294110567,338399,47294724674,47295161293,436619,47296557867,47301641853,5083986
171,47305417326,47325864313,20446987,47305437933,47317072422,20607,11634489,8791891,47305568773,47305810692,241919,47305584720,47305797377,212657,47305854093,47305925475,71382,47305869538,47305919977,50439,47305961462,47306028726,67264,47305976885,47306045316,68431,47310284960,47313344066,3059106,47311119240,47313623684,2504444,47314283303,47314466286,182983,47315236625,47315502817,266192,47317083595,47322088990,5005395
172,47325864313,47346585436,20721123,47325884206,47337950597,19893,12066391,8634839,47326014096,47326351128,337032,47326032603,47326333881,301278,47326395540,47326461398,65858,47326410411,47326477936,67525,47326502479,47326575956,73477,47326517142,47326590983,73841,47330832939,47334219278,3386339,47331665345,47334325691,2660346,47335155548,47335189380,33832,47336107849,47336269840,161991,47337961931,47342814533,4852602
173,47346585436,47366959553,20374117,47346605526,47358361757,20090,11756231,8597796,47346735903,47346970710,234807,47346754359,47346955343,200984,47347014433,47347081522,67089,47347029863,47347087303,57440,47347122246,47347189705,67459,47347138365,47347205785,67420,47351448462,47354620377,3171915,47352282385,47354891244,2608859,47355564136,47355765282,201146,47356516362,47356836800,320438,47358372887,47363186755,4813868
174,47366959553,47387260228,20300675,47366979926,47378724451,20373,11744525,8535777,47367109412,47367401370,291958,47367127597,47367384856,257259,47367444911,47367517260,72349,47367459738,47367511807,52069,47367552837,47367618719,65882,47367568161,47367635609,67448,47371877467,47374989790,3112323,47372711537,47375237132,2525595,47375930030,47376078923,148893,47376882964,47377111765,228801,47378735549,47383491663,4756114
175,47387260228,47407879178,20618950,47387280353,47399463438,20125,12183085,8415740,47387409919,47388073824,663905,47387431516,47387928499,496983,47388123057,47388222745,99688,47388140445,47388240077,99632,47388266491,47388343312,76821,47388284938,47388360961,76023,47392603850,47395723554,3119704,47393438068,47395937657,2499589,47396664584,47396782966,118382,47397620635,47397806917,186282,47399474344,47404107957,4633613
176,47407879178,47428572565,20693387,47407898306,47419759403,19128,11861097,8813162,47408023576,47408446704,423128,47408044889,47408424084,379195,47408490225,47408555705,65480,47408505160,47408562001,56841,47408595867,47408663710,67843,47408611047,47408669364,58317,47412919691,47416020087,3100396,47413753455,47416468699,2715244,47416961235,47417363729,402494,47417915737,47418417983,502246,47419771098,47424799485,5028387
177,47428572565,47449034746,20462181,47428592557,47440381059,19992,11788502,8653687,47428717709,47428998488,280779,47428739003,47428978908,239905,47429042288,47429110570,68282,47429057401,47429116662,59261,47429150778,47429217696,66918,47429166137,47429234603,68466,47433475398,47436640334,3164936,47434309518,47436777854,2468336,47437583157,47437618342,35185,47438536851,47438679775,142924,47440392458,47445260763,4868305
178,47449034746,47469700152,20665406,47449055594,47460790185,20848,11734591,8909967,47449181374,47449355384,174010,47449202370,47449334870,132500,47449400483,47449473949,73466,47449416328,47449468410,52082,47449509840,47449576715,66875,47449525474,47449592951,67477,47453835621,47457064920,3229299,47454669049,47457606044,2936995,47458003822,47458524175,520353,47458956222,47459563930,607708,47460801443,47465928203,5126760
179,47469700152,47490168154,20468002,47469720627,47481469245,20475,11748618,8698909,47469846006,47470107661,261655,47469867400,47470088828,221428,47470151847,47470222972,71125,47470167224,47470217417,50193,47470258499,47470317028,58529,47470273701,47470344514,70813,47474571124,47477739240,3168116,47475405519,47477875072,2469553,47478677217,47478730713,53496,47479631346,47479778868,147522,47481480634,47486398204,4917570
180,47490168154,47510586586,20418432,47490188616,47501828559,20462,11639943,8758027,47490318242,47490457162,138920,47490336134,47490441083,104949,47490501163,47490567956,66793,47490516118,47490573883,57765,47490608730,47490673844,65114,47490624087,47490694317,70230,47494920685,47498096493,3175808,47495754354,47498372793,2618439,47499035979,47499241888,205909,47499989380,47500298144,308764,47501840832,47506814997,4974165
181,47510586586,47530995864,20409278,47510606477,47522256286,19891,11649809,8739578,47510736411,47510878267,141856,47510753701,47510860924,107223,47510923090,47510990280,67190,47510939260,47510996008,56748,47511031155,47511096059,64904,47511046204,47511112213,66009,47515354352,47518521467,3167115,47516188154,47518890996,2702842,47519458453,47519764186,305733,47520413980,47520824338,410358,47522267462,47527217908,4950446
182,47530995864,47551428290,20432426,47531016392,47542708200,20528,11691808,8720090,47531141221,47531376597,235376,47531162337,47531355585,193248,47531420093,47531485916,65823,47531435452,47531491743,56291,47531526601,47531600337,73736,47531542292,47531594884,52592,47535850741,47538982091,3131350,47536684600,47539382305,2697705,47539919131,47540308313,389182,47540873382,47541339642,466260,47542719047,47547654164,4935117
183,47551428290,47571940212,20511922,47551448918,47563142244,20628,11693326,8797968,47551574242,47551820072,245830,47551595439,47551802594,207155,47551867444,47551939140,71696,47551882834,47551933542,50708,47551974788,47552039621,64833,47551989967,47552055734,65767,47556297048,47559409749,3112701,47557131207,47559910258,2779051,47560350391,47560806649,456258,47561305491,47561855168,549677,47563153224,47568166027,5012803
184,47571940212,47592346464,20406252,47571960557,47583761251,20345,11800694,8585213,47572090753,47572447535,356782,47572108074,47572430421,322347,47572490628,47572558777,68149,47572505308,47572564793,59485,47572598658,47572665817,67159,47572613729,47572681512,67783,47576921665,47580035195,3113530,47577755871,47580241595,2485724,47580973688,47581081772,108084,47581928747,47582113365,184618,47583772273,47588573545,4801272
185,47592346464,47612985396,20638932,47592366533,47604179569,20069,11813036,8805827,47592496015,47592809887,313872,47592513583,47592789232,275649,47592853391,47592921134,67743,47592868928,47592926898,57970,47592962729,47593034228,71499,47592977714,47593028513,50799,47597286289,47600448475,3162186,47598120805,47600791729,2670924,47601388946,47601685855,296909,47602344169,47602747175,403006,47604190784,47609213821,5023037
186,47612985396,47633246077,20260681,47613005825,47624665240,20429,11659415,8580837,47613131197,47613269923,138726,47613151994,47613251435,99441,47613313648,47613380598,66950,47613328593,47613386530,57937,47613420717,47613486822,66105,47613436018,47613503371,67353,47617743852,47620936940,3193088,47618577670,47621075599,2497929,47621875874,47621910083,34209,47622827948,47622936913,108965,47624676511,47629471667,4795156
187,47633246077,47653699787,20453710,47633265859,47644929839,19782,11663980,8769948,47633390544,47633649571,259027,47633411405,47633628598,217193,47633694168,47633760105,65937,47633709340,47633766142,56802,47633800980,47633868817,67837,47633816024,47633889621,73597,47638115567,47641201306,3085739,47638949826,47641457418,2507592,47642141590,47642285237,143647,47643094467,47643313434,218967,47644941058,47649923987,4982929
188,47653699787,47674006278,20306491,47653720602,47665266885,20815,11546283,8739393,47653846744,47653989466,142722,47653867420,47653969711,102291,47654033726,47654105876,72150,47654049189,47654100320,51131,47654141107,47654199058,57951,47654155978,47654224065,68087,47658451259,47661525503,3074244,47659286119,47661843891,2557772,47662469546,47662676110,206564,47663425167,47663733465,308298,47665278452,47670232516,4954064
189,47674006278,47694609156,20602878,47674026341,47685641392,20063,11615051,8967764,47674156728,47674325137,168409,47674174654,47674306445,131791,47674370846,47674428510,57664,47674386188,47674451129,64941,47674475785,47674550429,74644,47674490734,47674544927,54193,47678799810,47681904009,3104199,47679634557,47682287135,2652578,47682843989,47683155848,311859,47683799311,47684208062,408751,47685652570,47690837490,5184920
190,47694609156,47714992238,20383082,47694629574,47706131520,20418,11501946,8860718,47694759541,47694898587,139046,47694777562,47694882029,104467,47694943302,47695012399,69097,47694958738,47695018554,59816,47695055176,47695116485,61309,47695071244,47695142493,71249,47699370252,47702393277,3023025,47700204868,47702669788,2464920,47703335716,47703524369,188653,47704293084,47704558109,265025,47706142816,47711219621,5076805
191,47714992238,47735398001,20405763,47715012937,47726681577,20699,11668640,8716424,47715144077,47715381708,237631,47715161490,47715365633,204143,47715425387,47715491813,66426,47715441333,47715497950,56617,47715532885,47715604603,71718,47715548085,47715599347,51262,47719857087,47722945325,3088238,47720690467,47723202710,2512243,47723886784,47724039915,153131,47724840605,47725076696,236091,47726692513,47731623135,4930622
192,47735398001,47755911435,20513434,47735419133,47747185432,21132,11766299,8726003,47735549444,47735920184,370740,47735566414,47735900959,334545,47735965133,47736031618,66485,47735980038,47736037815,57777,47736072543,47736138878,66335,47736087609,47736159311,71702,47740385506,47743443918,3058412,47741219375,47743802468,2583093,47744389085,47744660375,271290,47745343509,47745735400,391891,47747196877,47752134691,4937814
193,47755911435,47776512435,20601000,47755931696,47767975113,20261,12043417,8537322,47756056489,47756342001,285512,47756078006,47756323949,245943,47756387410,47756456850,69440,47756403079,47756463063,59984,47756498943,47756568818,69875,47756514346,47756574792,60446,47760825081,47764246691,3421610,47761658706,47764342506,2683800,47765184452,47765220673,36221,47766137041,47766270742,133701,47767986401,47772739720,4753319
194,47776512435,47797226193,20713758,47776532679,47788252556,20244,11719877,8973637,47776656964,47776858577,201613,47776678446,47776840128,161682,47776902901,47776970030,67129,47776917803,47776989502,71699,47777005967,47777072527,66560,47777020832,47777093763,72931,47781317506,47784514730,3197224,47782151848,47785015179,2863331,47785455949,47785919545,463596,47786409745,47786952977,543232,47788263598,47793453664,5190066
195,47797226193,47817593671,20367478,47797246560,47808982551,20367,11735991,8611120,47797371647,47797513567,141920,47797392580,47797492016,99436,47797558068,47797631675,73607,47797574663,47797625453,50790,47797666816,47797738192,71376,47797682022,47797732831,50809,47801990458,47805244881,3254423,47802824327,47805443927,2619600,47806184164,47806302845,118681,47807138727,47807347583,208856,47808993499,47813816893,4823394
196,47817593671,47837899278,20305607,47817614703,47829171165,21032,11556462,8728113,47817744267,47817962097,217830,47817761620,47817946179,184559,47818005852,47818073200,67348,47818020808,47818089490,68682,47818114464,47818179656,65192,47818129234,47818203036,73802,47822425386,47825437637,3012251,47823259767,47825788807,2529040,47826376806,47826647495,270689,47827333095,47827727835,394740,47829182172,47834128729,4946557
197,47837899278,47858965492,21066214,47837919000,47850150367,19722,12231367,8815125,47838046040,47838705150,659110,47838064984,47838619743,554759,47838752952,47838850441,97489,47838769604,47838868944,99340,47838896325,47838971373,75048,47838913243,47838989667,76424,47843231652,47846411435,3179783,47844065594,47846912121,2846527,47847352899,47847825348,472449,47848308287,47848854258,545971,47850161907,47855191397,5029490
198,47858965492,47879816549,20851057,47858985323,47871144516,19831,12159193,8672033,47859111223,47859586531,475308,47859133210,47859570275,437065,47859629785,47859707534,77749,47859645056,47859702247,57191,47859737524,47859803721,66197,47859752500,47859819968,67468,47864060097,47867413398,3353301,47864894975,47867759977,2865002,47868352538,47868679095,326557,47869307516,47869716230,408714,47871155515,47876040848,4885333
199,47879816549,47900146971,20330422,47879837553,47891621750,21004,11784197,8525221,47879963086,47880294333,331247,47879983593,47880277817,294224,47880337706,47880402786,65080,47880353266,47880408762,55496,47880443219,47880517336,74117,47880457952,47880511803,53851,47884767288,47887889403,3122115,47885600738,47888150390,2549652,47888828666,47888992538,163872,47889779933,47890059662,279729,47891633026,47896374248,4741222
200,47900146971,47920813118,20666147,47900166770,47911987765,19799,11820995,8825353,47900296906,47900646666,349760,47900314984,47900625210,310226,47900689844,47900755960,66116,47900705137,47900762008,56871,47900797051,47900865111,68060,47900812091,47900881563,69472,47905122048,47908253995,3131947,47905956451,47908608919,2652468,47909192654,47909475542,282888,47910146822,47910549887,403065,47911999126,47917041061,5041935
201,47920813118,47941598188,20785070,47920835457,47932848746,22339,12013289,8749442,47920965088,47921131132,166044,47920983173,47921110708,127535,47921175139,47921242114,66975,47921191018,47921248191,57173,47921282638,47921343461,60823,47921297471,47921360437,62966,47925601046,47929128622,3527576,47926435681,47929493542,3057861,47930063601,47930423787,360186,47931018638,47931467270,448632,47932859880,47937823155,4963275
202,47941598188,47961945827,20347639,47941617813,47953293133,19625,11675320,8652694,47941748544,47942067688,319144,47941766289,47942049056,282767,47942111419,47942178753,67334,47942126737,47942184759,58022,47942219554,47942287114,67560,47942235005,47942303508,68503,47946544666,47949561594,3016928,47947378518,47949969044,2590526,47950506099,47950857082,350983,47951459964,47951913532,453568,47953304468,47958175301,4870833
203,47961945827,47982240906,20295079,47961965791,47973762735,19964,11796944,8478171,47962090291,47962434051,343760,47962110851,47962414284,303433,47962477875,47962551465,73590,47962492674,47962545893,53219,47962586128,47962652736,66608,47962600953,47962668816,67863,47966911762,47970032184,3120422,47967745309,47970231678,2486369,47970972630,47971052972,80342,47971926257,47972096332,170075,47973773737,47978468165,4694428
204,47982240906,48003381121,21140215,47982261084,47994150568,20178,11889484,9230553,47982385747,47982896900,511153,47982406490,47982876972,470482,47982940581,47983007941,67360,47982955773,47983023847,68074,47983048935,47983115721,66786,47983063547,47983132151,68604,47987372786,47990422432,3049646,47988207440,47991008699,2801259,47991366144,47991940453,574309,47992322114,47992969627,647513,47994161717,47999605680,5443963
205,48003381121,48023966807,20585686,48003402750,48015171599,21629,11768849,8795208,48003532737,48003670992,138255,48003549878,48003650010,100132,48003714443,48003780300,65857,48003729274,48003786231,56957,48003820950,48003889828,68878,48003839277,48003906846,67569,48008147122,48011440064,3292942,48008981217,48011859787,2878570,48012378001,48012755240,377239,48013332945,48013786332,453387,48015182629,48020195619,5012990
206,48023966807,48044609567,20642760,48023986981,48036017665,20174,12030684,8591902,48024115061,48024486551,371490,48024130931,48024465049,334118,48024530367,48024596295,65928,48024545504,48024601983,56479,48024637300,48024704627,67327,48024652533,48024720388,67855,48028960055,48032278779,3318724,48029794243,48032391010,2596767,48033216717,48033252616,35899,48034171228,48034325182,153954,48036028986,48040839972,4810986
207,48044609567,48065704759,21095192,48044630447,48056705051,20880,12074604,8999708,48044760757,48045081760,321003,48044777735,48045064613,286878,48045125216,48045198411,73195,48045141073,48045204240,63167,48045234748,48045301232,66484,48045249867,48045316961,67094,48049557604,48052976231,3418627,48050392472,48053465930,3073458,48053915643,48054390343,474700,48054868387,48055430027,561640,48056716427,48061930504,5214077
208,48065704759,48086019276,20314517,48065725369,48077538069,20610,11812700,8481207,48065850682,48066090178,239496,48065871526,48066069771,198245,48066134392,48066199579,65187,48066149379,48066205329,55950,48066240527,48066307318,66791,48066255622,48066323509,67887,48070564285,48073803324,3239039,48071398959,48073936936,2537977,48074742173,48074776081,33908,48075696162,48075833571,137409,48077549220,48082246187,4696967
209,48086019276,48106582772,20563496,48086040212,48097690723,20936,11650511,8892049,48086169640,48086469559,299919,48086187034,48086450146,263112,48086513123,48086578589,65466,48086528060,48086584684,56624,48086619505,48086693240,73735,48086635104,48086687488,52384,48090943325,48093952273,3008948,48091777371,48094307759,2530388,48094897866,48095182417,284551,48095849858,48096245018,395160,48097701684,48102810476,5108792
210,48106582772,48127235901,20653129,48106602857,48118499738,20085,11896881,8736163,48106731959,48107127730,395771,48106747871,48107113253,365382,48107171999,48107250685,78686,48107187030,48107244923,57893,48107280103,48107345745,65642,48107295098,48107362388,67290,48111603018,48114774113,3171095,48112437524,48115026754,2589230,48115713021,48115880782,167761,48116666967,48116923756,256789,48118511033,48123462026,4950993
211,48127235901,48147410406,20174505,48127255809,48138935892,19908,11680083,8474514,48127384712,48127598631,213919,48127401646,48127579866,178220,48127642142,48127708047,65905,48127657355,48127713673,56318,48127748253,48127815192,66939,48127763449,48127833939,70490,48132074058,48135200635,3126577,48132907850,48135356059,2448209,48136139864,48136212918,73054,48137091186,48137245405,154219,48138947011,48143635259,4688248
212,48147410406,48168181858,20771452,48147430930,48159637204,20524,12206274,8544654,48147559793,48147809186,249393,48147577602,48147791541,213939,48147853430,48147924894,71464,48147868666,48147919488,50822,48147960680,48148021829,61149,48147975764,48148045328,69564,48152272902,48155896483,3623581,48153107254,48155967922,2860668,48156833910,48156868537,34627,48157787966,48157901551,113585,48159648323,48164407515,4759192
213,48168181858,48188641319,20459461,48168201932,48180007948,20074,11806016,8633371,48168332616,48168709548,376932,48168350282,48168690567,340285,48168753382,48168824641,71259,48168768445,48168818935,50490,48168862438,48168935130,72692,48168877727,48168928997,51270,48173185806,48176264268,3078462,48174020316,48176604369,2584053,48177206055,48177476846,270791,48178160736,48178552548,391812,48180019263,48184869326,4850063
214,48188641319,48209187302,20545983,48188661184,48200361663,19865,11700479,8825639,48188790696,48189106038,315342,48188808379,48189087552,279173,48189150149,48189221688,71539,48189165019,48189216122,51103,48189257571,48189321715,64144,48189272833,48189338037,65204,48193578930,48196624760,3045830,48194413599,48196979263,2565664,48197567153,48197831055,263902,48198518586,48198908280,389694,48200372944,48205416024,5043080
215,48209187302,48229431172,20243870,48209207591,48220766818,20289,11559227,8664354,48209340256,48209473933,133677,48209356964,48209455719,98755,48209517399,48209589829,72430,48209533520,48209584385,50865,48209625080,48209697583,72503,48209641212,48209692030,50818,48213948666,48217024020,3075354,48214782682,48217301936,2519254,48217963841,48218170318,206477,48218917840,48219237956,320116,48220778135,48225661304,4883169
216,48229431172,48249833842,20402670,48229451550,48241333644,20378,11882094,8500198,48229581228,48229890241,309013,48229598735,48229871353,272618,48229934081,48229999439,65358,48229949081,48230005469,56388,48230040783,48230106207,65424,48230055575,48230126346,70771,48234353576,48237601566,3247990,48235187989,48237758395,2570406,48238541930,48238576148,34218,48239493998,48239644796,150798,48241344778,48246062782,4718004
217,48249833842,48270665717,20831875,48249853852,48261959606,20010,12105754,8706111,48249983394,48250254984,271590,48250001379,48250234556,233177,48250299672,48250370417,70745,48250314436,48250365010,50574,48250405323,48250472469,67146,48250420235,48250488837,68602,48254730715,48258235224,3504509,48255564679,48258586060,3021381,48259174553,48259506123,331570,48260128394,48260554343,425949,48261970672,48266892557,4921885
218,48270665717,48291207556,20541839,48270685467,48282596311,19750,11910844,8611245,48270814945,48271287626,472681,48270834500,48271269222,434722,48271332058,48271397612,65554,48271347127,48271403539,56412,48271438862,48271502987,64125,48271454301,48271523119,68818,48275749588,48278866730,3117142,48276583108,48279056743,2473635,48279806681,48279890696,84015,48280757607,48280929025,171418,48282607461,48287436843,4829382
219,48291207556,48312118631,20911075,48291227458,48303283975,19902,12056517,8834656,48291352617,48291936367,583750,48291374617,48291781049,406432,48291983298,48292085499,102201,48292000504,48292102082,101578,48292130130,48292207244,77114,48292147446,48292224398,76952,48296467013,48299542822,3075809,48297300611,48299839615,2539004,48300483642,48300722872,239230,48301438744,48301791728,352984,48303294910,48308345451,5050541
220,48312118631,48332316768,20198137,48312138816,48323684554,20185,11545738,8632214,48312265442,48312452168,186726,48312287046,48312432126,145080,48312496720,48312564796,68076,48312511975,48312570498,58523,48312604807,48312663545,58738,48312619774,48312688401,68627,48316915301,48319946470,3031169,48317749414,48320290400,2540986,48320888613,48321150079,261466,48321842210,48322230431,388221,48323695799,48328546058,4850259
221,48332316768,48352869758,20552990,48332337079,48344407259,20311,12070180,8462499,48332466234,48332856352,390118,48332483688,48332836917,353229,48332900226,48332967132,66906,48332915566,48332983452,67886,48333008221,48333075433,67212,48333022875,48333094906,72031,48337319777,48340677094,3357317,48338154356,48340774546,2620190,48341612802,48341661103,48301,48342566119,48342728823,162704,48344418690,48349100109,4681419
222,48352869758,48373329685,20459927,48352889998,48364538770,20240,11648772,8790915,48353020079,48353304142,284063,48353036070,48353283295,247225,48353348430,48353414030,65600,48353363330,48353419713,56383,48353454750,48353519709,64959,48353469665,48353539794,70129,48357766314,48360810074,3043760,48358600089,48361062389,2462300,48361752291,48361904294,152003,48362705506,48362930626,225120,48364549814,48369556766,5006952
223,48373329685,48393513981,20184296,48373349769,48385004538,20084,11654769,8509443,48373479009,48373614866,135857,48373495724,48373596854,101130,48373657681,48373727901,70220,48373672629,48373722658,50029,48373763068,48373833169,70101,48373778209,48373839262,61053,48378089407,48381268905,3179498,48378923298,48381436407,2513109,48382207771,48382274544,66773,48383163101,48383322881,159780,48385015790,48389740116,4724326
224,48393513981,48413877404,20363423,48393533703,48405294045,19722,11760342,8583359,48393662560,48394011480,348920,48393679890,48393992863,312973,48394054853,48394121585,66732,48394069633,48394138313,68680,48394163081,48394227126,64045,48394177757,48394247045,69288,48398471899,48401552866,3080967,48399306613,48401860927,2554314,48402491988,48402711903,219915,48403447390,48403800297,352907,48405305091,48410104335,4799244
225,48413877404,48434794690,20917286,48413897001,48425869164,19597,11972163,8925526,48414026781,48414370259,343478,48414044707,48414355235,310528,48414413071,48414479676,66605,48414427718,48414495271,67553,48414519902,48414585177,65275,48414535224,48414608125,72901,48418833089,48422134422,3301333,48419665600,48422675172,3009572,48423069951,48423582238,512287,48424027449,48424631776,604327,48425880234,48431022345,5142111
226,48434794690,48455353005,20558315,48434814184,48446730408,19494,11916224,8622597,48434944058,48435352793,408735,48434961640,48435335035,373395,48435396890,48435462812,65922,48435411512,48435468943,57431,48435503726,48435576880,73154,48435518847,48435571072,52225,48439826707,48443001435,3174728,48440660542,48443213329,2552787,48443941148,48444068254,127106,48444895472,48445121417,225945,48446741541,48451579398,4837857
227,48455353005,48475902767,20549762,48455373043,48467067507,20038,11694464,8835260,48455502668,48455704904,202236,48455520659,48455691113,170454,48455748865,48455825705,76840,48455764655,48455819895,55240,48455865548,48455940308,74760,48455882003,48455934646,52643,48460194324,48463334729,3140405,48461028104,48463704211,2676107,48464278828,48464591764,312936,48465231741,48465674042,442301,48467078913,48472129177,5050264
228,48475902767,48496239729,20336962,48475923319,48487626635,20552,11703316,8613094,48476053922,48476337231,283309,48476071219,48476318005,246786,48476380584,48476452082,71498,48476395867,48476446674,50807,48476486632,48476553161,66529,48476501698,48476568998,67300,48480810423,48483889579,3079156,48481644471,48484180756,2536285,48484828726,48485043431,214705,48485783868,48486124057,340189,48487637761,48492469688,4831927
229,48496239729,48516904688,20664959,48496260099,48508257664,20370,11997565,8647024,48496390098,48496671068,280970,48496407113,48496652564,245451,48496714798,48496786144,71346,48496730613,48496780693,50080,48496820888,48496887426,66538,48496838695,48496903883,65188,48501145428,48504534358,3388930,48501978800,48504671868,2693068,48505472951,48505507053,34102,48506425623,48506576492,150869,48508269187,48513132221,4863034
230,48516904688,48537619347,20714659,48516924450,48528788851,19762,11864401,8830496,48517054295,48517407111,352816,48517072141,48517388394,316253,48517450008,48517515357,65349,48517464508,48517531591,67083,48517556367,48517622586,66219,48517571490,48517641190,69700,48521869172,48525053563,3184391,48522703004,48525295627,2592623,48525992275,48526146046,153771,48526945476,48527224066,278590,48528799616,48533846203,5046587
231,48537619347,48557931778,20312431,48537639274,48549207235,19927,11567961,8724543,48537768757,48537906110,137353,48537786209,48537887264,101055,48537950786,48538016660,65874,48537965875,48538022280,56405,48538057074,48538122477,65403,48538072015,48538139575,67560,48542381845,48545482387,3100542,48543215695,48545739562,2523867,48546422145,48546580651,158506,48547376925,48547634893,257968,48549218547,48554162281,4943734
232,48557931778,48578308725,20376947,48557951615,48569761524,19837,11809909,8547201,48558076153,48558318462,242309,48558097193,48558298937,201744,48558363396,48558434921,71525,48558378681,48558428846,50165,48558469739,48558535467,65728,48558484531,48558551718,67187,48562792662,48566029664,3237002,48563626223,48566153422,2527199,48566969491,48567004047,34556,48567921799,48568080230,158431,48569772490,48574536880,4764390
233,48578308725,48599111275,20802550,48578328983,48589928517,20258,11599534,9182758,48578454553,48578644517,189964,48578474927,48578622881,147954,48578687752,48578759225,71473,48578702568,48578753642,51074,48578794060,48578862327,68267,48578809119,48578879151,70032,48583120883,48586197378,3076495,48583955119,48586751449,2796330,48587137857,48587674947,537090,48588092343,48588704719,612376,48589940034,48595340563,5400529
234,48599111275,48619609831,20498556,48599131812,48610775624,20537,11643812,8834207,48599256158,48599395748,139590,48599276900,48599376554,99654,48599439467,48599510669,71202,48599454301,48599516945,62644,48599547201,48599613723,66522,48599562542,48599633397,70855,48603859126,48607050634,3191508,48604692950,48607390821,2697871,48607987818,48608294117,306299,48608940372,48609344355,403983,48610786768,48615831392,5044624
235,48619609831,48640199520,20589689,48619630097,48631418743,20266,11788646,8780777,48619759560,48620100316,340756,48619777271,48620081297,304026,48620143426,48620214603,71177,48620158422,48620209182,50760,48620249910,48620314130,64220,48620265042,48620334098,69056,48624561259,48627684094,3122835,48625395680,48628009552,2613872,48628625921,48628866323,240402,48629578591,48629931658,353067,48631430171,48636425433,4995262
236,48640199520,48660561651,20362131,48640220587,48651825068,21067,11604481,8736583,48640350786,48640491933,141147,48640368616,48640472750,104134,48640535442,48640603459,68017,48640550212,48640609371,59159,48640643671,48640709771,66100,48640658650,48640725721,67071,48644967266,48648086318,3119052,48645801256,48648303866,2502610,48649025258,48649171734,146476,48649980743,48650230607,249864,48651840474,48656786479,4946005
237,48660561651,48681433645,20871994,48660581706,48672397485,20055,11815779,9036160,48660706403,48661081119,374716,48660727809,48661063358,335549,48661124586,48661198918,74332,48661140291,48661193425,53134,48661234283,48661293287,59004,48661249798,48661318685,68887,48665545006,48668666683,3121677,48666379506,48669178169,2798663,48669605343,48670081210,475867,48670561144,48671115055,553911,48672409059,48677661383,5252324
238,48681433645,48702214592,20780947,48681455084,48693410312,21439,11955228,8804280,48681586238,48681724520,138282,48681605348,48681706445,101097,48681768436,48681842672,74236,48681783481,48681836855,53374,48681877560,48681944118,66558,48681892506,48681960299,67793,48686200617,48689681337,3480720,48687035152,48689922202,2887050,48690619418,48690810803,191385,48691574107,48691860987,286880,48693421588,48698442416,5020828
239,48702214592,48722825256,20610664,48702235217,48714026828,20625,11791611,8798428,48702360902,48702697482,336580,48702382524,48702678581,296057,48702740647,48702807636,66989,48702755845,48702823747,67902,48702850599,48702923251,72652,48702865974,48702939834,73860,48707180151,48710300980,3120829,48708014167,48710801524,2787357,48711237906,48711719451,481545,48712191164,48712750887,559723,48714038331,48719052464,5014133
240,48722825256,48743358616,20533360,48722847933,48734596435,22677,11748502,8762181,48722973152,48723338655,365503,48722993175,48723320706,327531,48723381788,48723448525,66737,48723396665,48723454283,57618,48723488774,48723555700,66926,48723503398,48723571479,68081,48727814213,48730855037,3040824,48728648363,48731192835,2544472,48731794015,48732061618,267603,48732748821,48733140671,391850,48734607652,48739581812,4974160
241,48743358616,48764421045,21062429,48743378761,48755400905,20145,12022144,9020140,48743504154,48743858818,354664,48743521716,48743810356,288640,48743902932,48743973875,70943,48743918874,48743988948,70074,48744014392,48744084549,70157,48744030899,48744104516,73617,48748331288,48751677728,3346440,48749165271,48752095905,2930634,48752617455,48753000524,383069,48753571049,48754052657,481608,48755412011,48760647228,5235217
242,48764421045,48784707929,20286884,48764442088,48776079562,21043,11637474,8628367,48764571630,48764789250,217620,48764589125,48764770580,181455,48764836013,48764908113,72100,48764851524,48764902551,51027,48764943387,48765010150,66763,48764959015,48765030332,71317,48769255947,48772351357,3095410,48770090523,48772634385,2543862,48773288187,48773505892,217705,48774241498,48774579299,337801,48776090739,48780931513,4840774
243,48784707929,48805202327,20494398,48784728367,48796601708,20438,11873341,8600619,48784859048,48785154239,295191,48784876809,48785137067,260258,48785197655,48785264784,67129,48785213131,48785281680,68549,48785306086,48785373421,67335,48785321008,48785389497,68489,48789630279,48792875066,3244787,48790464544,48793136768,2672224,48793813024,48794015411,202387,48794765581,48795085298,319717,48796613179,48801429205,4816026
244,48805202327,48825843003,20640676,48805222402,48817126702,20075,11904300,8716301,48805347218,48805749338,402120,48805367443,48805732726,365283,48805793670,48805868281,74611,48805808844,48805862668,53824,48805903465,48805963116,59651,48805919141,48805989122,69981,48810216372,48813389270,3172898,48811050463,48813684050,2633587,48814333931,48814531872,197941,48815288443,48815590924,302481,48817138584,48822069028,4930444
245,48825843003,48846162890,20319887,48825863875,48837624407,20872,11760532,8538483,48825988865,48826154792,165927,48826009818,48826135116,125298,48826198429,48826269591,71162,48826213209,48826264071,50862,48826304588,48826371521,66933,48826319611,48826388292,68681,48830628671,48833887789,3259118,48831463083,48834124692,2661609,48834828662,48834993277,164615,48835785389,48836063358,277969,48837636072,48842392771,4756699
246,48846162890,48867040415,20877525,48846183228,48857958493,20338,11775265,9081922,48846312572,48846590053,277481,48846331189,48846571361,240172,48846633768,48846701019,67251,48846649309,48846716670,67361,48846741559,48846806693,65134,48846756606,48846827579,70973,48851053559,48854229165,3175606,48851887688,48854689314,2801626,48855170176,48855600145,429969,48856124903,48856628158,503255,48857969498,48863267648,5298150
247,48867040415,48887528716,20488301,48867060244,48878612144,19829,11551900,8916572,48867185322,48867432318,246996,48867206470,48867414549,208079,48867476190,48867544150,67960,48867491201,48867559758,68557,48867584142,48867654180,70038,48867599245,48867670070,70825,48871910154,48874884105,2973951,48872744286,48875405139,2660853,48875827885,48876298467,470582,48876781859,48877359571,577712,48878623141,48883757069,5133928
248,48887528716,48908103088,20574372,48887549675,48899353415,20959,11803740,8749673,48887679972,48887922365,242393,48887697675,48887905108,207433,48887966079,48888030330,64251,48887981017,48888049525,68508,48888066169,48888138687,72518,48888080729,48888155013,74284,48892396316,48895614175,3217859,48893230827,48895904022,2673195,48896552637,48896816483,263846,48897505621,48897882900,377279,48899364617,48904331011,4966394
249,48908103088,48928572739,20469651,48908123171,48919999246,20083,11876075,8573493,48908253702,48908660206,406504,48908271312,48908639607,368295,48908703862,48908770100,66238,48908719023,48908775944,56921,48908810566,48908880898,70332,48908826241,48908896994,70753,48913137654,48916272249,3134595,48913972251,48916491917,2519666,48917209284,48917333270,123986,48918162288,48918407182,244894,48920010360,48924798970,4788610
250,48928572739,48949312548,20739809,48928592475,48940520274,19736,11927799,8792274,48928721990,48928998770,276780,48928740489,48928982178,241689,48929042500,48929110943,68443,48929057515,48929126779,69264,48929151538,48929217012,65474,48929166269,48929236686,70417,48933463544,48936796042,3332498,48934298003,48937242585,2944582,48937731495,48938165347,433852,48938685288,48939223112,537824,48940531620,48945537932,5006312
251,48949312548,48970268255,20955707,48949333002,48961745887,20454,12412885,8522368,48949463174,48949880122,416948,48949480253,48949858298,378045,48949923891,48949998374,74483,48949939800,48950004589,64789,48950034451,48950104331,69880,48950049509,48950120704,71195,48954363513,48958017738,3654225,48955197919,48958091993,2894074,48958953514,48958988278,34764,48959906232,48960041957,135725,48961756846,48966497442,4740596
252,48970268255,48990638069,20369814,48970288028,48982012980,19773,11724952,8625089,48970413666,48970651028,237362,48970435918,48970631383,195465,48970694333,48970759665,65332,48970709830,48970765749,55919,48970800329,48970876778,76449,48970815326,48970871045,55719,48975127438,48978286183,3158745,48975962457,48978532331,2569874,48979225932,48979394441,168509,48980179301,48980463871,284570,48982024267,48986869496,4845229
253,48990638069,49011071667,20433598,48990658096,49002289143,20027,11631047,8782524,48990788313,48991031999,243686,48990805847,48991014332,208485,48991076434,48991147795,71361,48991091527,48991142200,50673,48991182927,48991247936,65009,48991197994,48991267452,69458,48995500578,48998547781,3047203,48996334967,48998863674,2528707,48999487419,48999726543,239124,49000441958,49000798108,356150,49002300348,49007298528,4998180
254,49011071667,49031567448,20495781,49011092348,49022967016,20681,11874668,8600432,49011216766,49011570708,353942,49011238120,49011550202,312082,49011614561,49011686608,72047,49011629765,49011680983,51218,49011721482,49011787484,66002,49011736238,49011803161,66923,49016043651,49019238809,3195158,49016878168,49019431641,2553473,49020178547,49020297651,119104,49021130965,49021358400,227435,49022977957,49027796454,4818497
255,49031567448,49052069705,20502257,49031588474,49043276417,21026,11687943,8793288,49031717992,49031973132,255140,49031735857,49031954780,218923,49032016259,49032089532,73273,49032031473,49032084162,52689,49032124044,49032189543,65499,49032139468,49032209645,70177,49036436199,49039542256,3106057,49037269955,49039750975,2481020,49040483371,49040610894,127523,49041436123,49041652069,215946,49043287309,49048295962,5008653
256,49052069705,49072404118,20334413,49052091166,49063716812,21461,11625646,8687306,49052217482,49052402235,184753,49052234416,49052380749,146333,49052446115,49052514678,68563,49052461338,49052530897,69559,49052556397,49052621581,65184,49052571239,49052642904,71665,49056868381,49059986382,3118001,49057702168,49060239085,2536917,49060927095,49061077462,150367,49061880200,49062123349,243149,49063727934,49068632851,4904917
257,49072404118,49092844802,20440684,49072424086,49084117171,19968,11693085,8727631,49072549434,49072840431,290997,49072565634,49072820068,254434,49072884050,49072950447,66397,49072899183,49072956222,57039,49072990612,49073055067,64455,49073005552,49073076387,70835,49077300505,49080384117,3083612,49078134975,49080661110,2526135,49081326568,49081499225,172657,49082279929,49082543033,263104,49084128189,49089070670,4942481
258,49092844802,49113148212,20303410,49092865264,49104572053,20462,11706789,8576159,49092994528,49093251201,256673,49093012472,49093232361,219889,49093294967,49093366741,71774,49093309660,49093361130,51470,49093401942,49093469003,67061,49093417202,49093484484,67282,49097724283,49100837341,3113058,49098557928,49101107123,2549195,49101777168,49101952407,175239,49102729002,49103020219,291217,49104583281,49109377147,4793866
259,49113148212,49133633873,20485661,49113168206,49125073788,19994,11905582,8560085,49113293744,49113653954,360210,49113315235,49113635735,320500,49113697670,49113771195,73525,49113712325,49113765938,53613,49113805605,49113875527,69922,49113820977,49113892237,71260,49118133391,49121339620,3206229,49118967565,49121519591,2552026,49122278636,49122358927,80291,49123234338,49123400642,166304,49125084692,49129859412,4774720
260,49133633873,49154004056,20370183,49133653711,49145459314,19838,11805603,8544742,49133783348,49134069932,286584,49133800637,49134050817,250180,49134113424,49134179374,65950,49134128044,49134185109,57065,49134219977,49134295899,75922,49134235542,49134290689,55147,49138542542,49141732575,3190033,49139376829,49141863481,2486652,49142671257,49142731769,60512,49143625209,49143771457,146248,49145470714,49150228552,4757838
261,49154004056,49174508259,20504203,49154024645,49165791871,20589,11767226,8716388,49154154922,49154507893,352971,49154172480,49154492497,320017,49154551708,49154618614,66906,49154566731,49154635507,68776,49154660553,49154727327,66774,49154675608,49154746440,70832,49158973044,49162058361,3085317,49159807132,49162365265,2558133,49162997270,49163257256,259986,49163949119,49164332913,383794,49165803504,49170734691,4931187
262,49174508259,49195162081,20653822,49174527984,49186277047,19725,11749063,8885034,49174656827,49174904934,248107,49174674431,49174884021,209590,49174948587,49175015459,66872,49174963579,49175021311,57732,49175056214,49175122961,66747,49175071494,49175139205,67711,49179382059,49182539484,3157425,49180216602,49182827891,2611289,49183480712,49183702900,222188,49184435247,49184780094,344847,49186288297,49191385297,5097000
263,49195162081,49215409646,20247565,49195183149,49206767883,21068,11584734,8641763,49195308077,49195444805,136728,49195323774,49195428636,104862,49195488115,49195563551,75436,49195502976,49195557850,54874,49195598886,49195665536,66650,49195614151,49195685554,71403,49199912588,49203031747,3119159,49200745883,49203265569,2519686,49203975122,49204109114,133992,49204929662,49205152163,222501,49206779152,49211641012,4861860
264,49215409646,49235698889,20289243,49215429717,49227170926,20071,11741209,8527963,49215555085,49215719325,164240,49215571581,49215700012,128431,49215763224,49215840076,76852,49215779008,49215834258,55250,49215875638,49215936603,60965,49215890652,49215957038,66386,49220197756,49223443818,3246062,49221032409,49223674793,2642384,49224382521,49224548160,165639,49225335422,49225601335,265913,49227181883,49231927416,4745533
265,49235698889,49256305486,20606597,49235718508,49247436999,19619,11718491,8868487,49235849839,49236131447,281608,49235867720,49236110585,242865,49236174296,49236245863,71567,49236189278,49236240311,51033,49236280877,49236347867,66990,49236296080,49236367408,71328,49240593766,49243702607,3108841,49241427789,49244244129,2816340,49244642831,49245138106,495275,49245598506,49246184204,585698,49247448072,49252534987,5086915
266,49256305486,49276700205,20394719,49256326325,49268189695,20839,11863370,8510510,49256452693,49256789039,336346,49256469204,49256766950,297746,49256835586,49256907698,72112,49256851546,49256902174,50628,49256942540,49257009629,67089,49256957538,49257025702,68164,49261268394,49264460944,3192550,49262102845,49264625260,2522415,49265399935,49265484537,84602,49266351727,49266549613,197886,49268200677,49272925044,4724367
267,49276700205,49297193770,20493565,49276720504,49288469036,20299,11748532,8724734,49276851064,49277243544,392480,49276868647,49277226419,357772,49277286617,49277360013,73396,49277301228,49277354448,53220,49277394715,49277459805,65090,49277409814,49277480635,70821,49281705492,49284734412,3028920,49282539906,49285063986,2524080,49285677841,49285917124,239283,49286630664,49286996846,366182,49288480047,49293420063,4940016
268,49297193770,49317759373,20565603,49297213614,49309073879,19844,11860265,8685494,49297339163,49297721761,382598,49297359605,49297703417,343812,49297765688,49297834096,68408,49297781079,49297840088,59009,49297875041,49297943033,67992,49297890458,49297949056,58598,49302200023,49305343011,3142988,49303034731,49305583638,2548907,49306283831,49306419496,135665,49307236416,49307465121,228705,49309084913,49313990898,4905985
269,49317759373,49338212921,20453548,49317779532,49329477752,20159,11698220,8735169,49317910202,49318113770,203568,49317928006,49318096806,168800,49318159553,49318226050,66497,49318175289,49318232290,57001,49318266874,49318333187,66313,49318281986,49318338924,56938,49322589848,49325741472,3151624,49323424053,49326077490,2653437,49326681578,49326955368,273790,49327633166,49328020760,387594,49329488835,49334439454,4950619
270,49338212921,49358629201,20416280,49338233110,49350033523,20189,11800413,8595678,49338363122,49338722939,359817,49338380668,49338705148,324480,49338766780,49338840360,73580,49338781831,49338857192,75361,49338882155,49338953479,71324,49338897302,49338969782,72480,49343211342,49346289826,3078484,49344045377,49346569903,2524526,49347232899,49347430832,197933,49348188828,49348502551,313723,49350045144,49354856267,4811123
271,49358629201,49379088021,20458820,49358649265,49370519206,20064,11869941,8568815,49358773798,49359160176,386378,49358795067,49359139849,344782,49359203659,49359277545,73886,49359218693,49359283498,64805,49359313158,49359369325,56167,49359328069,49359399291,71222,49363625365,49366790087,3164722,49364459692,49367195776,2736084,49367729114,49368100263,371149,49368683678,49369135581,451903,49370530814,49375315185,4784371
272,49379088021,49399899857,20811836,49379107918,49391053396,19897,11945478,8846461,49379233121,49379670868,437747,49379253383,49379651571,398188,49379714066,49379782059,67993,49379729585,49379787810,58225,49379822310,49379892943,70633,49379840263,49379899047,58784,49384150397,49387318020,3167623,49384985201,49387667692,2682491,49388258246,49388528188,269942,49389214191,49389599310,385119,49391064718,49396125901,5061183
273,49399899857,49420152276,20252419,49399920619,49411605363,20762,11684744,8546913,49400046124,49400221859,175735,49400066721,49400203102,136381,49400266483,49400332455,65972,49400281151,49400338660,57509,49400373133,49400440022,66889,49400388397,49400458553,70156,49404689276,49407880032,3190756,49405523247,49408039343,2516096,49408820684,49408899109,78425,49409775768,49409957318,181550,49411616542,49416382270,4765728
274,49420152276,49440546203,20393927,49420172070,49431956910,19794,11784840,8589293,49420301785,49420620219,318434,49420319210,49420599861,280651,49420664406,49420736540,72134,49420679750,49420731071,51321,49420771102,49420841277,70175,49420786479,49420847614,61135,49425098033,49428232710,3134677,49425932208,49428452773,2520565,49429172876,49429298619,125743,49430124825,49430334775,209950,49431967921,49436774395,4806474
275,49440546203,49461038732,20492529,49440566884,49452281888,20681,11715004,8756844,49440691461,49440844172,152711,49440713260,49440822100,108840,49440888425,49440959962,71537,49440903303,49440954363,51060,49440995058,49441059301,64243,49441009949,49441076067,66118,49445315998,49448548923,3232925,49446150721,49448800029,2649308,49449488208,49449649904,161696,49450442320,49450718720,276400,49452293955,49457267183,4973228
276,49461038732,49481328789,20290057,49461060550,49472725365,21818,11664815,8603424,49461185742,49461350361,164619,49461201437,49461330393,128956,49461394265,49461466795,72530,49461409479,49461461012,51533,49461501719,49461567448,65729,49461517065,49461587595,70530,49465819012,49468998757,3179745,49466652765,49469274958,2622193,49469941122,49470130373,189251,49470893065,49471185821,292756,49472736950,49477557351,4820401
277,49481328789,49501864729,20535940,49481349261,49493124580,20472,11775319,8740149,49481477801,49481847511,369710,49481495115,49481832726,337611,49481891778,49481958162,66384,49481906988,49481963815,56827,49481998542,49482065977,67435,49482013508,49482082009,68501,49486322754,49489386309,3063555,49487157055,49489673536,2516481,49490328110,49490536344,208234,49491281500,49491595637,314137,49493136516,49498090676,4954160
278,49501864729,49522696721,20831992,49501885139,49514165217,20410,12280078,8531504,49502010387,49502339033,328646,49502032362,49502315724,283362,49502382692,49502449723,67031,49502397941,49502455640,57699,49502489780,49502562059,72279,49502505081,49502578026,72945,49506817941,49510436104,3618163,49507651526,49510542115,2890589,49511376031,49511411671,35640,49512330188,49512477514,147326,49514176550,49518929804,4753254
279,49522696721,49543050380,20353659,49522717402,49534365953,20681,11648551,8684427,49522844341,49523092222,247881,49522865794,49523073777,207983,49523135911,49523207331,71420,49523151181,49523201764,50583,49523241814,49523307472,65658,49523256962,49523327842,70880,49527552845,49530646155,3093310,49528386727,49530866386,2479659,49531582674,49531708916,126242,49532536362,49532757382,221020,49534377508,49539276857,4899349
280,49543050380,49563711930,20661550,49543070834,49554718906,20454,11648072,8993024,49543195864,49543336727,140863,49543216395,49543319057,102662,49543381475,49543447850,66375,49543396962,49543453751,56789,49543488081,49543561013,72932,49543503527,49543555197,51670,49547811568,49550992537,3180969,49548646219,49551574541,2928322,49551932778,49552488997,556219,49552887153,49553519644,632491,49554730506,49559936139,5205633
281,49563711930,49584340644,20628714,49563732693,49575756255,20763,12023562,8584389,49563856970,49564078912,221942,49563877854,49564064963,187109,49564122472,49564200953,78481,49564137452,49564195437,57985,49564231209,49564297715,66506,49564246273,49564313307,67034,49568553835,49572027786,3473951,49569388170,49572163082,2774912,49572968175,49573045008,76833,49573920945,49574095248,174303,49575767514,49580567538,4800024
282,49584340644,49604674694,20334050,49584361472,49595956087,20828,11594615,8718607,49584490576,49584656967,166391,49584507785,49584638131,130346,49584700862,49584767919,67057,49584715851,49584773656,57805,49584808504,49584878280,69776,49584823858,49584884406,60548,49589134759,49592223757,3088998,49589968743,49592383959,2415216,49593163189,49593248862,85673,49594117730,49594288787,171057,49595967636,49600899183,4931547
283,49604674694,49625499864,20825170,49604694601,49616804882,19907,12110281,8694982,49604819167,49604978781,159614,49604842926,49604958380,115454,49605022920,49605094815,71895,49605038659,49605089191,50532,49605130164,49605196511,66347,49605145294,49605212393,67099,49609452269,49613078402,3626133,49610286931,49613132902,2845971,49614011604,49614046350,34746,49614967167,49615086093,118926,49616816004,49621727653,4911649
284,49625499864,49645897540,20397676,49625519920,49637195280,20056,11675360,8702260,49625644951,49625869690,224739,49625665187,49625851071,185884,49625913655,49625985487,71832,49625928713,49625979721,51008,49626020936,49626087765,66829,49626036103,49626093540,57437,49630343325,49633462305,3118980,49631177861,49633905789,2727928,49634399585,49634801037,401452,49635354171,49635845142,490971,49637206459,49642119456,4912997
285,49645897540,49666375471,20477931,49645917606,49657820675,20066,11903069,8554796,49646042921,49646438494,395573,49646058739,49646422549,363810,49646482828,49646554522,71694,49646498067,49646560860,62793,49646598002,49646668162,70160,49646614169,49646688171,74002,49650921547,49654091544,3169997,49651756632,49654299150,2542518,49655033527,49655134475,100948,49655987978,49656162320,174342,49657833928,49662597653,4763725
286,49666375471,49686659799,20284328,49666396072,49678004552,20601,11608480,8655247,49666522286,49666770497,248211,49666544460,49666752357,207897,49666814356,49666884049,69693,49666829262,49666889973,60711,49666925838,49666991136,65298,49666941685,49667011409,69724,49671238401,49674272332,3033931,49672072602,49674473423,2400821,49675212289,49675315072,102783,49676164612,49676343976,179364,49678015828,49682886967,4871139
287,49686659799,49707282442,20622643,49686679801,49698483378,20002,11803577,8799064,49686805331,49687096167,290836,49686826361,49687078566,252205,49687139923,49687207448,67525,49687155066,49687213433,58367,49687247781,49687312735,64954,49687262782,49687333741,70959,49691558244,49694750799,3192555,49692392570,49694964436,2571866,49695687855,49695823311,135456,49696641402,49696897034,255632,49698494626,49703508955,5014329
288,49707282442,49727668159,20385717,49707302143,49719035753,19701,11733610,8632406,49707426840,49707659708,232868,49707447862,49707640443,192581,49707703519,49707774870,71351,49707718400,49707769380,50980,49707809867,49707880560,70693,49707824758,49707886689,61931,49712137821,49715315421,3177600,49712972170,49715463456,2491286,49716252907,49716295138,42231,49717204581,49717352446,147865,49719046904,49723893142,4846238
289,49727668159,49748094457,20426298,49727688911,49739319339,20752,11630428,8775118,49727813129,49728062450,249321,49727836147,49728042291,206144,49728105603,49728177319,71716,49728120885,49728171661,50776,49728212099,49728277748,65649,49728227122,49728297837,70715,49732523717,49735584538,3060821,49733357957,49735847542,2489585,49736525851,49736696004,170153,49737479884,49737729897,250013,49739331184,49744325309,4994125
290,49748094457,49768459485,20365028,49748114238,49759772610,19781,11658372,8686875,49748244244,49748447645,203401,49748261996,49748430677,168681,49748491842,49748563403,71561,49748506964,49748557805,50841,49748598773,49748657943,59170,49748613665,49748683586,69921,49752911078,49756025357,3114279,49753746130,49756388959,2642829,49756969542,49757280458,310916,49757925524,49758346064,420540,49759783761,49764687513,4903752
291,49768459485,49788999577,20540092,49768479678,49780376108,20193,11896430,8623469,49768609335,49768990111,380776,49768627660,49768970267,342607,49769033976,49769101144,67168,49769049114,49769117038,67924,49769142015,49769207671,65656,49769157341,49769227818,70477,49773455303,49776652139,3196836,49774289537,49776812528,2522991,49777588381,49777678994,90613,49778542069,49778720950,178881,49780387376,49785226337,4838961
292,49788999577,49809464670,20465093,49789019217,49800662088,19640,11642871,8802582,49789150198,49789360937,210739,49789168094,49789344002,175908,49789404508,49789472204,67696,49789419693,49789478118,58425,49789512397,49789578769,66372,49789527324,49789599098,71774,49793826214,49796923476,3097262,49794660263,49797223885,2563622,49797868526,49798093283,224757,49798821605,49799160201,338596,49800673264,49805692391,5019127
293,49809464670,49830211401,20746731,49809485106,49821134119,20436,11649013,9077282,49809610176,49809901107,290931,49809630800,49809882784,251984,49809944520,49810016918,72398,49809959387,49810011181,51794,49810052567,49810118116,65549,49810067484,49810138507,71023,49814363880,49817399829,3035949,49815198881,49817769637,2570756,49818341129,49818665386,324257,49819294869,49819739935,445066,49821145186,49826439802,5294616
294,49830211401,49850760262,20548861,49830232155,49841912255,20754,11680100,8848007,49830363839,49830500138,136299,49830379916,49830478929,99013,49830543762,49830615301,71539,49830559144,49830609730,50586,49830650381,49830715935,65554,49830665390,49830736425,71035,49834962472,49838181153,3218681,49835796367,49838608591,2812224,49839122516,49839524435,401919,49840075507,49840562261,486754,49841923527,49846986753,5063226
295,49850760262,49871428868,20668606,49850781060,49862562117,20798,11781057,8866751,49850912089,49851212796,300707,49850930214,49851194946,264732,49851256295,49851328599,72304,49851271409,49851334786,63377,49851364135,49851431094,66959,49851379093,49851450299,71206,49855678900,49858838448,3159548,49856513384,49859339588,2826204,49859774418,49860240888,466470,49860728824,49861276676,547852,49862573244,49867654271,5081027
296,49871428868,49891827109,20398241,49871448826,49883244242,19958,11795416,8582867,49871578319,49871991742,413423,49871596086,49871971272,375186,49872034857,49872102533,67676,49872049902,49872118062,68160,49872143027,49872210615,67588,49872158597,49872226683,68086,49876467124,49879510136,3043012,49877301294,49879727049,2425755,49880451421,49880581291,129870,49881405981,49881610147,204166,49883255621,49888053739,4798118
297,49891827109,49912441913,20614804,49891848276,49903539574,21167,11691298,8902339,49891973587,49892290304,316717,49891994420,49892268116,273696,49892334232,49892399545,65313,49892349030,49892405825,56795,49892441160,49892506553,65393,49892456167,49892527008,70841,49896754449,49899805170,3050721,49897588823,49900162395,2573572,49900746724,49901059916,313192,49901701688,49902131259,429571,49903550615,49908671198,5120583
298,49912441913,49933353234,20911321,49912462370,49924810093,20457,12347723,8543141,49912592046,49912865951,273905,49912609027,49912846923,237896,49912910109,49912975266,65157,49912925254,49912992075,66821,49913016875,49913073119,56244,49913032599,49913094310,61711,49917334623,49921085738,3751115,49918169244,49921159128,2989884,49922019995,49922056132,36137,49922974892,49923109177,134285,49924821275,49929575619,4754344
299,49933353234,49953554715,20201481,49933373613,49944955458,20379,11581845,8599257,49933504235,49933644297,140062,49933522464,49933625639,103175,49933688088,49933760067,71979,49933703116,49933754379,51263,49933794915,49933869645,74730,49933809923,49933864135,54212,49938119224,49941226923,3107699,49938953401,49941473897,2520496,49942169378,49942330765,161387,49943119670,49943374765,255095,49944966455,49949783696,4817241
300,49953554715,49974562332,21007617,49953574678,49965491352,19963,11916674,9070980,49953699045,49954017754,318709,49953720038,49953994652,274614,49954063627,49954137051,73424,49954079561,49954131559,51998,49954171988,49954237979,65991,49954186963,49954257776,70813,49958484115,49961758095,3273980,49959318478,49962224076,2905598,49962697385,49963140369,442984,49963651945,49964172369,520424,49965502454,49970787867,5285413
301,49974562332,49995021886,20459554,49974582777,49986430466,20445,11847689,8591420,49974708388,49974934958,226570,49974729926,49974915011,185085,49974979004,49975056266,77262,49974994162,49975050650,56488,49975085727,49975151789,66062,49975100768,49975168403,67635,49979409663,49982696966,3287303,49980244181,49982934772,2690591,49983634088,49983798475,164387,49984590125,49984867680,277555,49986441810,49991250093,4808283
302,49995021886,50015305474,20283588,49995043174,50006683773,21288,11640599,8621701,49995173324,49995422105,248781,49995191332,49995400714,209382,49995466242,49995533930,67688,49995481525,49995540035,58510,49995576699,49995642587,65888,49995592400,49995662842,70442,49999890639,50002960532,3069893,50000724242,50003148501,2424259,50003901492,50003999095,97603,50004855802,50005030768,174966,50006694776,50011526176,4831400
303,50015305474,50036150096,20844622,50015325942,50027246839,20468,11920897,8903257,50015450970,50015798355,347385,50015472108,50015775754,303646,50015843724,50015909277,65553,50015859113,50015915123,56010,50015950382,50016014667,64285,50015965312,50016031489,66177,50020272086,50023515291,3243205,50021106190,50023966863,2860673,50024456846,50024881011,424165,50025409915,50025911128,501213,50027258240,50032379278,5121038
304,50036150096,50057152572,21002476,50036170183,50048578838,20087,12408655,8573734,50036300226,50036671789,371563,50036317558,50036655821,338263,50036715019,50036787211,72192,50036730389,50036781484,51095,50036822125,50036891523,69398,50036840199,50036897672,57473,50041147344,50044850800,3703456,50041981807,50044934883,2953076,50045788118,50045823618,35500,50046742376,50046865722,123346,50048590085,50053377636,4787551
305,50057152572,50077531303,20378731,50057173354,50068958175,20782,11784821,8573128,50057299394,50057435752,136358,50057315233,50057420995,105762,50057481172,50057552564,71392,50057496397,50057546963,50566,50057587263,50057652070,64807,50057602316,50057669405,67089,50061911529,50065230945,3319416,50062745136,50065335568,2590432,50066167497,50066203516,36019,50067121149,50067280670,159521,50068969395,50073758639,4789244
306,50077531303,50098345631,20814328,50077552041,50089679451,20738,12127410,8666180,50077681745,50077877342,195597,50077699588,50077860017,160429,50077920939,50077993227,72288,50077936903,50077987716,50813,50078028121,50078092100,63979,50078043229,50078112170,68941,50082338795,50085946207,3607412,50083173052,50086095428,2922376,50086883060,50086982009,98949,50087839220,50088016622,177402,50089690632,50094571919,4881287
307,50098345631,50118641764,20296133,50098365355,50110027657,19724,11662302,8614107,50098494914,50098751789,256875,50098512489,50098732740,220251,50098795729,50098869880,74151,50098810861,50098864227,53366,50098904717,50098971030,66313,50098919990,50098993110,73120,50103215934,50106294036,3078102,50104050149,50106623768,2573619,50107233785,50107486090,252305,50108185949,50108569922,383973,50110039391,50114870579,4831188
308,50118641764,50139484474,20842710,50118661196,50130500877,19432,11839681,8983597,50118790105,50119145426,355321,50118807833,50119122916,315083,50119188713,50119255507,66794,50119203276,50119271370,68094,50119296000,50119361365,65365,50119311017,50119381993,70976,50123607189,50126777018,3169829,50124441817,50127137289,2695472,50127716824,50128031659,314835,50128667194,50129099532,432338,50130512133,50135710655,5198522
309,50139484474,50159760578,20276104,50139504582,50151090794,20108,11586212,8669784,50139629698,50139770510,140812,50139650852,50139752226,101374,50139814188,50139882399,68211,50139829040,50139888400,59360,50139923469,50139995182,71713,50139938609,50139989374,50765,50144246269,50147363011,3116742,50145080287,50147721350,2641063,50148301134,50148594104,292970,50149255819,50149663971,408152,50151102800,50155987547,4884747
310,50159760578,50180312169,20551591,50159780500,50171682886,19922,11902386,8629283,50159909671,50160325692,416021,50159926977,50160309275,382298,50160369607,50160442812,73205,50160384700,50160437160,52460,50160477634,50160541063,63429,50160492529,50160561194,68665,50164789642,50167935486,3145844,50165623535,50168225389,2601854,50168876017,50169101628,225611,50169832101,50170186046,353945,50171693913,50176537921,4844008
311,50180312169,50201322202,21010033,50180332808,50192113801,20639,11780993,9208401,50180457453,50180725283,267830,50180477752,50180706652,228900,50180770254,50180837629,67375,50180785322,50180843797,58475,50180878898,50180942937,64039,50180893810,50180959944,66134,50185200412,50188385062,3184650,50186035027,50189107083,3072056,50189326528,50189986470,659942,50190280164,50191024004,743840,50192124815,50197547089,5422274
312,50201322202,50221608230,20286028,50201342429,50213062284,20227,11719855,8545946,50201466235,50201787946,321711,50201486977,50201767730,280753,50201833167,50201906962,73795,50201849104,50201901573,52469,50201941620,50202005515,63895,50201956611,50202026407,69796,50206251553,50209327016,3075463,50207085404,50209608336,2522932,50210268116,50210445757,177641,50211221226,50211488709,267483,50213073025,50217833847,4760822
313,50221608230,50242535509,20927279,50221628290,50233854246,20060,12225956,8681263,50221758816,50222085234,326418,50221776692,50222064938,288246,50222128469,50222200709,72240,50222143608,50222195138,51530,50222235903,50222301505,65602,50222250599,50222317764,67165,50226560262,50230124550,3564288,50227394113,50230403745,3009632,50231061023,50231319867,258844,50232013269,50232384466,371197,50233865283,50238762861,4897578
314,50242535509,50262913798,20378289,50242555997,50254296895,20488,11740898,8616903,50242681043,50242984766,303723,50242701686,50242967341,265655,50243027891,50243102362,74471,50243043445,50243096855,53410,50243137492,50243204263,66771,50243152769,50243220014,67245,50247460147,50250565484,3105337,50248293761,50250843767,2550006,50251505470,50251701061,195591,50252457935,50252781101,323166,50254307765,50259141767,4834002
315,50262913798,50283433600,20519802,50262934605,50274840835,20807,11906230,8592765,50263059478,50263271525,212047,50263080463,50263249750,169287,50263315658,50263387681,72023,50263330838,50263382156,51318,50263422626,50263488873,66247,50263438276,50263494756,56480,50267744418,50271112214,3367796,50268578196,50271178666,2600470,50272048940,50272083646,34706,50273003762,50273133499,129737,50274852016,50279654426,4802410
316,50283433600,50303824760,20391160,50283453448,50295083391,19848,11629943,8741369,50283578698,50283822793,244095,50283599532,50283800590,201058,50283869266,50283941507,72241,50283884679,50283936021,51342,50283976222,50284042757,66535,50283991147,50284048846,57699,50288298720,50291351643,3052923,50289133094,50291734020,2600926,50292293132,50292602285,309153,50293246354,50293673258,426904,50295094364,50300052764,4958400
317,50303824760,50324409451,20584691,50303846003,50315766081,21243,11920078,8643370,50303970869,50304332216,361347,50303992465,50304314723,322258,50304376855,50304444329,67474,50304391976,50304450674,58698,50304485883,50304558341,72458,50304500673,50304552783,52110,50308808544,50312034288,3225744,50309642867,50312346712,2703845,50312972815,50313243251,270436,50313925785,50314299966,374181,50315777140,50320638232,4861092
318,50324409451,50344904896,20495445,50324429059,50336128932,19608,11699873,8775964,50324559783,50324767116,207333,50324576716,50324746179,169463,50324810398,50324880400,70002,50324825864,50324886356,60492,50324921014,50324986683,65669,50324936966,50325002979,66013,50329243559,50332402393,3158834,50330078230,50332683048,2604818,50333343006,50333537465,194459,50334295332,50334589272,293940,50336140512,50341131615,4991103
319,50344904896,50365486281,20581385,50344925537,50356588344,20641,11662807,8897937,50345055411,50345291323,235912,50345072834,50345272207,199373,50345336493,50345408647,72154,50345352273,50345403447,51174,50345443322,50345508419,65097,50345458531,50345534983,76452,50349755693,50352858883,3103190,50350589885,50353407497,2817612,50353796842,50354331871,535029,50354750601,50355374726,624125,50356599603,50361716387,5116784
320,50365486281,50386232301,20746020,50365506772,50377190182,20491,11683410,9042119,50365632615,50365836220,203605,50365649026,50365813665,164639,50365879739,50365946913,67174,50365895004,50365952757,57753,50365988326,50366055470,67144,50366003490,50366072397,68907,50370313502,50373459035,3145533,50371147776,50374165614,3017838,50374398226,50375069819,671593,50375350769,50376123358,772589,50377201487,50382459601,5258114
321,50386232301,50407224451,20992150,50386252289,50398345842,19988,12093553,8878609,50386377177,50386793639,416462,50386398561,50386776671,378110,50386840464,50386912721,72257,50386856262,50386907057,50795,50386947700,50387019326,71626,50386963172,50387013879,50707,50391271555,50394618440,3346885,50392105776,50395083261,2977485,50395555753,50395989726,433973,50396508238,50397027320,519082,50398357003,50403452851,5095848
322,50407224451,50428005561,20781110,50407244654,50419092810,20203,11848156,8912751,50407368058,50407655985,287927,50407383167,50407640689,257522,50407699242,50407763775,64533,50407714312,50407780808,66496,50407805178,50407875639,70461,50407820236,50407891410,71174,50412132015,50415370104,3238089,50412965737,50415767476,2801739,50416307797,50416684515,376718,50417260417,50417742884,482467,50419104360,50424230359,5125999
-,47120523118,47141061211,20538093,47120543502,47132348897,20384,11805395,8712314,47120671287,47120956255,284968,47120690175,47120934166,243991,47121000294,47121070534,70240,47121015591,47121075190,59599,47121109052,47121176139,67087,47121124465,47121191343,66878,47125429057,47128617114,3188057,47126263257,47128907798,2644541,47129556892,47129780487,223595,47130510575,47130835361,324786,47132360167,47137288269,4928102
tests/utils/resource/run_1/normal_run/profiler/timeline_display_1.json
0 → 100644
浏览文件 @
d3cc7a89
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
tests/utils/resource/run_1/normal_run/profiler/timeline_summary_1.json
0 → 100644
浏览文件 @
d3cc7a89
{
"total_time"
:
1771382.849999995
,
"num_of_streams"
:
11
,
"num_of_ops"
:
199
,
"op_exe_times"
:
2817
}
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录